uboot/lib/zlib/trees.c
<<
>>
Prefs
   1/* trees.c -- output deflated data using Huffman coding
   2 * Copyright (C) 1995-2010 Jean-loup Gailly
   3 * detect_data_type() function provided freely by Cosmin Truta, 2006
   4 * For conditions of distribution and use, see copyright notice in zlib.h
   5 */
   6
   7/*
   8 *  ALGORITHM
   9 *
  10 *      The "deflation" process uses several Huffman trees. The more
  11 *      common source values are represented by shorter bit sequences.
  12 *
  13 *      Each code tree is stored in a compressed form which is itself
  14 *      a Huffman encoding of the lengths of all the code strings (in
  15 *      ascending order by source values). The actual code strings are
  16 *      reconstructed from the lengths in the inflate process, as
  17 *      described in the deflate specification.
  18 *
  19 *  REFERENCES
  20 *
  21 *      Deutsch, P.
  22 *          RFC 1951, DEFLATE Compressed Data Format Specification version 1.3
  23 *          https://tools.ietf.org/html/rfc1951, 1996
  24 *
  25 *      Storer, James A.
  26 *          Data Compression:  Methods and Theory, pp. 49-50.
  27 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
  28 *
  29 *      Sedgewick, R.
  30 *          Algorithms, p290.
  31 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
  32 */
  33
  34/* @(#) $Id$ */
  35
  36/* #define GEN_TREES_H */
  37
  38#include "deflate.h"
  39
  40#ifdef DEBUG
  41#  include <linux/ctype.h>
  42#endif
  43
  44/* ===========================================================================
  45 * Constants
  46 */
  47
  48#define MAX_BL_BITS 7
  49/* Bit length codes must not exceed MAX_BL_BITS bits */
  50
  51#define END_BLOCK 256
  52/* end of block literal code */
  53
  54#define REP_3_6      16
  55/* repeat previous bit length 3-6 times (2 bits of repeat count) */
  56
  57#define REPZ_3_10    17
  58/* repeat a zero length 3-10 times  (3 bits of repeat count) */
  59
  60#define REPZ_11_138  18
  61/* repeat a zero length 11-138 times  (7 bits of repeat count) */
  62
  63local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
  64   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
  65
  66local const int extra_dbits[D_CODES] /* extra bits for each distance code */
  67   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
  68
  69local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
  70   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
  71
  72local const uch bl_order[BL_CODES]
  73   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
  74/* The lengths of the bit length codes are sent in order of decreasing
  75 * probability, to avoid transmitting the lengths for unused bit length codes.
  76 */
  77
  78#define Buf_size (8 * 2*sizeof(char))
  79/* Number of bits used within bi_buf. (bi_buf might be implemented on
  80 * more than 16 bits on some systems.)
  81 */
  82
  83/* ===========================================================================
  84 * Local data. These are initialized only once.
  85 */
  86
  87#define DIST_CODE_LEN  512 /* see definition of array dist_code below */
  88
  89#if defined(GEN_TREES_H) || !defined(STDC)
  90/* non ANSI compilers may not accept trees.h */
  91
  92local ct_data static_ltree[L_CODES+2];
  93/* The static literal tree. Since the bit lengths are imposed, there is no
  94 * need for the L_CODES extra codes used during heap construction. However
  95 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
  96 * below).
  97 */
  98
  99local ct_data static_dtree[D_CODES];
 100/* The static distance tree. (Actually a trivial tree since all codes use
 101 * 5 bits.)
 102 */
 103
 104uch _dist_code[DIST_CODE_LEN];
 105/* Distance codes. The first 256 values correspond to the distances
 106 * 3 .. 258, the last 256 values correspond to the top 8 bits of
 107 * the 15 bit distances.
 108 */
 109
 110uch _length_code[MAX_MATCH-MIN_MATCH+1];
 111/* length code for each normalized match length (0 == MIN_MATCH) */
 112
 113local int base_length[LENGTH_CODES];
 114/* First normalized length for each code (0 = MIN_MATCH) */
 115
 116local int base_dist[D_CODES];
 117/* First normalized distance for each code (0 = distance of 1) */
 118
 119#else
 120#  include "trees.h"
 121#endif /* GEN_TREES_H */
 122
 123struct static_tree_desc_s {
 124    const ct_data *static_tree;  /* static tree or NULL */
 125    const intf *extra_bits;      /* extra bits for each code or NULL */
 126    int     extra_base;          /* base index for extra_bits */
 127    int     elems;               /* max number of elements in the tree */
 128    int     max_length;          /* max bit length for the codes */
 129};
 130
 131local static_tree_desc  static_l_desc =
 132{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
 133
 134local static_tree_desc  static_d_desc =
 135{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
 136
 137local static_tree_desc  static_bl_desc =
 138{(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
 139
 140/* ===========================================================================
 141 * Local (static) routines in this file.
 142 */
 143
 144local void tr_static_init OF((void));
 145local void init_block     OF((deflate_state *s));
 146local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
 147local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
 148local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
 149local void build_tree     OF((deflate_state *s, tree_desc *desc));
 150local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
 151local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
 152local int  build_bl_tree  OF((deflate_state *s));
 153local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
 154                              int blcodes));
 155local void compress_block OF((deflate_state *s, ct_data *ltree,
 156                              ct_data *dtree));
 157local int  detect_data_type OF((deflate_state *s));
 158local unsigned bi_reverse OF((unsigned value, int length));
 159local void bi_windup      OF((deflate_state *s));
 160local void bi_flush       OF((deflate_state *s));
 161local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
 162                              int header));
 163
 164#ifdef GEN_TREES_H
 165local void gen_trees_header OF((void));
 166#endif
 167
 168#ifndef DEBUG
 169#  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
 170   /* Send a code of the given tree. c and tree must not have side effects */
 171
 172#else /* DEBUG */
 173#  define send_code(s, c, tree) \
 174     { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
 175       send_bits(s, tree[c].Code, tree[c].Len); }
 176#endif
 177
 178/* ===========================================================================
 179 * Output a short LSB first on the stream.
 180 * IN assertion: there is enough room in pendingBuf.
 181 */
 182#define put_short(s, w) { \
 183    put_byte(s, (uch)((w) & 0xff)); \
 184    put_byte(s, (uch)((ush)(w) >> 8)); \
 185}
 186
 187/* ===========================================================================
 188 * Send a value on a given number of bits.
 189 * IN assertion: length <= 16 and value fits in length bits.
 190 */
 191#ifdef DEBUG
 192local void send_bits      OF((deflate_state *s, int value, int length));
 193
 194local void send_bits(s, value, length)
 195    deflate_state *s;
 196    int value;  /* value to send */
 197    int length; /* number of bits */
 198{
 199    Tracevv((stderr," l %2d v %4x ", length, value));
 200    Assert(length > 0 && length <= 15, "invalid length");
 201    s->bits_sent += (ulg)length;
 202
 203    /* If not enough room in bi_buf, use (valid) bits from bi_buf and
 204     * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
 205     * unused bits in value.
 206     */
 207    if (s->bi_valid > (int)Buf_size - length) {
 208        s->bi_buf |= (ush)value << s->bi_valid;
 209        put_short(s, s->bi_buf);
 210        s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
 211        s->bi_valid += length - Buf_size;
 212    } else {
 213        s->bi_buf |= (ush)value << s->bi_valid;
 214        s->bi_valid += length;
 215    }
 216}
 217#else /* !DEBUG */
 218
 219#define send_bits(s, value, length) \
 220{ int len = length;\
 221  if (s->bi_valid > (int)Buf_size - len) {\
 222    int val = value;\
 223    s->bi_buf |= (ush)val << s->bi_valid;\
 224    put_short(s, s->bi_buf);\
 225    s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
 226    s->bi_valid += len - Buf_size;\
 227  } else {\
 228    s->bi_buf |= (ush)(value) << s->bi_valid;\
 229    s->bi_valid += len;\
 230  }\
 231}
 232#endif /* DEBUG */
 233
 234
 235/* the arguments must not have side effects */
 236
 237/* ===========================================================================
 238 * Initialize the various 'constant' tables.
 239 */
 240local void tr_static_init()
 241{
 242#if defined(GEN_TREES_H) || !defined(STDC)
 243    static int static_init_done = 0;
 244    int n;        /* iterates over tree elements */
 245    int bits;     /* bit counter */
 246    int length;   /* length value */
 247    int code;     /* code value */
 248    int dist;     /* distance index */
 249    ush bl_count[MAX_BITS+1];
 250    /* number of codes at each bit length for an optimal tree */
 251
 252    if (static_init_done) return;
 253
 254    /* For some embedded targets, global variables are not initialized: */
 255#ifdef NO_INIT_GLOBAL_POINTERS
 256    static_l_desc.static_tree = static_ltree;
 257    static_l_desc.extra_bits = extra_lbits;
 258    static_d_desc.static_tree = static_dtree;
 259    static_d_desc.extra_bits = extra_dbits;
 260    static_bl_desc.extra_bits = extra_blbits;
 261#endif
 262
 263    /* Initialize the mapping length (0..255) -> length code (0..28) */
 264    length = 0;
 265    for (code = 0; code < LENGTH_CODES-1; code++) {
 266        base_length[code] = length;
 267        for (n = 0; n < (1<<extra_lbits[code]); n++) {
 268            _length_code[length++] = (uch)code;
 269        }
 270    }
 271    Assert (length == 256, "tr_static_init: length != 256");
 272    /* Note that the length 255 (match length 258) can be represented
 273     * in two different ways: code 284 + 5 bits or code 285, so we
 274     * overwrite length_code[255] to use the best encoding:
 275     */
 276    _length_code[length-1] = (uch)code;
 277
 278    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
 279    dist = 0;
 280    for (code = 0 ; code < 16; code++) {
 281        base_dist[code] = dist;
 282        for (n = 0; n < (1<<extra_dbits[code]); n++) {
 283            _dist_code[dist++] = (uch)code;
 284        }
 285    }
 286    Assert (dist == 256, "tr_static_init: dist != 256");
 287    dist >>= 7; /* from now on, all distances are divided by 128 */
 288    for ( ; code < D_CODES; code++) {
 289        base_dist[code] = dist << 7;
 290        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
 291            _dist_code[256 + dist++] = (uch)code;
 292        }
 293    }
 294    Assert (dist == 256, "tr_static_init: 256+dist != 512");
 295
 296    /* Construct the codes of the static literal tree */
 297    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
 298    n = 0;
 299    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
 300    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
 301    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
 302    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
 303    /* Codes 286 and 287 do not exist, but we must include them in the
 304     * tree construction to get a canonical Huffman tree (longest code
 305     * all ones)
 306     */
 307    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
 308
 309    /* The static distance tree is trivial: */
 310    for (n = 0; n < D_CODES; n++) {
 311        static_dtree[n].Len = 5;
 312        static_dtree[n].Code = bi_reverse((unsigned)n, 5);
 313    }
 314    static_init_done = 1;
 315
 316#  ifdef GEN_TREES_H
 317    gen_trees_header();
 318#  endif
 319#endif /* defined(GEN_TREES_H) || !defined(STDC) */
 320}
 321
 322/* ===========================================================================
 323 * Genererate the file trees.h describing the static trees.
 324 */
 325#ifdef GEN_TREES_H
 326#  ifndef DEBUG
 327#    include <stdio.h>
 328#  endif
 329
 330#  define SEPARATOR(i, last, width) \
 331      ((i) == (last)? "\n};\n\n" :    \
 332       ((i) % (width) == (width)-1 ? ",\n" : ", "))
 333
 334void gen_trees_header()
 335{
 336    FILE *header = fopen("trees.h", "w");
 337    int i;
 338
 339    Assert (header != NULL, "Can't open trees.h");
 340    fprintf(header,
 341            "/* header created automatically with -DGEN_TREES_H */\n\n");
 342
 343    fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
 344    for (i = 0; i < L_CODES+2; i++) {
 345        fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
 346                static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
 347    }
 348
 349    fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
 350    for (i = 0; i < D_CODES; i++) {
 351        fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
 352                static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
 353    }
 354
 355    fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
 356    for (i = 0; i < DIST_CODE_LEN; i++) {
 357        fprintf(header, "%2u%s", _dist_code[i],
 358                SEPARATOR(i, DIST_CODE_LEN-1, 20));
 359    }
 360
 361    fprintf(header,
 362        "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
 363    for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
 364        fprintf(header, "%2u%s", _length_code[i],
 365                SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
 366    }
 367
 368    fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
 369    for (i = 0; i < LENGTH_CODES; i++) {
 370        fprintf(header, "%1u%s", base_length[i],
 371                SEPARATOR(i, LENGTH_CODES-1, 20));
 372    }
 373
 374    fprintf(header, "local const int base_dist[D_CODES] = {\n");
 375    for (i = 0; i < D_CODES; i++) {
 376        fprintf(header, "%5u%s", base_dist[i],
 377                SEPARATOR(i, D_CODES-1, 10));
 378    }
 379
 380    fclose(header);
 381}
 382#endif /* GEN_TREES_H */
 383
 384/* ===========================================================================
 385 * Initialize the tree data structures for a new zlib stream.
 386 */
 387void ZLIB_INTERNAL _tr_init(s)
 388    deflate_state *s;
 389{
 390    tr_static_init();
 391
 392    s->l_desc.dyn_tree = s->dyn_ltree;
 393    s->l_desc.stat_desc = &static_l_desc;
 394
 395    s->d_desc.dyn_tree = s->dyn_dtree;
 396    s->d_desc.stat_desc = &static_d_desc;
 397
 398    s->bl_desc.dyn_tree = s->bl_tree;
 399    s->bl_desc.stat_desc = &static_bl_desc;
 400
 401    s->bi_buf = 0;
 402    s->bi_valid = 0;
 403    s->last_eob_len = 8; /* enough lookahead for inflate */
 404#ifdef DEBUG
 405    s->compressed_len = 0L;
 406    s->bits_sent = 0L;
 407#endif
 408
 409    /* Initialize the first block of the first file: */
 410    init_block(s);
 411}
 412
 413/* ===========================================================================
 414 * Initialize a new block.
 415 */
 416local void init_block(s)
 417    deflate_state *s;
 418{
 419    int n; /* iterates over tree elements */
 420
 421    /* Initialize the trees. */
 422    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
 423    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
 424    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
 425
 426    s->dyn_ltree[END_BLOCK].Freq = 1;
 427    s->opt_len = s->static_len = 0L;
 428    s->last_lit = s->matches = 0;
 429}
 430
 431#define SMALLEST 1
 432/* Index within the heap array of least frequent node in the Huffman tree */
 433
 434
 435/* ===========================================================================
 436 * Remove the smallest element from the heap and recreate the heap with
 437 * one less element. Updates heap and heap_len.
 438 */
 439#define pqremove(s, tree, top) \
 440{\
 441    top = s->heap[SMALLEST]; \
 442    s->heap[SMALLEST] = s->heap[s->heap_len--]; \
 443    pqdownheap(s, tree, SMALLEST); \
 444}
 445
 446/* ===========================================================================
 447 * Compares to subtrees, using the tree depth as tie breaker when
 448 * the subtrees have equal frequency. This minimizes the worst case length.
 449 */
 450#define smaller(tree, n, m, depth) \
 451   (tree[n].Freq < tree[m].Freq || \
 452   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
 453
 454/* ===========================================================================
 455 * Restore the heap property by moving down the tree starting at node k,
 456 * exchanging a node with the smallest of its two sons if necessary, stopping
 457 * when the heap property is re-established (each father smaller than its
 458 * two sons).
 459 */
 460local void pqdownheap(s, tree, k)
 461    deflate_state *s;
 462    ct_data *tree;  /* the tree to restore */
 463    int k;               /* node to move down */
 464{
 465    int v = s->heap[k];
 466    int j = k << 1;  /* left son of k */
 467    while (j <= s->heap_len) {
 468        /* Set j to the smallest of the two sons: */
 469        if (j < s->heap_len &&
 470            smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
 471            j++;
 472        }
 473        /* Exit if v is smaller than both sons */
 474        if (smaller(tree, v, s->heap[j], s->depth)) break;
 475
 476        /* Exchange v with the smallest son */
 477        s->heap[k] = s->heap[j];  k = j;
 478
 479        /* And continue down the tree, setting j to the left son of k */
 480        j <<= 1;
 481    }
 482    s->heap[k] = v;
 483}
 484
 485/* ===========================================================================
 486 * Compute the optimal bit lengths for a tree and update the total bit length
 487 * for the current block.
 488 * IN assertion: the fields freq and dad are set, heap[heap_max] and
 489 *    above are the tree nodes sorted by increasing frequency.
 490 * OUT assertions: the field len is set to the optimal bit length, the
 491 *     array bl_count contains the frequencies for each bit length.
 492 *     The length opt_len is updated; static_len is also updated if stree is
 493 *     not null.
 494 */
 495local void gen_bitlen(s, desc)
 496    deflate_state *s;
 497    tree_desc *desc;    /* the tree descriptor */
 498{
 499    ct_data *tree        = desc->dyn_tree;
 500    int max_code         = desc->max_code;
 501    const ct_data *stree = desc->stat_desc->static_tree;
 502    const intf *extra    = desc->stat_desc->extra_bits;
 503    int base             = desc->stat_desc->extra_base;
 504    int max_length       = desc->stat_desc->max_length;
 505    int h;              /* heap index */
 506    int n, m;           /* iterate over the tree elements */
 507    int bits;           /* bit length */
 508    int xbits;          /* extra bits */
 509    ush f;              /* frequency */
 510    int overflow = 0;   /* number of elements with bit length too large */
 511
 512    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
 513
 514    /* In a first pass, compute the optimal bit lengths (which may
 515     * overflow in the case of the bit length tree).
 516     */
 517    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
 518
 519    for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
 520        n = s->heap[h];
 521        bits = tree[tree[n].Dad].Len + 1;
 522        if (bits > max_length) bits = max_length, overflow++;
 523        tree[n].Len = (ush)bits;
 524        /* We overwrite tree[n].Dad which is no longer needed */
 525
 526        if (n > max_code) continue; /* not a leaf node */
 527
 528        s->bl_count[bits]++;
 529        xbits = 0;
 530        if (n >= base) xbits = extra[n-base];
 531        f = tree[n].Freq;
 532        s->opt_len += (ulg)f * (bits + xbits);
 533        if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
 534    }
 535    if (overflow == 0) return;
 536
 537    Trace((stderr,"\nbit length overflow\n"));
 538    /* This happens for example on obj2 and pic of the Calgary corpus */
 539
 540    /* Find the first bit length which could increase: */
 541    do {
 542        bits = max_length-1;
 543        while (s->bl_count[bits] == 0) bits--;
 544        s->bl_count[bits]--;      /* move one leaf down the tree */
 545        s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
 546        s->bl_count[max_length]--;
 547        /* The brother of the overflow item also moves one step up,
 548         * but this does not affect bl_count[max_length]
 549         */
 550        overflow -= 2;
 551    } while (overflow > 0);
 552
 553    /* Now recompute all bit lengths, scanning in increasing frequency.
 554     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
 555     * lengths instead of fixing only the wrong ones. This idea is taken
 556     * from 'ar' written by Haruhiko Okumura.)
 557     */
 558    for (bits = max_length; bits != 0; bits--) {
 559        n = s->bl_count[bits];
 560        while (n != 0) {
 561            m = s->heap[--h];
 562            if (m > max_code) continue;
 563            if ((unsigned) tree[m].Len != (unsigned) bits) {
 564                Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
 565                s->opt_len += ((long)bits - (long)tree[m].Len)
 566                              *(long)tree[m].Freq;
 567                tree[m].Len = (ush)bits;
 568            }
 569            n--;
 570        }
 571    }
 572}
 573
 574/* ===========================================================================
 575 * Generate the codes for a given tree and bit counts (which need not be
 576 * optimal).
 577 * IN assertion: the array bl_count contains the bit length statistics for
 578 * the given tree and the field len is set for all tree elements.
 579 * OUT assertion: the field code is set for all tree elements of non
 580 *     zero code length.
 581 */
 582local void gen_codes (tree, max_code, bl_count)
 583    ct_data *tree;             /* the tree to decorate */
 584    int max_code;              /* largest code with non zero frequency */
 585    ushf *bl_count;            /* number of codes at each bit length */
 586{
 587    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
 588    ush code = 0;              /* running code value */
 589    int bits;                  /* bit index */
 590    int n;                     /* code index */
 591
 592    /* The distribution counts are first used to generate the code values
 593     * without bit reversal.
 594     */
 595    for (bits = 1; bits <= MAX_BITS; bits++) {
 596        next_code[bits] = code = (code + bl_count[bits-1]) << 1;
 597    }
 598    /* Check that the bit counts in bl_count are consistent. The last code
 599     * must be all ones.
 600     */
 601    Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
 602            "inconsistent bit counts");
 603    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
 604
 605    for (n = 0;  n <= max_code; n++) {
 606        int len = tree[n].Len;
 607        if (len == 0) continue;
 608        /* Now reverse the bits */
 609        tree[n].Code = bi_reverse(next_code[len]++, len);
 610
 611        Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
 612             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
 613    }
 614}
 615
 616/* ===========================================================================
 617 * Construct one Huffman tree and assigns the code bit strings and lengths.
 618 * Update the total bit length for the current block.
 619 * IN assertion: the field freq is set for all tree elements.
 620 * OUT assertions: the fields len and code are set to the optimal bit length
 621 *     and corresponding code. The length opt_len is updated; static_len is
 622 *     also updated if stree is not null. The field max_code is set.
 623 */
 624local void build_tree(s, desc)
 625    deflate_state *s;
 626    tree_desc *desc; /* the tree descriptor */
 627{
 628    ct_data *tree         = desc->dyn_tree;
 629    const ct_data *stree  = desc->stat_desc->static_tree;
 630    int elems             = desc->stat_desc->elems;
 631    int n, m;          /* iterate over heap elements */
 632    int max_code = -1; /* largest code with non zero frequency */
 633    int node;          /* new node being created */
 634
 635    /* Construct the initial heap, with least frequent element in
 636     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
 637     * heap[0] is not used.
 638     */
 639    s->heap_len = 0, s->heap_max = HEAP_SIZE;
 640
 641    for (n = 0; n < elems; n++) {
 642        if (tree[n].Freq != 0) {
 643            s->heap[++(s->heap_len)] = max_code = n;
 644            s->depth[n] = 0;
 645        } else {
 646            tree[n].Len = 0;
 647        }
 648    }
 649
 650    /* The pkzip format requires that at least one distance code exists,
 651     * and that at least one bit should be sent even if there is only one
 652     * possible code. So to avoid special checks later on we force at least
 653     * two codes of non zero frequency.
 654     */
 655    while (s->heap_len < 2) {
 656        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
 657        tree[node].Freq = 1;
 658        s->depth[node] = 0;
 659        s->opt_len--; if (stree) s->static_len -= stree[node].Len;
 660        /* node is 0 or 1 so it does not have extra bits */
 661    }
 662    desc->max_code = max_code;
 663
 664    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
 665     * establish sub-heaps of increasing lengths:
 666     */
 667    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
 668
 669    /* Construct the Huffman tree by repeatedly combining the least two
 670     * frequent nodes.
 671     */
 672    node = elems;              /* next internal node of the tree */
 673    do {
 674        pqremove(s, tree, n);  /* n = node of least frequency */
 675        m = s->heap[SMALLEST]; /* m = node of next least frequency */
 676
 677        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
 678        s->heap[--(s->heap_max)] = m;
 679
 680        /* Create a new node father of n and m */
 681        tree[node].Freq = tree[n].Freq + tree[m].Freq;
 682        s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
 683                                s->depth[n] : s->depth[m]) + 1);
 684        tree[n].Dad = tree[m].Dad = (ush)node;
 685#ifdef DUMP_BL_TREE
 686        if (tree == s->bl_tree) {
 687            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
 688                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
 689        }
 690#endif
 691        /* and insert the new node in the heap */
 692        s->heap[SMALLEST] = node++;
 693        pqdownheap(s, tree, SMALLEST);
 694
 695    } while (s->heap_len >= 2);
 696
 697    s->heap[--(s->heap_max)] = s->heap[SMALLEST];
 698
 699    /* At this point, the fields freq and dad are set. We can now
 700     * generate the bit lengths.
 701     */
 702    gen_bitlen(s, (tree_desc *)desc);
 703
 704    /* The field len is now set, we can generate the bit codes */
 705    gen_codes ((ct_data *)tree, max_code, s->bl_count);
 706}
 707
 708/* ===========================================================================
 709 * Scan a literal or distance tree to determine the frequencies of the codes
 710 * in the bit length tree.
 711 */
 712local void scan_tree (s, tree, max_code)
 713    deflate_state *s;
 714    ct_data *tree;   /* the tree to be scanned */
 715    int max_code;    /* and its largest code of non zero frequency */
 716{
 717    int n;                     /* iterates over all tree elements */
 718    int prevlen = -1;          /* last emitted length */
 719    int curlen;                /* length of current code */
 720    int nextlen = tree[0].Len; /* length of next code */
 721    int count = 0;             /* repeat count of the current code */
 722    int max_count = 7;         /* max repeat count */
 723    int min_count = 4;         /* min repeat count */
 724
 725    if (nextlen == 0) max_count = 138, min_count = 3;
 726    tree[max_code+1].Len = (ush)0xffff; /* guard */
 727
 728    for (n = 0; n <= max_code; n++) {
 729        curlen = nextlen; nextlen = tree[n+1].Len;
 730        if (++count < max_count && curlen == nextlen) {
 731            continue;
 732        } else if (count < min_count) {
 733            s->bl_tree[curlen].Freq += count;
 734        } else if (curlen != 0) {
 735            if (curlen != prevlen) s->bl_tree[curlen].Freq++;
 736            s->bl_tree[REP_3_6].Freq++;
 737        } else if (count <= 10) {
 738            s->bl_tree[REPZ_3_10].Freq++;
 739        } else {
 740            s->bl_tree[REPZ_11_138].Freq++;
 741        }
 742        count = 0; prevlen = curlen;
 743        if (nextlen == 0) {
 744            max_count = 138, min_count = 3;
 745        } else if (curlen == nextlen) {
 746            max_count = 6, min_count = 3;
 747        } else {
 748            max_count = 7, min_count = 4;
 749        }
 750    }
 751}
 752
 753/* ===========================================================================
 754 * Send a literal or distance tree in compressed form, using the codes in
 755 * bl_tree.
 756 */
 757local void send_tree (s, tree, max_code)
 758    deflate_state *s;
 759    ct_data *tree; /* the tree to be scanned */
 760    int max_code;       /* and its largest code of non zero frequency */
 761{
 762    int n;                     /* iterates over all tree elements */
 763    int prevlen = -1;          /* last emitted length */
 764    int curlen;                /* length of current code */
 765    int nextlen = tree[0].Len; /* length of next code */
 766    int count = 0;             /* repeat count of the current code */
 767    int max_count = 7;         /* max repeat count */
 768    int min_count = 4;         /* min repeat count */
 769
 770    /* tree[max_code+1].Len = -1; */  /* guard already set */
 771    if (nextlen == 0) max_count = 138, min_count = 3;
 772
 773    for (n = 0; n <= max_code; n++) {
 774        curlen = nextlen; nextlen = tree[n+1].Len;
 775        if (++count < max_count && curlen == nextlen) {
 776            continue;
 777        } else if (count < min_count) {
 778            do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
 779
 780        } else if (curlen != 0) {
 781            if (curlen != prevlen) {
 782                send_code(s, curlen, s->bl_tree); count--;
 783            }
 784            Assert(count >= 3 && count <= 6, " 3_6?");
 785            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
 786
 787        } else if (count <= 10) {
 788            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
 789
 790        } else {
 791            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
 792        }
 793        count = 0; prevlen = curlen;
 794        if (nextlen == 0) {
 795            max_count = 138, min_count = 3;
 796        } else if (curlen == nextlen) {
 797            max_count = 6, min_count = 3;
 798        } else {
 799            max_count = 7, min_count = 4;
 800        }
 801    }
 802}
 803
 804/* ===========================================================================
 805 * Construct the Huffman tree for the bit lengths and return the index in
 806 * bl_order of the last bit length code to send.
 807 */
 808local int build_bl_tree(s)
 809    deflate_state *s;
 810{
 811    int max_blindex;  /* index of last bit length code of non zero freq */
 812
 813    /* Determine the bit length frequencies for literal and distance trees */
 814    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
 815    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
 816
 817    /* Build the bit length tree: */
 818    build_tree(s, (tree_desc *)(&(s->bl_desc)));
 819    /* opt_len now includes the length of the tree representations, except
 820     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
 821     */
 822
 823    /* Determine the number of bit length codes to send. The pkzip format
 824     * requires that at least 4 bit length codes be sent. (appnote.txt says
 825     * 3 but the actual value used is 4.)
 826     */
 827    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
 828        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
 829    }
 830    /* Update opt_len to include the bit length tree and counts */
 831    s->opt_len += 3*(max_blindex+1) + 5+5+4;
 832    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
 833            s->opt_len, s->static_len));
 834
 835    return max_blindex;
 836}
 837
 838/* ===========================================================================
 839 * Send the header for a block using dynamic Huffman trees: the counts, the
 840 * lengths of the bit length codes, the literal tree and the distance tree.
 841 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
 842 */
 843local void send_all_trees(s, lcodes, dcodes, blcodes)
 844    deflate_state *s;
 845    int lcodes, dcodes, blcodes; /* number of codes for each tree */
 846{
 847    int rank;                    /* index in bl_order */
 848
 849    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
 850    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
 851            "too many codes");
 852    Tracev((stderr, "\nbl counts: "));
 853    send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
 854    send_bits(s, dcodes-1,   5);
 855    send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
 856    for (rank = 0; rank < blcodes; rank++) {
 857        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
 858        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
 859    }
 860    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
 861
 862    send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
 863    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
 864
 865    send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
 866    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
 867}
 868
 869/* ===========================================================================
 870 * Send a stored block
 871 */
 872void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
 873    deflate_state *s;
 874    charf *buf;       /* input block */
 875    ulg stored_len;   /* length of input block */
 876    int last;         /* one if this is the last block for a file */
 877{
 878    send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */
 879#ifdef DEBUG
 880    s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
 881    s->compressed_len += (stored_len + 4) << 3;
 882#endif
 883    copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
 884}
 885
 886/* ===========================================================================
 887 * Send one empty static block to give enough lookahead for inflate.
 888 * This takes 10 bits, of which 7 may remain in the bit buffer.
 889 * The current inflate code requires 9 bits of lookahead. If the
 890 * last two codes for the previous block (real code plus EOB) were coded
 891 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
 892 * the last real code. In this case we send two empty static blocks instead
 893 * of one. (There are no problems if the previous block is stored or fixed.)
 894 * To simplify the code, we assume the worst case of last real code encoded
 895 * on one bit only.
 896 */
 897void ZLIB_INTERNAL _tr_align(s)
 898    deflate_state *s;
 899{
 900    send_bits(s, STATIC_TREES<<1, 3);
 901    send_code(s, END_BLOCK, static_ltree);
 902#ifdef DEBUG
 903    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
 904#endif
 905    bi_flush(s);
 906    /* Of the 10 bits for the empty block, we have already sent
 907     * (10 - bi_valid) bits. The lookahead for the last real code (before
 908     * the EOB of the previous block) was thus at least one plus the length
 909     * of the EOB plus what we have just sent of the empty static block.
 910     */
 911    if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
 912        send_bits(s, STATIC_TREES<<1, 3);
 913        send_code(s, END_BLOCK, static_ltree);
 914#ifdef DEBUG
 915        s->compressed_len += 10L;
 916#endif
 917        bi_flush(s);
 918    }
 919    s->last_eob_len = 7;
 920}
 921
 922/* ===========================================================================
 923 * Determine the best encoding for the current block: dynamic trees, static
 924 * trees or store, and output the encoded block to the zip file.
 925 */
 926void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
 927    deflate_state *s;
 928    charf *buf;       /* input block, or NULL if too old */
 929    ulg stored_len;   /* length of input block */
 930    int last;         /* one if this is the last block for a file */
 931{
 932    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
 933    int max_blindex = 0;  /* index of last bit length code of non zero freq */
 934
 935    /* Build the Huffman trees unless a stored block is forced */
 936    if (s->level > 0) {
 937
 938        /* Check if the file is binary or text */
 939        if (s->strm->data_type == Z_UNKNOWN)
 940            s->strm->data_type = detect_data_type(s);
 941
 942        /* Construct the literal and distance trees */
 943        build_tree(s, (tree_desc *)(&(s->l_desc)));
 944        Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
 945                s->static_len));
 946
 947        build_tree(s, (tree_desc *)(&(s->d_desc)));
 948        Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
 949                s->static_len));
 950        /* At this point, opt_len and static_len are the total bit lengths of
 951         * the compressed block data, excluding the tree representations.
 952         */
 953
 954        /* Build the bit length tree for the above two trees, and get the index
 955         * in bl_order of the last bit length code to send.
 956         */
 957        max_blindex = build_bl_tree(s);
 958
 959        /* Determine the best encoding. Compute the block lengths in bytes. */
 960        opt_lenb = (s->opt_len+3+7)>>3;
 961        static_lenb = (s->static_len+3+7)>>3;
 962
 963        Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
 964                opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
 965                s->last_lit));
 966
 967        if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
 968
 969    } else {
 970        Assert(buf != (char*)0, "lost buf");
 971        opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
 972    }
 973
 974#ifdef FORCE_STORED
 975    if (buf != (char*)0) { /* force stored block */
 976#else
 977    if (stored_len+4 <= opt_lenb && buf != (char*)0) {
 978                       /* 4: two words for the lengths */
 979#endif
 980        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
 981         * Otherwise we can't have processed more than WSIZE input bytes since
 982         * the last block flush, because compression would have been
 983         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
 984         * transform a block into a stored block.
 985         */
 986        _tr_stored_block(s, buf, stored_len, last);
 987
 988#ifdef FORCE_STATIC
 989    } else if (static_lenb >= 0) { /* force static trees */
 990#else
 991    } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
 992#endif
 993        send_bits(s, (STATIC_TREES<<1)+last, 3);
 994        compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
 995#ifdef DEBUG
 996        s->compressed_len += 3 + s->static_len;
 997#endif
 998    } else {
 999        send_bits(s, (DYN_TREES<<1)+last, 3);
1000        send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
1001                       max_blindex+1);
1002        compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
1003#ifdef DEBUG
1004        s->compressed_len += 3 + s->opt_len;
1005#endif
1006    }
1007    Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1008    /* The above check is made mod 2^32, for files larger than 512 MB
1009     * and uLong implemented on 32 bits.
1010     */
1011    init_block(s);
1012
1013    if (last) {
1014        bi_windup(s);
1015#ifdef DEBUG
1016        s->compressed_len += 7;  /* align on byte boundary */
1017#endif
1018    }
1019    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1020           s->compressed_len-7*last));
1021}
1022
1023/* ===========================================================================
1024 * Save the match info and tally the frequency counts. Return true if
1025 * the current block must be flushed.
1026 */
1027int ZLIB_INTERNAL _tr_tally (s, dist, lc)
1028    deflate_state *s;
1029    unsigned dist;  /* distance of matched string */
1030    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
1031{
1032    s->d_buf[s->last_lit] = (ush)dist;
1033    s->l_buf[s->last_lit++] = (uch)lc;
1034    if (dist == 0) {
1035        /* lc is the unmatched char */
1036        s->dyn_ltree[lc].Freq++;
1037    } else {
1038        s->matches++;
1039        /* Here, lc is the match length - MIN_MATCH */
1040        dist--;             /* dist = match distance - 1 */
1041        Assert((ush)dist < (ush)MAX_DIST(s) &&
1042               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1043               (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
1044
1045        s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1046        s->dyn_dtree[d_code(dist)].Freq++;
1047    }
1048
1049#ifdef TRUNCATE_BLOCK
1050    /* Try to guess if it is profitable to stop the current block here */
1051    if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1052        /* Compute an upper bound for the compressed length */
1053        ulg out_length = (ulg)s->last_lit*8L;
1054        ulg in_length = (ulg)((long)s->strstart - s->block_start);
1055        int dcode;
1056        for (dcode = 0; dcode < D_CODES; dcode++) {
1057            out_length += (ulg)s->dyn_dtree[dcode].Freq *
1058                (5L+extra_dbits[dcode]);
1059        }
1060        out_length >>= 3;
1061        Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1062               s->last_lit, in_length, out_length,
1063               100L - out_length*100L/in_length));
1064        if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1065    }
1066#endif
1067    return (s->last_lit == s->lit_bufsize-1);
1068    /* We avoid equality with lit_bufsize because of wraparound at 64K
1069     * on 16 bit machines and because stored blocks are restricted to
1070     * 64K-1 bytes.
1071     */
1072}
1073
1074/* ===========================================================================
1075 * Send the block data compressed using the given Huffman trees
1076 */
1077local void compress_block(s, ltree, dtree)
1078    deflate_state *s;
1079    ct_data *ltree; /* literal tree */
1080    ct_data *dtree; /* distance tree */
1081{
1082    unsigned dist;      /* distance of matched string */
1083    int lc;             /* match length or unmatched char (if dist == 0) */
1084    unsigned lx = 0;    /* running index in l_buf */
1085    unsigned code;      /* the code to send */
1086    int extra;          /* number of extra bits to send */
1087
1088    if (s->last_lit != 0) do {
1089        dist = s->d_buf[lx];
1090        lc = s->l_buf[lx++];
1091        if (dist == 0) {
1092            send_code(s, lc, ltree); /* send a literal byte */
1093            Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1094        } else {
1095            /* Here, lc is the match length - MIN_MATCH */
1096            code = _length_code[lc];
1097            send_code(s, code+LITERALS+1, ltree); /* send the length code */
1098            extra = extra_lbits[code];
1099            if (extra != 0) {
1100                lc -= base_length[code];
1101                send_bits(s, lc, extra);       /* send the extra length bits */
1102            }
1103            dist--; /* dist is now the match distance - 1 */
1104            code = d_code(dist);
1105            Assert (code < D_CODES, "bad d_code");
1106
1107            send_code(s, code, dtree);       /* send the distance code */
1108            extra = extra_dbits[code];
1109            if (extra != 0) {
1110                dist -= base_dist[code];
1111                send_bits(s, dist, extra);   /* send the extra distance bits */
1112            }
1113        } /* literal or match pair ? */
1114
1115        /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1116        Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1117               "pendingBuf overflow");
1118
1119    } while (lx < s->last_lit);
1120
1121    send_code(s, END_BLOCK, ltree);
1122    s->last_eob_len = ltree[END_BLOCK].Len;
1123}
1124
1125/* ===========================================================================
1126 * Check if the data type is TEXT or BINARY, using the following algorithm:
1127 * - TEXT if the two conditions below are satisfied:
1128 *    a) There are no non-portable control characters belonging to the
1129 *       "black list" (0..6, 14..25, 28..31).
1130 *    b) There is at least one printable character belonging to the
1131 *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
1132 * - BINARY otherwise.
1133 * - The following partially-portable control characters form a
1134 *   "gray list" that is ignored in this detection algorithm:
1135 *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
1136 * IN assertion: the fields Freq of dyn_ltree are set.
1137 */
1138local int detect_data_type(s)
1139    deflate_state *s;
1140{
1141    /* black_mask is the bit mask of black-listed bytes
1142     * set bits 0..6, 14..25, and 28..31
1143     * 0xf3ffc07f = binary 11110011111111111100000001111111
1144     */
1145    unsigned long black_mask = 0xf3ffc07fUL;
1146    int n;
1147
1148    /* Check for non-textual ("black-listed") bytes. */
1149    for (n = 0; n <= 31; n++, black_mask >>= 1)
1150        if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
1151            return Z_BINARY;
1152
1153    /* Check for textual ("white-listed") bytes. */
1154    if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
1155            || s->dyn_ltree[13].Freq != 0)
1156        return Z_TEXT;
1157    for (n = 32; n < LITERALS; n++)
1158        if (s->dyn_ltree[n].Freq != 0)
1159            return Z_TEXT;
1160
1161    /* There are no "black-listed" or "white-listed" bytes:
1162     * this stream either is empty or has tolerated ("gray-listed") bytes only.
1163     */
1164    return Z_BINARY;
1165}
1166
1167/* ===========================================================================
1168 * Reverse the first len bits of a code, using straightforward code (a faster
1169 * method would use a table)
1170 * IN assertion: 1 <= len <= 15
1171 */
1172local unsigned bi_reverse(value, len)
1173    unsigned value; /* the value to invert */
1174    int len;       /* its bit length */
1175{
1176    register unsigned res = 0;
1177    do {
1178        res |= value & 1;
1179        value >>= 1, res <<= 1;
1180    } while (--len > 0);
1181    return res >> 1;
1182}
1183
1184/* ===========================================================================
1185 * Flush the bit buffer, keeping at most 7 bits in it.
1186 */
1187local void bi_flush(s)
1188    deflate_state *s;
1189{
1190    if (s->bi_valid == 16) {
1191        put_short(s, s->bi_buf);
1192        s->bi_buf = 0;
1193        s->bi_valid = 0;
1194    } else if (s->bi_valid >= 8) {
1195        put_byte(s, (Byte)s->bi_buf);
1196        s->bi_buf >>= 8;
1197        s->bi_valid -= 8;
1198    }
1199}
1200
1201/* ===========================================================================
1202 * Flush the bit buffer and align the output on a byte boundary
1203 */
1204local void bi_windup(s)
1205    deflate_state *s;
1206{
1207    if (s->bi_valid > 8) {
1208        put_short(s, s->bi_buf);
1209    } else if (s->bi_valid > 0) {
1210        put_byte(s, (Byte)s->bi_buf);
1211    }
1212    s->bi_buf = 0;
1213    s->bi_valid = 0;
1214#ifdef DEBUG
1215    s->bits_sent = (s->bits_sent+7) & ~7;
1216#endif
1217}
1218
1219/* ===========================================================================
1220 * Copy a stored block, storing first the length and its
1221 * one's complement if requested.
1222 */
1223local void copy_block(s, buf, len, header)
1224    deflate_state *s;
1225    charf    *buf;    /* the input data */
1226    unsigned len;     /* its length */
1227    int      header;  /* true if block header must be written */
1228{
1229    bi_windup(s);        /* align on byte boundary */
1230    s->last_eob_len = 8; /* enough lookahead for inflate */
1231
1232    if (header) {
1233        put_short(s, (ush)len);
1234        put_short(s, (ush)~len);
1235#ifdef DEBUG
1236        s->bits_sent += 2*16;
1237#endif
1238    }
1239#ifdef DEBUG
1240    s->bits_sent += (ulg)len<<3;
1241#endif
1242    while (len--) {
1243        put_byte(s, *buf++);
1244    }
1245}
1246