1
2
3
4
5
6
7
8
9
10
11#include <common.h>
12#include <fuse.h>
13#include <linux/delay.h>
14#include <linux/errno.h>
15#include <asm/io.h>
16#include <asm/arch/imx-regs.h>
17#if defined(CONFIG_MX51) || defined(CONFIG_MX53)
18#include <asm/arch/clock.h>
19#endif
20
21
22#define STAT_BUSY 0x80
23#define STAT_PRGD 0x02
24#define STAT_SNSD 0x01
25
26#define STATM_PRGD_M 0x02
27#define STATM_SNSD_M 0x01
28
29#define ERR_PRGE 0x80
30#define ERR_WPE 0x40
31#define ERR_OPE 0x20
32#define ERR_RPE 0x10
33#define ERR_WLRE 0x08
34#define ERR_SNSE 0x04
35#define ERR_PARITYE 0x02
36
37#define EMASK_PRGE_M 0x80
38#define EMASK_WPE_M 0x40
39#define EMASK_OPE_M 0x20
40#define EMASK_RPE_M 0x10
41#define EMASK_WLRE_M 0x08
42#define EMASK_SNSE_M 0x04
43#define EMASK_PARITYE_M 0x02
44
45#define FCTL_DPC 0x80
46#define FCTL_PRG_LENGTH_MASK 0x70
47#define FCTL_ESNS_N 0x08
48#define FCTL_ESNS_0 0x04
49#define FCTL_ESNS_1 0x02
50#define FCTL_PRG 0x01
51
52#define UA_A_BANK_MASK 0x38
53#define UA_A_ROWH_MASK 0x07
54
55#define LA_A_ROWL_MASK 0xf8
56#define LA_A_BIT_MASK 0x07
57
58#define PREV_PROD_REV_MASK 0xf8
59#define PREV_PROD_VT_MASK 0x07
60
61
62#if __BYTE_ORDER == __LITTLE_ENDIAN
63#define iim_read32 in_le32
64#define iim_write32 out_le32
65#define iim_clrsetbits32 clrsetbits_le32
66#define iim_clrbits32 clrbits_le32
67#define iim_setbits32 setbits_le32
68#elif __BYTE_ORDER == __BIG_ENDIAN
69#define iim_read32 in_be32
70#define iim_write32 out_be32
71#define iim_clrsetbits32 clrsetbits_be32
72#define iim_clrbits32 clrbits_be32
73#define iim_setbits32 setbits_be32
74#else
75#error Endianess is not defined: please fix to continue
76#endif
77
78
79struct fsl_iim {
80 u32 stat;
81 u32 statm;
82 u32 err;
83 u32 emask;
84 u32 fctl;
85 u32 ua;
86 u32 la;
87 u32 sdat;
88 u32 prev;
89 u32 srev;
90 u32 prg_p;
91 u32 scs[0x1f5];
92 struct {
93 u32 word[0x100];
94 } bank[8];
95};
96
97#if !defined(CONFIG_MX51) && !defined(CONFIG_MX53)
98#define enable_efuse_prog_supply(enable)
99#endif
100
101static int prepare_access(struct fsl_iim **regs, u32 bank, u32 word, int assert,
102 const char *caller)
103{
104 *regs = (struct fsl_iim *)IIM_BASE_ADDR;
105
106 if (bank >= ARRAY_SIZE((*regs)->bank) ||
107 word >= ARRAY_SIZE((*regs)->bank[0].word) ||
108 !assert) {
109 printf("fsl_iim %s(): Invalid argument\n", caller);
110 return -EINVAL;
111 }
112
113 return 0;
114}
115
116static void clear_status(struct fsl_iim *regs)
117{
118 iim_setbits32(®s->stat, 0);
119 iim_setbits32(®s->err, 0);
120}
121
122static void finish_access(struct fsl_iim *regs, u32 *stat, u32 *err)
123{
124 *stat = iim_read32(®s->stat);
125 *err = iim_read32(®s->err);
126 clear_status(regs);
127}
128
129static int prepare_read(struct fsl_iim **regs, u32 bank, u32 word, u32 *val,
130 const char *caller)
131{
132 int ret;
133
134 ret = prepare_access(regs, bank, word, val != NULL, caller);
135 if (ret)
136 return ret;
137
138 clear_status(*regs);
139
140 return 0;
141}
142
143int fuse_read(u32 bank, u32 word, u32 *val)
144{
145 struct fsl_iim *regs;
146 u32 stat, err;
147 int ret;
148
149 ret = prepare_read(®s, bank, word, val, __func__);
150 if (ret)
151 return ret;
152
153 *val = iim_read32(®s->bank[bank].word[word]);
154 finish_access(regs, &stat, &err);
155
156 if (err & ERR_RPE) {
157 puts("fsl_iim fuse_read(): Read protect error\n");
158 return -EIO;
159 }
160
161 return 0;
162}
163
164static void direct_access(struct fsl_iim *regs, u32 bank, u32 word, u32 bit,
165 u32 fctl, u32 *stat, u32 *err)
166{
167 iim_write32(®s->ua, bank << 3 | word >> 5);
168 iim_write32(®s->la, (word << 3 | bit) & 0xff);
169 if (fctl == FCTL_PRG)
170 iim_write32(®s->prg_p, 0xaa);
171 iim_setbits32(®s->fctl, fctl);
172 while (iim_read32(®s->stat) & STAT_BUSY)
173 udelay(20);
174 finish_access(regs, stat, err);
175}
176
177int fuse_sense(u32 bank, u32 word, u32 *val)
178{
179 struct fsl_iim *regs;
180 u32 stat, err;
181 int ret;
182
183 ret = prepare_read(®s, bank, word, val, __func__);
184 if (ret)
185 return ret;
186
187 direct_access(regs, bank, word, 0, FCTL_ESNS_N, &stat, &err);
188
189 if (err & ERR_SNSE) {
190 puts("fsl_iim fuse_sense(): Explicit sense cycle error\n");
191 return -EIO;
192 }
193
194 if (!(stat & STAT_SNSD)) {
195 puts("fsl_iim fuse_sense(): Explicit sense cycle did not complete\n");
196 return -EIO;
197 }
198
199 *val = iim_read32(®s->sdat);
200 return 0;
201}
202
203static int prog_bit(struct fsl_iim *regs, u32 bank, u32 word, u32 bit)
204{
205 u32 stat, err;
206
207 clear_status(regs);
208 direct_access(regs, bank, word, bit, FCTL_PRG, &stat, &err);
209 iim_write32(®s->prg_p, 0x00);
210
211 if (err & ERR_PRGE) {
212 puts("fsl_iim fuse_prog(): Program error\n");
213 return -EIO;
214 }
215
216 if (err & ERR_WPE) {
217 puts("fsl_iim fuse_prog(): Write protect error\n");
218 return -EIO;
219 }
220
221 if (!(stat & STAT_PRGD)) {
222 puts("fsl_iim fuse_prog(): Program did not complete\n");
223 return -EIO;
224 }
225
226 return 0;
227}
228
229static int prepare_write(struct fsl_iim **regs, u32 bank, u32 word, u32 val,
230 const char *caller)
231{
232 return prepare_access(regs, bank, word, !(val & ~0xff), caller);
233}
234
235int fuse_prog(u32 bank, u32 word, u32 val)
236{
237 struct fsl_iim *regs;
238 u32 bit;
239 int ret;
240
241 ret = prepare_write(®s, bank, word, val, __func__);
242 if (ret)
243 return ret;
244
245 enable_efuse_prog_supply(1);
246 for (bit = 0; val; bit++, val >>= 1)
247 if (val & 0x01) {
248 ret = prog_bit(regs, bank, word, bit);
249 if (ret) {
250 enable_efuse_prog_supply(0);
251 return ret;
252 }
253 }
254 enable_efuse_prog_supply(0);
255
256 return 0;
257}
258
259int fuse_override(u32 bank, u32 word, u32 val)
260{
261 struct fsl_iim *regs;
262 u32 stat, err;
263 int ret;
264
265 ret = prepare_write(®s, bank, word, val, __func__);
266 if (ret)
267 return ret;
268
269 clear_status(regs);
270 iim_write32(®s->bank[bank].word[word], val);
271 finish_access(regs, &stat, &err);
272
273 if (err & ERR_OPE) {
274 puts("fsl_iim fuse_override(): Override protect error\n");
275 return -EIO;
276 }
277
278 return 0;
279}
280