uboot/lib/bch.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Generic binary BCH encoding/decoding library
   4 *
   5 * Copyright © 2011 Parrot S.A.
   6 *
   7 * Author: Ivan Djelic <ivan.djelic@parrot.com>
   8 *
   9 * Description:
  10 *
  11 * This library provides runtime configurable encoding/decoding of binary
  12 * Bose-Chaudhuri-Hocquenghem (BCH) codes.
  13 *
  14 * Call init_bch to get a pointer to a newly allocated bch_control structure for
  15 * the given m (Galois field order), t (error correction capability) and
  16 * (optional) primitive polynomial parameters.
  17 *
  18 * Call encode_bch to compute and store ecc parity bytes to a given buffer.
  19 * Call decode_bch to detect and locate errors in received data.
  20 *
  21 * On systems supporting hw BCH features, intermediate results may be provided
  22 * to decode_bch in order to skip certain steps. See decode_bch() documentation
  23 * for details.
  24 *
  25 * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
  26 * parameters m and t; thus allowing extra compiler optimizations and providing
  27 * better (up to 2x) encoding performance. Using this option makes sense when
  28 * (m,t) are fixed and known in advance, e.g. when using BCH error correction
  29 * on a particular NAND flash device.
  30 *
  31 * Algorithmic details:
  32 *
  33 * Encoding is performed by processing 32 input bits in parallel, using 4
  34 * remainder lookup tables.
  35 *
  36 * The final stage of decoding involves the following internal steps:
  37 * a. Syndrome computation
  38 * b. Error locator polynomial computation using Berlekamp-Massey algorithm
  39 * c. Error locator root finding (by far the most expensive step)
  40 *
  41 * In this implementation, step c is not performed using the usual Chien search.
  42 * Instead, an alternative approach described in [1] is used. It consists in
  43 * factoring the error locator polynomial using the Berlekamp Trace algorithm
  44 * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
  45 * solving techniques [2] are used. The resulting algorithm, called BTZ, yields
  46 * much better performance than Chien search for usual (m,t) values (typically
  47 * m >= 13, t < 32, see [1]).
  48 *
  49 * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
  50 * of characteristic 2, in: Western European Workshop on Research in Cryptology
  51 * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
  52 * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
  53 * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
  54 */
  55
  56#ifndef USE_HOSTCC
  57#include <common.h>
  58#include <log.h>
  59#include <malloc.h>
  60#include <ubi_uboot.h>
  61#include <dm/devres.h>
  62
  63#include <linux/bitops.h>
  64#else
  65#include <errno.h>
  66#if defined(__FreeBSD__)
  67#include <sys/endian.h>
  68#elif defined(__APPLE__)
  69#include <machine/endian.h>
  70#include <libkern/OSByteOrder.h>
  71#else
  72#include <endian.h>
  73#endif
  74#include <stdint.h>
  75#include <stdlib.h>
  76#include <string.h>
  77
  78#undef cpu_to_be32
  79#if defined(__APPLE__)
  80#define cpu_to_be32 OSSwapHostToBigInt32
  81#else
  82#define cpu_to_be32 htobe32
  83#endif
  84#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
  85#define kmalloc(size, flags)    malloc(size)
  86#define kzalloc(size, flags)    calloc(1, size)
  87#define kfree free
  88#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
  89#endif
  90
  91#include <asm/byteorder.h>
  92#include <linux/bch.h>
  93
  94#if defined(CONFIG_BCH_CONST_PARAMS)
  95#define GF_M(_p)               (CONFIG_BCH_CONST_M)
  96#define GF_T(_p)               (CONFIG_BCH_CONST_T)
  97#define GF_N(_p)               ((1 << (CONFIG_BCH_CONST_M))-1)
  98#else
  99#define GF_M(_p)               ((_p)->m)
 100#define GF_T(_p)               ((_p)->t)
 101#define GF_N(_p)               ((_p)->n)
 102#endif
 103
 104#define BCH_ECC_WORDS(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
 105#define BCH_ECC_BYTES(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
 106
 107#ifndef dbg
 108#define dbg(_fmt, args...)     do {} while (0)
 109#endif
 110
 111/*
 112 * represent a polynomial over GF(2^m)
 113 */
 114struct gf_poly {
 115        unsigned int deg;    /* polynomial degree */
 116        unsigned int c[0];   /* polynomial terms */
 117};
 118
 119/* given its degree, compute a polynomial size in bytes */
 120#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
 121
 122/* polynomial of degree 1 */
 123struct gf_poly_deg1 {
 124        struct gf_poly poly;
 125        unsigned int   c[2];
 126};
 127
 128#ifdef USE_HOSTCC
 129#if !defined(__DragonFly__) && !defined(__FreeBSD__) && !defined(__APPLE__)
 130static int fls(int x)
 131{
 132        int r = 32;
 133
 134        if (!x)
 135                return 0;
 136        if (!(x & 0xffff0000u)) {
 137                x <<= 16;
 138                r -= 16;
 139        }
 140        if (!(x & 0xff000000u)) {
 141                x <<= 8;
 142                r -= 8;
 143        }
 144        if (!(x & 0xf0000000u)) {
 145                x <<= 4;
 146                r -= 4;
 147        }
 148        if (!(x & 0xc0000000u)) {
 149                x <<= 2;
 150                r -= 2;
 151        }
 152        if (!(x & 0x80000000u)) {
 153                x <<= 1;
 154                r -= 1;
 155        }
 156        return r;
 157}
 158#endif
 159#endif
 160
 161/*
 162 * same as encode_bch(), but process input data one byte at a time
 163 */
 164static void encode_bch_unaligned(struct bch_control *bch,
 165                                 const unsigned char *data, unsigned int len,
 166                                 uint32_t *ecc)
 167{
 168        int i;
 169        const uint32_t *p;
 170        const int l = BCH_ECC_WORDS(bch)-1;
 171
 172        while (len--) {
 173                p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff);
 174
 175                for (i = 0; i < l; i++)
 176                        ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
 177
 178                ecc[l] = (ecc[l] << 8)^(*p);
 179        }
 180}
 181
 182/*
 183 * convert ecc bytes to aligned, zero-padded 32-bit ecc words
 184 */
 185static void load_ecc8(struct bch_control *bch, uint32_t *dst,
 186                      const uint8_t *src)
 187{
 188        uint8_t pad[4] = {0, 0, 0, 0};
 189        unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
 190
 191        for (i = 0; i < nwords; i++, src += 4)
 192                dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3];
 193
 194        memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
 195        dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3];
 196}
 197
 198/*
 199 * convert 32-bit ecc words to ecc bytes
 200 */
 201static void store_ecc8(struct bch_control *bch, uint8_t *dst,
 202                       const uint32_t *src)
 203{
 204        uint8_t pad[4];
 205        unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
 206
 207        for (i = 0; i < nwords; i++) {
 208                *dst++ = (src[i] >> 24);
 209                *dst++ = (src[i] >> 16) & 0xff;
 210                *dst++ = (src[i] >>  8) & 0xff;
 211                *dst++ = (src[i] >>  0) & 0xff;
 212        }
 213        pad[0] = (src[nwords] >> 24);
 214        pad[1] = (src[nwords] >> 16) & 0xff;
 215        pad[2] = (src[nwords] >>  8) & 0xff;
 216        pad[3] = (src[nwords] >>  0) & 0xff;
 217        memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
 218}
 219
 220/**
 221 * encode_bch - calculate BCH ecc parity of data
 222 * @bch:   BCH control structure
 223 * @data:  data to encode
 224 * @len:   data length in bytes
 225 * @ecc:   ecc parity data, must be initialized by caller
 226 *
 227 * The @ecc parity array is used both as input and output parameter, in order to
 228 * allow incremental computations. It should be of the size indicated by member
 229 * @ecc_bytes of @bch, and should be initialized to 0 before the first call.
 230 *
 231 * The exact number of computed ecc parity bits is given by member @ecc_bits of
 232 * @bch; it may be less than m*t for large values of t.
 233 */
 234void encode_bch(struct bch_control *bch, const uint8_t *data,
 235                unsigned int len, uint8_t *ecc)
 236{
 237        const unsigned int l = BCH_ECC_WORDS(bch)-1;
 238        unsigned int i, mlen;
 239        unsigned long m;
 240        uint32_t w, r[l+1];
 241        const uint32_t * const tab0 = bch->mod8_tab;
 242        const uint32_t * const tab1 = tab0 + 256*(l+1);
 243        const uint32_t * const tab2 = tab1 + 256*(l+1);
 244        const uint32_t * const tab3 = tab2 + 256*(l+1);
 245        const uint32_t *pdata, *p0, *p1, *p2, *p3;
 246
 247        if (ecc) {
 248                /* load ecc parity bytes into internal 32-bit buffer */
 249                load_ecc8(bch, bch->ecc_buf, ecc);
 250        } else {
 251                memset(bch->ecc_buf, 0, sizeof(r));
 252        }
 253
 254        /* process first unaligned data bytes */
 255        m = ((unsigned long)data) & 3;
 256        if (m) {
 257                mlen = (len < (4-m)) ? len : 4-m;
 258                encode_bch_unaligned(bch, data, mlen, bch->ecc_buf);
 259                data += mlen;
 260                len  -= mlen;
 261        }
 262
 263        /* process 32-bit aligned data words */
 264        pdata = (uint32_t *)data;
 265        mlen  = len/4;
 266        data += 4*mlen;
 267        len  -= 4*mlen;
 268        memcpy(r, bch->ecc_buf, sizeof(r));
 269
 270        /*
 271         * split each 32-bit word into 4 polynomials of weight 8 as follows:
 272         *
 273         * 31 ...24  23 ...16  15 ... 8  7 ... 0
 274         * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt
 275         *                               tttttttt  mod g = r0 (precomputed)
 276         *                     zzzzzzzz  00000000  mod g = r1 (precomputed)
 277         *           yyyyyyyy  00000000  00000000  mod g = r2 (precomputed)
 278         * xxxxxxxx  00000000  00000000  00000000  mod g = r3 (precomputed)
 279         * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt  mod g = r0^r1^r2^r3
 280         */
 281        while (mlen--) {
 282                /* input data is read in big-endian format */
 283                w = r[0]^cpu_to_be32(*pdata++);
 284                p0 = tab0 + (l+1)*((w >>  0) & 0xff);
 285                p1 = tab1 + (l+1)*((w >>  8) & 0xff);
 286                p2 = tab2 + (l+1)*((w >> 16) & 0xff);
 287                p3 = tab3 + (l+1)*((w >> 24) & 0xff);
 288
 289                for (i = 0; i < l; i++)
 290                        r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
 291
 292                r[l] = p0[l]^p1[l]^p2[l]^p3[l];
 293        }
 294        memcpy(bch->ecc_buf, r, sizeof(r));
 295
 296        /* process last unaligned bytes */
 297        if (len)
 298                encode_bch_unaligned(bch, data, len, bch->ecc_buf);
 299
 300        /* store ecc parity bytes into original parity buffer */
 301        if (ecc)
 302                store_ecc8(bch, ecc, bch->ecc_buf);
 303}
 304
 305static inline int modulo(struct bch_control *bch, unsigned int v)
 306{
 307        const unsigned int n = GF_N(bch);
 308        while (v >= n) {
 309                v -= n;
 310                v = (v & n) + (v >> GF_M(bch));
 311        }
 312        return v;
 313}
 314
 315/*
 316 * shorter and faster modulo function, only works when v < 2N.
 317 */
 318static inline int mod_s(struct bch_control *bch, unsigned int v)
 319{
 320        const unsigned int n = GF_N(bch);
 321        return (v < n) ? v : v-n;
 322}
 323
 324static inline int deg(unsigned int poly)
 325{
 326        /* polynomial degree is the most-significant bit index */
 327        return fls(poly)-1;
 328}
 329
 330static inline int parity(unsigned int x)
 331{
 332        /*
 333         * public domain code snippet, lifted from
 334         * http://www-graphics.stanford.edu/~seander/bithacks.html
 335         */
 336        x ^= x >> 1;
 337        x ^= x >> 2;
 338        x = (x & 0x11111111U) * 0x11111111U;
 339        return (x >> 28) & 1;
 340}
 341
 342/* Galois field basic operations: multiply, divide, inverse, etc. */
 343
 344static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
 345                                  unsigned int b)
 346{
 347        return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
 348                                               bch->a_log_tab[b])] : 0;
 349}
 350
 351static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
 352{
 353        return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
 354}
 355
 356static inline unsigned int gf_div(struct bch_control *bch, unsigned int a,
 357                                  unsigned int b)
 358{
 359        return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
 360                                        GF_N(bch)-bch->a_log_tab[b])] : 0;
 361}
 362
 363static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a)
 364{
 365        return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]];
 366}
 367
 368static inline unsigned int a_pow(struct bch_control *bch, int i)
 369{
 370        return bch->a_pow_tab[modulo(bch, i)];
 371}
 372
 373static inline int a_log(struct bch_control *bch, unsigned int x)
 374{
 375        return bch->a_log_tab[x];
 376}
 377
 378static inline int a_ilog(struct bch_control *bch, unsigned int x)
 379{
 380        return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]);
 381}
 382
 383/*
 384 * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
 385 */
 386static void compute_syndromes(struct bch_control *bch, uint32_t *ecc,
 387                              unsigned int *syn)
 388{
 389        int i, j, s;
 390        unsigned int m;
 391        uint32_t poly;
 392        const int t = GF_T(bch);
 393
 394        s = bch->ecc_bits;
 395
 396        /* make sure extra bits in last ecc word are cleared */
 397        m = ((unsigned int)s) & 31;
 398        if (m)
 399                ecc[s/32] &= ~((1u << (32-m))-1);
 400        memset(syn, 0, 2*t*sizeof(*syn));
 401
 402        /* compute v(a^j) for j=1 .. 2t-1 */
 403        do {
 404                poly = *ecc++;
 405                s -= 32;
 406                while (poly) {
 407                        i = deg(poly);
 408                        for (j = 0; j < 2*t; j += 2)
 409                                syn[j] ^= a_pow(bch, (j+1)*(i+s));
 410
 411                        poly ^= (1 << i);
 412                }
 413        } while (s > 0);
 414
 415        /* v(a^(2j)) = v(a^j)^2 */
 416        for (j = 0; j < t; j++)
 417                syn[2*j+1] = gf_sqr(bch, syn[j]);
 418}
 419
 420static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src)
 421{
 422        memcpy(dst, src, GF_POLY_SZ(src->deg));
 423}
 424
 425static int compute_error_locator_polynomial(struct bch_control *bch,
 426                                            const unsigned int *syn)
 427{
 428        const unsigned int t = GF_T(bch);
 429        const unsigned int n = GF_N(bch);
 430        unsigned int i, j, tmp, l, pd = 1, d = syn[0];
 431        struct gf_poly *elp = bch->elp;
 432        struct gf_poly *pelp = bch->poly_2t[0];
 433        struct gf_poly *elp_copy = bch->poly_2t[1];
 434        int k, pp = -1;
 435
 436        memset(pelp, 0, GF_POLY_SZ(2*t));
 437        memset(elp, 0, GF_POLY_SZ(2*t));
 438
 439        pelp->deg = 0;
 440        pelp->c[0] = 1;
 441        elp->deg = 0;
 442        elp->c[0] = 1;
 443
 444        /* use simplified binary Berlekamp-Massey algorithm */
 445        for (i = 0; (i < t) && (elp->deg <= t); i++) {
 446                if (d) {
 447                        k = 2*i-pp;
 448                        gf_poly_copy(elp_copy, elp);
 449                        /* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */
 450                        tmp = a_log(bch, d)+n-a_log(bch, pd);
 451                        for (j = 0; j <= pelp->deg; j++) {
 452                                if (pelp->c[j]) {
 453                                        l = a_log(bch, pelp->c[j]);
 454                                        elp->c[j+k] ^= a_pow(bch, tmp+l);
 455                                }
 456                        }
 457                        /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */
 458                        tmp = pelp->deg+k;
 459                        if (tmp > elp->deg) {
 460                                elp->deg = tmp;
 461                                gf_poly_copy(pelp, elp_copy);
 462                                pd = d;
 463                                pp = 2*i;
 464                        }
 465                }
 466                /* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */
 467                if (i < t-1) {
 468                        d = syn[2*i+2];
 469                        for (j = 1; j <= elp->deg; j++)
 470                                d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]);
 471                }
 472        }
 473        dbg("elp=%s\n", gf_poly_str(elp));
 474        return (elp->deg > t) ? -1 : (int)elp->deg;
 475}
 476
 477/*
 478 * solve a m x m linear system in GF(2) with an expected number of solutions,
 479 * and return the number of found solutions
 480 */
 481static int solve_linear_system(struct bch_control *bch, unsigned int *rows,
 482                               unsigned int *sol, int nsol)
 483{
 484        const int m = GF_M(bch);
 485        unsigned int tmp, mask;
 486        int rem, c, r, p, k, param[m];
 487
 488        k = 0;
 489        mask = 1 << m;
 490
 491        /* Gaussian elimination */
 492        for (c = 0; c < m; c++) {
 493                rem = 0;
 494                p = c-k;
 495                /* find suitable row for elimination */
 496                for (r = p; r < m; r++) {
 497                        if (rows[r] & mask) {
 498                                if (r != p) {
 499                                        tmp = rows[r];
 500                                        rows[r] = rows[p];
 501                                        rows[p] = tmp;
 502                                }
 503                                rem = r+1;
 504                                break;
 505                        }
 506                }
 507                if (rem) {
 508                        /* perform elimination on remaining rows */
 509                        tmp = rows[p];
 510                        for (r = rem; r < m; r++) {
 511                                if (rows[r] & mask)
 512                                        rows[r] ^= tmp;
 513                        }
 514                } else {
 515                        /* elimination not needed, store defective row index */
 516                        param[k++] = c;
 517                }
 518                mask >>= 1;
 519        }
 520        /* rewrite system, inserting fake parameter rows */
 521        if (k > 0) {
 522                p = k;
 523                for (r = m-1; r >= 0; r--) {
 524                        if ((r > m-1-k) && rows[r])
 525                                /* system has no solution */
 526                                return 0;
 527
 528                        rows[r] = (p && (r == param[p-1])) ?
 529                                p--, 1u << (m-r) : rows[r-p];
 530                }
 531        }
 532
 533        if (nsol != (1 << k))
 534                /* unexpected number of solutions */
 535                return 0;
 536
 537        for (p = 0; p < nsol; p++) {
 538                /* set parameters for p-th solution */
 539                for (c = 0; c < k; c++)
 540                        rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1);
 541
 542                /* compute unique solution */
 543                tmp = 0;
 544                for (r = m-1; r >= 0; r--) {
 545                        mask = rows[r] & (tmp|1);
 546                        tmp |= parity(mask) << (m-r);
 547                }
 548                sol[p] = tmp >> 1;
 549        }
 550        return nsol;
 551}
 552
 553/*
 554 * this function builds and solves a linear system for finding roots of a degree
 555 * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m).
 556 */
 557static int find_affine4_roots(struct bch_control *bch, unsigned int a,
 558                              unsigned int b, unsigned int c,
 559                              unsigned int *roots)
 560{
 561        int i, j, k;
 562        const int m = GF_M(bch);
 563        unsigned int mask = 0xff, t, rows[16] = {0,};
 564
 565        j = a_log(bch, b);
 566        k = a_log(bch, a);
 567        rows[0] = c;
 568
 569        /* buid linear system to solve X^4+aX^2+bX+c = 0 */
 570        for (i = 0; i < m; i++) {
 571                rows[i+1] = bch->a_pow_tab[4*i]^
 572                        (a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^
 573                        (b ? bch->a_pow_tab[mod_s(bch, j)] : 0);
 574                j++;
 575                k += 2;
 576        }
 577        /*
 578         * transpose 16x16 matrix before passing it to linear solver
 579         * warning: this code assumes m < 16
 580         */
 581        for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) {
 582                for (k = 0; k < 16; k = (k+j+1) & ~j) {
 583                        t = ((rows[k] >> j)^rows[k+j]) & mask;
 584                        rows[k] ^= (t << j);
 585                        rows[k+j] ^= t;
 586                }
 587        }
 588        return solve_linear_system(bch, rows, roots, 4);
 589}
 590
 591/*
 592 * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
 593 */
 594static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly,
 595                                unsigned int *roots)
 596{
 597        int n = 0;
 598
 599        if (poly->c[0])
 600                /* poly[X] = bX+c with c!=0, root=c/b */
 601                roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+
 602                                   bch->a_log_tab[poly->c[1]]);
 603        return n;
 604}
 605
 606/*
 607 * compute roots of a degree 2 polynomial over GF(2^m)
 608 */
 609static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly,
 610                                unsigned int *roots)
 611{
 612        int n = 0, i, l0, l1, l2;
 613        unsigned int u, v, r;
 614
 615        if (poly->c[0] && poly->c[1]) {
 616
 617                l0 = bch->a_log_tab[poly->c[0]];
 618                l1 = bch->a_log_tab[poly->c[1]];
 619                l2 = bch->a_log_tab[poly->c[2]];
 620
 621                /* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */
 622                u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1));
 623                /*
 624                 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi):
 625                 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) =
 626                 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u)
 627                 * i.e. r and r+1 are roots iff Tr(u)=0
 628                 */
 629                r = 0;
 630                v = u;
 631                while (v) {
 632                        i = deg(v);
 633                        r ^= bch->xi_tab[i];
 634                        v ^= (1 << i);
 635                }
 636                /* verify root */
 637                if ((gf_sqr(bch, r)^r) == u) {
 638                        /* reverse z=a/bX transformation and compute log(1/r) */
 639                        roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
 640                                            bch->a_log_tab[r]+l2);
 641                        roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
 642                                            bch->a_log_tab[r^1]+l2);
 643                }
 644        }
 645        return n;
 646}
 647
 648/*
 649 * compute roots of a degree 3 polynomial over GF(2^m)
 650 */
 651static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly,
 652                                unsigned int *roots)
 653{
 654        int i, n = 0;
 655        unsigned int a, b, c, a2, b2, c2, e3, tmp[4];
 656
 657        if (poly->c[0]) {
 658                /* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */
 659                e3 = poly->c[3];
 660                c2 = gf_div(bch, poly->c[0], e3);
 661                b2 = gf_div(bch, poly->c[1], e3);
 662                a2 = gf_div(bch, poly->c[2], e3);
 663
 664                /* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */
 665                c = gf_mul(bch, a2, c2);           /* c = a2c2      */
 666                b = gf_mul(bch, a2, b2)^c2;        /* b = a2b2 + c2 */
 667                a = gf_sqr(bch, a2)^b2;            /* a = a2^2 + b2 */
 668
 669                /* find the 4 roots of this affine polynomial */
 670                if (find_affine4_roots(bch, a, b, c, tmp) == 4) {
 671                        /* remove a2 from final list of roots */
 672                        for (i = 0; i < 4; i++) {
 673                                if (tmp[i] != a2)
 674                                        roots[n++] = a_ilog(bch, tmp[i]);
 675                        }
 676                }
 677        }
 678        return n;
 679}
 680
 681/*
 682 * compute roots of a degree 4 polynomial over GF(2^m)
 683 */
 684static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly,
 685                                unsigned int *roots)
 686{
 687        int i, l, n = 0;
 688        unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4;
 689
 690        if (poly->c[0] == 0)
 691                return 0;
 692
 693        /* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */
 694        e4 = poly->c[4];
 695        d = gf_div(bch, poly->c[0], e4);
 696        c = gf_div(bch, poly->c[1], e4);
 697        b = gf_div(bch, poly->c[2], e4);
 698        a = gf_div(bch, poly->c[3], e4);
 699
 700        /* use Y=1/X transformation to get an affine polynomial */
 701        if (a) {
 702                /* first, eliminate cX by using z=X+e with ae^2+c=0 */
 703                if (c) {
 704                        /* compute e such that e^2 = c/a */
 705                        f = gf_div(bch, c, a);
 706                        l = a_log(bch, f);
 707                        l += (l & 1) ? GF_N(bch) : 0;
 708                        e = a_pow(bch, l/2);
 709                        /*
 710                         * use transformation z=X+e:
 711                         * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d
 712                         * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d
 713                         * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d
 714                         * z^4 + az^3 +     b'z^2 + d'
 715                         */
 716                        d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d;
 717                        b = gf_mul(bch, a, e)^b;
 718                }
 719                /* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */
 720                if (d == 0)
 721                        /* assume all roots have multiplicity 1 */
 722                        return 0;
 723
 724                c2 = gf_inv(bch, d);
 725                b2 = gf_div(bch, a, d);
 726                a2 = gf_div(bch, b, d);
 727        } else {
 728                /* polynomial is already affine */
 729                c2 = d;
 730                b2 = c;
 731                a2 = b;
 732        }
 733        /* find the 4 roots of this affine polynomial */
 734        if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) {
 735                for (i = 0; i < 4; i++) {
 736                        /* post-process roots (reverse transformations) */
 737                        f = a ? gf_inv(bch, roots[i]) : roots[i];
 738                        roots[i] = a_ilog(bch, f^e);
 739                }
 740                n = 4;
 741        }
 742        return n;
 743}
 744
 745/*
 746 * build monic, log-based representation of a polynomial
 747 */
 748static void gf_poly_logrep(struct bch_control *bch,
 749                           const struct gf_poly *a, int *rep)
 750{
 751        int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]);
 752
 753        /* represent 0 values with -1; warning, rep[d] is not set to 1 */
 754        for (i = 0; i < d; i++)
 755                rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1;
 756}
 757
 758/*
 759 * compute polynomial Euclidean division remainder in GF(2^m)[X]
 760 */
 761static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a,
 762                        const struct gf_poly *b, int *rep)
 763{
 764        int la, p, m;
 765        unsigned int i, j, *c = a->c;
 766        const unsigned int d = b->deg;
 767
 768        if (a->deg < d)
 769                return;
 770
 771        /* reuse or compute log representation of denominator */
 772        if (!rep) {
 773                rep = bch->cache;
 774                gf_poly_logrep(bch, b, rep);
 775        }
 776
 777        for (j = a->deg; j >= d; j--) {
 778                if (c[j]) {
 779                        la = a_log(bch, c[j]);
 780                        p = j-d;
 781                        for (i = 0; i < d; i++, p++) {
 782                                m = rep[i];
 783                                if (m >= 0)
 784                                        c[p] ^= bch->a_pow_tab[mod_s(bch,
 785                                                                     m+la)];
 786                        }
 787                }
 788        }
 789        a->deg = d-1;
 790        while (!c[a->deg] && a->deg)
 791                a->deg--;
 792}
 793
 794/*
 795 * compute polynomial Euclidean division quotient in GF(2^m)[X]
 796 */
 797static void gf_poly_div(struct bch_control *bch, struct gf_poly *a,
 798                        const struct gf_poly *b, struct gf_poly *q)
 799{
 800        if (a->deg >= b->deg) {
 801                q->deg = a->deg-b->deg;
 802                /* compute a mod b (modifies a) */
 803                gf_poly_mod(bch, a, b, NULL);
 804                /* quotient is stored in upper part of polynomial a */
 805                memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int));
 806        } else {
 807                q->deg = 0;
 808                q->c[0] = 0;
 809        }
 810}
 811
 812/*
 813 * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
 814 */
 815static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a,
 816                                   struct gf_poly *b)
 817{
 818        struct gf_poly *tmp;
 819
 820        dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b));
 821
 822        if (a->deg < b->deg) {
 823                tmp = b;
 824                b = a;
 825                a = tmp;
 826        }
 827
 828        while (b->deg > 0) {
 829                gf_poly_mod(bch, a, b, NULL);
 830                tmp = b;
 831                b = a;
 832                a = tmp;
 833        }
 834
 835        dbg("%s\n", gf_poly_str(a));
 836
 837        return a;
 838}
 839
 840/*
 841 * Given a polynomial f and an integer k, compute Tr(a^kX) mod f
 842 * This is used in Berlekamp Trace algorithm for splitting polynomials
 843 */
 844static void compute_trace_bk_mod(struct bch_control *bch, int k,
 845                                 const struct gf_poly *f, struct gf_poly *z,
 846                                 struct gf_poly *out)
 847{
 848        const int m = GF_M(bch);
 849        int i, j;
 850
 851        /* z contains z^2j mod f */
 852        z->deg = 1;
 853        z->c[0] = 0;
 854        z->c[1] = bch->a_pow_tab[k];
 855
 856        out->deg = 0;
 857        memset(out, 0, GF_POLY_SZ(f->deg));
 858
 859        /* compute f log representation only once */
 860        gf_poly_logrep(bch, f, bch->cache);
 861
 862        for (i = 0; i < m; i++) {
 863                /* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */
 864                for (j = z->deg; j >= 0; j--) {
 865                        out->c[j] ^= z->c[j];
 866                        z->c[2*j] = gf_sqr(bch, z->c[j]);
 867                        z->c[2*j+1] = 0;
 868                }
 869                if (z->deg > out->deg)
 870                        out->deg = z->deg;
 871
 872                if (i < m-1) {
 873                        z->deg *= 2;
 874                        /* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */
 875                        gf_poly_mod(bch, z, f, bch->cache);
 876                }
 877        }
 878        while (!out->c[out->deg] && out->deg)
 879                out->deg--;
 880
 881        dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out));
 882}
 883
 884/*
 885 * factor a polynomial using Berlekamp Trace algorithm (BTA)
 886 */
 887static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f,
 888                              struct gf_poly **g, struct gf_poly **h)
 889{
 890        struct gf_poly *f2 = bch->poly_2t[0];
 891        struct gf_poly *q  = bch->poly_2t[1];
 892        struct gf_poly *tk = bch->poly_2t[2];
 893        struct gf_poly *z  = bch->poly_2t[3];
 894        struct gf_poly *gcd;
 895
 896        dbg("factoring %s...\n", gf_poly_str(f));
 897
 898        *g = f;
 899        *h = NULL;
 900
 901        /* tk = Tr(a^k.X) mod f */
 902        compute_trace_bk_mod(bch, k, f, z, tk);
 903
 904        if (tk->deg > 0) {
 905                /* compute g = gcd(f, tk) (destructive operation) */
 906                gf_poly_copy(f2, f);
 907                gcd = gf_poly_gcd(bch, f2, tk);
 908                if (gcd->deg < f->deg) {
 909                        /* compute h=f/gcd(f,tk); this will modify f and q */
 910                        gf_poly_div(bch, f, gcd, q);
 911                        /* store g and h in-place (clobbering f) */
 912                        *h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly;
 913                        gf_poly_copy(*g, gcd);
 914                        gf_poly_copy(*h, q);
 915                }
 916        }
 917}
 918
 919/*
 920 * find roots of a polynomial, using BTZ algorithm; see the beginning of this
 921 * file for details
 922 */
 923static int find_poly_roots(struct bch_control *bch, unsigned int k,
 924                           struct gf_poly *poly, unsigned int *roots)
 925{
 926        int cnt;
 927        struct gf_poly *f1, *f2;
 928
 929        switch (poly->deg) {
 930                /* handle low degree polynomials with ad hoc techniques */
 931        case 1:
 932                cnt = find_poly_deg1_roots(bch, poly, roots);
 933                break;
 934        case 2:
 935                cnt = find_poly_deg2_roots(bch, poly, roots);
 936                break;
 937        case 3:
 938                cnt = find_poly_deg3_roots(bch, poly, roots);
 939                break;
 940        case 4:
 941                cnt = find_poly_deg4_roots(bch, poly, roots);
 942                break;
 943        default:
 944                /* factor polynomial using Berlekamp Trace Algorithm (BTA) */
 945                cnt = 0;
 946                if (poly->deg && (k <= GF_M(bch))) {
 947                        factor_polynomial(bch, k, poly, &f1, &f2);
 948                        if (f1)
 949                                cnt += find_poly_roots(bch, k+1, f1, roots);
 950                        if (f2)
 951                                cnt += find_poly_roots(bch, k+1, f2, roots+cnt);
 952                }
 953                break;
 954        }
 955        return cnt;
 956}
 957
 958#if defined(USE_CHIEN_SEARCH)
 959/*
 960 * exhaustive root search (Chien) implementation - not used, included only for
 961 * reference/comparison tests
 962 */
 963static int chien_search(struct bch_control *bch, unsigned int len,
 964                        struct gf_poly *p, unsigned int *roots)
 965{
 966        int m;
 967        unsigned int i, j, syn, syn0, count = 0;
 968        const unsigned int k = 8*len+bch->ecc_bits;
 969
 970        /* use a log-based representation of polynomial */
 971        gf_poly_logrep(bch, p, bch->cache);
 972        bch->cache[p->deg] = 0;
 973        syn0 = gf_div(bch, p->c[0], p->c[p->deg]);
 974
 975        for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) {
 976                /* compute elp(a^i) */
 977                for (j = 1, syn = syn0; j <= p->deg; j++) {
 978                        m = bch->cache[j];
 979                        if (m >= 0)
 980                                syn ^= a_pow(bch, m+j*i);
 981                }
 982                if (syn == 0) {
 983                        roots[count++] = GF_N(bch)-i;
 984                        if (count == p->deg)
 985                                break;
 986                }
 987        }
 988        return (count == p->deg) ? count : 0;
 989}
 990#define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
 991#endif /* USE_CHIEN_SEARCH */
 992
 993/**
 994 * decode_bch - decode received codeword and find bit error locations
 995 * @bch:      BCH control structure
 996 * @data:     received data, ignored if @calc_ecc is provided
 997 * @len:      data length in bytes, must always be provided
 998 * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc
 999 * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data
1000 * @syn:      hw computed syndrome data (if NULL, syndrome is calculated)
1001 * @errloc:   output array of error locations
1002 *
1003 * Returns:
1004 *  The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if
1005 *  invalid parameters were provided
1006 *
1007 * Depending on the available hw BCH support and the need to compute @calc_ecc
1008 * separately (using encode_bch()), this function should be called with one of
1009 * the following parameter configurations -
1010 *
1011 * by providing @data and @recv_ecc only:
1012 *   decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc)
1013 *
1014 * by providing @recv_ecc and @calc_ecc:
1015 *   decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc)
1016 *
1017 * by providing ecc = recv_ecc XOR calc_ecc:
1018 *   decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc)
1019 *
1020 * by providing syndrome results @syn:
1021 *   decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc)
1022 *
1023 * Once decode_bch() has successfully returned with a positive value, error
1024 * locations returned in array @errloc should be interpreted as follows -
1025 *
1026 * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for
1027 * data correction)
1028 *
1029 * if (errloc[n] < 8*len), then n-th error is located in data and can be
1030 * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8);
1031 *
1032 * Note that this function does not perform any data correction by itself, it
1033 * merely indicates error locations.
1034 */
1035int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len,
1036               const uint8_t *recv_ecc, const uint8_t *calc_ecc,
1037               const unsigned int *syn, unsigned int *errloc)
1038{
1039        const unsigned int ecc_words = BCH_ECC_WORDS(bch);
1040        unsigned int nbits;
1041        int i, err, nroots;
1042        uint32_t sum;
1043
1044        /* sanity check: make sure data length can be handled */
1045        if (8*len > (bch->n-bch->ecc_bits))
1046                return -EINVAL;
1047
1048        /* if caller does not provide syndromes, compute them */
1049        if (!syn) {
1050                if (!calc_ecc) {
1051                        /* compute received data ecc into an internal buffer */
1052                        if (!data || !recv_ecc)
1053                                return -EINVAL;
1054                        encode_bch(bch, data, len, NULL);
1055                } else {
1056                        /* load provided calculated ecc */
1057                        load_ecc8(bch, bch->ecc_buf, calc_ecc);
1058                }
1059                /* load received ecc or assume it was XORed in calc_ecc */
1060                if (recv_ecc) {
1061                        load_ecc8(bch, bch->ecc_buf2, recv_ecc);
1062                        /* XOR received and calculated ecc */
1063                        for (i = 0, sum = 0; i < (int)ecc_words; i++) {
1064                                bch->ecc_buf[i] ^= bch->ecc_buf2[i];
1065                                sum |= bch->ecc_buf[i];
1066                        }
1067                        if (!sum)
1068                                /* no error found */
1069                                return 0;
1070                }
1071                compute_syndromes(bch, bch->ecc_buf, bch->syn);
1072                syn = bch->syn;
1073        }
1074
1075        err = compute_error_locator_polynomial(bch, syn);
1076        if (err > 0) {
1077                nroots = find_poly_roots(bch, 1, bch->elp, errloc);
1078                if (err != nroots)
1079                        err = -1;
1080        }
1081        if (err > 0) {
1082                /* post-process raw error locations for easier correction */
1083                nbits = (len*8)+bch->ecc_bits;
1084                for (i = 0; i < err; i++) {
1085                        if (errloc[i] >= nbits) {
1086                                err = -1;
1087                                break;
1088                        }
1089                        errloc[i] = nbits-1-errloc[i];
1090                        errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7));
1091                }
1092        }
1093        return (err >= 0) ? err : -EBADMSG;
1094}
1095
1096/*
1097 * generate Galois field lookup tables
1098 */
1099static int build_gf_tables(struct bch_control *bch, unsigned int poly)
1100{
1101        unsigned int i, x = 1;
1102        const unsigned int k = 1 << deg(poly);
1103
1104        /* primitive polynomial must be of degree m */
1105        if (k != (1u << GF_M(bch)))
1106                return -1;
1107
1108        for (i = 0; i < GF_N(bch); i++) {
1109                bch->a_pow_tab[i] = x;
1110                bch->a_log_tab[x] = i;
1111                if (i && (x == 1))
1112                        /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1113                        return -1;
1114                x <<= 1;
1115                if (x & k)
1116                        x ^= poly;
1117        }
1118        bch->a_pow_tab[GF_N(bch)] = 1;
1119        bch->a_log_tab[0] = 0;
1120
1121        return 0;
1122}
1123
1124/*
1125 * compute generator polynomial remainder tables for fast encoding
1126 */
1127static void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
1128{
1129        int i, j, b, d;
1130        uint32_t data, hi, lo, *tab;
1131        const int l = BCH_ECC_WORDS(bch);
1132        const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
1133        const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
1134
1135        memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
1136
1137        for (i = 0; i < 256; i++) {
1138                /* p(X)=i is a small polynomial of weight <= 8 */
1139                for (b = 0; b < 4; b++) {
1140                        /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
1141                        tab = bch->mod8_tab + (b*256+i)*l;
1142                        data = i << (8*b);
1143                        while (data) {
1144                                d = deg(data);
1145                                /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
1146                                data ^= g[0] >> (31-d);
1147                                for (j = 0; j < ecclen; j++) {
1148                                        hi = (d < 31) ? g[j] << (d+1) : 0;
1149                                        lo = (j+1 < plen) ?
1150                                                g[j+1] >> (31-d) : 0;
1151                                        tab[j] ^= hi|lo;
1152                                }
1153                        }
1154                }
1155        }
1156}
1157
1158/*
1159 * build a base for factoring degree 2 polynomials
1160 */
1161static int build_deg2_base(struct bch_control *bch)
1162{
1163        const int m = GF_M(bch);
1164        int i, j, r;
1165        unsigned int sum, x, y, remaining, ak = 0, xi[m];
1166
1167        /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
1168        for (i = 0; i < m; i++) {
1169                for (j = 0, sum = 0; j < m; j++)
1170                        sum ^= a_pow(bch, i*(1 << j));
1171
1172                if (sum) {
1173                        ak = bch->a_pow_tab[i];
1174                        break;
1175                }
1176        }
1177        /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
1178        remaining = m;
1179        memset(xi, 0, sizeof(xi));
1180
1181        for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
1182                y = gf_sqr(bch, x)^x;
1183                for (i = 0; i < 2; i++) {
1184                        r = a_log(bch, y);
1185                        if (y && (r < m) && !xi[r]) {
1186                                bch->xi_tab[r] = x;
1187                                xi[r] = 1;
1188                                remaining--;
1189                                dbg("x%d = %x\n", r, x);
1190                                break;
1191                        }
1192                        y ^= ak;
1193                }
1194        }
1195        /* should not happen but check anyway */
1196        return remaining ? -1 : 0;
1197}
1198
1199static void *bch_alloc(size_t size, int *err)
1200{
1201        void *ptr;
1202
1203        ptr = kmalloc(size, GFP_KERNEL);
1204        if (ptr == NULL)
1205                *err = 1;
1206        return ptr;
1207}
1208
1209/*
1210 * compute generator polynomial for given (m,t) parameters.
1211 */
1212static uint32_t *compute_generator_polynomial(struct bch_control *bch)
1213{
1214        const unsigned int m = GF_M(bch);
1215        const unsigned int t = GF_T(bch);
1216        int n, err = 0;
1217        unsigned int i, j, nbits, r, word, *roots;
1218        struct gf_poly *g;
1219        uint32_t *genpoly;
1220
1221        g = bch_alloc(GF_POLY_SZ(m*t), &err);
1222        roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
1223        genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
1224
1225        if (err) {
1226                kfree(genpoly);
1227                genpoly = NULL;
1228                goto finish;
1229        }
1230
1231        /* enumerate all roots of g(X) */
1232        memset(roots , 0, (bch->n+1)*sizeof(*roots));
1233        for (i = 0; i < t; i++) {
1234                for (j = 0, r = 2*i+1; j < m; j++) {
1235                        roots[r] = 1;
1236                        r = mod_s(bch, 2*r);
1237                }
1238        }
1239        /* build generator polynomial g(X) */
1240        g->deg = 0;
1241        g->c[0] = 1;
1242        for (i = 0; i < GF_N(bch); i++) {
1243                if (roots[i]) {
1244                        /* multiply g(X) by (X+root) */
1245                        r = bch->a_pow_tab[i];
1246                        g->c[g->deg+1] = 1;
1247                        for (j = g->deg; j > 0; j--)
1248                                g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
1249
1250                        g->c[0] = gf_mul(bch, g->c[0], r);
1251                        g->deg++;
1252                }
1253        }
1254        /* store left-justified binary representation of g(X) */
1255        n = g->deg+1;
1256        i = 0;
1257
1258        while (n > 0) {
1259                nbits = (n > 32) ? 32 : n;
1260                for (j = 0, word = 0; j < nbits; j++) {
1261                        if (g->c[n-1-j])
1262                                word |= 1u << (31-j);
1263                }
1264                genpoly[i++] = word;
1265                n -= nbits;
1266        }
1267        bch->ecc_bits = g->deg;
1268
1269finish:
1270        kfree(g);
1271        kfree(roots);
1272
1273        return genpoly;
1274}
1275
1276/**
1277 * init_bch - initialize a BCH encoder/decoder
1278 * @m:          Galois field order, should be in the range 5-15
1279 * @t:          maximum error correction capability, in bits
1280 * @prim_poly:  user-provided primitive polynomial (or 0 to use default)
1281 *
1282 * Returns:
1283 *  a newly allocated BCH control structure if successful, NULL otherwise
1284 *
1285 * This initialization can take some time, as lookup tables are built for fast
1286 * encoding/decoding; make sure not to call this function from a time critical
1287 * path. Usually, init_bch() should be called on module/driver init and
1288 * free_bch() should be called to release memory on exit.
1289 *
1290 * You may provide your own primitive polynomial of degree @m in argument
1291 * @prim_poly, or let init_bch() use its default polynomial.
1292 *
1293 * Once init_bch() has successfully returned a pointer to a newly allocated
1294 * BCH control structure, ecc length in bytes is given by member @ecc_bytes of
1295 * the structure.
1296 */
1297struct bch_control *init_bch(int m, int t, unsigned int prim_poly)
1298{
1299        int err = 0;
1300        unsigned int i, words;
1301        uint32_t *genpoly;
1302        struct bch_control *bch = NULL;
1303
1304        const int min_m = 5;
1305        const int max_m = 15;
1306
1307        /* default primitive polynomials */
1308        static const unsigned int prim_poly_tab[] = {
1309                0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
1310                0x402b, 0x8003,
1311        };
1312
1313#if defined(CONFIG_BCH_CONST_PARAMS)
1314        if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
1315                printk(KERN_ERR "bch encoder/decoder was configured to support "
1316                       "parameters m=%d, t=%d only!\n",
1317                       CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
1318                goto fail;
1319        }
1320#endif
1321        if ((m < min_m) || (m > max_m))
1322                /*
1323                 * values of m greater than 15 are not currently supported;
1324                 * supporting m > 15 would require changing table base type
1325                 * (uint16_t) and a small patch in matrix transposition
1326                 */
1327                goto fail;
1328
1329        /* sanity checks */
1330        if ((t < 1) || (m*t >= ((1 << m)-1)))
1331                /* invalid t value */
1332                goto fail;
1333
1334        /* select a primitive polynomial for generating GF(2^m) */
1335        if (prim_poly == 0)
1336                prim_poly = prim_poly_tab[m-min_m];
1337
1338        bch = kzalloc(sizeof(*bch), GFP_KERNEL);
1339        if (bch == NULL)
1340                goto fail;
1341
1342        bch->m = m;
1343        bch->t = t;
1344        bch->n = (1 << m)-1;
1345        words  = DIV_ROUND_UP(m*t, 32);
1346        bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
1347        bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
1348        bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
1349        bch->mod8_tab  = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
1350        bch->ecc_buf   = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
1351        bch->ecc_buf2  = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
1352        bch->xi_tab    = bch_alloc(m*sizeof(*bch->xi_tab), &err);
1353        bch->syn       = bch_alloc(2*t*sizeof(*bch->syn), &err);
1354        bch->cache     = bch_alloc(2*t*sizeof(*bch->cache), &err);
1355        bch->elp       = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
1356
1357        for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1358                bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
1359
1360        if (err)
1361                goto fail;
1362
1363        err = build_gf_tables(bch, prim_poly);
1364        if (err)
1365                goto fail;
1366
1367        /* use generator polynomial for computing encoding tables */
1368        genpoly = compute_generator_polynomial(bch);
1369        if (genpoly == NULL)
1370                goto fail;
1371
1372        build_mod8_tables(bch, genpoly);
1373        kfree(genpoly);
1374
1375        err = build_deg2_base(bch);
1376        if (err)
1377                goto fail;
1378
1379        return bch;
1380
1381fail:
1382        free_bch(bch);
1383        return NULL;
1384}
1385
1386/**
1387 *  free_bch - free the BCH control structure
1388 *  @bch:    BCH control structure to release
1389 */
1390void free_bch(struct bch_control *bch)
1391{
1392        unsigned int i;
1393
1394        if (bch) {
1395                kfree(bch->a_pow_tab);
1396                kfree(bch->a_log_tab);
1397                kfree(bch->mod8_tab);
1398                kfree(bch->ecc_buf);
1399                kfree(bch->ecc_buf2);
1400                kfree(bch->xi_tab);
1401                kfree(bch->syn);
1402                kfree(bch->cache);
1403                kfree(bch->elp);
1404
1405                for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1406                        kfree(bch->poly_2t[i]);
1407
1408                kfree(bch);
1409        }
1410}
1411