uboot/fs/ubifs/super.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Artem Bityutskiy (Битюцкий Артём)
   8 *          Adrian Hunter
   9 */
  10
  11/*
  12 * This file implements UBIFS initialization and VFS superblock operations. Some
  13 * initialization stuff which is rather large and complex is placed at
  14 * corresponding subsystems, but most of it is here.
  15 */
  16
  17#ifndef __UBOOT__
  18#include <log.h>
  19#include <dm/devres.h>
  20#include <linux/init.h>
  21#include <linux/slab.h>
  22#include <linux/module.h>
  23#include <linux/ctype.h>
  24#include <linux/kthread.h>
  25#include <linux/parser.h>
  26#include <linux/seq_file.h>
  27#include <linux/mount.h>
  28#include <linux/math64.h>
  29#include <linux/writeback.h>
  30#else
  31
  32#include <common.h>
  33#include <malloc.h>
  34#include <memalign.h>
  35#include <linux/bitops.h>
  36#include <linux/bug.h>
  37#include <linux/log2.h>
  38#include <linux/stat.h>
  39#include <linux/err.h>
  40#include "ubifs.h"
  41#include <ubi_uboot.h>
  42#include <linux/stringify.h>
  43#include <mtd/ubi-user.h>
  44
  45struct dentry;
  46struct file;
  47struct iattr;
  48struct kstat;
  49struct vfsmount;
  50
  51#define INODE_LOCKED_MAX        64
  52
  53struct super_block *ubifs_sb;
  54
  55static struct inode *inodes_locked_down[INODE_LOCKED_MAX];
  56
  57int set_anon_super(struct super_block *s, void *data)
  58{
  59        return 0;
  60}
  61
  62struct inode *iget_locked(struct super_block *sb, unsigned long ino)
  63{
  64        struct inode *inode;
  65
  66        inode = (struct inode *)malloc_cache_aligned(
  67                        sizeof(struct ubifs_inode));
  68        if (inode) {
  69                inode->i_ino = ino;
  70                inode->i_sb = sb;
  71                list_add(&inode->i_sb_list, &sb->s_inodes);
  72                inode->i_state = I_LOCK | I_NEW;
  73        }
  74
  75        return inode;
  76}
  77
  78void iget_failed(struct inode *inode)
  79{
  80}
  81
  82int ubifs_iput(struct inode *inode)
  83{
  84        list_del_init(&inode->i_sb_list);
  85
  86        free(inode);
  87        return 0;
  88}
  89
  90/*
  91 * Lock (save) inode in inode array for readback after recovery
  92 */
  93void iput(struct inode *inode)
  94{
  95        int i;
  96        struct inode *ino;
  97
  98        /*
  99         * Search end of list
 100         */
 101        for (i = 0; i < INODE_LOCKED_MAX; i++) {
 102                if (inodes_locked_down[i] == NULL)
 103                        break;
 104        }
 105
 106        if (i >= INODE_LOCKED_MAX) {
 107                dbg_gen("Error, can't lock (save) more inodes while recovery!!!");
 108                return;
 109        }
 110
 111        /*
 112         * Allocate and use new inode
 113         */
 114        ino = (struct inode *)malloc_cache_aligned(sizeof(struct ubifs_inode));
 115        memcpy(ino, inode, sizeof(struct ubifs_inode));
 116
 117        /*
 118         * Finally save inode in array
 119         */
 120        inodes_locked_down[i] = ino;
 121}
 122
 123/* from fs/inode.c */
 124/**
 125 * clear_nlink - directly zero an inode's link count
 126 * @inode: inode
 127 *
 128 * This is a low-level filesystem helper to replace any
 129 * direct filesystem manipulation of i_nlink.  See
 130 * drop_nlink() for why we care about i_nlink hitting zero.
 131 */
 132void clear_nlink(struct inode *inode)
 133{
 134        if (inode->i_nlink) {
 135                inode->__i_nlink = 0;
 136                atomic_long_inc(&inode->i_sb->s_remove_count);
 137        }
 138}
 139EXPORT_SYMBOL(clear_nlink);
 140
 141/**
 142 * set_nlink - directly set an inode's link count
 143 * @inode: inode
 144 * @nlink: new nlink (should be non-zero)
 145 *
 146 * This is a low-level filesystem helper to replace any
 147 * direct filesystem manipulation of i_nlink.
 148 */
 149void set_nlink(struct inode *inode, unsigned int nlink)
 150{
 151        if (!nlink) {
 152                clear_nlink(inode);
 153        } else {
 154                /* Yes, some filesystems do change nlink from zero to one */
 155                if (inode->i_nlink == 0)
 156                        atomic_long_dec(&inode->i_sb->s_remove_count);
 157
 158                inode->__i_nlink = nlink;
 159        }
 160}
 161EXPORT_SYMBOL(set_nlink);
 162
 163/* from include/linux/fs.h */
 164static inline void i_uid_write(struct inode *inode, uid_t uid)
 165{
 166        inode->i_uid.val = uid;
 167}
 168
 169static inline void i_gid_write(struct inode *inode, gid_t gid)
 170{
 171        inode->i_gid.val = gid;
 172}
 173
 174void unlock_new_inode(struct inode *inode)
 175{
 176        return;
 177}
 178#endif
 179
 180/*
 181 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
 182 * allocating too much.
 183 */
 184#define UBIFS_KMALLOC_OK (128*1024)
 185
 186/* Slab cache for UBIFS inodes */
 187struct kmem_cache *ubifs_inode_slab;
 188
 189#ifndef __UBOOT__
 190/* UBIFS TNC shrinker description */
 191static struct shrinker ubifs_shrinker_info = {
 192        .scan_objects = ubifs_shrink_scan,
 193        .count_objects = ubifs_shrink_count,
 194        .seeks = DEFAULT_SEEKS,
 195};
 196#endif
 197
 198/**
 199 * validate_inode - validate inode.
 200 * @c: UBIFS file-system description object
 201 * @inode: the inode to validate
 202 *
 203 * This is a helper function for 'ubifs_iget()' which validates various fields
 204 * of a newly built inode to make sure they contain sane values and prevent
 205 * possible vulnerabilities. Returns zero if the inode is all right and
 206 * a non-zero error code if not.
 207 */
 208static int validate_inode(struct ubifs_info *c, const struct inode *inode)
 209{
 210        int err;
 211        const struct ubifs_inode *ui = ubifs_inode(inode);
 212
 213        if (inode->i_size > c->max_inode_sz) {
 214                ubifs_err(c, "inode is too large (%lld)",
 215                          (long long)inode->i_size);
 216                return 1;
 217        }
 218
 219        if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
 220                ubifs_err(c, "unknown compression type %d", ui->compr_type);
 221                return 2;
 222        }
 223
 224        if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
 225                return 3;
 226
 227        if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
 228                return 4;
 229
 230        if (ui->xattr && !S_ISREG(inode->i_mode))
 231                return 5;
 232
 233        if (!ubifs_compr_present(ui->compr_type)) {
 234                ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
 235                           inode->i_ino, ubifs_compr_name(ui->compr_type));
 236        }
 237
 238        err = dbg_check_dir(c, inode);
 239        return err;
 240}
 241
 242struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
 243{
 244        int err;
 245        union ubifs_key key;
 246        struct ubifs_ino_node *ino;
 247        struct ubifs_info *c = sb->s_fs_info;
 248        struct inode *inode;
 249        struct ubifs_inode *ui;
 250#ifdef __UBOOT__
 251        int i;
 252#endif
 253
 254        dbg_gen("inode %lu", inum);
 255
 256#ifdef __UBOOT__
 257        /*
 258         * U-Boot special handling of locked down inodes via recovery
 259         * e.g. ubifs_recover_size()
 260         */
 261        for (i = 0; i < INODE_LOCKED_MAX; i++) {
 262                /*
 263                 * Exit on last entry (NULL), inode not found in list
 264                 */
 265                if (inodes_locked_down[i] == NULL)
 266                        break;
 267
 268                if (inodes_locked_down[i]->i_ino == inum) {
 269                        /*
 270                         * We found the locked down inode in our array,
 271                         * so just return this pointer instead of creating
 272                         * a new one.
 273                         */
 274                        return inodes_locked_down[i];
 275                }
 276        }
 277#endif
 278
 279        inode = iget_locked(sb, inum);
 280        if (!inode)
 281                return ERR_PTR(-ENOMEM);
 282        if (!(inode->i_state & I_NEW))
 283                return inode;
 284        ui = ubifs_inode(inode);
 285
 286        ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
 287        if (!ino) {
 288                err = -ENOMEM;
 289                goto out;
 290        }
 291
 292        ino_key_init(c, &key, inode->i_ino);
 293
 294        err = ubifs_tnc_lookup(c, &key, ino);
 295        if (err)
 296                goto out_ino;
 297
 298        inode->i_flags |= (S_NOCMTIME | S_NOATIME);
 299        set_nlink(inode, le32_to_cpu(ino->nlink));
 300        i_uid_write(inode, le32_to_cpu(ino->uid));
 301        i_gid_write(inode, le32_to_cpu(ino->gid));
 302        inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
 303        inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
 304        inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
 305        inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
 306        inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
 307        inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
 308        inode->i_mode = le32_to_cpu(ino->mode);
 309        inode->i_size = le64_to_cpu(ino->size);
 310
 311        ui->data_len    = le32_to_cpu(ino->data_len);
 312        ui->flags       = le32_to_cpu(ino->flags);
 313        ui->compr_type  = le16_to_cpu(ino->compr_type);
 314        ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
 315        ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
 316        ui->xattr_size  = le32_to_cpu(ino->xattr_size);
 317        ui->xattr_names = le32_to_cpu(ino->xattr_names);
 318        ui->synced_i_size = ui->ui_size = inode->i_size;
 319
 320        ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
 321
 322        err = validate_inode(c, inode);
 323        if (err)
 324                goto out_invalid;
 325
 326#ifndef __UBOOT__
 327        switch (inode->i_mode & S_IFMT) {
 328        case S_IFREG:
 329                inode->i_mapping->a_ops = &ubifs_file_address_operations;
 330                inode->i_op = &ubifs_file_inode_operations;
 331                inode->i_fop = &ubifs_file_operations;
 332                if (ui->xattr) {
 333                        ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
 334                        if (!ui->data) {
 335                                err = -ENOMEM;
 336                                goto out_ino;
 337                        }
 338                        memcpy(ui->data, ino->data, ui->data_len);
 339                        ((char *)ui->data)[ui->data_len] = '\0';
 340                } else if (ui->data_len != 0) {
 341                        err = 10;
 342                        goto out_invalid;
 343                }
 344                break;
 345        case S_IFDIR:
 346                inode->i_op  = &ubifs_dir_inode_operations;
 347                inode->i_fop = &ubifs_dir_operations;
 348                if (ui->data_len != 0) {
 349                        err = 11;
 350                        goto out_invalid;
 351                }
 352                break;
 353        case S_IFLNK:
 354                inode->i_op = &ubifs_symlink_inode_operations;
 355                if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
 356                        err = 12;
 357                        goto out_invalid;
 358                }
 359                ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
 360                if (!ui->data) {
 361                        err = -ENOMEM;
 362                        goto out_ino;
 363                }
 364                memcpy(ui->data, ino->data, ui->data_len);
 365                ((char *)ui->data)[ui->data_len] = '\0';
 366                inode->i_link = ui->data;
 367                break;
 368        case S_IFBLK:
 369        case S_IFCHR:
 370        {
 371                dev_t rdev;
 372                union ubifs_dev_desc *dev;
 373
 374                ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
 375                if (!ui->data) {
 376                        err = -ENOMEM;
 377                        goto out_ino;
 378                }
 379
 380                dev = (union ubifs_dev_desc *)ino->data;
 381                if (ui->data_len == sizeof(dev->new))
 382                        rdev = new_decode_dev(le32_to_cpu(dev->new));
 383                else if (ui->data_len == sizeof(dev->huge))
 384                        rdev = huge_decode_dev(le64_to_cpu(dev->huge));
 385                else {
 386                        err = 13;
 387                        goto out_invalid;
 388                }
 389                memcpy(ui->data, ino->data, ui->data_len);
 390                inode->i_op = &ubifs_file_inode_operations;
 391                init_special_inode(inode, inode->i_mode, rdev);
 392                break;
 393        }
 394        case S_IFSOCK:
 395        case S_IFIFO:
 396                inode->i_op = &ubifs_file_inode_operations;
 397                init_special_inode(inode, inode->i_mode, 0);
 398                if (ui->data_len != 0) {
 399                        err = 14;
 400                        goto out_invalid;
 401                }
 402                break;
 403        default:
 404                err = 15;
 405                goto out_invalid;
 406        }
 407#else
 408        if ((inode->i_mode & S_IFMT) == S_IFLNK) {
 409                if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
 410                        err = 12;
 411                        goto out_invalid;
 412                }
 413                ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
 414                if (!ui->data) {
 415                        err = -ENOMEM;
 416                        goto out_ino;
 417                }
 418                memcpy(ui->data, ino->data, ui->data_len);
 419                ((char *)ui->data)[ui->data_len] = '\0';
 420        }
 421#endif
 422
 423        kfree(ino);
 424#ifndef __UBOOT__
 425        ubifs_set_inode_flags(inode);
 426#endif
 427        unlock_new_inode(inode);
 428        return inode;
 429
 430out_invalid:
 431        ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
 432        ubifs_dump_node(c, ino);
 433        ubifs_dump_inode(c, inode);
 434        err = -EINVAL;
 435out_ino:
 436        kfree(ino);
 437out:
 438        ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
 439        iget_failed(inode);
 440        return ERR_PTR(err);
 441}
 442
 443static struct inode *ubifs_alloc_inode(struct super_block *sb)
 444{
 445        struct ubifs_inode *ui;
 446
 447        ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
 448        if (!ui)
 449                return NULL;
 450
 451        memset((void *)ui + sizeof(struct inode), 0,
 452               sizeof(struct ubifs_inode) - sizeof(struct inode));
 453        mutex_init(&ui->ui_mutex);
 454        spin_lock_init(&ui->ui_lock);
 455        return &ui->vfs_inode;
 456};
 457
 458#ifndef __UBOOT__
 459static void ubifs_i_callback(struct rcu_head *head)
 460{
 461        struct inode *inode = container_of(head, struct inode, i_rcu);
 462        struct ubifs_inode *ui = ubifs_inode(inode);
 463        kmem_cache_free(ubifs_inode_slab, ui);
 464}
 465
 466static void ubifs_destroy_inode(struct inode *inode)
 467{
 468        struct ubifs_inode *ui = ubifs_inode(inode);
 469
 470        kfree(ui->data);
 471        call_rcu(&inode->i_rcu, ubifs_i_callback);
 472}
 473
 474/*
 475 * Note, Linux write-back code calls this without 'i_mutex'.
 476 */
 477static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
 478{
 479        int err = 0;
 480        struct ubifs_info *c = inode->i_sb->s_fs_info;
 481        struct ubifs_inode *ui = ubifs_inode(inode);
 482
 483        ubifs_assert(!ui->xattr);
 484        if (is_bad_inode(inode))
 485                return 0;
 486
 487        mutex_lock(&ui->ui_mutex);
 488        /*
 489         * Due to races between write-back forced by budgeting
 490         * (see 'sync_some_inodes()') and background write-back, the inode may
 491         * have already been synchronized, do not do this again. This might
 492         * also happen if it was synchronized in an VFS operation, e.g.
 493         * 'ubifs_link()'.
 494         */
 495        if (!ui->dirty) {
 496                mutex_unlock(&ui->ui_mutex);
 497                return 0;
 498        }
 499
 500        /*
 501         * As an optimization, do not write orphan inodes to the media just
 502         * because this is not needed.
 503         */
 504        dbg_gen("inode %lu, mode %#x, nlink %u",
 505                inode->i_ino, (int)inode->i_mode, inode->i_nlink);
 506        if (inode->i_nlink) {
 507                err = ubifs_jnl_write_inode(c, inode);
 508                if (err)
 509                        ubifs_err(c, "can't write inode %lu, error %d",
 510                                  inode->i_ino, err);
 511                else
 512                        err = dbg_check_inode_size(c, inode, ui->ui_size);
 513        }
 514
 515        ui->dirty = 0;
 516        mutex_unlock(&ui->ui_mutex);
 517        ubifs_release_dirty_inode_budget(c, ui);
 518        return err;
 519}
 520
 521static void ubifs_evict_inode(struct inode *inode)
 522{
 523        int err;
 524        struct ubifs_info *c = inode->i_sb->s_fs_info;
 525        struct ubifs_inode *ui = ubifs_inode(inode);
 526
 527        if (ui->xattr)
 528                /*
 529                 * Extended attribute inode deletions are fully handled in
 530                 * 'ubifs_removexattr()'. These inodes are special and have
 531                 * limited usage, so there is nothing to do here.
 532                 */
 533                goto out;
 534
 535        dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
 536        ubifs_assert(!atomic_read(&inode->i_count));
 537
 538        truncate_inode_pages_final(&inode->i_data);
 539
 540        if (inode->i_nlink)
 541                goto done;
 542
 543        if (is_bad_inode(inode))
 544                goto out;
 545
 546        ui->ui_size = inode->i_size = 0;
 547        err = ubifs_jnl_delete_inode(c, inode);
 548        if (err)
 549                /*
 550                 * Worst case we have a lost orphan inode wasting space, so a
 551                 * simple error message is OK here.
 552                 */
 553                ubifs_err(c, "can't delete inode %lu, error %d",
 554                          inode->i_ino, err);
 555
 556out:
 557        if (ui->dirty)
 558                ubifs_release_dirty_inode_budget(c, ui);
 559        else {
 560                /* We've deleted something - clean the "no space" flags */
 561                c->bi.nospace = c->bi.nospace_rp = 0;
 562                smp_wmb();
 563        }
 564done:
 565        clear_inode(inode);
 566}
 567#endif
 568
 569static void ubifs_dirty_inode(struct inode *inode, int flags)
 570{
 571        struct ubifs_inode *ui = ubifs_inode(inode);
 572
 573        ubifs_assert(mutex_is_locked(&ui->ui_mutex));
 574        if (!ui->dirty) {
 575                ui->dirty = 1;
 576                dbg_gen("inode %lu",  inode->i_ino);
 577        }
 578}
 579
 580#ifndef __UBOOT__
 581static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
 582{
 583        struct ubifs_info *c = dentry->d_sb->s_fs_info;
 584        unsigned long long free;
 585        __le32 *uuid = (__le32 *)c->uuid;
 586
 587        free = ubifs_get_free_space(c);
 588        dbg_gen("free space %lld bytes (%lld blocks)",
 589                free, free >> UBIFS_BLOCK_SHIFT);
 590
 591        buf->f_type = UBIFS_SUPER_MAGIC;
 592        buf->f_bsize = UBIFS_BLOCK_SIZE;
 593        buf->f_blocks = c->block_cnt;
 594        buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
 595        if (free > c->report_rp_size)
 596                buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
 597        else
 598                buf->f_bavail = 0;
 599        buf->f_files = 0;
 600        buf->f_ffree = 0;
 601        buf->f_namelen = UBIFS_MAX_NLEN;
 602        buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
 603        buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
 604        ubifs_assert(buf->f_bfree <= c->block_cnt);
 605        return 0;
 606}
 607
 608static int ubifs_show_options(struct seq_file *s, struct dentry *root)
 609{
 610        struct ubifs_info *c = root->d_sb->s_fs_info;
 611
 612        if (c->mount_opts.unmount_mode == 2)
 613                seq_puts(s, ",fast_unmount");
 614        else if (c->mount_opts.unmount_mode == 1)
 615                seq_puts(s, ",norm_unmount");
 616
 617        if (c->mount_opts.bulk_read == 2)
 618                seq_puts(s, ",bulk_read");
 619        else if (c->mount_opts.bulk_read == 1)
 620                seq_puts(s, ",no_bulk_read");
 621
 622        if (c->mount_opts.chk_data_crc == 2)
 623                seq_puts(s, ",chk_data_crc");
 624        else if (c->mount_opts.chk_data_crc == 1)
 625                seq_puts(s, ",no_chk_data_crc");
 626
 627        if (c->mount_opts.override_compr) {
 628                seq_printf(s, ",compr=%s",
 629                           ubifs_compr_name(c->mount_opts.compr_type));
 630        }
 631
 632        return 0;
 633}
 634
 635static int ubifs_sync_fs(struct super_block *sb, int wait)
 636{
 637        int i, err;
 638        struct ubifs_info *c = sb->s_fs_info;
 639
 640        /*
 641         * Zero @wait is just an advisory thing to help the file system shove
 642         * lots of data into the queues, and there will be the second
 643         * '->sync_fs()' call, with non-zero @wait.
 644         */
 645        if (!wait)
 646                return 0;
 647
 648        /*
 649         * Synchronize write buffers, because 'ubifs_run_commit()' does not
 650         * do this if it waits for an already running commit.
 651         */
 652        for (i = 0; i < c->jhead_cnt; i++) {
 653                err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
 654                if (err)
 655                        return err;
 656        }
 657
 658        /*
 659         * Strictly speaking, it is not necessary to commit the journal here,
 660         * synchronizing write-buffers would be enough. But committing makes
 661         * UBIFS free space predictions much more accurate, so we want to let
 662         * the user be able to get more accurate results of 'statfs()' after
 663         * they synchronize the file system.
 664         */
 665        err = ubifs_run_commit(c);
 666        if (err)
 667                return err;
 668
 669        return ubi_sync(c->vi.ubi_num);
 670}
 671#endif
 672
 673/**
 674 * init_constants_early - initialize UBIFS constants.
 675 * @c: UBIFS file-system description object
 676 *
 677 * This function initialize UBIFS constants which do not need the superblock to
 678 * be read. It also checks that the UBI volume satisfies basic UBIFS
 679 * requirements. Returns zero in case of success and a negative error code in
 680 * case of failure.
 681 */
 682static int init_constants_early(struct ubifs_info *c)
 683{
 684        if (c->vi.corrupted) {
 685                ubifs_warn(c, "UBI volume is corrupted - read-only mode");
 686                c->ro_media = 1;
 687        }
 688
 689        if (c->di.ro_mode) {
 690                ubifs_msg(c, "read-only UBI device");
 691                c->ro_media = 1;
 692        }
 693
 694        if (c->vi.vol_type == UBI_STATIC_VOLUME) {
 695                ubifs_msg(c, "static UBI volume - read-only mode");
 696                c->ro_media = 1;
 697        }
 698
 699        c->leb_cnt = c->vi.size;
 700        c->leb_size = c->vi.usable_leb_size;
 701        c->leb_start = c->di.leb_start;
 702        c->half_leb_size = c->leb_size / 2;
 703        c->min_io_size = c->di.min_io_size;
 704        c->min_io_shift = fls(c->min_io_size) - 1;
 705        c->max_write_size = c->di.max_write_size;
 706        c->max_write_shift = fls(c->max_write_size) - 1;
 707
 708        if (c->leb_size < UBIFS_MIN_LEB_SZ) {
 709                ubifs_err(c, "too small LEBs (%d bytes), min. is %d bytes",
 710                          c->leb_size, UBIFS_MIN_LEB_SZ);
 711                return -EINVAL;
 712        }
 713
 714        if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
 715                ubifs_err(c, "too few LEBs (%d), min. is %d",
 716                          c->leb_cnt, UBIFS_MIN_LEB_CNT);
 717                return -EINVAL;
 718        }
 719
 720        if (!is_power_of_2(c->min_io_size)) {
 721                ubifs_err(c, "bad min. I/O size %d", c->min_io_size);
 722                return -EINVAL;
 723        }
 724
 725        /*
 726         * Maximum write size has to be greater or equivalent to min. I/O
 727         * size, and be multiple of min. I/O size.
 728         */
 729        if (c->max_write_size < c->min_io_size ||
 730            c->max_write_size % c->min_io_size ||
 731            !is_power_of_2(c->max_write_size)) {
 732                ubifs_err(c, "bad write buffer size %d for %d min. I/O unit",
 733                          c->max_write_size, c->min_io_size);
 734                return -EINVAL;
 735        }
 736
 737        /*
 738         * UBIFS aligns all node to 8-byte boundary, so to make function in
 739         * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
 740         * less than 8.
 741         */
 742        if (c->min_io_size < 8) {
 743                c->min_io_size = 8;
 744                c->min_io_shift = 3;
 745                if (c->max_write_size < c->min_io_size) {
 746                        c->max_write_size = c->min_io_size;
 747                        c->max_write_shift = c->min_io_shift;
 748                }
 749        }
 750
 751        c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
 752        c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
 753
 754        /*
 755         * Initialize node length ranges which are mostly needed for node
 756         * length validation.
 757         */
 758        c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
 759        c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
 760        c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
 761        c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
 762        c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
 763        c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
 764
 765        c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
 766        c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
 767        c->ranges[UBIFS_ORPH_NODE].min_len =
 768                                UBIFS_ORPH_NODE_SZ + sizeof(__le64);
 769        c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
 770        c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
 771        c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
 772        c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
 773        c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
 774        c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
 775        c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
 776        /*
 777         * Minimum indexing node size is amended later when superblock is
 778         * read and the key length is known.
 779         */
 780        c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
 781        /*
 782         * Maximum indexing node size is amended later when superblock is
 783         * read and the fanout is known.
 784         */
 785        c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
 786
 787        /*
 788         * Initialize dead and dark LEB space watermarks. See gc.c for comments
 789         * about these values.
 790         */
 791        c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
 792        c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
 793
 794        /*
 795         * Calculate how many bytes would be wasted at the end of LEB if it was
 796         * fully filled with data nodes of maximum size. This is used in
 797         * calculations when reporting free space.
 798         */
 799        c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
 800
 801        /* Buffer size for bulk-reads */
 802        c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
 803        if (c->max_bu_buf_len > c->leb_size)
 804                c->max_bu_buf_len = c->leb_size;
 805        return 0;
 806}
 807
 808/**
 809 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
 810 * @c: UBIFS file-system description object
 811 * @lnum: LEB the write-buffer was synchronized to
 812 * @free: how many free bytes left in this LEB
 813 * @pad: how many bytes were padded
 814 *
 815 * This is a callback function which is called by the I/O unit when the
 816 * write-buffer is synchronized. We need this to correctly maintain space
 817 * accounting in bud logical eraseblocks. This function returns zero in case of
 818 * success and a negative error code in case of failure.
 819 *
 820 * This function actually belongs to the journal, but we keep it here because
 821 * we want to keep it static.
 822 */
 823static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
 824{
 825        return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
 826}
 827
 828/*
 829 * init_constants_sb - initialize UBIFS constants.
 830 * @c: UBIFS file-system description object
 831 *
 832 * This is a helper function which initializes various UBIFS constants after
 833 * the superblock has been read. It also checks various UBIFS parameters and
 834 * makes sure they are all right. Returns zero in case of success and a
 835 * negative error code in case of failure.
 836 */
 837static int init_constants_sb(struct ubifs_info *c)
 838{
 839        int tmp, err;
 840        long long tmp64;
 841
 842        c->main_bytes = (long long)c->main_lebs * c->leb_size;
 843        c->max_znode_sz = sizeof(struct ubifs_znode) +
 844                                c->fanout * sizeof(struct ubifs_zbranch);
 845
 846        tmp = ubifs_idx_node_sz(c, 1);
 847        c->ranges[UBIFS_IDX_NODE].min_len = tmp;
 848        c->min_idx_node_sz = ALIGN(tmp, 8);
 849
 850        tmp = ubifs_idx_node_sz(c, c->fanout);
 851        c->ranges[UBIFS_IDX_NODE].max_len = tmp;
 852        c->max_idx_node_sz = ALIGN(tmp, 8);
 853
 854        /* Make sure LEB size is large enough to fit full commit */
 855        tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
 856        tmp = ALIGN(tmp, c->min_io_size);
 857        if (tmp > c->leb_size) {
 858                ubifs_err(c, "too small LEB size %d, at least %d needed",
 859                          c->leb_size, tmp);
 860                return -EINVAL;
 861        }
 862
 863        /*
 864         * Make sure that the log is large enough to fit reference nodes for
 865         * all buds plus one reserved LEB.
 866         */
 867        tmp64 = c->max_bud_bytes + c->leb_size - 1;
 868        c->max_bud_cnt = div_u64(tmp64, c->leb_size);
 869        tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
 870        tmp /= c->leb_size;
 871        tmp += 1;
 872        if (c->log_lebs < tmp) {
 873                ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
 874                          c->log_lebs, tmp);
 875                return -EINVAL;
 876        }
 877
 878        /*
 879         * When budgeting we assume worst-case scenarios when the pages are not
 880         * be compressed and direntries are of the maximum size.
 881         *
 882         * Note, data, which may be stored in inodes is budgeted separately, so
 883         * it is not included into 'c->bi.inode_budget'.
 884         */
 885        c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
 886        c->bi.inode_budget = UBIFS_INO_NODE_SZ;
 887        c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
 888
 889        /*
 890         * When the amount of flash space used by buds becomes
 891         * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
 892         * The writers are unblocked when the commit is finished. To avoid
 893         * writers to be blocked UBIFS initiates background commit in advance,
 894         * when number of bud bytes becomes above the limit defined below.
 895         */
 896        c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
 897
 898        /*
 899         * Ensure minimum journal size. All the bytes in the journal heads are
 900         * considered to be used, when calculating the current journal usage.
 901         * Consequently, if the journal is too small, UBIFS will treat it as
 902         * always full.
 903         */
 904        tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
 905        if (c->bg_bud_bytes < tmp64)
 906                c->bg_bud_bytes = tmp64;
 907        if (c->max_bud_bytes < tmp64 + c->leb_size)
 908                c->max_bud_bytes = tmp64 + c->leb_size;
 909
 910        err = ubifs_calc_lpt_geom(c);
 911        if (err)
 912                return err;
 913
 914        /* Initialize effective LEB size used in budgeting calculations */
 915        c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
 916        return 0;
 917}
 918
 919/*
 920 * init_constants_master - initialize UBIFS constants.
 921 * @c: UBIFS file-system description object
 922 *
 923 * This is a helper function which initializes various UBIFS constants after
 924 * the master node has been read. It also checks various UBIFS parameters and
 925 * makes sure they are all right.
 926 */
 927static void init_constants_master(struct ubifs_info *c)
 928{
 929        long long tmp64;
 930
 931        c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 932        c->report_rp_size = ubifs_reported_space(c, c->rp_size);
 933
 934        /*
 935         * Calculate total amount of FS blocks. This number is not used
 936         * internally because it does not make much sense for UBIFS, but it is
 937         * necessary to report something for the 'statfs()' call.
 938         *
 939         * Subtract the LEB reserved for GC, the LEB which is reserved for
 940         * deletions, minimum LEBs for the index, and assume only one journal
 941         * head is available.
 942         */
 943        tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
 944        tmp64 *= (long long)c->leb_size - c->leb_overhead;
 945        tmp64 = ubifs_reported_space(c, tmp64);
 946        c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
 947}
 948
 949/**
 950 * take_gc_lnum - reserve GC LEB.
 951 * @c: UBIFS file-system description object
 952 *
 953 * This function ensures that the LEB reserved for garbage collection is marked
 954 * as "taken" in lprops. We also have to set free space to LEB size and dirty
 955 * space to zero, because lprops may contain out-of-date information if the
 956 * file-system was un-mounted before it has been committed. This function
 957 * returns zero in case of success and a negative error code in case of
 958 * failure.
 959 */
 960static int take_gc_lnum(struct ubifs_info *c)
 961{
 962        int err;
 963
 964        if (c->gc_lnum == -1) {
 965                ubifs_err(c, "no LEB for GC");
 966                return -EINVAL;
 967        }
 968
 969        /* And we have to tell lprops that this LEB is taken */
 970        err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
 971                                  LPROPS_TAKEN, 0, 0);
 972        return err;
 973}
 974
 975/**
 976 * alloc_wbufs - allocate write-buffers.
 977 * @c: UBIFS file-system description object
 978 *
 979 * This helper function allocates and initializes UBIFS write-buffers. Returns
 980 * zero in case of success and %-ENOMEM in case of failure.
 981 */
 982static int alloc_wbufs(struct ubifs_info *c)
 983{
 984        int i, err;
 985
 986        c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
 987                            GFP_KERNEL);
 988        if (!c->jheads)
 989                return -ENOMEM;
 990
 991        /* Initialize journal heads */
 992        for (i = 0; i < c->jhead_cnt; i++) {
 993                INIT_LIST_HEAD(&c->jheads[i].buds_list);
 994                err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
 995                if (err)
 996                        return err;
 997
 998                c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
 999                c->jheads[i].wbuf.jhead = i;
1000                c->jheads[i].grouped = 1;
1001        }
1002
1003        /*
1004         * Garbage Collector head does not need to be synchronized by timer.
1005         * Also GC head nodes are not grouped.
1006         */
1007        c->jheads[GCHD].wbuf.no_timer = 1;
1008        c->jheads[GCHD].grouped = 0;
1009
1010        return 0;
1011}
1012
1013/**
1014 * free_wbufs - free write-buffers.
1015 * @c: UBIFS file-system description object
1016 */
1017static void free_wbufs(struct ubifs_info *c)
1018{
1019        int i;
1020
1021        if (c->jheads) {
1022                for (i = 0; i < c->jhead_cnt; i++) {
1023                        kfree(c->jheads[i].wbuf.buf);
1024                        kfree(c->jheads[i].wbuf.inodes);
1025                }
1026                kfree(c->jheads);
1027                c->jheads = NULL;
1028        }
1029}
1030
1031/**
1032 * free_orphans - free orphans.
1033 * @c: UBIFS file-system description object
1034 */
1035static void free_orphans(struct ubifs_info *c)
1036{
1037        struct ubifs_orphan *orph;
1038
1039        while (c->orph_dnext) {
1040                orph = c->orph_dnext;
1041                c->orph_dnext = orph->dnext;
1042                list_del(&orph->list);
1043                kfree(orph);
1044        }
1045
1046        while (!list_empty(&c->orph_list)) {
1047                orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
1048                list_del(&orph->list);
1049                kfree(orph);
1050                ubifs_err(c, "orphan list not empty at unmount");
1051        }
1052
1053        vfree(c->orph_buf);
1054        c->orph_buf = NULL;
1055}
1056
1057/**
1058 * free_buds - free per-bud objects.
1059 * @c: UBIFS file-system description object
1060 */
1061static void free_buds(struct ubifs_info *c)
1062{
1063        struct ubifs_bud *bud, *n;
1064
1065        rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
1066                kfree(bud);
1067}
1068
1069/**
1070 * check_volume_empty - check if the UBI volume is empty.
1071 * @c: UBIFS file-system description object
1072 *
1073 * This function checks if the UBIFS volume is empty by looking if its LEBs are
1074 * mapped or not. The result of checking is stored in the @c->empty variable.
1075 * Returns zero in case of success and a negative error code in case of
1076 * failure.
1077 */
1078static int check_volume_empty(struct ubifs_info *c)
1079{
1080        int lnum, err;
1081
1082        c->empty = 1;
1083        for (lnum = 0; lnum < c->leb_cnt; lnum++) {
1084                err = ubifs_is_mapped(c, lnum);
1085                if (unlikely(err < 0))
1086                        return err;
1087                if (err == 1) {
1088                        c->empty = 0;
1089                        break;
1090                }
1091
1092                cond_resched();
1093        }
1094
1095        return 0;
1096}
1097
1098/*
1099 * UBIFS mount options.
1100 *
1101 * Opt_fast_unmount: do not run a journal commit before un-mounting
1102 * Opt_norm_unmount: run a journal commit before un-mounting
1103 * Opt_bulk_read: enable bulk-reads
1104 * Opt_no_bulk_read: disable bulk-reads
1105 * Opt_chk_data_crc: check CRCs when reading data nodes
1106 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
1107 * Opt_override_compr: override default compressor
1108 * Opt_err: just end of array marker
1109 */
1110enum {
1111        Opt_fast_unmount,
1112        Opt_norm_unmount,
1113        Opt_bulk_read,
1114        Opt_no_bulk_read,
1115        Opt_chk_data_crc,
1116        Opt_no_chk_data_crc,
1117        Opt_override_compr,
1118        Opt_err,
1119};
1120
1121#ifndef __UBOOT__
1122static const match_table_t tokens = {
1123        {Opt_fast_unmount, "fast_unmount"},
1124        {Opt_norm_unmount, "norm_unmount"},
1125        {Opt_bulk_read, "bulk_read"},
1126        {Opt_no_bulk_read, "no_bulk_read"},
1127        {Opt_chk_data_crc, "chk_data_crc"},
1128        {Opt_no_chk_data_crc, "no_chk_data_crc"},
1129        {Opt_override_compr, "compr=%s"},
1130        {Opt_err, NULL},
1131};
1132
1133/**
1134 * parse_standard_option - parse a standard mount option.
1135 * @option: the option to parse
1136 *
1137 * Normally, standard mount options like "sync" are passed to file-systems as
1138 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
1139 * be present in the options string. This function tries to deal with this
1140 * situation and parse standard options. Returns 0 if the option was not
1141 * recognized, and the corresponding integer flag if it was.
1142 *
1143 * UBIFS is only interested in the "sync" option, so do not check for anything
1144 * else.
1145 */
1146static int parse_standard_option(const char *option)
1147{
1148
1149        pr_notice("UBIFS: parse %s\n", option);
1150        if (!strcmp(option, "sync"))
1151                return MS_SYNCHRONOUS;
1152        return 0;
1153}
1154
1155/**
1156 * ubifs_parse_options - parse mount parameters.
1157 * @c: UBIFS file-system description object
1158 * @options: parameters to parse
1159 * @is_remount: non-zero if this is FS re-mount
1160 *
1161 * This function parses UBIFS mount options and returns zero in case success
1162 * and a negative error code in case of failure.
1163 */
1164static int ubifs_parse_options(struct ubifs_info *c, char *options,
1165                               int is_remount)
1166{
1167        char *p;
1168        substring_t args[MAX_OPT_ARGS];
1169
1170        if (!options)
1171                return 0;
1172
1173        while ((p = strsep(&options, ","))) {
1174                int token;
1175
1176                if (!*p)
1177                        continue;
1178
1179                token = match_token(p, tokens, args);
1180                switch (token) {
1181                /*
1182                 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1183                 * We accept them in order to be backward-compatible. But this
1184                 * should be removed at some point.
1185                 */
1186                case Opt_fast_unmount:
1187                        c->mount_opts.unmount_mode = 2;
1188                        break;
1189                case Opt_norm_unmount:
1190                        c->mount_opts.unmount_mode = 1;
1191                        break;
1192                case Opt_bulk_read:
1193                        c->mount_opts.bulk_read = 2;
1194                        c->bulk_read = 1;
1195                        break;
1196                case Opt_no_bulk_read:
1197                        c->mount_opts.bulk_read = 1;
1198                        c->bulk_read = 0;
1199                        break;
1200                case Opt_chk_data_crc:
1201                        c->mount_opts.chk_data_crc = 2;
1202                        c->no_chk_data_crc = 0;
1203                        break;
1204                case Opt_no_chk_data_crc:
1205                        c->mount_opts.chk_data_crc = 1;
1206                        c->no_chk_data_crc = 1;
1207                        break;
1208                case Opt_override_compr:
1209                {
1210                        char *name = match_strdup(&args[0]);
1211
1212                        if (!name)
1213                                return -ENOMEM;
1214                        if (!strcmp(name, "none"))
1215                                c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1216                        else if (!strcmp(name, "lzo"))
1217                                c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1218                        else if (!strcmp(name, "zlib"))
1219                                c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1220                        else {
1221                                ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1222                                kfree(name);
1223                                return -EINVAL;
1224                        }
1225                        kfree(name);
1226                        c->mount_opts.override_compr = 1;
1227                        c->default_compr = c->mount_opts.compr_type;
1228                        break;
1229                }
1230                default:
1231                {
1232                        unsigned long flag;
1233                        struct super_block *sb = c->vfs_sb;
1234
1235                        flag = parse_standard_option(p);
1236                        if (!flag) {
1237                                ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1238                                          p);
1239                                return -EINVAL;
1240                        }
1241                        sb->s_flags |= flag;
1242                        break;
1243                }
1244                }
1245        }
1246
1247        return 0;
1248}
1249#endif
1250
1251/**
1252 * destroy_journal - destroy journal data structures.
1253 * @c: UBIFS file-system description object
1254 *
1255 * This function destroys journal data structures including those that may have
1256 * been created by recovery functions.
1257 */
1258static void destroy_journal(struct ubifs_info *c)
1259{
1260        while (!list_empty(&c->unclean_leb_list)) {
1261                struct ubifs_unclean_leb *ucleb;
1262
1263                ucleb = list_entry(c->unclean_leb_list.next,
1264                                   struct ubifs_unclean_leb, list);
1265                list_del(&ucleb->list);
1266                kfree(ucleb);
1267        }
1268        while (!list_empty(&c->old_buds)) {
1269                struct ubifs_bud *bud;
1270
1271                bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1272                list_del(&bud->list);
1273                kfree(bud);
1274        }
1275        ubifs_destroy_idx_gc(c);
1276        ubifs_destroy_size_tree(c);
1277        ubifs_tnc_close(c);
1278        free_buds(c);
1279}
1280
1281/**
1282 * bu_init - initialize bulk-read information.
1283 * @c: UBIFS file-system description object
1284 */
1285static void bu_init(struct ubifs_info *c)
1286{
1287        ubifs_assert(c->bulk_read == 1);
1288
1289        if (c->bu.buf)
1290                return; /* Already initialized */
1291
1292again:
1293        c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1294        if (!c->bu.buf) {
1295                if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1296                        c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1297                        goto again;
1298                }
1299
1300                /* Just disable bulk-read */
1301                ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1302                           c->max_bu_buf_len);
1303                c->mount_opts.bulk_read = 1;
1304                c->bulk_read = 0;
1305                return;
1306        }
1307}
1308
1309#ifndef __UBOOT__
1310/**
1311 * check_free_space - check if there is enough free space to mount.
1312 * @c: UBIFS file-system description object
1313 *
1314 * This function makes sure UBIFS has enough free space to be mounted in
1315 * read/write mode. UBIFS must always have some free space to allow deletions.
1316 */
1317static int check_free_space(struct ubifs_info *c)
1318{
1319        ubifs_assert(c->dark_wm > 0);
1320        if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1321                ubifs_err(c, "insufficient free space to mount in R/W mode");
1322                ubifs_dump_budg(c, &c->bi);
1323                ubifs_dump_lprops(c);
1324                return -ENOSPC;
1325        }
1326        return 0;
1327}
1328#endif
1329
1330/**
1331 * mount_ubifs - mount UBIFS file-system.
1332 * @c: UBIFS file-system description object
1333 *
1334 * This function mounts UBIFS file system. Returns zero in case of success and
1335 * a negative error code in case of failure.
1336 */
1337static int mount_ubifs(struct ubifs_info *c)
1338{
1339        int err;
1340        long long x;
1341#ifndef CONFIG_UBIFS_SILENCE_MSG
1342        long long y;
1343#endif
1344        size_t sz;
1345
1346        c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1347        /* Suppress error messages while probing if MS_SILENT is set */
1348        c->probing = !!(c->vfs_sb->s_flags & MS_SILENT);
1349#ifdef __UBOOT__
1350        if (!c->ro_mount) {
1351                printf("UBIFS: only ro mode in U-Boot allowed.\n");
1352                return -EACCES;
1353        }
1354#endif
1355
1356        err = init_constants_early(c);
1357        if (err)
1358                return err;
1359
1360        err = ubifs_debugging_init(c);
1361        if (err)
1362                return err;
1363
1364        err = check_volume_empty(c);
1365        if (err)
1366                goto out_free;
1367
1368        if (c->empty && (c->ro_mount || c->ro_media)) {
1369                /*
1370                 * This UBI volume is empty, and read-only, or the file system
1371                 * is mounted read-only - we cannot format it.
1372                 */
1373                ubifs_err(c, "can't format empty UBI volume: read-only %s",
1374                          c->ro_media ? "UBI volume" : "mount");
1375                err = -EROFS;
1376                goto out_free;
1377        }
1378
1379        if (c->ro_media && !c->ro_mount) {
1380                ubifs_err(c, "cannot mount read-write - read-only media");
1381                err = -EROFS;
1382                goto out_free;
1383        }
1384
1385        /*
1386         * The requirement for the buffer is that it should fit indexing B-tree
1387         * height amount of integers. We assume the height if the TNC tree will
1388         * never exceed 64.
1389         */
1390        err = -ENOMEM;
1391        c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1392        if (!c->bottom_up_buf)
1393                goto out_free;
1394
1395        c->sbuf = vmalloc(c->leb_size);
1396        if (!c->sbuf)
1397                goto out_free;
1398
1399#ifndef __UBOOT__
1400        if (!c->ro_mount) {
1401                c->ileb_buf = vmalloc(c->leb_size);
1402                if (!c->ileb_buf)
1403                        goto out_free;
1404        }
1405#endif
1406
1407        if (c->bulk_read == 1)
1408                bu_init(c);
1409
1410#ifndef __UBOOT__
1411        if (!c->ro_mount) {
1412                c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
1413                                               GFP_KERNEL);
1414                if (!c->write_reserve_buf)
1415                        goto out_free;
1416        }
1417#endif
1418
1419        c->mounting = 1;
1420
1421        err = ubifs_read_superblock(c);
1422        if (err)
1423                goto out_free;
1424
1425        c->probing = 0;
1426
1427        /*
1428         * Make sure the compressor which is set as default in the superblock
1429         * or overridden by mount options is actually compiled in.
1430         */
1431        if (!ubifs_compr_present(c->default_compr)) {
1432                ubifs_err(c, "'compressor \"%s\" is not compiled in",
1433                          ubifs_compr_name(c->default_compr));
1434                err = -ENOTSUPP;
1435                goto out_free;
1436        }
1437
1438        err = init_constants_sb(c);
1439        if (err)
1440                goto out_free;
1441
1442        sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1443        sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1444        c->cbuf = kmalloc(sz, GFP_NOFS);
1445        if (!c->cbuf) {
1446                err = -ENOMEM;
1447                goto out_free;
1448        }
1449
1450        err = alloc_wbufs(c);
1451        if (err)
1452                goto out_cbuf;
1453
1454        sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1455#ifndef __UBOOT__
1456        if (!c->ro_mount) {
1457                /* Create background thread */
1458                c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1459                if (IS_ERR(c->bgt)) {
1460                        err = PTR_ERR(c->bgt);
1461                        c->bgt = NULL;
1462                        ubifs_err(c, "cannot spawn \"%s\", error %d",
1463                                  c->bgt_name, err);
1464                        goto out_wbufs;
1465                }
1466                wake_up_process(c->bgt);
1467        }
1468#endif
1469
1470        err = ubifs_read_master(c);
1471        if (err)
1472                goto out_master;
1473
1474        init_constants_master(c);
1475
1476        if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1477                ubifs_msg(c, "recovery needed");
1478                c->need_recovery = 1;
1479        }
1480
1481#ifndef __UBOOT__
1482        if (c->need_recovery && !c->ro_mount) {
1483                err = ubifs_recover_inl_heads(c, c->sbuf);
1484                if (err)
1485                        goto out_master;
1486        }
1487#endif
1488
1489        err = ubifs_lpt_init(c, 1, !c->ro_mount);
1490        if (err)
1491                goto out_master;
1492
1493#ifndef __UBOOT__
1494        if (!c->ro_mount && c->space_fixup) {
1495                err = ubifs_fixup_free_space(c);
1496                if (err)
1497                        goto out_lpt;
1498        }
1499
1500        if (!c->ro_mount && !c->need_recovery) {
1501                /*
1502                 * Set the "dirty" flag so that if we reboot uncleanly we
1503                 * will notice this immediately on the next mount.
1504                 */
1505                c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1506                err = ubifs_write_master(c);
1507                if (err)
1508                        goto out_lpt;
1509        }
1510#endif
1511
1512        err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1513        if (err)
1514                goto out_lpt;
1515
1516        err = ubifs_replay_journal(c);
1517        if (err)
1518                goto out_journal;
1519
1520        /* Calculate 'min_idx_lebs' after journal replay */
1521        c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1522
1523        err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1524        if (err)
1525                goto out_orphans;
1526
1527        if (!c->ro_mount) {
1528#ifndef __UBOOT__
1529                int lnum;
1530
1531                err = check_free_space(c);
1532                if (err)
1533                        goto out_orphans;
1534
1535                /* Check for enough log space */
1536                lnum = c->lhead_lnum + 1;
1537                if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1538                        lnum = UBIFS_LOG_LNUM;
1539                if (lnum == c->ltail_lnum) {
1540                        err = ubifs_consolidate_log(c);
1541                        if (err)
1542                                goto out_orphans;
1543                }
1544
1545                if (c->need_recovery) {
1546                        err = ubifs_recover_size(c);
1547                        if (err)
1548                                goto out_orphans;
1549                        err = ubifs_rcvry_gc_commit(c);
1550                        if (err)
1551                                goto out_orphans;
1552                } else {
1553                        err = take_gc_lnum(c);
1554                        if (err)
1555                                goto out_orphans;
1556
1557                        /*
1558                         * GC LEB may contain garbage if there was an unclean
1559                         * reboot, and it should be un-mapped.
1560                         */
1561                        err = ubifs_leb_unmap(c, c->gc_lnum);
1562                        if (err)
1563                                goto out_orphans;
1564                }
1565
1566                err = dbg_check_lprops(c);
1567                if (err)
1568                        goto out_orphans;
1569#endif
1570        } else if (c->need_recovery) {
1571                err = ubifs_recover_size(c);
1572                if (err)
1573                        goto out_orphans;
1574        } else {
1575                /*
1576                 * Even if we mount read-only, we have to set space in GC LEB
1577                 * to proper value because this affects UBIFS free space
1578                 * reporting. We do not want to have a situation when
1579                 * re-mounting from R/O to R/W changes amount of free space.
1580                 */
1581                err = take_gc_lnum(c);
1582                if (err)
1583                        goto out_orphans;
1584        }
1585
1586#ifndef __UBOOT__
1587        spin_lock(&ubifs_infos_lock);
1588        list_add_tail(&c->infos_list, &ubifs_infos);
1589        spin_unlock(&ubifs_infos_lock);
1590#endif
1591
1592        if (c->need_recovery) {
1593                if (c->ro_mount)
1594                        ubifs_msg(c, "recovery deferred");
1595                else {
1596                        c->need_recovery = 0;
1597                        ubifs_msg(c, "recovery completed");
1598                        /*
1599                         * GC LEB has to be empty and taken at this point. But
1600                         * the journal head LEBs may also be accounted as
1601                         * "empty taken" if they are empty.
1602                         */
1603                        ubifs_assert(c->lst.taken_empty_lebs > 0);
1604                }
1605        } else
1606                ubifs_assert(c->lst.taken_empty_lebs > 0);
1607
1608        err = dbg_check_filesystem(c);
1609        if (err)
1610                goto out_infos;
1611
1612        err = dbg_debugfs_init_fs(c);
1613        if (err)
1614                goto out_infos;
1615
1616        c->mounting = 0;
1617
1618        ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1619                  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1620                  c->ro_mount ? ", R/O mode" : "");
1621        x = (long long)c->main_lebs * c->leb_size;
1622#ifndef CONFIG_UBIFS_SILENCE_MSG
1623        y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1624#endif
1625        ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1626                  c->leb_size, c->leb_size >> 10, c->min_io_size,
1627                  c->max_write_size);
1628        ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1629                  x, x >> 20, c->main_lebs,
1630                  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1631        ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1632                  c->report_rp_size, c->report_rp_size >> 10);
1633        ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1634                  c->fmt_version, c->ro_compat_version,
1635                  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1636                  c->big_lpt ? ", big LPT model" : ", small LPT model");
1637
1638        dbg_gen("default compressor:  %s", ubifs_compr_name(c->default_compr));
1639        dbg_gen("data journal heads:  %d",
1640                c->jhead_cnt - NONDATA_JHEADS_CNT);
1641        dbg_gen("log LEBs:            %d (%d - %d)",
1642                c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1643        dbg_gen("LPT area LEBs:       %d (%d - %d)",
1644                c->lpt_lebs, c->lpt_first, c->lpt_last);
1645        dbg_gen("orphan area LEBs:    %d (%d - %d)",
1646                c->orph_lebs, c->orph_first, c->orph_last);
1647        dbg_gen("main area LEBs:      %d (%d - %d)",
1648                c->main_lebs, c->main_first, c->leb_cnt - 1);
1649        dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1650        dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1651                c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1652                c->bi.old_idx_sz >> 20);
1653        dbg_gen("key hash type:       %d", c->key_hash_type);
1654        dbg_gen("tree fanout:         %d", c->fanout);
1655        dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1656        dbg_gen("max. znode size      %d", c->max_znode_sz);
1657        dbg_gen("max. index node size %d", c->max_idx_node_sz);
1658        dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1659                UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1660        dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1661                UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1662        dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1663                UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1664        dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1665                UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1666                UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1667        dbg_gen("dead watermark:      %d", c->dead_wm);
1668        dbg_gen("dark watermark:      %d", c->dark_wm);
1669        dbg_gen("LEB overhead:        %d", c->leb_overhead);
1670        x = (long long)c->main_lebs * c->dark_wm;
1671        dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1672                x, x >> 10, x >> 20);
1673        dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1674                c->max_bud_bytes, c->max_bud_bytes >> 10,
1675                c->max_bud_bytes >> 20);
1676        dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1677                c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1678                c->bg_bud_bytes >> 20);
1679        dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1680                c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1681        dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1682        dbg_gen("commit number:       %llu", c->cmt_no);
1683
1684        return 0;
1685
1686out_infos:
1687        spin_lock(&ubifs_infos_lock);
1688        list_del(&c->infos_list);
1689        spin_unlock(&ubifs_infos_lock);
1690out_orphans:
1691        free_orphans(c);
1692out_journal:
1693        destroy_journal(c);
1694out_lpt:
1695        ubifs_lpt_free(c, 0);
1696out_master:
1697        kfree(c->mst_node);
1698        kfree(c->rcvrd_mst_node);
1699        if (c->bgt)
1700                kthread_stop(c->bgt);
1701#ifndef __UBOOT__
1702out_wbufs:
1703#endif
1704        free_wbufs(c);
1705out_cbuf:
1706        kfree(c->cbuf);
1707out_free:
1708        kfree(c->write_reserve_buf);
1709        kfree(c->bu.buf);
1710        vfree(c->ileb_buf);
1711        vfree(c->sbuf);
1712        kfree(c->bottom_up_buf);
1713        ubifs_debugging_exit(c);
1714        return err;
1715}
1716
1717/**
1718 * ubifs_umount - un-mount UBIFS file-system.
1719 * @c: UBIFS file-system description object
1720 *
1721 * Note, this function is called to free allocated resourced when un-mounting,
1722 * as well as free resources when an error occurred while we were half way
1723 * through mounting (error path cleanup function). So it has to make sure the
1724 * resource was actually allocated before freeing it.
1725 */
1726#ifndef __UBOOT__
1727static void ubifs_umount(struct ubifs_info *c)
1728#else
1729void ubifs_umount(struct ubifs_info *c)
1730#endif
1731{
1732        dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1733                c->vi.vol_id);
1734
1735        dbg_debugfs_exit_fs(c);
1736        spin_lock(&ubifs_infos_lock);
1737        list_del(&c->infos_list);
1738        spin_unlock(&ubifs_infos_lock);
1739
1740#ifndef __UBOOT__
1741        if (c->bgt)
1742                kthread_stop(c->bgt);
1743
1744        destroy_journal(c);
1745#endif
1746        free_wbufs(c);
1747        free_orphans(c);
1748        ubifs_lpt_free(c, 0);
1749
1750        kfree(c->cbuf);
1751        kfree(c->rcvrd_mst_node);
1752        kfree(c->mst_node);
1753        kfree(c->write_reserve_buf);
1754        kfree(c->bu.buf);
1755        vfree(c->ileb_buf);
1756        vfree(c->sbuf);
1757        kfree(c->bottom_up_buf);
1758        ubifs_debugging_exit(c);
1759#ifdef __UBOOT__
1760        /* Finally free U-Boot's global copy of superblock */
1761        if (ubifs_sb != NULL) {
1762                free(ubifs_sb->s_fs_info);
1763                free(ubifs_sb);
1764        }
1765#endif
1766}
1767
1768#ifndef __UBOOT__
1769/**
1770 * ubifs_remount_rw - re-mount in read-write mode.
1771 * @c: UBIFS file-system description object
1772 *
1773 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1774 * mode. This function allocates the needed resources and re-mounts UBIFS in
1775 * read-write mode.
1776 */
1777static int ubifs_remount_rw(struct ubifs_info *c)
1778{
1779        int err, lnum;
1780
1781        if (c->rw_incompat) {
1782                ubifs_err(c, "the file-system is not R/W-compatible");
1783                ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1784                          c->fmt_version, c->ro_compat_version,
1785                          UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1786                return -EROFS;
1787        }
1788
1789        mutex_lock(&c->umount_mutex);
1790        dbg_save_space_info(c);
1791        c->remounting_rw = 1;
1792        c->ro_mount = 0;
1793
1794        if (c->space_fixup) {
1795                err = ubifs_fixup_free_space(c);
1796                if (err)
1797                        goto out;
1798        }
1799
1800        err = check_free_space(c);
1801        if (err)
1802                goto out;
1803
1804        if (c->old_leb_cnt != c->leb_cnt) {
1805                struct ubifs_sb_node *sup;
1806
1807                sup = ubifs_read_sb_node(c);
1808                if (IS_ERR(sup)) {
1809                        err = PTR_ERR(sup);
1810                        goto out;
1811                }
1812                sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1813                err = ubifs_write_sb_node(c, sup);
1814                kfree(sup);
1815                if (err)
1816                        goto out;
1817        }
1818
1819        if (c->need_recovery) {
1820                ubifs_msg(c, "completing deferred recovery");
1821                err = ubifs_write_rcvrd_mst_node(c);
1822                if (err)
1823                        goto out;
1824                err = ubifs_recover_size(c);
1825                if (err)
1826                        goto out;
1827                err = ubifs_clean_lebs(c, c->sbuf);
1828                if (err)
1829                        goto out;
1830                err = ubifs_recover_inl_heads(c, c->sbuf);
1831                if (err)
1832                        goto out;
1833        } else {
1834                /* A readonly mount is not allowed to have orphans */
1835                ubifs_assert(c->tot_orphans == 0);
1836                err = ubifs_clear_orphans(c);
1837                if (err)
1838                        goto out;
1839        }
1840
1841        if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1842                c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1843                err = ubifs_write_master(c);
1844                if (err)
1845                        goto out;
1846        }
1847
1848        c->ileb_buf = vmalloc(c->leb_size);
1849        if (!c->ileb_buf) {
1850                err = -ENOMEM;
1851                goto out;
1852        }
1853
1854        c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
1855        if (!c->write_reserve_buf) {
1856                err = -ENOMEM;
1857                goto out;
1858        }
1859
1860        err = ubifs_lpt_init(c, 0, 1);
1861        if (err)
1862                goto out;
1863
1864        /* Create background thread */
1865        c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1866        if (IS_ERR(c->bgt)) {
1867                err = PTR_ERR(c->bgt);
1868                c->bgt = NULL;
1869                ubifs_err(c, "cannot spawn \"%s\", error %d",
1870                          c->bgt_name, err);
1871                goto out;
1872        }
1873        wake_up_process(c->bgt);
1874
1875        c->orph_buf = vmalloc(c->leb_size);
1876        if (!c->orph_buf) {
1877                err = -ENOMEM;
1878                goto out;
1879        }
1880
1881        /* Check for enough log space */
1882        lnum = c->lhead_lnum + 1;
1883        if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1884                lnum = UBIFS_LOG_LNUM;
1885        if (lnum == c->ltail_lnum) {
1886                err = ubifs_consolidate_log(c);
1887                if (err)
1888                        goto out;
1889        }
1890
1891        if (c->need_recovery)
1892                err = ubifs_rcvry_gc_commit(c);
1893        else
1894                err = ubifs_leb_unmap(c, c->gc_lnum);
1895        if (err)
1896                goto out;
1897
1898        dbg_gen("re-mounted read-write");
1899        c->remounting_rw = 0;
1900
1901        if (c->need_recovery) {
1902                c->need_recovery = 0;
1903                ubifs_msg(c, "deferred recovery completed");
1904        } else {
1905                /*
1906                 * Do not run the debugging space check if the were doing
1907                 * recovery, because when we saved the information we had the
1908                 * file-system in a state where the TNC and lprops has been
1909                 * modified in memory, but all the I/O operations (including a
1910                 * commit) were deferred. So the file-system was in
1911                 * "non-committed" state. Now the file-system is in committed
1912                 * state, and of course the amount of free space will change
1913                 * because, for example, the old index size was imprecise.
1914                 */
1915                err = dbg_check_space_info(c);
1916        }
1917
1918        mutex_unlock(&c->umount_mutex);
1919        return err;
1920
1921out:
1922        c->ro_mount = 1;
1923        vfree(c->orph_buf);
1924        c->orph_buf = NULL;
1925        if (c->bgt) {
1926                kthread_stop(c->bgt);
1927                c->bgt = NULL;
1928        }
1929        free_wbufs(c);
1930        kfree(c->write_reserve_buf);
1931        c->write_reserve_buf = NULL;
1932        vfree(c->ileb_buf);
1933        c->ileb_buf = NULL;
1934        ubifs_lpt_free(c, 1);
1935        c->remounting_rw = 0;
1936        mutex_unlock(&c->umount_mutex);
1937        return err;
1938}
1939
1940/**
1941 * ubifs_remount_ro - re-mount in read-only mode.
1942 * @c: UBIFS file-system description object
1943 *
1944 * We assume VFS has stopped writing. Possibly the background thread could be
1945 * running a commit, however kthread_stop will wait in that case.
1946 */
1947static void ubifs_remount_ro(struct ubifs_info *c)
1948{
1949        int i, err;
1950
1951        ubifs_assert(!c->need_recovery);
1952        ubifs_assert(!c->ro_mount);
1953
1954        mutex_lock(&c->umount_mutex);
1955        if (c->bgt) {
1956                kthread_stop(c->bgt);
1957                c->bgt = NULL;
1958        }
1959
1960        dbg_save_space_info(c);
1961
1962        for (i = 0; i < c->jhead_cnt; i++)
1963                ubifs_wbuf_sync(&c->jheads[i].wbuf);
1964
1965        c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1966        c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1967        c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1968        err = ubifs_write_master(c);
1969        if (err)
1970                ubifs_ro_mode(c, err);
1971
1972        vfree(c->orph_buf);
1973        c->orph_buf = NULL;
1974        kfree(c->write_reserve_buf);
1975        c->write_reserve_buf = NULL;
1976        vfree(c->ileb_buf);
1977        c->ileb_buf = NULL;
1978        ubifs_lpt_free(c, 1);
1979        c->ro_mount = 1;
1980        err = dbg_check_space_info(c);
1981        if (err)
1982                ubifs_ro_mode(c, err);
1983        mutex_unlock(&c->umount_mutex);
1984}
1985
1986static void ubifs_put_super(struct super_block *sb)
1987{
1988        int i;
1989        struct ubifs_info *c = sb->s_fs_info;
1990
1991        ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1992
1993        /*
1994         * The following asserts are only valid if there has not been a failure
1995         * of the media. For example, there will be dirty inodes if we failed
1996         * to write them back because of I/O errors.
1997         */
1998        if (!c->ro_error) {
1999                ubifs_assert(c->bi.idx_growth == 0);
2000                ubifs_assert(c->bi.dd_growth == 0);
2001                ubifs_assert(c->bi.data_growth == 0);
2002        }
2003
2004        /*
2005         * The 'c->umount_lock' prevents races between UBIFS memory shrinker
2006         * and file system un-mount. Namely, it prevents the shrinker from
2007         * picking this superblock for shrinking - it will be just skipped if
2008         * the mutex is locked.
2009         */
2010        mutex_lock(&c->umount_mutex);
2011        if (!c->ro_mount) {
2012                /*
2013                 * First of all kill the background thread to make sure it does
2014                 * not interfere with un-mounting and freeing resources.
2015                 */
2016                if (c->bgt) {
2017                        kthread_stop(c->bgt);
2018                        c->bgt = NULL;
2019                }
2020
2021                /*
2022                 * On fatal errors c->ro_error is set to 1, in which case we do
2023                 * not write the master node.
2024                 */
2025                if (!c->ro_error) {
2026                        int err;
2027
2028                        /* Synchronize write-buffers */
2029                        for (i = 0; i < c->jhead_cnt; i++)
2030                                ubifs_wbuf_sync(&c->jheads[i].wbuf);
2031
2032                        /*
2033                         * We are being cleanly unmounted which means the
2034                         * orphans were killed - indicate this in the master
2035                         * node. Also save the reserved GC LEB number.
2036                         */
2037                        c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
2038                        c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
2039                        c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
2040                        err = ubifs_write_master(c);
2041                        if (err)
2042                                /*
2043                                 * Recovery will attempt to fix the master area
2044                                 * next mount, so we just print a message and
2045                                 * continue to unmount normally.
2046                                 */
2047                                ubifs_err(c, "failed to write master node, error %d",
2048                                          err);
2049                } else {
2050#ifndef __UBOOT__
2051                        for (i = 0; i < c->jhead_cnt; i++)
2052                                /* Make sure write-buffer timers are canceled */
2053                                hrtimer_cancel(&c->jheads[i].wbuf.timer);
2054#endif
2055                }
2056        }
2057
2058        ubifs_umount(c);
2059#ifndef __UBOOT__
2060        bdi_destroy(&c->bdi);
2061#endif
2062        ubi_close_volume(c->ubi);
2063        mutex_unlock(&c->umount_mutex);
2064}
2065#endif
2066
2067#ifndef __UBOOT__
2068static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
2069{
2070        int err;
2071        struct ubifs_info *c = sb->s_fs_info;
2072
2073        sync_filesystem(sb);
2074        dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
2075
2076        err = ubifs_parse_options(c, data, 1);
2077        if (err) {
2078                ubifs_err(c, "invalid or unknown remount parameter");
2079                return err;
2080        }
2081
2082        if (c->ro_mount && !(*flags & MS_RDONLY)) {
2083                if (c->ro_error) {
2084                        ubifs_msg(c, "cannot re-mount R/W due to prior errors");
2085                        return -EROFS;
2086                }
2087                if (c->ro_media) {
2088                        ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
2089                        return -EROFS;
2090                }
2091                err = ubifs_remount_rw(c);
2092                if (err)
2093                        return err;
2094        } else if (!c->ro_mount && (*flags & MS_RDONLY)) {
2095                if (c->ro_error) {
2096                        ubifs_msg(c, "cannot re-mount R/O due to prior errors");
2097                        return -EROFS;
2098                }
2099                ubifs_remount_ro(c);
2100        }
2101
2102        if (c->bulk_read == 1)
2103                bu_init(c);
2104        else {
2105                dbg_gen("disable bulk-read");
2106                kfree(c->bu.buf);
2107                c->bu.buf = NULL;
2108        }
2109
2110        ubifs_assert(c->lst.taken_empty_lebs > 0);
2111        return 0;
2112}
2113#endif
2114
2115const struct super_operations ubifs_super_operations = {
2116        .alloc_inode   = ubifs_alloc_inode,
2117#ifndef __UBOOT__
2118        .destroy_inode = ubifs_destroy_inode,
2119        .put_super     = ubifs_put_super,
2120        .write_inode   = ubifs_write_inode,
2121        .evict_inode   = ubifs_evict_inode,
2122        .statfs        = ubifs_statfs,
2123#endif
2124        .dirty_inode   = ubifs_dirty_inode,
2125#ifndef __UBOOT__
2126        .remount_fs    = ubifs_remount_fs,
2127        .show_options  = ubifs_show_options,
2128        .sync_fs       = ubifs_sync_fs,
2129#endif
2130};
2131
2132/**
2133 * open_ubi - parse UBI device name string and open the UBI device.
2134 * @name: UBI volume name
2135 * @mode: UBI volume open mode
2136 *
2137 * The primary method of mounting UBIFS is by specifying the UBI volume
2138 * character device node path. However, UBIFS may also be mounted withoug any
2139 * character device node using one of the following methods:
2140 *
2141 * o ubiX_Y    - mount UBI device number X, volume Y;
2142 * o ubiY      - mount UBI device number 0, volume Y;
2143 * o ubiX:NAME - mount UBI device X, volume with name NAME;
2144 * o ubi:NAME  - mount UBI device 0, volume with name NAME.
2145 *
2146 * Alternative '!' separator may be used instead of ':' (because some shells
2147 * like busybox may interpret ':' as an NFS host name separator). This function
2148 * returns UBI volume description object in case of success and a negative
2149 * error code in case of failure.
2150 */
2151static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2152{
2153#ifndef __UBOOT__
2154        struct ubi_volume_desc *ubi;
2155#endif
2156        int dev, vol;
2157        char *endptr;
2158
2159#ifndef __UBOOT__
2160        /* First, try to open using the device node path method */
2161        ubi = ubi_open_volume_path(name, mode);
2162        if (!IS_ERR(ubi))
2163                return ubi;
2164#endif
2165
2166        /* Try the "nodev" method */
2167        if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2168                return ERR_PTR(-EINVAL);
2169
2170        /* ubi:NAME method */
2171        if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2172                return ubi_open_volume_nm(0, name + 4, mode);
2173
2174        if (!isdigit(name[3]))
2175                return ERR_PTR(-EINVAL);
2176
2177        dev = simple_strtoul(name + 3, &endptr, 0);
2178
2179        /* ubiY method */
2180        if (*endptr == '\0')
2181                return ubi_open_volume(0, dev, mode);
2182
2183        /* ubiX_Y method */
2184        if (*endptr == '_' && isdigit(endptr[1])) {
2185                vol = simple_strtoul(endptr + 1, &endptr, 0);
2186                if (*endptr != '\0')
2187                        return ERR_PTR(-EINVAL);
2188                return ubi_open_volume(dev, vol, mode);
2189        }
2190
2191        /* ubiX:NAME method */
2192        if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2193                return ubi_open_volume_nm(dev, ++endptr, mode);
2194
2195        return ERR_PTR(-EINVAL);
2196}
2197
2198static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2199{
2200        struct ubifs_info *c;
2201
2202        c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2203        if (c) {
2204                spin_lock_init(&c->cnt_lock);
2205                spin_lock_init(&c->cs_lock);
2206                spin_lock_init(&c->buds_lock);
2207                spin_lock_init(&c->space_lock);
2208                spin_lock_init(&c->orphan_lock);
2209                init_rwsem(&c->commit_sem);
2210                mutex_init(&c->lp_mutex);
2211                mutex_init(&c->tnc_mutex);
2212                mutex_init(&c->log_mutex);
2213                mutex_init(&c->umount_mutex);
2214                mutex_init(&c->bu_mutex);
2215                mutex_init(&c->write_reserve_mutex);
2216                init_waitqueue_head(&c->cmt_wq);
2217                c->buds = RB_ROOT;
2218                c->old_idx = RB_ROOT;
2219                c->size_tree = RB_ROOT;
2220                c->orph_tree = RB_ROOT;
2221                INIT_LIST_HEAD(&c->infos_list);
2222                INIT_LIST_HEAD(&c->idx_gc);
2223                INIT_LIST_HEAD(&c->replay_list);
2224                INIT_LIST_HEAD(&c->replay_buds);
2225                INIT_LIST_HEAD(&c->uncat_list);
2226                INIT_LIST_HEAD(&c->empty_list);
2227                INIT_LIST_HEAD(&c->freeable_list);
2228                INIT_LIST_HEAD(&c->frdi_idx_list);
2229                INIT_LIST_HEAD(&c->unclean_leb_list);
2230                INIT_LIST_HEAD(&c->old_buds);
2231                INIT_LIST_HEAD(&c->orph_list);
2232                INIT_LIST_HEAD(&c->orph_new);
2233                c->no_chk_data_crc = 1;
2234
2235                c->highest_inum = UBIFS_FIRST_INO;
2236                c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2237
2238                ubi_get_volume_info(ubi, &c->vi);
2239                ubi_get_device_info(c->vi.ubi_num, &c->di);
2240        }
2241        return c;
2242}
2243
2244static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2245{
2246        struct ubifs_info *c = sb->s_fs_info;
2247        struct inode *root;
2248        int err;
2249
2250        c->vfs_sb = sb;
2251#ifndef __UBOOT__
2252        /* Re-open the UBI device in read-write mode */
2253        c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2254#else
2255        /* U-Boot read only mode */
2256        c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READONLY);
2257#endif
2258
2259        if (IS_ERR(c->ubi)) {
2260                err = PTR_ERR(c->ubi);
2261                goto out;
2262        }
2263
2264#ifndef __UBOOT__
2265        /*
2266         * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2267         * UBIFS, I/O is not deferred, it is done immediately in readpage,
2268         * which means the user would have to wait not just for their own I/O
2269         * but the read-ahead I/O as well i.e. completely pointless.
2270         *
2271         * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2272         */
2273        c->bdi.name = "ubifs",
2274        c->bdi.capabilities = 0;
2275        err  = bdi_init(&c->bdi);
2276        if (err)
2277                goto out_close;
2278        err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2279                           c->vi.ubi_num, c->vi.vol_id);
2280        if (err)
2281                goto out_bdi;
2282
2283        err = ubifs_parse_options(c, data, 0);
2284        if (err)
2285                goto out_bdi;
2286
2287        sb->s_bdi = &c->bdi;
2288#endif
2289        sb->s_fs_info = c;
2290        sb->s_magic = UBIFS_SUPER_MAGIC;
2291        sb->s_blocksize = UBIFS_BLOCK_SIZE;
2292        sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2293        sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2294        if (c->max_inode_sz > MAX_LFS_FILESIZE)
2295                sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2296        sb->s_op = &ubifs_super_operations;
2297#ifndef __UBOOT__
2298        sb->s_xattr = ubifs_xattr_handlers;
2299#endif
2300
2301        mutex_lock(&c->umount_mutex);
2302        err = mount_ubifs(c);
2303        if (err) {
2304                ubifs_assert(err < 0);
2305                goto out_unlock;
2306        }
2307
2308        /* Read the root inode */
2309        root = ubifs_iget(sb, UBIFS_ROOT_INO);
2310        if (IS_ERR(root)) {
2311                err = PTR_ERR(root);
2312                goto out_umount;
2313        }
2314
2315#ifndef __UBOOT__
2316        sb->s_root = d_make_root(root);
2317        if (!sb->s_root) {
2318                err = -ENOMEM;
2319                goto out_umount;
2320        }
2321#else
2322        sb->s_root = NULL;
2323#endif
2324
2325        mutex_unlock(&c->umount_mutex);
2326        return 0;
2327
2328out_umount:
2329        ubifs_umount(c);
2330out_unlock:
2331        mutex_unlock(&c->umount_mutex);
2332#ifndef __UBOOT__
2333out_bdi:
2334        bdi_destroy(&c->bdi);
2335out_close:
2336#endif
2337        ubi_close_volume(c->ubi);
2338out:
2339        return err;
2340}
2341
2342static int sb_test(struct super_block *sb, void *data)
2343{
2344        struct ubifs_info *c1 = data;
2345        struct ubifs_info *c = sb->s_fs_info;
2346
2347        return c->vi.cdev == c1->vi.cdev;
2348}
2349
2350static int sb_set(struct super_block *sb, void *data)
2351{
2352        sb->s_fs_info = data;
2353        return set_anon_super(sb, NULL);
2354}
2355
2356static struct super_block *alloc_super(struct file_system_type *type, int flags)
2357{
2358        struct super_block *s;
2359        int err;
2360
2361        s = kzalloc(sizeof(struct super_block),  GFP_USER);
2362        if (!s) {
2363                err = -ENOMEM;
2364                return ERR_PTR(err);
2365        }
2366
2367#ifndef __UBOOT__
2368        INIT_HLIST_NODE(&s->s_instances);
2369#endif
2370        INIT_LIST_HEAD(&s->s_inodes);
2371        s->s_time_gran = 1000000000;
2372        s->s_flags = flags;
2373
2374        return s;
2375}
2376
2377/**
2378 *      sget    -       find or create a superblock
2379 *      @type:  filesystem type superblock should belong to
2380 *      @test:  comparison callback
2381 *      @set:   setup callback
2382 *      @flags: mount flags
2383 *      @data:  argument to each of them
2384 */
2385struct super_block *sget(struct file_system_type *type,
2386                        int (*test)(struct super_block *,void *),
2387                        int (*set)(struct super_block *,void *),
2388                        int flags,
2389                        void *data)
2390{
2391        struct super_block *s = NULL;
2392#ifndef __UBOOT__
2393        struct super_block *old;
2394#endif
2395        int err;
2396
2397#ifndef __UBOOT__
2398retry:
2399        spin_lock(&sb_lock);
2400        if (test) {
2401                hlist_for_each_entry(old, &type->fs_supers, s_instances) {
2402                        if (!test(old, data))
2403                                continue;
2404                        if (!grab_super(old))
2405                                goto retry;
2406                        if (s) {
2407                                up_write(&s->s_umount);
2408                                destroy_super(s);
2409                                s = NULL;
2410                        }
2411                        return old;
2412                }
2413        }
2414#endif
2415        if (!s) {
2416                spin_unlock(&sb_lock);
2417                s = alloc_super(type, flags);
2418                if (!s)
2419                        return ERR_PTR(-ENOMEM);
2420#ifndef __UBOOT__
2421                goto retry;
2422#endif
2423        }
2424                
2425        err = set(s, data);
2426        if (err) {
2427#ifndef __UBOOT__
2428                spin_unlock(&sb_lock);
2429                up_write(&s->s_umount);
2430                destroy_super(s);
2431#endif
2432                return ERR_PTR(err);
2433        }
2434        s->s_type = type;
2435#ifndef __UBOOT__
2436        strlcpy(s->s_id, type->name, sizeof(s->s_id));
2437        list_add_tail(&s->s_list, &super_blocks);
2438        hlist_add_head(&s->s_instances, &type->fs_supers);
2439        spin_unlock(&sb_lock);
2440        get_filesystem(type);
2441        register_shrinker(&s->s_shrink);
2442#else
2443        strncpy(s->s_id, type->name, sizeof(s->s_id));
2444#endif
2445        return s;
2446}
2447
2448EXPORT_SYMBOL(sget);
2449
2450
2451static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2452                        const char *name, void *data)
2453{
2454        struct ubi_volume_desc *ubi;
2455        struct ubifs_info *c;
2456        struct super_block *sb;
2457        int err;
2458
2459        dbg_gen("name %s, flags %#x", name, flags);
2460
2461        /*
2462         * Get UBI device number and volume ID. Mount it read-only so far
2463         * because this might be a new mount point, and UBI allows only one
2464         * read-write user at a time.
2465         */
2466        ubi = open_ubi(name, UBI_READONLY);
2467        if (IS_ERR(ubi)) {
2468                pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d\n",
2469                       current->pid, name, (int)PTR_ERR(ubi));
2470                return ERR_CAST(ubi);
2471        }
2472
2473        c = alloc_ubifs_info(ubi);
2474        if (!c) {
2475                err = -ENOMEM;
2476                goto out_close;
2477        }
2478
2479        dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2480
2481        sb = sget(fs_type, sb_test, sb_set, flags, c);
2482        if (IS_ERR(sb)) {
2483                err = PTR_ERR(sb);
2484                kfree(c);
2485                goto out_close;
2486        }
2487
2488        if (sb->s_root) {
2489                struct ubifs_info *c1 = sb->s_fs_info;
2490                kfree(c);
2491                /* A new mount point for already mounted UBIFS */
2492                dbg_gen("this ubi volume is already mounted");
2493                if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2494                        err = -EBUSY;
2495                        goto out_deact;
2496                }
2497        } else {
2498                err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2499                if (err)
2500                        goto out_deact;
2501                /* We do not support atime */
2502                sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2503        }
2504
2505        /* 'fill_super()' opens ubi again so we must close it here */
2506        ubi_close_volume(ubi);
2507
2508#ifdef __UBOOT__
2509        ubifs_sb = sb;
2510        return 0;
2511#else
2512        return dget(sb->s_root);
2513#endif
2514
2515out_deact:
2516#ifndef __UBOOT__
2517        deactivate_locked_super(sb);
2518#endif
2519out_close:
2520        ubi_close_volume(ubi);
2521        return ERR_PTR(err);
2522}
2523
2524static void kill_ubifs_super(struct super_block *s)
2525{
2526        struct ubifs_info *c = s->s_fs_info;
2527#ifndef __UBOOT__
2528        kill_anon_super(s);
2529#endif
2530        kfree(c);
2531}
2532
2533static struct file_system_type ubifs_fs_type = {
2534        .name    = "ubifs",
2535        .owner   = THIS_MODULE,
2536        .mount   = ubifs_mount,
2537        .kill_sb = kill_ubifs_super,
2538};
2539#ifndef __UBOOT__
2540MODULE_ALIAS_FS("ubifs");
2541
2542/*
2543 * Inode slab cache constructor.
2544 */
2545static void inode_slab_ctor(void *obj)
2546{
2547        struct ubifs_inode *ui = obj;
2548        inode_init_once(&ui->vfs_inode);
2549}
2550
2551static int __init ubifs_init(void)
2552#else
2553int ubifs_init(void)
2554#endif
2555{
2556        int err;
2557
2558        BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2559
2560        /* Make sure node sizes are 8-byte aligned */
2561        BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2562        BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2563        BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2564        BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2565        BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2566        BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2567        BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2568        BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2569        BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2570        BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2571        BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2572
2573        BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2574        BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2575        BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2576        BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2577        BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2578        BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2579
2580        /* Check min. node size */
2581        BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2582        BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2583        BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2584        BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2585
2586        BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2587        BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2588        BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2589        BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2590
2591        /* Defined node sizes */
2592        BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2593        BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2594        BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2595        BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2596
2597        /*
2598         * We use 2 bit wide bit-fields to store compression type, which should
2599         * be amended if more compressors are added. The bit-fields are:
2600         * @compr_type in 'struct ubifs_inode', @default_compr in
2601         * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2602         */
2603        BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2604
2605        /*
2606         * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2607         * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2608         */
2609        if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2610                pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes\n",
2611                       current->pid, (unsigned int)PAGE_CACHE_SIZE);
2612                return -EINVAL;
2613        }
2614
2615#ifndef __UBOOT__
2616        ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2617                                sizeof(struct ubifs_inode), 0,
2618                                SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2619                                &inode_slab_ctor);
2620        if (!ubifs_inode_slab)
2621                return -ENOMEM;
2622
2623        err = register_shrinker(&ubifs_shrinker_info);
2624        if (err)
2625                goto out_slab;
2626#endif
2627
2628        err = ubifs_compressors_init();
2629        if (err)
2630                goto out_shrinker;
2631
2632#ifndef __UBOOT__
2633        err = dbg_debugfs_init();
2634        if (err)
2635                goto out_compr;
2636
2637        err = register_filesystem(&ubifs_fs_type);
2638        if (err) {
2639                pr_err("UBIFS error (pid %d): cannot register file system, error %d\n",
2640                       current->pid, err);
2641                goto out_dbg;
2642        }
2643#endif
2644        return 0;
2645
2646#ifndef __UBOOT__
2647out_dbg:
2648        dbg_debugfs_exit();
2649out_compr:
2650        ubifs_compressors_exit();
2651#endif
2652out_shrinker:
2653#ifndef __UBOOT__
2654        unregister_shrinker(&ubifs_shrinker_info);
2655out_slab:
2656#endif
2657        kmem_cache_destroy(ubifs_inode_slab);
2658        return err;
2659}
2660/* late_initcall to let compressors initialize first */
2661late_initcall(ubifs_init);
2662
2663#ifndef __UBOOT__
2664static void __exit ubifs_exit(void)
2665{
2666        ubifs_assert(list_empty(&ubifs_infos));
2667        ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2668
2669        dbg_debugfs_exit();
2670        ubifs_compressors_exit();
2671        unregister_shrinker(&ubifs_shrinker_info);
2672
2673        /*
2674         * Make sure all delayed rcu free inodes are flushed before we
2675         * destroy cache.
2676         */
2677        rcu_barrier();
2678        kmem_cache_destroy(ubifs_inode_slab);
2679        unregister_filesystem(&ubifs_fs_type);
2680}
2681module_exit(ubifs_exit);
2682
2683MODULE_LICENSE("GPL");
2684MODULE_VERSION(__stringify(UBIFS_VERSION));
2685MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2686MODULE_DESCRIPTION("UBIFS - UBI File System");
2687#else
2688int uboot_ubifs_mount(char *vol_name)
2689{
2690        struct dentry *ret;
2691        int flags;
2692
2693        /*
2694         * First unmount if allready mounted
2695         */
2696        if (ubifs_sb)
2697                ubifs_umount(ubifs_sb->s_fs_info);
2698
2699        /*
2700         * Mount in read-only mode
2701         */
2702        flags = MS_RDONLY;
2703        ret = ubifs_mount(&ubifs_fs_type, flags, vol_name, NULL);
2704        if (IS_ERR(ret)) {
2705                printf("Error reading superblock on volume '%s' " \
2706                        "errno=%d!\n", vol_name, (int)PTR_ERR(ret));
2707                return -1;
2708        }
2709
2710        return 0;
2711}
2712#endif
2713