uboot/drivers/timer/tsc_timer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Copyright (c) 2012 The Chromium OS Authors.
   4 *
   5 * TSC calibration codes are adapted from Linux kernel
   6 * arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c
   7 */
   8
   9#include <common.h>
  10#include <bootstage.h>
  11#include <dm.h>
  12#include <log.h>
  13#include <malloc.h>
  14#include <time.h>
  15#include <timer.h>
  16#include <asm/cpu.h>
  17#include <asm/global_data.h>
  18#include <asm/io.h>
  19#include <asm/i8254.h>
  20#include <asm/ibmpc.h>
  21#include <asm/msr.h>
  22#include <asm/u-boot-x86.h>
  23#include <linux/delay.h>
  24
  25#define MAX_NUM_FREQS   9
  26
  27#define INTEL_FAM6_SKYLAKE_MOBILE       0x4E
  28#define INTEL_FAM6_ATOM_GOLDMONT        0x5C /* Apollo Lake */
  29#define INTEL_FAM6_SKYLAKE_DESKTOP      0x5E
  30#define INTEL_FAM6_ATOM_GOLDMONT_X      0x5F /* Denverton */
  31#define INTEL_FAM6_KABYLAKE_MOBILE      0x8E
  32#define INTEL_FAM6_KABYLAKE_DESKTOP     0x9E
  33
  34DECLARE_GLOBAL_DATA_PTR;
  35
  36/*
  37 * native_calibrate_tsc
  38 * Determine TSC frequency via CPUID, else return 0.
  39 */
  40static unsigned long native_calibrate_tsc(void)
  41{
  42        struct cpuid_result tsc_info;
  43        unsigned int crystal_freq;
  44
  45        if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
  46                return 0;
  47
  48        if (cpuid_eax(0) < 0x15)
  49                return 0;
  50
  51        tsc_info = cpuid(0x15);
  52
  53        if (tsc_info.ebx == 0 || tsc_info.eax == 0)
  54                return 0;
  55
  56        crystal_freq = tsc_info.ecx / 1000;
  57        if (!CONFIG_IS_ENABLED(X86_TSC_TIMER_NATIVE) && !crystal_freq) {
  58                switch (gd->arch.x86_model) {
  59                case INTEL_FAM6_SKYLAKE_MOBILE:
  60                case INTEL_FAM6_SKYLAKE_DESKTOP:
  61                case INTEL_FAM6_KABYLAKE_MOBILE:
  62                case INTEL_FAM6_KABYLAKE_DESKTOP:
  63                        crystal_freq = 24000;   /* 24.0 MHz */
  64                        break;
  65                case INTEL_FAM6_ATOM_GOLDMONT_X:
  66                        crystal_freq = 25000;   /* 25.0 MHz */
  67                        break;
  68                case INTEL_FAM6_ATOM_GOLDMONT:
  69                        crystal_freq = 19200;   /* 19.2 MHz */
  70                        break;
  71                default:
  72                        return 0;
  73                }
  74        }
  75
  76        return (crystal_freq * tsc_info.ebx / tsc_info.eax) / 1000;
  77}
  78
  79static unsigned long cpu_mhz_from_cpuid(void)
  80{
  81        if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
  82                return 0;
  83
  84        if (cpuid_eax(0) < 0x16)
  85                return 0;
  86
  87        return cpuid_eax(0x16);
  88}
  89
  90/*
  91 * According to Intel 64 and IA-32 System Programming Guide,
  92 * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
  93 * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
  94 * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
  95 * so we need manually differentiate SoC families. This is what the
  96 * field msr_plat does.
  97 */
  98struct freq_desc {
  99        u8 x86_family;  /* CPU family */
 100        u8 x86_model;   /* model */
 101        /* 2: use 100MHz, 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */
 102        u8 msr_plat;
 103        u32 freqs[MAX_NUM_FREQS];
 104};
 105
 106static struct freq_desc freq_desc_tables[] = {
 107        /* PNW */
 108        { 6, 0x27, 0, { 0, 0, 0, 0, 0, 99840, 0, 83200, 0 } },
 109        /* CLV+ */
 110        { 6, 0x35, 0, { 0, 133200, 0, 0, 0, 99840, 0, 83200, 0 } },
 111        /* TNG - Intel Atom processor Z3400 series */
 112        { 6, 0x4a, 1, { 0, 100000, 133300, 0, 0, 0, 0, 0, 0 } },
 113        /* VLV2 - Intel Atom processor E3000, Z3600, Z3700 series */
 114        { 6, 0x37, 1, { 83300, 100000, 133300, 116700, 80000, 0, 0, 0, 0 } },
 115        /* ANN - Intel Atom processor Z3500 series */
 116        { 6, 0x5a, 1, { 83300, 100000, 133300, 100000, 0, 0, 0, 0, 0 } },
 117        /* AMT - Intel Atom processor X7-Z8000 and X5-Z8000 series */
 118        { 6, 0x4c, 1, { 83300, 100000, 133300, 116700,
 119                        80000, 93300, 90000, 88900, 87500 } },
 120        /* Ivybridge */
 121        { 6, 0x3a, 2, { 0, 0, 0, 0, 0, 0, 0, 0, 0 } },
 122};
 123
 124static int match_cpu(u8 family, u8 model)
 125{
 126        int i;
 127
 128        for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) {
 129                if ((family == freq_desc_tables[i].x86_family) &&
 130                    (model == freq_desc_tables[i].x86_model))
 131                        return i;
 132        }
 133
 134        return -1;
 135}
 136
 137/* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */
 138#define id_to_freq(cpu_index, freq_id) \
 139        (freq_desc_tables[cpu_index].freqs[freq_id])
 140
 141/*
 142 * TSC on Intel Atom SoCs capable of determining TSC frequency by MSR is
 143 * reliable and the frequency is known (provided by HW).
 144 *
 145 * On these platforms PIT/HPET is generally not available so calibration won't
 146 * work at all and there is no other clocksource to act as a watchdog for the
 147 * TSC, so we have no other choice than to trust it.
 148 *
 149 * Returns the TSC frequency in MHz or 0 if HW does not provide it.
 150 */
 151static unsigned long __maybe_unused cpu_mhz_from_msr(void)
 152{
 153        u32 lo, hi, ratio, freq_id, freq;
 154        unsigned long res;
 155        int cpu_index;
 156
 157        if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
 158                return 0;
 159
 160        cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model);
 161        if (cpu_index < 0)
 162                return 0;
 163
 164        if (freq_desc_tables[cpu_index].msr_plat) {
 165                rdmsr(MSR_PLATFORM_INFO, lo, hi);
 166                ratio = (lo >> 8) & 0xff;
 167        } else {
 168                rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
 169                ratio = (hi >> 8) & 0x1f;
 170        }
 171        debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio);
 172
 173        if (freq_desc_tables[cpu_index].msr_plat == 2) {
 174                /* TODO: Figure out how best to deal with this */
 175                freq = 100000;
 176                debug("Using frequency: %u KHz\n", freq);
 177        } else {
 178                /* Get FSB FREQ ID */
 179                rdmsr(MSR_FSB_FREQ, lo, hi);
 180                freq_id = lo & 0x7;
 181                freq = id_to_freq(cpu_index, freq_id);
 182                debug("Resolved frequency ID: %u, frequency: %u KHz\n",
 183                      freq_id, freq);
 184        }
 185
 186        /* TSC frequency = maximum resolved freq * maximum resolved bus ratio */
 187        res = freq * ratio / 1000;
 188        debug("TSC runs at %lu MHz\n", res);
 189
 190        return res;
 191}
 192
 193/*
 194 * This reads the current MSB of the PIT counter, and
 195 * checks if we are running on sufficiently fast and
 196 * non-virtualized hardware.
 197 *
 198 * Our expectations are:
 199 *
 200 *  - the PIT is running at roughly 1.19MHz
 201 *
 202 *  - each IO is going to take about 1us on real hardware,
 203 *    but we allow it to be much faster (by a factor of 10) or
 204 *    _slightly_ slower (ie we allow up to a 2us read+counter
 205 *    update - anything else implies a unacceptably slow CPU
 206 *    or PIT for the fast calibration to work.
 207 *
 208 *  - with 256 PIT ticks to read the value, we have 214us to
 209 *    see the same MSB (and overhead like doing a single TSC
 210 *    read per MSB value etc).
 211 *
 212 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 213 *    them each to take about a microsecond on real hardware.
 214 *    So we expect a count value of around 100. But we'll be
 215 *    generous, and accept anything over 50.
 216 *
 217 *  - if the PIT is stuck, and we see *many* more reads, we
 218 *    return early (and the next caller of pit_expect_msb()
 219 *    then consider it a failure when they don't see the
 220 *    next expected value).
 221 *
 222 * These expectations mean that we know that we have seen the
 223 * transition from one expected value to another with a fairly
 224 * high accuracy, and we didn't miss any events. We can thus
 225 * use the TSC value at the transitions to calculate a pretty
 226 * good value for the TSC frequencty.
 227 */
 228static inline int pit_verify_msb(unsigned char val)
 229{
 230        /* Ignore LSB */
 231        inb(0x42);
 232        return inb(0x42) == val;
 233}
 234
 235static inline int pit_expect_msb(unsigned char val, u64 *tscp,
 236                                 unsigned long *deltap)
 237{
 238        int count;
 239        u64 tsc = 0, prev_tsc = 0;
 240
 241        for (count = 0; count < 50000; count++) {
 242                if (!pit_verify_msb(val))
 243                        break;
 244                prev_tsc = tsc;
 245                tsc = rdtsc();
 246        }
 247        *deltap = rdtsc() - prev_tsc;
 248        *tscp = tsc;
 249
 250        /*
 251         * We require _some_ success, but the quality control
 252         * will be based on the error terms on the TSC values.
 253         */
 254        return count > 5;
 255}
 256
 257/*
 258 * How many MSB values do we want to see? We aim for
 259 * a maximum error rate of 500ppm (in practice the
 260 * real error is much smaller), but refuse to spend
 261 * more than 50ms on it.
 262 */
 263#define MAX_QUICK_PIT_MS 50
 264#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
 265
 266static unsigned long __maybe_unused quick_pit_calibrate(void)
 267{
 268        int i;
 269        u64 tsc, delta;
 270        unsigned long d1, d2;
 271
 272        /* Set the Gate high, disable speaker */
 273        outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 274
 275        /*
 276         * Counter 2, mode 0 (one-shot), binary count
 277         *
 278         * NOTE! Mode 2 decrements by two (and then the
 279         * output is flipped each time, giving the same
 280         * final output frequency as a decrement-by-one),
 281         * so mode 0 is much better when looking at the
 282         * individual counts.
 283         */
 284        outb(0xb0, 0x43);
 285
 286        /* Start at 0xffff */
 287        outb(0xff, 0x42);
 288        outb(0xff, 0x42);
 289
 290        /*
 291         * The PIT starts counting at the next edge, so we
 292         * need to delay for a microsecond. The easiest way
 293         * to do that is to just read back the 16-bit counter
 294         * once from the PIT.
 295         */
 296        pit_verify_msb(0);
 297
 298        if (pit_expect_msb(0xff, &tsc, &d1)) {
 299                for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
 300                        if (!pit_expect_msb(0xff-i, &delta, &d2))
 301                                break;
 302
 303                        /*
 304                         * Iterate until the error is less than 500 ppm
 305                         */
 306                        delta -= tsc;
 307                        if (d1+d2 >= delta >> 11)
 308                                continue;
 309
 310                        /*
 311                         * Check the PIT one more time to verify that
 312                         * all TSC reads were stable wrt the PIT.
 313                         *
 314                         * This also guarantees serialization of the
 315                         * last cycle read ('d2') in pit_expect_msb.
 316                         */
 317                        if (!pit_verify_msb(0xfe - i))
 318                                break;
 319                        goto success;
 320                }
 321        }
 322        debug("Fast TSC calibration failed\n");
 323        return 0;
 324
 325success:
 326        /*
 327         * Ok, if we get here, then we've seen the
 328         * MSB of the PIT decrement 'i' times, and the
 329         * error has shrunk to less than 500 ppm.
 330         *
 331         * As a result, we can depend on there not being
 332         * any odd delays anywhere, and the TSC reads are
 333         * reliable (within the error).
 334         *
 335         * kHz = ticks / time-in-seconds / 1000;
 336         * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
 337         * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
 338         */
 339        delta *= PIT_TICK_RATE;
 340        delta /= (i*256*1000);
 341        debug("Fast TSC calibration using PIT\n");
 342        return delta / 1000;
 343}
 344
 345/* Get the speed of the TSC timer in MHz */
 346unsigned notrace long get_tbclk_mhz(void)
 347{
 348        return get_tbclk() / 1000000;
 349}
 350
 351static ulong get_ms_timer(void)
 352{
 353        return (get_ticks() * 1000) / get_tbclk();
 354}
 355
 356ulong get_timer(ulong base)
 357{
 358        return get_ms_timer() - base;
 359}
 360
 361ulong notrace timer_get_us(void)
 362{
 363        return get_ticks() / get_tbclk_mhz();
 364}
 365
 366ulong timer_get_boot_us(void)
 367{
 368        return timer_get_us();
 369}
 370
 371void __udelay(unsigned long usec)
 372{
 373        u64 now = get_ticks();
 374        u64 stop;
 375
 376        stop = now + (u64)usec * get_tbclk_mhz();
 377
 378        while ((int64_t)(stop - get_ticks()) > 0)
 379#if defined(CONFIG_QEMU) && defined(CONFIG_SMP)
 380                /*
 381                 * Add a 'pause' instruction on qemu target,
 382                 * to give other VCPUs a chance to run.
 383                 */
 384                asm volatile("pause");
 385#else
 386                ;
 387#endif
 388}
 389
 390static u64 tsc_timer_get_count(struct udevice *dev)
 391{
 392        u64 now_tick = rdtsc();
 393
 394        return now_tick - gd->arch.tsc_base;
 395}
 396
 397static void tsc_timer_ensure_setup(bool early)
 398{
 399        if (gd->arch.tsc_inited)
 400                return;
 401        if (IS_ENABLED(CONFIG_X86_TSC_READ_BASE))
 402                gd->arch.tsc_base = rdtsc();
 403
 404        if (!gd->arch.clock_rate) {
 405                unsigned long fast_calibrate;
 406
 407                fast_calibrate = native_calibrate_tsc();
 408                if (fast_calibrate)
 409                        goto done;
 410
 411                /* Reduce code size by dropping other methods */
 412                if (CONFIG_IS_ENABLED(X86_TSC_TIMER_NATIVE))
 413                        panic("no timer");
 414
 415                fast_calibrate = cpu_mhz_from_cpuid();
 416                if (fast_calibrate)
 417                        goto done;
 418
 419                fast_calibrate = cpu_mhz_from_msr();
 420                if (fast_calibrate)
 421                        goto done;
 422
 423                fast_calibrate = quick_pit_calibrate();
 424                if (fast_calibrate)
 425                        goto done;
 426
 427                if (early)
 428                        fast_calibrate = CONFIG_X86_TSC_TIMER_EARLY_FREQ;
 429                else
 430                        return;
 431
 432done:
 433                gd->arch.clock_rate = fast_calibrate * 1000000;
 434        }
 435        gd->arch.tsc_inited = true;
 436}
 437
 438static int tsc_timer_probe(struct udevice *dev)
 439{
 440        struct timer_dev_priv *uc_priv = dev_get_uclass_priv(dev);
 441
 442        /* Try hardware calibration first */
 443        tsc_timer_ensure_setup(false);
 444        if (!gd->arch.clock_rate) {
 445                /*
 446                 * Use the clock frequency specified in the
 447                 * device tree as last resort
 448                 */
 449                if (!uc_priv->clock_rate)
 450                        panic("TSC frequency is ZERO");
 451        } else {
 452                uc_priv->clock_rate = gd->arch.clock_rate;
 453        }
 454
 455        return 0;
 456}
 457
 458unsigned long notrace timer_early_get_rate(void)
 459{
 460        /*
 461         * When TSC timer is used as the early timer, be warned that the timer
 462         * clock rate can only be calibrated via some hardware ways. Specifying
 463         * it in the device tree won't work for the early timer.
 464         */
 465        tsc_timer_ensure_setup(true);
 466
 467        return gd->arch.clock_rate;
 468}
 469
 470u64 notrace timer_early_get_count(void)
 471{
 472        tsc_timer_ensure_setup(true);
 473
 474        return rdtsc() - gd->arch.tsc_base;
 475}
 476
 477static const struct timer_ops tsc_timer_ops = {
 478        .get_count = tsc_timer_get_count,
 479};
 480
 481#if !CONFIG_IS_ENABLED(OF_PLATDATA)
 482static const struct udevice_id tsc_timer_ids[] = {
 483        { .compatible = "x86,tsc-timer", },
 484        { }
 485};
 486#endif
 487
 488U_BOOT_DRIVER(x86_tsc_timer) = {
 489        .name   = "x86_tsc_timer",
 490        .id     = UCLASS_TIMER,
 491        .of_match = of_match_ptr(tsc_timer_ids),
 492        .probe = tsc_timer_probe,
 493        .ops    = &tsc_timer_ops,
 494};
 495