uboot/include/ec_commands.h
<<
>>
Prefs
   1/* Copyright (c) 2018 The Chromium OS Authors. All rights reserved.
   2 * Use of this source code is governed by a BSD-style license that can be
   3 * found in the LICENSE file.
   4 */
   5
   6/* Host communication command constants for Chrome EC */
   7
   8#ifndef __CROS_EC_COMMANDS_H
   9#define __CROS_EC_COMMANDS_H
  10
  11/*
  12 * Protocol overview
  13 *
  14 * request:  CMD [ P0 P1 P2 ... Pn S ]
  15 * response: ERR [ P0 P1 P2 ... Pn S ]
  16 *
  17 * where the bytes are defined as follow :
  18 *      - CMD is the command code. (defined by EC_CMD_ constants)
  19 *      - ERR is the error code. (defined by EC_RES_ constants)
  20 *      - Px is the optional payload.
  21 *        it is not sent if the error code is not success.
  22 *        (defined by ec_params_ and ec_response_ structures)
  23 *      - S is the checksum which is the sum of all payload bytes.
  24 *
  25 * On LPC, CMD and ERR are sent/received at EC_LPC_ADDR_KERNEL|USER_CMD
  26 * and the payloads are sent/received at EC_LPC_ADDR_KERNEL|USER_PARAM.
  27 * On I2C, all bytes are sent serially in the same message.
  28 */
  29
  30/*
  31 * Current version of this protocol
  32 *
  33 * TODO(crosbug.com/p/11223): This is effectively useless; protocol is
  34 * determined in other ways.  Remove this once the kernel code no longer
  35 * depends on it.
  36 */
  37#define EC_PROTO_VERSION          0x00000002
  38
  39/* Command version mask */
  40#define EC_VER_MASK(version) (1UL << (version))
  41
  42/* I/O addresses for ACPI commands */
  43#define EC_LPC_ADDR_ACPI_DATA  0x62
  44#define EC_LPC_ADDR_ACPI_CMD   0x66
  45
  46/* I/O addresses for host command */
  47#define EC_LPC_ADDR_HOST_DATA  0x200
  48#define EC_LPC_ADDR_HOST_CMD   0x204
  49
  50/* I/O addresses for host command args and params */
  51/* Protocol version 2 */
  52#define EC_LPC_ADDR_HOST_ARGS    0x800  /* And 0x801, 0x802, 0x803 */
  53#define EC_LPC_ADDR_HOST_PARAM   0x804  /* For version 2 params; size is
  54                                         * EC_PROTO2_MAX_PARAM_SIZE */
  55/* Protocol version 3 */
  56#define EC_LPC_ADDR_HOST_PACKET  0x800  /* Offset of version 3 packet */
  57#define EC_LPC_HOST_PACKET_SIZE  0x100  /* Max size of version 3 packet */
  58
  59/* The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff
  60 * and they tell the kernel that so we have to think of it as two parts. */
  61#define EC_HOST_CMD_REGION0    0x800
  62#define EC_HOST_CMD_REGION1    0x880
  63#define EC_HOST_CMD_REGION_SIZE 0x80
  64
  65/* EC command register bit functions */
  66#define EC_LPC_CMDR_DATA        (1 << 0)  /* Data ready for host to read */
  67#define EC_LPC_CMDR_PENDING     (1 << 1)  /* Write pending to EC */
  68#define EC_LPC_CMDR_BUSY        (1 << 2)  /* EC is busy processing a command */
  69#define EC_LPC_CMDR_CMD         (1 << 3)  /* Last host write was a command */
  70#define EC_LPC_CMDR_ACPI_BRST   (1 << 4)  /* Burst mode (not used) */
  71#define EC_LPC_CMDR_SCI         (1 << 5)  /* SCI event is pending */
  72#define EC_LPC_CMDR_SMI         (1 << 6)  /* SMI event is pending */
  73
  74/* MEC uses 0x800/0x804 as register/index pair, thus an 8-byte resource */
  75#define MEC_EMI_BASE            0x800
  76#define MEC_EMI_SIZE            8
  77
  78#define EC_LPC_ADDR_MEMMAP       0x900
  79#define EC_MEMMAP_SIZE         255 /* ACPI IO buffer max is 255 bytes */
  80#define EC_MEMMAP_TEXT_MAX     8   /* Size of a string in the memory map */
  81
  82/* The offset address of each type of data in mapped memory. */
  83#define EC_MEMMAP_TEMP_SENSOR      0x00 /* Temp sensors 0x00 - 0x0f */
  84#define EC_MEMMAP_FAN              0x10 /* Fan speeds 0x10 - 0x17 */
  85#define EC_MEMMAP_TEMP_SENSOR_B    0x18 /* More temp sensors 0x18 - 0x1f */
  86#define EC_MEMMAP_ID               0x20 /* 0x20 == 'E', 0x21 == 'C' */
  87#define EC_MEMMAP_ID_VERSION       0x22 /* Version of data in 0x20 - 0x2f */
  88#define EC_MEMMAP_THERMAL_VERSION  0x23 /* Version of data in 0x00 - 0x1f */
  89#define EC_MEMMAP_BATTERY_VERSION  0x24 /* Version of data in 0x40 - 0x7f */
  90#define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */
  91#define EC_MEMMAP_EVENTS_VERSION   0x26 /* Version of data in 0x34 - 0x3f */
  92#define EC_MEMMAP_HOST_CMD_FLAGS   0x27 /* Host cmd interface flags (8 bits) */
  93/* Unused 0x28 - 0x2f */
  94#define EC_MEMMAP_SWITCHES         0x30 /* 8 bits */
  95/* Unused 0x31 - 0x33 */
  96#define EC_MEMMAP_HOST_EVENTS      0x34 /* 32 bits */
  97/* Reserve 0x38 - 0x3f for additional host event-related stuff */
  98/* Battery values are all 32 bits */
  99#define EC_MEMMAP_BATT_VOLT        0x40 /* Battery Present Voltage */
 100#define EC_MEMMAP_BATT_RATE        0x44 /* Battery Present Rate */
 101#define EC_MEMMAP_BATT_CAP         0x48 /* Battery Remaining Capacity */
 102#define EC_MEMMAP_BATT_FLAG        0x4c /* Battery State, defined below */
 103#define EC_MEMMAP_BATT_DCAP        0x50 /* Battery Design Capacity */
 104#define EC_MEMMAP_BATT_DVLT        0x54 /* Battery Design Voltage */
 105#define EC_MEMMAP_BATT_LFCC        0x58 /* Battery Last Full Charge Capacity */
 106#define EC_MEMMAP_BATT_CCNT        0x5c /* Battery Cycle Count */
 107/* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */
 108#define EC_MEMMAP_BATT_MFGR        0x60 /* Battery Manufacturer String */
 109#define EC_MEMMAP_BATT_MODEL       0x68 /* Battery Model Number String */
 110#define EC_MEMMAP_BATT_SERIAL      0x70 /* Battery Serial Number String */
 111#define EC_MEMMAP_BATT_TYPE        0x78 /* Battery Type String */
 112#define EC_MEMMAP_ALS              0x80 /* ALS readings in lux (2 X 16 bits) */
 113/* Unused 0x84 - 0x8f */
 114#define EC_MEMMAP_ACC_STATUS       0x90 /* Accelerometer status (8 bits )*/
 115/* Unused 0x91 */
 116#define EC_MEMMAP_ACC_DATA         0x92 /* Accelerometers data 0x92 - 0x9f */
 117/* 0x92: Lid Angle if available, LID_ANGLE_UNRELIABLE otherwise */
 118/* 0x94 - 0x99: 1st Accelerometer */
 119/* 0x9a - 0x9f: 2nd Accelerometer */
 120#define EC_MEMMAP_GYRO_DATA        0xa0 /* Gyroscope data 0xa0 - 0xa5 */
 121/* Unused 0xa6 - 0xdf */
 122
 123/*
 124 * ACPI is unable to access memory mapped data at or above this offset due to
 125 * limitations of the ACPI protocol. Do not place data in the range 0xe0 - 0xfe
 126 * which might be needed by ACPI.
 127 */
 128#define EC_MEMMAP_NO_ACPI 0xe0
 129
 130/* Define the format of the accelerometer mapped memory status byte. */
 131#define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK  0x0f
 132#define EC_MEMMAP_ACC_STATUS_BUSY_BIT        (1 << 4)
 133#define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT    (1 << 7)
 134
 135/* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */
 136#define EC_TEMP_SENSOR_ENTRIES     16
 137/*
 138 * Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B.
 139 *
 140 * Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2.
 141 */
 142#define EC_TEMP_SENSOR_B_ENTRIES      8
 143
 144/* Special values for mapped temperature sensors */
 145#define EC_TEMP_SENSOR_NOT_PRESENT    0xff
 146#define EC_TEMP_SENSOR_ERROR          0xfe
 147#define EC_TEMP_SENSOR_NOT_POWERED    0xfd
 148#define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc
 149/*
 150 * The offset of temperature value stored in mapped memory.  This allows
 151 * reporting a temperature range of 200K to 454K = -73C to 181C.
 152 */
 153#define EC_TEMP_SENSOR_OFFSET      200
 154
 155/*
 156 * Number of ALS readings at EC_MEMMAP_ALS
 157 */
 158#define EC_ALS_ENTRIES             2
 159
 160/*
 161 * The default value a temperature sensor will return when it is present but
 162 * has not been read this boot.  This is a reasonable number to avoid
 163 * triggering alarms on the host.
 164 */
 165#define EC_TEMP_SENSOR_DEFAULT     (296 - EC_TEMP_SENSOR_OFFSET)
 166
 167#define EC_FAN_SPEED_ENTRIES       4       /* Number of fans at EC_MEMMAP_FAN */
 168#define EC_FAN_SPEED_NOT_PRESENT   0xffff  /* Entry not present */
 169#define EC_FAN_SPEED_STALLED       0xfffe  /* Fan stalled */
 170
 171/* Battery bit flags at EC_MEMMAP_BATT_FLAG. */
 172#define EC_BATT_FLAG_AC_PRESENT   0x01
 173#define EC_BATT_FLAG_BATT_PRESENT 0x02
 174#define EC_BATT_FLAG_DISCHARGING  0x04
 175#define EC_BATT_FLAG_CHARGING     0x08
 176#define EC_BATT_FLAG_LEVEL_CRITICAL 0x10
 177
 178/* Switch flags at EC_MEMMAP_SWITCHES */
 179#define EC_SWITCH_LID_OPEN               0x01
 180#define EC_SWITCH_POWER_BUTTON_PRESSED   0x02
 181#define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04
 182/* Was recovery requested via keyboard; now unused. */
 183#define EC_SWITCH_IGNORE1                0x08
 184/* Recovery requested via dedicated signal (from servo board) */
 185#define EC_SWITCH_DEDICATED_RECOVERY     0x10
 186/* Was fake developer mode switch; now unused.  Remove in next refactor. */
 187#define EC_SWITCH_IGNORE0                0x20
 188
 189/* Host command interface flags */
 190/* Host command interface supports LPC args (LPC interface only) */
 191#define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED  0x01
 192/* Host command interface supports version 3 protocol */
 193#define EC_HOST_CMD_FLAG_VERSION_3   0x02
 194
 195/* Wireless switch flags */
 196#define EC_WIRELESS_SWITCH_ALL       ~0x00  /* All flags */
 197#define EC_WIRELESS_SWITCH_WLAN       0x01  /* WLAN radio */
 198#define EC_WIRELESS_SWITCH_BLUETOOTH  0x02  /* Bluetooth radio */
 199#define EC_WIRELESS_SWITCH_WWAN       0x04  /* WWAN power */
 200#define EC_WIRELESS_SWITCH_WLAN_POWER 0x08  /* WLAN power */
 201
 202/*****************************************************************************/
 203/*
 204 * ACPI commands
 205 *
 206 * These are valid ONLY on the ACPI command/data port.
 207 */
 208
 209/*
 210 * ACPI Read Embedded Controller
 211 *
 212 * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
 213 *
 214 * Use the following sequence:
 215 *
 216 *    - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD
 217 *    - Wait for EC_LPC_CMDR_PENDING bit to clear
 218 *    - Write address to EC_LPC_ADDR_ACPI_DATA
 219 *    - Wait for EC_LPC_CMDR_DATA bit to set
 220 *    - Read value from EC_LPC_ADDR_ACPI_DATA
 221 */
 222#define EC_CMD_ACPI_READ 0x0080
 223
 224/*
 225 * ACPI Write Embedded Controller
 226 *
 227 * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
 228 *
 229 * Use the following sequence:
 230 *
 231 *    - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD
 232 *    - Wait for EC_LPC_CMDR_PENDING bit to clear
 233 *    - Write address to EC_LPC_ADDR_ACPI_DATA
 234 *    - Wait for EC_LPC_CMDR_PENDING bit to clear
 235 *    - Write value to EC_LPC_ADDR_ACPI_DATA
 236 */
 237#define EC_CMD_ACPI_WRITE 0x0081
 238
 239/*
 240 * ACPI Burst Enable Embedded Controller
 241 *
 242 * This enables burst mode on the EC to allow the host to issue several
 243 * commands back-to-back. While in this mode, writes to mapped multi-byte
 244 * data are locked out to ensure data consistency.
 245 */
 246#define EC_CMD_ACPI_BURST_ENABLE 0x0082
 247
 248/*
 249 * ACPI Burst Disable Embedded Controller
 250 *
 251 * This disables burst mode on the EC and stops preventing EC writes to mapped
 252 * multi-byte data.
 253 */
 254#define EC_CMD_ACPI_BURST_DISABLE 0x0083
 255
 256/*
 257 * ACPI Query Embedded Controller
 258 *
 259 * This clears the lowest-order bit in the currently pending host events, and
 260 * sets the result code to the 1-based index of the bit (event 0x00000001 = 1,
 261 * event 0x80000000 = 32), or 0 if no event was pending.
 262 */
 263#define EC_CMD_ACPI_QUERY_EVENT 0x0084
 264
 265/* Valid addresses in ACPI memory space, for read/write commands */
 266
 267/* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */
 268#define EC_ACPI_MEM_VERSION            0x00
 269/*
 270 * Test location; writing value here updates test compliment byte to (0xff -
 271 * value).
 272 */
 273#define EC_ACPI_MEM_TEST               0x01
 274/* Test compliment; writes here are ignored. */
 275#define EC_ACPI_MEM_TEST_COMPLIMENT    0x02
 276
 277/* Keyboard backlight brightness percent (0 - 100) */
 278#define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03
 279/* DPTF Target Fan Duty (0-100, 0xff for auto/none) */
 280#define EC_ACPI_MEM_FAN_DUTY           0x04
 281
 282/*
 283 * DPTF temp thresholds. Any of the EC's temp sensors can have up to two
 284 * independent thresholds attached to them. The current value of the ID
 285 * register determines which sensor is affected by the THRESHOLD and COMMIT
 286 * registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme
 287 * as the memory-mapped sensors. The COMMIT register applies those settings.
 288 *
 289 * The spec does not mandate any way to read back the threshold settings
 290 * themselves, but when a threshold is crossed the AP needs a way to determine
 291 * which sensor(s) are responsible. Each reading of the ID register clears and
 292 * returns one sensor ID that has crossed one of its threshold (in either
 293 * direction) since the last read. A value of 0xFF means "no new thresholds
 294 * have tripped". Setting or enabling the thresholds for a sensor will clear
 295 * the unread event count for that sensor.
 296 */
 297#define EC_ACPI_MEM_TEMP_ID            0x05
 298#define EC_ACPI_MEM_TEMP_THRESHOLD     0x06
 299#define EC_ACPI_MEM_TEMP_COMMIT        0x07
 300/*
 301 * Here are the bits for the COMMIT register:
 302 *   bit 0 selects the threshold index for the chosen sensor (0/1)
 303 *   bit 1 enables/disables the selected threshold (0 = off, 1 = on)
 304 * Each write to the commit register affects one threshold.
 305 */
 306#define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK (1 << 0)
 307#define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK (1 << 1)
 308/*
 309 * Example:
 310 *
 311 * Set the thresholds for sensor 2 to 50 C and 60 C:
 312 *   write 2 to [0x05]      --  select temp sensor 2
 313 *   write 0x7b to [0x06]   --  C_TO_K(50) - EC_TEMP_SENSOR_OFFSET
 314 *   write 0x2 to [0x07]    --  enable threshold 0 with this value
 315 *   write 0x85 to [0x06]   --  C_TO_K(60) - EC_TEMP_SENSOR_OFFSET
 316 *   write 0x3 to [0x07]    --  enable threshold 1 with this value
 317 *
 318 * Disable the 60 C threshold, leaving the 50 C threshold unchanged:
 319 *   write 2 to [0x05]      --  select temp sensor 2
 320 *   write 0x1 to [0x07]    --  disable threshold 1
 321 */
 322
 323/* DPTF battery charging current limit */
 324#define EC_ACPI_MEM_CHARGING_LIMIT     0x08
 325
 326/* Charging limit is specified in 64 mA steps */
 327#define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA   64
 328/* Value to disable DPTF battery charging limit */
 329#define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED  0xff
 330
 331/*
 332 * Report device orientation
 333 *   bit 0 device is tablet mode
 334 */
 335#define EC_ACPI_MEM_DEVICE_ORIENTATION 0x09
 336#define EC_ACPI_MEM_DEVICE_TABLET_MODE 0x01
 337
 338/*
 339 * ACPI addresses 0x20 - 0xff map to EC_MEMMAP offset 0x00 - 0xdf.  This data
 340 * is read-only from the AP.  Added in EC_ACPI_MEM_VERSION 2.
 341 */
 342#define EC_ACPI_MEM_MAPPED_BEGIN   0x20
 343#define EC_ACPI_MEM_MAPPED_SIZE    0xe0
 344
 345/* Current version of ACPI memory address space */
 346#define EC_ACPI_MEM_VERSION_CURRENT 2
 347
 348
 349/*
 350 * This header file is used in coreboot both in C and ACPI code.  The ACPI code
 351 * is pre-processed to handle constants but the ASL compiler is unable to
 352 * handle actual C code so keep it separate.
 353 */
 354#ifndef __ACPI__
 355
 356/*
 357 * Define __packed if someone hasn't beat us to it.  Linux kernel style
 358 * checking prefers __packed over __attribute__((packed)).
 359 */
 360#ifndef __packed
 361#define __packed __attribute__((packed))
 362#endif
 363
 364#ifndef __aligned
 365#define __aligned(x) __attribute__((aligned(x)))
 366#endif
 367
 368/*
 369 * Attributes for EC request and response packets.  Just defining __packed
 370 * results in inefficient assembly code on ARM, if the structure is actually
 371 * 32-bit aligned, as it should be for all buffers.
 372 *
 373 * Be very careful when adding these to existing structures.  They will round
 374 * up the structure size to the specified boundary.
 375 *
 376 * Also be very careful to make that if a structure is included in some other
 377 * parent structure that the alignment will still be true given the packing of
 378 * the parent structure.  This is particularly important if the sub-structure
 379 * will be passed as a pointer to another function, since that function will
 380 * not know about the misaligment caused by the parent structure's packing.
 381 *
 382 * Also be very careful using __packed - particularly when nesting non-packed
 383 * structures inside packed ones.  In fact, DO NOT use __packed directly;
 384 * always use one of these attributes.
 385 *
 386 * Once everything is annotated properly, the following search strings should
 387 * not return ANY matches in this file other than right here:
 388 *
 389 * "__packed" - generates inefficient code; all sub-structs must also be packed
 390 *
 391 * "struct [^_]" - all structs should be annotated, except for structs that are
 392 * members of other structs/unions (and their original declarations should be
 393 * annotated).
 394 */
 395#ifdef CONFIG_HOSTCMD_ALIGNED
 396
 397/*
 398 * Packed structures where offset and size are always aligned to 1, 2, or 4
 399 * byte boundary.
 400 */
 401#define __ec_align1 __packed
 402#define __ec_align2 __packed __aligned(2)
 403#define __ec_align4 __packed __aligned(4)
 404
 405/*
 406 * Packed structure which must be under-aligned, because its size is not a
 407 * 4-byte multiple.  This is sub-optimal because it forces byte-wise access
 408 * of all multi-byte fields in it, even though they are themselves aligned.
 409 *
 410 * In theory, we could duplicate the structure with __aligned(4) for accessing
 411 * its members, but use the __packed version for sizeof().
 412 */
 413#define __ec_align_size1 __packed
 414
 415/*
 416 * Packed structure which must be under-aligned, because its offset inside a
 417 * parent structure is not a 4-byte multiple.
 418 */
 419#define __ec_align_offset1 __packed
 420#define __ec_align_offset2 __packed __aligned(2)
 421
 422/*
 423 * Structures which are complicated enough that I'm skipping them on the first
 424 * pass.  They are effectively unchanged from their previous definitions.
 425 *
 426 * TODO(rspangler): Figure out what to do with these.  It's likely necessary
 427 * to work out the size and offset of each member and add explicit padding to
 428 * maintain those.
 429 */
 430#define __ec_todo_packed __packed
 431#define __ec_todo_unpacked
 432
 433#else  /* !CONFIG_HOSTCMD_ALIGNED */
 434
 435/*
 436 * Packed structures make no assumption about alignment, so they do inefficient
 437 * byte-wise reads.
 438 */
 439#define __ec_align1 __packed
 440#define __ec_align2 __packed
 441#define __ec_align4 __packed
 442#define __ec_align_size1 __packed
 443#define __ec_align_offset1 __packed
 444#define __ec_align_offset2 __packed
 445#define __ec_todo_packed __packed
 446#define __ec_todo_unpacked
 447
 448#endif  /* !CONFIG_HOSTCMD_ALIGNED */
 449
 450/* LPC command status byte masks */
 451/* EC has written a byte in the data register and host hasn't read it yet */
 452#define EC_LPC_STATUS_TO_HOST     0x01
 453/* Host has written a command/data byte and the EC hasn't read it yet */
 454#define EC_LPC_STATUS_FROM_HOST   0x02
 455/* EC is processing a command */
 456#define EC_LPC_STATUS_PROCESSING  0x04
 457/* Last write to EC was a command, not data */
 458#define EC_LPC_STATUS_LAST_CMD    0x08
 459/* EC is in burst mode */
 460#define EC_LPC_STATUS_BURST_MODE  0x10
 461/* SCI event is pending (requesting SCI query) */
 462#define EC_LPC_STATUS_SCI_PENDING 0x20
 463/* SMI event is pending (requesting SMI query) */
 464#define EC_LPC_STATUS_SMI_PENDING 0x40
 465/* (reserved) */
 466#define EC_LPC_STATUS_RESERVED    0x80
 467
 468/*
 469 * EC is busy.  This covers both the EC processing a command, and the host has
 470 * written a new command but the EC hasn't picked it up yet.
 471 */
 472#define EC_LPC_STATUS_BUSY_MASK \
 473        (EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING)
 474
 475/* Host command response codes (16-bit).  Note that response codes should be
 476 * stored in a uint16_t rather than directly in a value of this type.
 477 */
 478enum ec_status {
 479        EC_RES_SUCCESS = 0,
 480        EC_RES_INVALID_COMMAND = 1,
 481        EC_RES_ERROR = 2,
 482        EC_RES_INVALID_PARAM = 3,
 483        EC_RES_ACCESS_DENIED = 4,
 484        EC_RES_INVALID_RESPONSE = 5,
 485        EC_RES_INVALID_VERSION = 6,
 486        EC_RES_INVALID_CHECKSUM = 7,
 487        EC_RES_IN_PROGRESS = 8,         /* Accepted, command in progress */
 488        EC_RES_UNAVAILABLE = 9,         /* No response available */
 489        EC_RES_TIMEOUT = 10,            /* We got a timeout */
 490        EC_RES_OVERFLOW = 11,           /* Table / data overflow */
 491        EC_RES_INVALID_HEADER = 12,     /* Header contains invalid data */
 492        EC_RES_REQUEST_TRUNCATED = 13,  /* Didn't get the entire request */
 493        EC_RES_RESPONSE_TOO_BIG = 14,   /* Response was too big to handle */
 494        EC_RES_BUS_ERROR = 15,          /* Communications bus error */
 495        EC_RES_BUSY = 16                /* Up but too busy.  Should retry */
 496};
 497
 498/*
 499 * Host event codes.  Note these are 1-based, not 0-based, because ACPI query
 500 * EC command uses code 0 to mean "no event pending".  We explicitly specify
 501 * each value in the enum listing so they won't change if we delete/insert an
 502 * item or rearrange the list (it needs to be stable across platforms, not
 503 * just within a single compiled instance).
 504 */
 505enum host_event_code {
 506        EC_HOST_EVENT_LID_CLOSED = 1,
 507        EC_HOST_EVENT_LID_OPEN = 2,
 508        EC_HOST_EVENT_POWER_BUTTON = 3,
 509        EC_HOST_EVENT_AC_CONNECTED = 4,
 510        EC_HOST_EVENT_AC_DISCONNECTED = 5,
 511        EC_HOST_EVENT_BATTERY_LOW = 6,
 512        EC_HOST_EVENT_BATTERY_CRITICAL = 7,
 513        EC_HOST_EVENT_BATTERY = 8,
 514        EC_HOST_EVENT_THERMAL_THRESHOLD = 9,
 515        /* Event generated by a device attached to the EC */
 516        EC_HOST_EVENT_DEVICE = 10,
 517        EC_HOST_EVENT_THERMAL = 11,
 518        EC_HOST_EVENT_USB_CHARGER = 12,
 519        EC_HOST_EVENT_KEY_PRESSED = 13,
 520        /*
 521         * EC has finished initializing the host interface.  The host can check
 522         * for this event following sending a EC_CMD_REBOOT_EC command to
 523         * determine when the EC is ready to accept subsequent commands.
 524         */
 525        EC_HOST_EVENT_INTERFACE_READY = 14,
 526        /* Keyboard recovery combo has been pressed */
 527        EC_HOST_EVENT_KEYBOARD_RECOVERY = 15,
 528
 529        /* Shutdown due to thermal overload */
 530        EC_HOST_EVENT_THERMAL_SHUTDOWN = 16,
 531        /* Shutdown due to battery level too low */
 532        EC_HOST_EVENT_BATTERY_SHUTDOWN = 17,
 533
 534        /* Suggest that the AP throttle itself */
 535        EC_HOST_EVENT_THROTTLE_START = 18,
 536        /* Suggest that the AP resume normal speed */
 537        EC_HOST_EVENT_THROTTLE_STOP = 19,
 538
 539        /* Hang detect logic detected a hang and host event timeout expired */
 540        EC_HOST_EVENT_HANG_DETECT = 20,
 541        /* Hang detect logic detected a hang and warm rebooted the AP */
 542        EC_HOST_EVENT_HANG_REBOOT = 21,
 543
 544        /* PD MCU triggering host event */
 545        EC_HOST_EVENT_PD_MCU = 22,
 546
 547        /* Battery Status flags have changed */
 548        EC_HOST_EVENT_BATTERY_STATUS = 23,
 549
 550        /* EC encountered a panic, triggering a reset */
 551        EC_HOST_EVENT_PANIC = 24,
 552
 553        /* Keyboard fastboot combo has been pressed */
 554        EC_HOST_EVENT_KEYBOARD_FASTBOOT = 25,
 555
 556        /* EC RTC event occurred */
 557        EC_HOST_EVENT_RTC = 26,
 558
 559        /* Emulate MKBP event */
 560        EC_HOST_EVENT_MKBP = 27,
 561
 562        /* EC desires to change state of host-controlled USB mux */
 563        EC_HOST_EVENT_USB_MUX = 28,
 564
 565        /* TABLET/LAPTOP mode event*/
 566        EC_HOST_EVENT_MODE_CHANGE = 29,
 567
 568        /* Keyboard recovery combo with hardware reinitialization */
 569        EC_HOST_EVENT_KEYBOARD_RECOVERY_HW_REINIT = 30,
 570
 571        /*
 572         * Reserve this last bit to indicate that at least one bit in a
 573         * secondary host event word is set.  See crbug.com/633646.
 574         */
 575        EC_HOST_EVENT_EXTENDED = 31,
 576
 577        /*
 578         * The high bit of the event mask is not used as a host event code.  If
 579         * it reads back as set, then the entire event mask should be
 580         * considered invalid by the host.  This can happen when reading the
 581         * raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is
 582         * not initialized on the EC, or improperly configured on the host.
 583         */
 584        EC_HOST_EVENT_INVALID = 32
 585};
 586/* Host event mask */
 587#define EC_HOST_EVENT_MASK(event_code) (1ULL << ((event_code) - 1))
 588
 589/* Arguments at EC_LPC_ADDR_HOST_ARGS */
 590struct __ec_align4 ec_lpc_host_args {
 591        uint8_t flags;
 592        uint8_t command_version;
 593        uint8_t data_size;
 594        /*
 595         * Checksum; sum of command + flags + command_version + data_size +
 596         * all params/response data bytes.
 597         */
 598        uint8_t checksum;
 599};
 600
 601/* Flags for ec_lpc_host_args.flags */
 602/*
 603 * Args are from host.  Data area at EC_LPC_ADDR_HOST_PARAM contains command
 604 * params.
 605 *
 606 * If EC gets a command and this flag is not set, this is an old-style command.
 607 * Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with
 608 * unknown length.  EC must respond with an old-style response (that is,
 609 * without setting EC_HOST_ARGS_FLAG_TO_HOST).
 610 */
 611#define EC_HOST_ARGS_FLAG_FROM_HOST 0x01
 612/*
 613 * Args are from EC.  Data area at EC_LPC_ADDR_HOST_PARAM contains response.
 614 *
 615 * If EC responds to a command and this flag is not set, this is an old-style
 616 * response.  Command version is 0 and response data from EC is at
 617 * EC_LPC_ADDR_OLD_PARAM with unknown length.
 618 */
 619#define EC_HOST_ARGS_FLAG_TO_HOST   0x02
 620
 621/*****************************************************************************/
 622/*
 623 * Byte codes returned by EC over SPI interface.
 624 *
 625 * These can be used by the AP to debug the EC interface, and to determine
 626 * when the EC is not in a state where it will ever get around to responding
 627 * to the AP.
 628 *
 629 * Example of sequence of bytes read from EC for a current good transfer:
 630 *   1. -                  - AP asserts chip select (CS#)
 631 *   2. EC_SPI_OLD_READY   - AP sends first byte(s) of request
 632 *   3. -                  - EC starts handling CS# interrupt
 633 *   4. EC_SPI_RECEIVING   - AP sends remaining byte(s) of request
 634 *   5. EC_SPI_PROCESSING  - EC starts processing request; AP is clocking in
 635 *                           bytes looking for EC_SPI_FRAME_START
 636 *   6. -                  - EC finishes processing and sets up response
 637 *   7. EC_SPI_FRAME_START - AP reads frame byte
 638 *   8. (response packet)  - AP reads response packet
 639 *   9. EC_SPI_PAST_END    - Any additional bytes read by AP
 640 *   10 -                  - AP deasserts chip select
 641 *   11 -                  - EC processes CS# interrupt and sets up DMA for
 642 *                           next request
 643 *
 644 * If the AP is waiting for EC_SPI_FRAME_START and sees any value other than
 645 * the following byte values:
 646 *   EC_SPI_OLD_READY
 647 *   EC_SPI_RX_READY
 648 *   EC_SPI_RECEIVING
 649 *   EC_SPI_PROCESSING
 650 *
 651 * Then the EC found an error in the request, or was not ready for the request
 652 * and lost data.  The AP should give up waiting for EC_SPI_FRAME_START,
 653 * because the EC is unable to tell when the AP is done sending its request.
 654 */
 655
 656/*
 657 * Framing byte which precedes a response packet from the EC.  After sending a
 658 * request, the AP will clock in bytes until it sees the framing byte, then
 659 * clock in the response packet.
 660 */
 661#define EC_SPI_FRAME_START    0xec
 662
 663/*
 664 * Padding bytes which are clocked out after the end of a response packet.
 665 */
 666#define EC_SPI_PAST_END       0xed
 667
 668/*
 669 * EC is ready to receive, and has ignored the byte sent by the AP.  EC expects
 670 * that the AP will send a valid packet header (starting with
 671 * EC_COMMAND_PROTOCOL_3) in the next 32 bytes.
 672 */
 673#define EC_SPI_RX_READY       0xf8
 674
 675/*
 676 * EC has started receiving the request from the AP, but hasn't started
 677 * processing it yet.
 678 */
 679#define EC_SPI_RECEIVING      0xf9
 680
 681/* EC has received the entire request from the AP and is processing it. */
 682#define EC_SPI_PROCESSING     0xfa
 683
 684/*
 685 * EC received bad data from the AP, such as a packet header with an invalid
 686 * length.  EC will ignore all data until chip select deasserts.
 687 */
 688#define EC_SPI_RX_BAD_DATA    0xfb
 689
 690/*
 691 * EC received data from the AP before it was ready.  That is, the AP asserted
 692 * chip select and started clocking data before the EC was ready to receive it.
 693 * EC will ignore all data until chip select deasserts.
 694 */
 695#define EC_SPI_NOT_READY      0xfc
 696
 697/*
 698 * EC was ready to receive a request from the AP.  EC has treated the byte sent
 699 * by the AP as part of a request packet, or (for old-style ECs) is processing
 700 * a fully received packet but is not ready to respond yet.
 701 */
 702#define EC_SPI_OLD_READY      0xfd
 703
 704/*****************************************************************************/
 705
 706/*
 707 * Protocol version 2 for I2C and SPI send a request this way:
 708 *
 709 *      0       EC_CMD_VERSION0 + (command version)
 710 *      1       Command number
 711 *      2       Length of params = N
 712 *      3..N+2  Params, if any
 713 *      N+3     8-bit checksum of bytes 0..N+2
 714 *
 715 * The corresponding response is:
 716 *
 717 *      0       Result code (EC_RES_*)
 718 *      1       Length of params = M
 719 *      2..M+1  Params, if any
 720 *      M+2     8-bit checksum of bytes 0..M+1
 721 */
 722#define EC_PROTO2_REQUEST_HEADER_BYTES 3
 723#define EC_PROTO2_REQUEST_TRAILER_BYTES 1
 724#define EC_PROTO2_REQUEST_OVERHEAD (EC_PROTO2_REQUEST_HEADER_BYTES +    \
 725                                    EC_PROTO2_REQUEST_TRAILER_BYTES)
 726
 727#define EC_PROTO2_RESPONSE_HEADER_BYTES 2
 728#define EC_PROTO2_RESPONSE_TRAILER_BYTES 1
 729#define EC_PROTO2_RESPONSE_OVERHEAD (EC_PROTO2_RESPONSE_HEADER_BYTES +  \
 730                                     EC_PROTO2_RESPONSE_TRAILER_BYTES)
 731
 732/* Parameter length was limited by the LPC interface */
 733#define EC_PROTO2_MAX_PARAM_SIZE 0xfc
 734
 735/* Maximum request and response packet sizes for protocol version 2 */
 736#define EC_PROTO2_MAX_REQUEST_SIZE (EC_PROTO2_REQUEST_OVERHEAD +        \
 737                                    EC_PROTO2_MAX_PARAM_SIZE)
 738#define EC_PROTO2_MAX_RESPONSE_SIZE (EC_PROTO2_RESPONSE_OVERHEAD +      \
 739                                     EC_PROTO2_MAX_PARAM_SIZE)
 740
 741/*****************************************************************************/
 742
 743/*
 744 * Value written to legacy command port / prefix byte to indicate protocol
 745 * 3+ structs are being used.  Usage is bus-dependent.
 746 */
 747#define EC_COMMAND_PROTOCOL_3 0xda
 748
 749#define EC_HOST_REQUEST_VERSION 3
 750
 751/* Version 3 request from host */
 752struct __ec_align4 ec_host_request {
 753        /* Structure version (=3)
 754         *
 755         * EC will return EC_RES_INVALID_HEADER if it receives a header with a
 756         * version it doesn't know how to parse.
 757         */
 758        uint8_t struct_version;
 759
 760        /*
 761         * Checksum of request and data; sum of all bytes including checksum
 762         * should total to 0.
 763         */
 764        uint8_t checksum;
 765
 766        /* Command code */
 767        uint16_t command;
 768
 769        /* Command version */
 770        uint8_t command_version;
 771
 772        /* Unused byte in current protocol version; set to 0 */
 773        uint8_t reserved;
 774
 775        /* Length of data which follows this header */
 776        uint16_t data_len;
 777};
 778
 779#define EC_HOST_RESPONSE_VERSION 3
 780
 781/* Version 3 response from EC */
 782struct __ec_align4 ec_host_response {
 783        /* Structure version (=3) */
 784        uint8_t struct_version;
 785
 786        /*
 787         * Checksum of response and data; sum of all bytes including checksum
 788         * should total to 0.
 789         */
 790        uint8_t checksum;
 791
 792        /* Result code (EC_RES_*) */
 793        uint16_t result;
 794
 795        /* Length of data which follows this header */
 796        uint16_t data_len;
 797
 798        /* Unused bytes in current protocol version; set to 0 */
 799        uint16_t reserved;
 800};
 801
 802/*****************************************************************************/
 803/*
 804 * Notes on commands:
 805 *
 806 * Each command is an 16-bit command value.  Commands which take params or
 807 * return response data specify structures for that data.  If no structure is
 808 * specified, the command does not input or output data, respectively.
 809 * Parameter/response length is implicit in the structs.  Some underlying
 810 * communication protocols (I2C, SPI) may add length or checksum headers, but
 811 * those are implementation-dependent and not defined here.
 812 *
 813 * All commands MUST be #defined to be 4-digit UPPER CASE hex values
 814 * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
 815 */
 816
 817/*****************************************************************************/
 818/* General / test commands */
 819
 820/*
 821 * Get protocol version, used to deal with non-backward compatible protocol
 822 * changes.
 823 */
 824#define EC_CMD_PROTO_VERSION 0x0000
 825
 826struct __ec_align4 ec_response_proto_version {
 827        uint32_t version;
 828};
 829
 830/*
 831 * Hello.  This is a simple command to test the EC is responsive to
 832 * commands.
 833 */
 834#define EC_CMD_HELLO 0x0001
 835
 836struct __ec_align4 ec_params_hello {
 837        uint32_t in_data;  /* Pass anything here */
 838};
 839
 840struct __ec_align4 ec_response_hello {
 841        uint32_t out_data;  /* Output will be in_data + 0x01020304 */
 842};
 843
 844/* Get version number */
 845#define EC_CMD_GET_VERSION 0x0002
 846
 847enum ec_current_image {
 848        EC_IMAGE_UNKNOWN = 0,
 849        EC_IMAGE_RO,
 850        EC_IMAGE_RW
 851};
 852
 853struct __ec_align4 ec_response_get_version {
 854        /* Null-terminated version strings for RO, RW */
 855        char version_string_ro[32];
 856        char version_string_rw[32];
 857        char reserved[32];       /* Was previously RW-B string */
 858        uint32_t current_image;  /* One of ec_current_image */
 859};
 860
 861/* Read test */
 862#define EC_CMD_READ_TEST 0x0003
 863
 864struct __ec_align4 ec_params_read_test {
 865        uint32_t offset;   /* Starting value for read buffer */
 866        uint32_t size;     /* Size to read in bytes */
 867};
 868
 869struct __ec_align4 ec_response_read_test {
 870        uint32_t data[32];
 871};
 872
 873/*
 874 * Get build information
 875 *
 876 * Response is null-terminated string.
 877 */
 878#define EC_CMD_GET_BUILD_INFO 0x0004
 879
 880/* Get chip info */
 881#define EC_CMD_GET_CHIP_INFO 0x0005
 882
 883struct __ec_align4 ec_response_get_chip_info {
 884        /* Null-terminated strings */
 885        char vendor[32];
 886        char name[32];
 887        char revision[32];  /* Mask version */
 888};
 889
 890/* Get board HW version */
 891#define EC_CMD_GET_BOARD_VERSION 0x0006
 892
 893struct __ec_align2 ec_response_board_version {
 894        uint16_t board_version;  /* A monotonously incrementing number. */
 895};
 896
 897/*
 898 * Read memory-mapped data.
 899 *
 900 * This is an alternate interface to memory-mapped data for bus protocols
 901 * which don't support direct-mapped memory - I2C, SPI, etc.
 902 *
 903 * Response is params.size bytes of data.
 904 */
 905#define EC_CMD_READ_MEMMAP 0x0007
 906
 907struct __ec_align1 ec_params_read_memmap {
 908        uint8_t offset;   /* Offset in memmap (EC_MEMMAP_*) */
 909        uint8_t size;     /* Size to read in bytes */
 910};
 911
 912/* Read versions supported for a command */
 913#define EC_CMD_GET_CMD_VERSIONS 0x0008
 914
 915struct __ec_align1 ec_params_get_cmd_versions {
 916        uint8_t cmd;      /* Command to check */
 917};
 918
 919struct __ec_align2 ec_params_get_cmd_versions_v1 {
 920        uint16_t cmd;     /* Command to check */
 921};
 922
 923struct __ec_align4 ec_response_get_cmd_versions {
 924        /*
 925         * Mask of supported versions; use EC_VER_MASK() to compare with a
 926         * desired version.
 927         */
 928        uint32_t version_mask;
 929};
 930
 931/*
 932 * Check EC communications status (busy). This is needed on i2c/spi but not
 933 * on lpc since it has its own out-of-band busy indicator.
 934 *
 935 * lpc must read the status from the command register. Attempting this on
 936 * lpc will overwrite the args/parameter space and corrupt its data.
 937 */
 938#define EC_CMD_GET_COMMS_STATUS         0x0009
 939
 940/* Avoid using ec_status which is for return values */
 941enum ec_comms_status {
 942        EC_COMMS_STATUS_PROCESSING      = 1 << 0,       /* Processing cmd */
 943};
 944
 945struct __ec_align4 ec_response_get_comms_status {
 946        uint32_t flags;         /* Mask of enum ec_comms_status */
 947};
 948
 949/* Fake a variety of responses, purely for testing purposes. */
 950#define EC_CMD_TEST_PROTOCOL            0x000A
 951
 952/* Tell the EC what to send back to us. */
 953struct __ec_align4 ec_params_test_protocol {
 954        uint32_t ec_result;
 955        uint32_t ret_len;
 956        uint8_t buf[32];
 957};
 958
 959/* Here it comes... */
 960struct __ec_align4 ec_response_test_protocol {
 961        uint8_t buf[32];
 962};
 963
 964/* Get protocol information */
 965#define EC_CMD_GET_PROTOCOL_INFO        0x000B
 966
 967/* Flags for ec_response_get_protocol_info.flags */
 968/* EC_RES_IN_PROGRESS may be returned if a command is slow */
 969#define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED (1 << 0)
 970
 971struct __ec_align4 ec_response_get_protocol_info {
 972        /* Fields which exist if at least protocol version 3 supported */
 973
 974        /* Bitmask of protocol versions supported (1 << n means version n)*/
 975        uint32_t protocol_versions;
 976
 977        /* Maximum request packet size, in bytes */
 978        uint16_t max_request_packet_size;
 979
 980        /* Maximum response packet size, in bytes */
 981        uint16_t max_response_packet_size;
 982
 983        /* Flags; see EC_PROTOCOL_INFO_* */
 984        uint32_t flags;
 985};
 986
 987
 988/*****************************************************************************/
 989/* Get/Set miscellaneous values */
 990
 991/* The upper byte of .flags tells what to do (nothing means "get") */
 992#define EC_GSV_SET        0x80000000
 993
 994/* The lower three bytes of .flags identifies the parameter, if that has
 995   meaning for an individual command. */
 996#define EC_GSV_PARAM_MASK 0x00ffffff
 997
 998struct __ec_align4 ec_params_get_set_value {
 999        uint32_t flags;
1000        uint32_t value;
1001};
1002
1003struct __ec_align4 ec_response_get_set_value {
1004        uint32_t flags;
1005        uint32_t value;
1006};
1007
1008/* More than one command can use these structs to get/set parameters. */
1009#define EC_CMD_GSV_PAUSE_IN_S5  0x000C
1010
1011/*****************************************************************************/
1012/* List the features supported by the firmware */
1013#define EC_CMD_GET_FEATURES  0x000D
1014
1015/* Supported features */
1016enum ec_feature_code {
1017        /*
1018         * This image contains a limited set of features. Another image
1019         * in RW partition may support more features.
1020         */
1021        EC_FEATURE_LIMITED = 0,
1022        /*
1023         * Commands for probing/reading/writing/erasing the flash in the
1024         * EC are present.
1025         */
1026        EC_FEATURE_FLASH = 1,
1027        /*
1028         * Can control the fan speed directly.
1029         */
1030        EC_FEATURE_PWM_FAN = 2,
1031        /*
1032         * Can control the intensity of the keyboard backlight.
1033         */
1034        EC_FEATURE_PWM_KEYB = 3,
1035        /*
1036         * Support Google lightbar, introduced on Pixel.
1037         */
1038        EC_FEATURE_LIGHTBAR = 4,
1039        /* Control of LEDs  */
1040        EC_FEATURE_LED = 5,
1041        /* Exposes an interface to control gyro and sensors.
1042         * The host goes through the EC to access these sensors.
1043         * In addition, the EC may provide composite sensors, like lid angle.
1044         */
1045        EC_FEATURE_MOTION_SENSE = 6,
1046        /* The keyboard is controlled by the EC */
1047        EC_FEATURE_KEYB = 7,
1048        /* The AP can use part of the EC flash as persistent storage. */
1049        EC_FEATURE_PSTORE = 8,
1050        /* The EC monitors BIOS port 80h, and can return POST codes. */
1051        EC_FEATURE_PORT80 = 9,
1052        /*
1053         * Thermal management: include TMP specific commands.
1054         * Higher level than direct fan control.
1055         */
1056        EC_FEATURE_THERMAL = 10,
1057        /* Can switch the screen backlight on/off */
1058        EC_FEATURE_BKLIGHT_SWITCH = 11,
1059        /* Can switch the wifi module on/off */
1060        EC_FEATURE_WIFI_SWITCH = 12,
1061        /* Monitor host events, through for example SMI or SCI */
1062        EC_FEATURE_HOST_EVENTS = 13,
1063        /* The EC exposes GPIO commands to control/monitor connected devices. */
1064        EC_FEATURE_GPIO = 14,
1065        /* The EC can send i2c messages to downstream devices. */
1066        EC_FEATURE_I2C = 15,
1067        /* Command to control charger are included */
1068        EC_FEATURE_CHARGER = 16,
1069        /* Simple battery support. */
1070        EC_FEATURE_BATTERY = 17,
1071        /*
1072         * Support Smart battery protocol
1073         * (Common Smart Battery System Interface Specification)
1074         */
1075        EC_FEATURE_SMART_BATTERY = 18,
1076        /* EC can detect when the host hangs. */
1077        EC_FEATURE_HANG_DETECT = 19,
1078        /* Report power information, for pit only */
1079        EC_FEATURE_PMU = 20,
1080        /* Another Cros EC device is present downstream of this one */
1081        EC_FEATURE_SUB_MCU = 21,
1082        /* Support USB Power delivery (PD) commands */
1083        EC_FEATURE_USB_PD = 22,
1084        /* Control USB multiplexer, for audio through USB port for instance. */
1085        EC_FEATURE_USB_MUX = 23,
1086        /* Motion Sensor code has an internal software FIFO */
1087        EC_FEATURE_MOTION_SENSE_FIFO = 24,
1088        /* Support temporary secure vstore */
1089        EC_FEATURE_VSTORE = 25,
1090        /* EC decides on USB-C SS mux state, muxes configured by host */
1091        EC_FEATURE_USBC_SS_MUX_VIRTUAL = 26,
1092        /* EC has RTC feature that can be controlled by host commands */
1093        EC_FEATURE_RTC = 27,
1094        /* The MCU exposes a Fingerprint sensor */
1095        EC_FEATURE_FINGERPRINT = 28,
1096        /* The MCU exposes a Touchpad */
1097        EC_FEATURE_TOUCHPAD = 29,
1098        /* The MCU has RWSIG task enabled */
1099        EC_FEATURE_RWSIG = 30,
1100        /* EC has device events support */
1101        EC_FEATURE_DEVICE_EVENT = 31,
1102        /* EC supports the unified wake masks for LPC/eSPI systems */
1103        EC_FEATURE_UNIFIED_WAKE_MASKS = 32,
1104        /* EC supports 64-bit host events */
1105        EC_FEATURE_HOST_EVENT64 = 33,
1106        /* EC runs code in RAM (not in place, a.k.a. XIP) */
1107        EC_FEATURE_EXEC_IN_RAM = 34,
1108        /* EC supports CEC commands */
1109        EC_FEATURE_CEC = 35,
1110        /* EC supports tight sensor timestamping. */
1111        EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS = 36,
1112        /*
1113         * EC supports tablet mode detection aligned to Chrome and allows
1114         * setting of threshold by host command using
1115         * MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE.
1116         */
1117        EC_FEATURE_REFINED_TABLET_MODE_HYSTERESIS = 37,
1118        /*
1119         * Early Firmware Selection ver.2. Enabled by CONFIG_VBOOT_EFS2.
1120         * Note this is a RO feature. So, a query (EC_CMD_GET_FEATURES) should
1121         * be sent to RO to be precise.
1122         */
1123        EC_FEATURE_EFS2 = 38,
1124        /* The MCU is a System Companion Processor (SCP). */
1125        EC_FEATURE_SCP = 39,
1126        /* The MCU is an Integrated Sensor Hub */
1127        EC_FEATURE_ISH = 40,
1128        /* New TCPMv2 TYPEC_ prefaced commands supported */
1129        EC_FEATURE_TYPEC_CMD = 41,
1130        /*
1131         * The EC will wait for direction from the AP to enter Type-C alternate
1132         * modes or USB4.
1133         */
1134        EC_FEATURE_TYPEC_REQUIRE_AP_MODE_ENTRY = 42,
1135        /*
1136         * The EC will wait for an acknowledge from the AP after setting the
1137         * mux.
1138         */
1139        EC_FEATURE_TYPEC_MUX_REQUIRE_AP_ACK = 43,
1140};
1141
1142#define EC_FEATURE_MASK_0(event_code) BIT(event_code % 32)
1143#define EC_FEATURE_MASK_1(event_code) BIT(event_code - 32)
1144
1145struct ec_response_get_features {
1146        uint32_t flags[2];
1147} __ec_align4;
1148
1149/*****************************************************************************/
1150/* Get the board's SKU ID from EC */
1151#define EC_CMD_GET_SKU_ID 0x000E
1152
1153/* Set SKU ID from AP */
1154#define EC_CMD_SET_SKU_ID 0x000F
1155
1156struct __ec_align4 ec_sku_id_info {
1157        uint32_t sku_id;
1158};
1159
1160/*****************************************************************************/
1161/* Flash commands */
1162
1163/* Get flash info */
1164#define EC_CMD_FLASH_INFO 0x0010
1165#define EC_VER_FLASH_INFO 2
1166
1167/* Version 0 returns these fields */
1168struct __ec_align4 ec_response_flash_info {
1169        /* Usable flash size, in bytes */
1170        uint32_t flash_size;
1171        /*
1172         * Write block size.  Write offset and size must be a multiple
1173         * of this.
1174         */
1175        uint32_t write_block_size;
1176        /*
1177         * Erase block size.  Erase offset and size must be a multiple
1178         * of this.
1179         */
1180        uint32_t erase_block_size;
1181        /*
1182         * Protection block size.  Protection offset and size must be a
1183         * multiple of this.
1184         */
1185        uint32_t protect_block_size;
1186};
1187
1188/* Flags for version 1+ flash info command */
1189/* EC flash erases bits to 0 instead of 1 */
1190#define EC_FLASH_INFO_ERASE_TO_0 (1 << 0)
1191
1192/* Flash must be selected for read/write/erase operations to succeed.  This may
1193 * be necessary on a chip where write/erase can be corrupted by other board
1194 * activity, or where the chip needs to enable some sort of programming voltage,
1195 * or where the read/write/erase operations require cleanly suspending other
1196 * chip functionality. */
1197#define EC_FLASH_INFO_SELECT_REQUIRED (1 << 1)
1198
1199/*
1200 * Version 1 returns the same initial fields as version 0, with additional
1201 * fields following.
1202 *
1203 * gcc anonymous structs don't seem to get along with the __packed directive;
1204 * if they did we'd define the version 0 structure as a sub-structure of this
1205 * one.
1206 *
1207 * Version 2 supports flash banks of different sizes:
1208 * The caller specified the number of banks it has preallocated
1209 * (num_banks_desc)
1210 * The EC returns the number of banks describing the flash memory.
1211 * It adds banks descriptions up to num_banks_desc.
1212 */
1213struct __ec_align4 ec_response_flash_info_1 {
1214        /* Version 0 fields; see above for description */
1215        uint32_t flash_size;
1216        uint32_t write_block_size;
1217        uint32_t erase_block_size;
1218        uint32_t protect_block_size;
1219
1220        /* Version 1 adds these fields: */
1221        /*
1222         * Ideal write size in bytes.  Writes will be fastest if size is
1223         * exactly this and offset is a multiple of this.  For example, an EC
1224         * may have a write buffer which can do half-page operations if data is
1225         * aligned, and a slower word-at-a-time write mode.
1226         */
1227        uint32_t write_ideal_size;
1228
1229        /* Flags; see EC_FLASH_INFO_* */
1230        uint32_t flags;
1231};
1232
1233struct __ec_align4 ec_params_flash_info_2 {
1234        /* Number of banks to describe */
1235        uint16_t num_banks_desc;
1236        /* Reserved; set 0; ignore on read */
1237        uint8_t reserved[2];
1238};
1239
1240struct ec_flash_bank {
1241        /* Number of sector is in this bank. */
1242        uint16_t count;
1243        /* Size in power of 2 of each sector (8 --> 256 bytes) */
1244        uint8_t size_exp;
1245        /* Minimal write size for the sectors in this bank */
1246        uint8_t write_size_exp;
1247        /* Erase size for the sectors in this bank */
1248        uint8_t erase_size_exp;
1249        /* Size for write protection, usually identical to erase size. */
1250        uint8_t protect_size_exp;
1251        /* Reserved; set 0; ignore on read */
1252        uint8_t reserved[2];
1253};
1254
1255struct __ec_align4 ec_response_flash_info_2 {
1256        /* Total flash in the EC. */
1257        uint32_t flash_size;
1258        /* Flags; see EC_FLASH_INFO_* */
1259        uint32_t flags;
1260        /* Maximum size to use to send data to write to the EC. */
1261        uint32_t write_ideal_size;
1262        /* Number of banks present in the EC. */
1263        uint16_t num_banks_total;
1264        /* Number of banks described in banks array. */
1265        uint16_t num_banks_desc;
1266        struct ec_flash_bank banks[0];
1267};
1268
1269/*
1270 * Read flash
1271 *
1272 * Response is params.size bytes of data.
1273 */
1274#define EC_CMD_FLASH_READ 0x0011
1275
1276struct __ec_align4 ec_params_flash_read {
1277        uint32_t offset;   /* Byte offset to read */
1278        uint32_t size;     /* Size to read in bytes */
1279};
1280
1281/* Write flash */
1282#define EC_CMD_FLASH_WRITE 0x0012
1283#define EC_VER_FLASH_WRITE 1
1284
1285/* Version 0 of the flash command supported only 64 bytes of data */
1286#define EC_FLASH_WRITE_VER0_SIZE 64
1287
1288struct __ec_align4 ec_params_flash_write {
1289        uint32_t offset;   /* Byte offset to write */
1290        uint32_t size;     /* Size to write in bytes */
1291        /* Followed by data to write */
1292};
1293
1294/* Erase flash */
1295#define EC_CMD_FLASH_ERASE 0x0013
1296
1297/* v0 */
1298struct __ec_align4 ec_params_flash_erase {
1299        uint32_t offset;   /* Byte offset to erase */
1300        uint32_t size;     /* Size to erase in bytes */
1301};
1302
1303
1304#define EC_VER_FLASH_WRITE 1
1305/* v1 add async erase:
1306 * subcommands can returns:
1307 * EC_RES_SUCCESS : erased (see ERASE_SECTOR_ASYNC case below).
1308 * EC_RES_INVALID_PARAM : offset/size are not aligned on a erase boundary.
1309 * EC_RES_ERROR : other errors.
1310 * EC_RES_BUSY : an existing erase operation is in progress.
1311 * EC_RES_ACCESS_DENIED: Trying to erase running image.
1312 *
1313 * When ERASE_SECTOR_ASYNC returns EC_RES_SUCCESS, the operation is just
1314 * properly queued. The user must call ERASE_GET_RESULT subcommand to get
1315 * the proper result.
1316 * When ERASE_GET_RESULT returns EC_RES_BUSY, the caller must wait and send
1317 * ERASE_GET_RESULT again to get the result of ERASE_SECTOR_ASYNC.
1318 * ERASE_GET_RESULT command may timeout on EC where flash access is not
1319 * permitted while erasing. (For instance, STM32F4).
1320 */
1321enum ec_flash_erase_cmd {
1322        FLASH_ERASE_SECTOR,     /* Erase and wait for result */
1323        FLASH_ERASE_SECTOR_ASYNC,  /* Erase and return immediately. */
1324        FLASH_ERASE_GET_RESULT,  /* Ask for last erase result */
1325};
1326
1327struct __ec_align4 ec_params_flash_erase_v1 {
1328        /* One of ec_flash_erase_cmd. */
1329        uint8_t  cmd;
1330        /* Pad byte; currently always contains 0 */
1331        uint8_t  reserved;
1332        /* No flags defined yet; set to 0 */
1333        uint16_t flag;
1334        /* Same as v0 parameters. */
1335        struct ec_params_flash_erase params;
1336};
1337
1338/*
1339 * Get/set flash protection.
1340 *
1341 * If mask!=0, sets/clear the requested bits of flags.  Depending on the
1342 * firmware write protect GPIO, not all flags will take effect immediately;
1343 * some flags require a subsequent hard reset to take effect.  Check the
1344 * returned flags bits to see what actually happened.
1345 *
1346 * If mask=0, simply returns the current flags state.
1347 */
1348#define EC_CMD_FLASH_PROTECT 0x0015
1349#define EC_VER_FLASH_PROTECT 1  /* Command version 1 */
1350
1351/* Flags for flash protection */
1352/* RO flash code protected when the EC boots */
1353#define EC_FLASH_PROTECT_RO_AT_BOOT         (1 << 0)
1354/*
1355 * RO flash code protected now.  If this bit is set, at-boot status cannot
1356 * be changed.
1357 */
1358#define EC_FLASH_PROTECT_RO_NOW             (1 << 1)
1359/* Entire flash code protected now, until reboot. */
1360#define EC_FLASH_PROTECT_ALL_NOW            (1 << 2)
1361/* Flash write protect GPIO is asserted now */
1362#define EC_FLASH_PROTECT_GPIO_ASSERTED      (1 << 3)
1363/* Error - at least one bank of flash is stuck locked, and cannot be unlocked */
1364#define EC_FLASH_PROTECT_ERROR_STUCK        (1 << 4)
1365/*
1366 * Error - flash protection is in inconsistent state.  At least one bank of
1367 * flash which should be protected is not protected.  Usually fixed by
1368 * re-requesting the desired flags, or by a hard reset if that fails.
1369 */
1370#define EC_FLASH_PROTECT_ERROR_INCONSISTENT (1 << 5)
1371/* Entire flash code protected when the EC boots */
1372#define EC_FLASH_PROTECT_ALL_AT_BOOT        (1 << 6)
1373/* RW flash code protected when the EC boots */
1374#define EC_FLASH_PROTECT_RW_AT_BOOT         (1 << 7)
1375/* RW flash code protected now. */
1376#define EC_FLASH_PROTECT_RW_NOW             (1 << 8)
1377/* Rollback information flash region protected when the EC boots */
1378#define EC_FLASH_PROTECT_ROLLBACK_AT_BOOT   (1 << 9)
1379/* Rollback information flash region protected now */
1380#define EC_FLASH_PROTECT_ROLLBACK_NOW       (1 << 10)
1381
1382struct __ec_align4 ec_params_flash_protect {
1383        uint32_t mask;   /* Bits in flags to apply */
1384        uint32_t flags;  /* New flags to apply */
1385};
1386
1387struct __ec_align4 ec_response_flash_protect {
1388        /* Current value of flash protect flags */
1389        uint32_t flags;
1390        /*
1391         * Flags which are valid on this platform.  This allows the caller
1392         * to distinguish between flags which aren't set vs. flags which can't
1393         * be set on this platform.
1394         */
1395        uint32_t valid_flags;
1396        /* Flags which can be changed given the current protection state */
1397        uint32_t writable_flags;
1398};
1399
1400/*
1401 * Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash
1402 * write protect.  These commands may be reused with version > 0.
1403 */
1404
1405/* Get the region offset/size */
1406#define EC_CMD_FLASH_REGION_INFO 0x0016
1407#define EC_VER_FLASH_REGION_INFO 1
1408
1409enum ec_flash_region {
1410        /* Region which holds read-only EC image */
1411        EC_FLASH_REGION_RO = 0,
1412        /* Region which holds active rewritable EC image */
1413        EC_FLASH_REGION_ACTIVE,
1414        /*
1415         * Region which should be write-protected in the factory (a superset of
1416         * EC_FLASH_REGION_RO)
1417         */
1418        EC_FLASH_REGION_WP_RO,
1419        /* Region which holds updatable image */
1420        EC_FLASH_REGION_UPDATE,
1421        /* Number of regions */
1422        EC_FLASH_REGION_COUNT,
1423};
1424
1425struct __ec_align4 ec_params_flash_region_info {
1426        uint32_t region;  /* enum ec_flash_region */
1427};
1428
1429struct __ec_align4 ec_response_flash_region_info {
1430        uint32_t offset;
1431        uint32_t size;
1432};
1433
1434/* Read/write VbNvContext */
1435#define EC_CMD_VBNV_CONTEXT 0x0017
1436#define EC_VER_VBNV_CONTEXT 1
1437#define EC_VBNV_BLOCK_SIZE 16
1438#define EC_VBNV_BLOCK_SIZE_V2 64
1439
1440enum ec_vbnvcontext_op {
1441        EC_VBNV_CONTEXT_OP_READ,
1442        EC_VBNV_CONTEXT_OP_WRITE,
1443};
1444
1445struct __ec_align4 ec_params_vbnvcontext {
1446        uint32_t op;
1447        uint8_t block[EC_VBNV_BLOCK_SIZE_V2];
1448};
1449
1450struct __ec_align4 ec_response_vbnvcontext {
1451        uint8_t block[EC_VBNV_BLOCK_SIZE_V2];
1452};
1453
1454
1455/* Get SPI flash information */
1456#define EC_CMD_FLASH_SPI_INFO 0x0018
1457
1458struct __ec_align1 ec_response_flash_spi_info {
1459        /* JEDEC info from command 0x9F (manufacturer, memory type, size) */
1460        uint8_t jedec[3];
1461
1462        /* Pad byte; currently always contains 0 */
1463        uint8_t reserved0;
1464
1465        /* Manufacturer / device ID from command 0x90 */
1466        uint8_t mfr_dev_id[2];
1467
1468        /* Status registers from command 0x05 and 0x35 */
1469        uint8_t sr1, sr2;
1470};
1471
1472
1473/* Select flash during flash operations */
1474#define EC_CMD_FLASH_SELECT 0x0019
1475
1476struct __ec_align4 ec_params_flash_select {
1477        /* 1 to select flash, 0 to deselect flash */
1478        uint8_t select;
1479};
1480
1481/*****************************************************************************/
1482/* PWM commands */
1483
1484/* Get fan target RPM */
1485#define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x0020
1486
1487struct __ec_align4 ec_response_pwm_get_fan_rpm {
1488        uint32_t rpm;
1489};
1490
1491/* Set target fan RPM */
1492#define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x0021
1493
1494/* Version 0 of input params */
1495struct __ec_align4 ec_params_pwm_set_fan_target_rpm_v0 {
1496        uint32_t rpm;
1497};
1498
1499/* Version 1 of input params */
1500struct __ec_align_size1 ec_params_pwm_set_fan_target_rpm_v1 {
1501        uint32_t rpm;
1502        uint8_t fan_idx;
1503};
1504
1505/* Get keyboard backlight */
1506/* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
1507#define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x0022
1508
1509struct __ec_align1 ec_response_pwm_get_keyboard_backlight {
1510        uint8_t percent;
1511        uint8_t enabled;
1512};
1513
1514/* Set keyboard backlight */
1515/* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
1516#define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x0023
1517
1518struct __ec_align1 ec_params_pwm_set_keyboard_backlight {
1519        uint8_t percent;
1520};
1521
1522/* Set target fan PWM duty cycle */
1523#define EC_CMD_PWM_SET_FAN_DUTY 0x0024
1524
1525/* Version 0 of input params */
1526struct __ec_align4 ec_params_pwm_set_fan_duty_v0 {
1527        uint32_t percent;
1528};
1529
1530/* Version 1 of input params */
1531struct __ec_align_size1 ec_params_pwm_set_fan_duty_v1 {
1532        uint32_t percent;
1533        uint8_t fan_idx;
1534};
1535
1536#define EC_CMD_PWM_SET_DUTY 0x0025
1537/* 16 bit duty cycle, 0xffff = 100% */
1538#define EC_PWM_MAX_DUTY 0xffff
1539
1540enum ec_pwm_type {
1541        /* All types, indexed by board-specific enum pwm_channel */
1542        EC_PWM_TYPE_GENERIC = 0,
1543        /* Keyboard backlight */
1544        EC_PWM_TYPE_KB_LIGHT,
1545        /* Display backlight */
1546        EC_PWM_TYPE_DISPLAY_LIGHT,
1547        EC_PWM_TYPE_COUNT,
1548};
1549
1550struct __ec_align4 ec_params_pwm_set_duty {
1551        uint16_t duty;     /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1552        uint8_t pwm_type;  /* ec_pwm_type */
1553        uint8_t index;     /* Type-specific index, or 0 if unique */
1554};
1555
1556#define EC_CMD_PWM_GET_DUTY 0x0026
1557
1558struct __ec_align1 ec_params_pwm_get_duty {
1559        uint8_t pwm_type;  /* ec_pwm_type */
1560        uint8_t index;     /* Type-specific index, or 0 if unique */
1561};
1562
1563struct __ec_align2 ec_response_pwm_get_duty {
1564        uint16_t duty;     /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1565};
1566
1567/*****************************************************************************/
1568/*
1569 * Lightbar commands. This looks worse than it is. Since we only use one HOST
1570 * command to say "talk to the lightbar", we put the "and tell it to do X" part
1571 * into a subcommand. We'll make separate structs for subcommands with
1572 * different input args, so that we know how much to expect.
1573 */
1574#define EC_CMD_LIGHTBAR_CMD 0x0028
1575
1576struct __ec_todo_unpacked rgb_s {
1577        uint8_t r, g, b;
1578};
1579
1580#define LB_BATTERY_LEVELS 4
1581/* List of tweakable parameters. NOTE: It's __packed so it can be sent in a
1582 * host command, but the alignment is the same regardless. Keep it that way.
1583 */
1584struct __ec_todo_packed lightbar_params_v0 {
1585        /* Timing */
1586        int32_t google_ramp_up;
1587        int32_t google_ramp_down;
1588        int32_t s3s0_ramp_up;
1589        int32_t s0_tick_delay[2];               /* AC=0/1 */
1590        int32_t s0a_tick_delay[2];              /* AC=0/1 */
1591        int32_t s0s3_ramp_down;
1592        int32_t s3_sleep_for;
1593        int32_t s3_ramp_up;
1594        int32_t s3_ramp_down;
1595
1596        /* Oscillation */
1597        uint8_t new_s0;
1598        uint8_t osc_min[2];                     /* AC=0/1 */
1599        uint8_t osc_max[2];                     /* AC=0/1 */
1600        uint8_t w_ofs[2];                       /* AC=0/1 */
1601
1602        /* Brightness limits based on the backlight and AC. */
1603        uint8_t bright_bl_off_fixed[2];         /* AC=0/1 */
1604        uint8_t bright_bl_on_min[2];            /* AC=0/1 */
1605        uint8_t bright_bl_on_max[2];            /* AC=0/1 */
1606
1607        /* Battery level thresholds */
1608        uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1609
1610        /* Map [AC][battery_level] to color index */
1611        uint8_t s0_idx[2][LB_BATTERY_LEVELS];   /* AP is running */
1612        uint8_t s3_idx[2][LB_BATTERY_LEVELS];   /* AP is sleeping */
1613
1614        /* Color palette */
1615        struct rgb_s color[8];                  /* 0-3 are Google colors */
1616};
1617
1618struct __ec_todo_packed lightbar_params_v1 {
1619        /* Timing */
1620        int32_t google_ramp_up;
1621        int32_t google_ramp_down;
1622        int32_t s3s0_ramp_up;
1623        int32_t s0_tick_delay[2];               /* AC=0/1 */
1624        int32_t s0a_tick_delay[2];              /* AC=0/1 */
1625        int32_t s0s3_ramp_down;
1626        int32_t s3_sleep_for;
1627        int32_t s3_ramp_up;
1628        int32_t s3_ramp_down;
1629        int32_t s5_ramp_up;
1630        int32_t s5_ramp_down;
1631        int32_t tap_tick_delay;
1632        int32_t tap_gate_delay;
1633        int32_t tap_display_time;
1634
1635        /* Tap-for-battery params */
1636        uint8_t tap_pct_red;
1637        uint8_t tap_pct_green;
1638        uint8_t tap_seg_min_on;
1639        uint8_t tap_seg_max_on;
1640        uint8_t tap_seg_osc;
1641        uint8_t tap_idx[3];
1642
1643        /* Oscillation */
1644        uint8_t osc_min[2];                     /* AC=0/1 */
1645        uint8_t osc_max[2];                     /* AC=0/1 */
1646        uint8_t w_ofs[2];                       /* AC=0/1 */
1647
1648        /* Brightness limits based on the backlight and AC. */
1649        uint8_t bright_bl_off_fixed[2];         /* AC=0/1 */
1650        uint8_t bright_bl_on_min[2];            /* AC=0/1 */
1651        uint8_t bright_bl_on_max[2];            /* AC=0/1 */
1652
1653        /* Battery level thresholds */
1654        uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1655
1656        /* Map [AC][battery_level] to color index */
1657        uint8_t s0_idx[2][LB_BATTERY_LEVELS];   /* AP is running */
1658        uint8_t s3_idx[2][LB_BATTERY_LEVELS];   /* AP is sleeping */
1659
1660        /* s5: single color pulse on inhibited power-up */
1661        uint8_t s5_idx;
1662
1663        /* Color palette */
1664        struct rgb_s color[8];                  /* 0-3 are Google colors */
1665};
1666
1667/* Lightbar command params v2
1668 * crbug.com/467716
1669 *
1670 * lightbar_parms_v1 was too big for i2c, therefore in v2, we split them up by
1671 * logical groups to make it more manageable ( < 120 bytes).
1672 *
1673 * NOTE: Each of these groups must be less than 120 bytes.
1674 */
1675
1676struct __ec_todo_packed lightbar_params_v2_timing {
1677        /* Timing */
1678        int32_t google_ramp_up;
1679        int32_t google_ramp_down;
1680        int32_t s3s0_ramp_up;
1681        int32_t s0_tick_delay[2];               /* AC=0/1 */
1682        int32_t s0a_tick_delay[2];              /* AC=0/1 */
1683        int32_t s0s3_ramp_down;
1684        int32_t s3_sleep_for;
1685        int32_t s3_ramp_up;
1686        int32_t s3_ramp_down;
1687        int32_t s5_ramp_up;
1688        int32_t s5_ramp_down;
1689        int32_t tap_tick_delay;
1690        int32_t tap_gate_delay;
1691        int32_t tap_display_time;
1692};
1693
1694struct __ec_todo_packed lightbar_params_v2_tap {
1695        /* Tap-for-battery params */
1696        uint8_t tap_pct_red;
1697        uint8_t tap_pct_green;
1698        uint8_t tap_seg_min_on;
1699        uint8_t tap_seg_max_on;
1700        uint8_t tap_seg_osc;
1701        uint8_t tap_idx[3];
1702};
1703
1704struct __ec_todo_packed lightbar_params_v2_oscillation {
1705        /* Oscillation */
1706        uint8_t osc_min[2];                     /* AC=0/1 */
1707        uint8_t osc_max[2];                     /* AC=0/1 */
1708        uint8_t w_ofs[2];                       /* AC=0/1 */
1709};
1710
1711struct __ec_todo_packed lightbar_params_v2_brightness {
1712        /* Brightness limits based on the backlight and AC. */
1713        uint8_t bright_bl_off_fixed[2];         /* AC=0/1 */
1714        uint8_t bright_bl_on_min[2];            /* AC=0/1 */
1715        uint8_t bright_bl_on_max[2];            /* AC=0/1 */
1716};
1717
1718struct __ec_todo_packed lightbar_params_v2_thresholds {
1719        /* Battery level thresholds */
1720        uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1721};
1722
1723struct __ec_todo_packed lightbar_params_v2_colors {
1724        /* Map [AC][battery_level] to color index */
1725        uint8_t s0_idx[2][LB_BATTERY_LEVELS];   /* AP is running */
1726        uint8_t s3_idx[2][LB_BATTERY_LEVELS];   /* AP is sleeping */
1727
1728        /* s5: single color pulse on inhibited power-up */
1729        uint8_t s5_idx;
1730
1731        /* Color palette */
1732        struct rgb_s color[8];                  /* 0-3 are Google colors */
1733};
1734
1735/* Lightbyte program. */
1736#define EC_LB_PROG_LEN 192
1737struct __ec_todo_unpacked lightbar_program {
1738        uint8_t size;
1739        uint8_t data[EC_LB_PROG_LEN];
1740};
1741
1742struct __ec_todo_packed ec_params_lightbar {
1743        uint8_t cmd;                  /* Command (see enum lightbar_command) */
1744        union {
1745                struct __ec_todo_unpacked {
1746                        /* no args */
1747                } dump, off, on, init, get_seq, get_params_v0, get_params_v1,
1748                        version, get_brightness, get_demo, suspend, resume,
1749                        get_params_v2_timing, get_params_v2_tap,
1750                        get_params_v2_osc, get_params_v2_bright,
1751                        get_params_v2_thlds, get_params_v2_colors;
1752
1753                struct __ec_todo_unpacked {
1754                        uint8_t num;
1755                } set_brightness, seq, demo;
1756
1757                struct __ec_todo_unpacked {
1758                        uint8_t ctrl, reg, value;
1759                } reg;
1760
1761                struct __ec_todo_unpacked {
1762                        uint8_t led, red, green, blue;
1763                } set_rgb;
1764
1765                struct __ec_todo_unpacked {
1766                        uint8_t led;
1767                } get_rgb;
1768
1769                struct __ec_todo_unpacked {
1770                        uint8_t enable;
1771                } manual_suspend_ctrl;
1772
1773                struct lightbar_params_v0 set_params_v0;
1774                struct lightbar_params_v1 set_params_v1;
1775
1776                struct lightbar_params_v2_timing set_v2par_timing;
1777                struct lightbar_params_v2_tap set_v2par_tap;
1778                struct lightbar_params_v2_oscillation set_v2par_osc;
1779                struct lightbar_params_v2_brightness set_v2par_bright;
1780                struct lightbar_params_v2_thresholds set_v2par_thlds;
1781                struct lightbar_params_v2_colors set_v2par_colors;
1782
1783                struct lightbar_program set_program;
1784        };
1785};
1786
1787struct __ec_todo_packed ec_response_lightbar {
1788        union {
1789                struct __ec_todo_unpacked {
1790                        struct __ec_todo_unpacked {
1791                                uint8_t reg;
1792                                uint8_t ic0;
1793                                uint8_t ic1;
1794                        } vals[23];
1795                } dump;
1796
1797                struct __ec_todo_unpacked {
1798                        uint8_t num;
1799                } get_seq, get_brightness, get_demo;
1800
1801                struct lightbar_params_v0 get_params_v0;
1802                struct lightbar_params_v1 get_params_v1;
1803
1804
1805                struct lightbar_params_v2_timing get_params_v2_timing;
1806                struct lightbar_params_v2_tap get_params_v2_tap;
1807                struct lightbar_params_v2_oscillation get_params_v2_osc;
1808                struct lightbar_params_v2_brightness get_params_v2_bright;
1809                struct lightbar_params_v2_thresholds get_params_v2_thlds;
1810                struct lightbar_params_v2_colors get_params_v2_colors;
1811
1812                struct __ec_todo_unpacked {
1813                        uint32_t num;
1814                        uint32_t flags;
1815                } version;
1816
1817                struct __ec_todo_unpacked {
1818                        uint8_t red, green, blue;
1819                } get_rgb;
1820
1821                struct __ec_todo_unpacked {
1822                        /* no return params */
1823                } off, on, init, set_brightness, seq, reg, set_rgb,
1824                        demo, set_params_v0, set_params_v1,
1825                        set_program, manual_suspend_ctrl, suspend, resume,
1826                        set_v2par_timing, set_v2par_tap,
1827                        set_v2par_osc, set_v2par_bright, set_v2par_thlds,
1828                        set_v2par_colors;
1829        };
1830};
1831
1832/* Lightbar commands */
1833enum lightbar_command {
1834        LIGHTBAR_CMD_DUMP = 0,
1835        LIGHTBAR_CMD_OFF = 1,
1836        LIGHTBAR_CMD_ON = 2,
1837        LIGHTBAR_CMD_INIT = 3,
1838        LIGHTBAR_CMD_SET_BRIGHTNESS = 4,
1839        LIGHTBAR_CMD_SEQ = 5,
1840        LIGHTBAR_CMD_REG = 6,
1841        LIGHTBAR_CMD_SET_RGB = 7,
1842        LIGHTBAR_CMD_GET_SEQ = 8,
1843        LIGHTBAR_CMD_DEMO = 9,
1844        LIGHTBAR_CMD_GET_PARAMS_V0 = 10,
1845        LIGHTBAR_CMD_SET_PARAMS_V0 = 11,
1846        LIGHTBAR_CMD_VERSION = 12,
1847        LIGHTBAR_CMD_GET_BRIGHTNESS = 13,
1848        LIGHTBAR_CMD_GET_RGB = 14,
1849        LIGHTBAR_CMD_GET_DEMO = 15,
1850        LIGHTBAR_CMD_GET_PARAMS_V1 = 16,
1851        LIGHTBAR_CMD_SET_PARAMS_V1 = 17,
1852        LIGHTBAR_CMD_SET_PROGRAM = 18,
1853        LIGHTBAR_CMD_MANUAL_SUSPEND_CTRL = 19,
1854        LIGHTBAR_CMD_SUSPEND = 20,
1855        LIGHTBAR_CMD_RESUME = 21,
1856        LIGHTBAR_CMD_GET_PARAMS_V2_TIMING = 22,
1857        LIGHTBAR_CMD_SET_PARAMS_V2_TIMING = 23,
1858        LIGHTBAR_CMD_GET_PARAMS_V2_TAP = 24,
1859        LIGHTBAR_CMD_SET_PARAMS_V2_TAP = 25,
1860        LIGHTBAR_CMD_GET_PARAMS_V2_OSCILLATION = 26,
1861        LIGHTBAR_CMD_SET_PARAMS_V2_OSCILLATION = 27,
1862        LIGHTBAR_CMD_GET_PARAMS_V2_BRIGHTNESS = 28,
1863        LIGHTBAR_CMD_SET_PARAMS_V2_BRIGHTNESS = 29,
1864        LIGHTBAR_CMD_GET_PARAMS_V2_THRESHOLDS = 30,
1865        LIGHTBAR_CMD_SET_PARAMS_V2_THRESHOLDS = 31,
1866        LIGHTBAR_CMD_GET_PARAMS_V2_COLORS = 32,
1867        LIGHTBAR_CMD_SET_PARAMS_V2_COLORS = 33,
1868        LIGHTBAR_NUM_CMDS
1869};
1870
1871/*****************************************************************************/
1872/* LED control commands */
1873
1874#define EC_CMD_LED_CONTROL 0x0029
1875
1876enum ec_led_id {
1877        /* LED to indicate battery state of charge */
1878        EC_LED_ID_BATTERY_LED = 0,
1879        /*
1880         * LED to indicate system power state (on or in suspend).
1881         * May be on power button or on C-panel.
1882         */
1883        EC_LED_ID_POWER_LED,
1884        /* LED on power adapter or its plug */
1885        EC_LED_ID_ADAPTER_LED,
1886        /* LED to indicate left side */
1887        EC_LED_ID_LEFT_LED,
1888        /* LED to indicate right side */
1889        EC_LED_ID_RIGHT_LED,
1890        /* LED to indicate recovery mode with HW_REINIT */
1891        EC_LED_ID_RECOVERY_HW_REINIT_LED,
1892        /* LED to indicate sysrq debug mode. */
1893        EC_LED_ID_SYSRQ_DEBUG_LED,
1894
1895        EC_LED_ID_COUNT
1896};
1897
1898/* LED control flags */
1899#define EC_LED_FLAGS_QUERY (1 << 0) /* Query LED capability only */
1900#define EC_LED_FLAGS_AUTO  (1 << 1) /* Switch LED back to automatic control */
1901
1902enum ec_led_colors {
1903        EC_LED_COLOR_RED = 0,
1904        EC_LED_COLOR_GREEN,
1905        EC_LED_COLOR_BLUE,
1906        EC_LED_COLOR_YELLOW,
1907        EC_LED_COLOR_WHITE,
1908        EC_LED_COLOR_AMBER,
1909
1910        EC_LED_COLOR_COUNT
1911};
1912
1913struct __ec_align1 ec_params_led_control {
1914        uint8_t led_id;     /* Which LED to control */
1915        uint8_t flags;      /* Control flags */
1916
1917        uint8_t brightness[EC_LED_COLOR_COUNT];
1918};
1919
1920struct __ec_align1 ec_response_led_control {
1921        /*
1922         * Available brightness value range.
1923         *
1924         * Range 0 means color channel not present.
1925         * Range 1 means on/off control.
1926         * Other values means the LED is control by PWM.
1927         */
1928        uint8_t brightness_range[EC_LED_COLOR_COUNT];
1929};
1930
1931/*****************************************************************************/
1932/* Verified boot commands */
1933
1934/*
1935 * Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be
1936 * reused for other purposes with version > 0.
1937 */
1938
1939/* Verified boot hash command */
1940#define EC_CMD_VBOOT_HASH 0x002A
1941
1942struct __ec_align4 ec_params_vboot_hash {
1943        uint8_t cmd;             /* enum ec_vboot_hash_cmd */
1944        uint8_t hash_type;       /* enum ec_vboot_hash_type */
1945        uint8_t nonce_size;      /* Nonce size; may be 0 */
1946        uint8_t reserved0;       /* Reserved; set 0 */
1947        uint32_t offset;         /* Offset in flash to hash */
1948        uint32_t size;           /* Number of bytes to hash */
1949        uint8_t nonce_data[64];  /* Nonce data; ignored if nonce_size=0 */
1950};
1951
1952struct __ec_align4 ec_response_vboot_hash {
1953        uint8_t status;          /* enum ec_vboot_hash_status */
1954        uint8_t hash_type;       /* enum ec_vboot_hash_type */
1955        uint8_t digest_size;     /* Size of hash digest in bytes */
1956        uint8_t reserved0;       /* Ignore; will be 0 */
1957        uint32_t offset;         /* Offset in flash which was hashed */
1958        uint32_t size;           /* Number of bytes hashed */
1959        uint8_t hash_digest[64]; /* Hash digest data */
1960};
1961
1962enum ec_vboot_hash_cmd {
1963        EC_VBOOT_HASH_GET = 0,       /* Get current hash status */
1964        EC_VBOOT_HASH_ABORT = 1,     /* Abort calculating current hash */
1965        EC_VBOOT_HASH_START = 2,     /* Start computing a new hash */
1966        EC_VBOOT_HASH_RECALC = 3,    /* Synchronously compute a new hash */
1967};
1968
1969enum ec_vboot_hash_type {
1970        EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */
1971};
1972
1973enum ec_vboot_hash_status {
1974        EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */
1975        EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */
1976        EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */
1977};
1978
1979/*
1980 * Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC.
1981 * If one of these is specified, the EC will automatically update offset and
1982 * size to the correct values for the specified image (RO or RW).
1983 */
1984#define EC_VBOOT_HASH_OFFSET_RO         0xfffffffe
1985#define EC_VBOOT_HASH_OFFSET_ACTIVE     0xfffffffd
1986#define EC_VBOOT_HASH_OFFSET_UPDATE     0xfffffffc
1987
1988/*****************************************************************************/
1989/*
1990 * Motion sense commands. We'll make separate structs for sub-commands with
1991 * different input args, so that we know how much to expect.
1992 */
1993#define EC_CMD_MOTION_SENSE_CMD 0x002B
1994
1995/* Motion sense commands */
1996enum motionsense_command {
1997        /*
1998         * Dump command returns all motion sensor data including motion sense
1999         * module flags and individual sensor flags.
2000         */
2001        MOTIONSENSE_CMD_DUMP = 0,
2002
2003        /*
2004         * Info command returns data describing the details of a given sensor,
2005         * including enum motionsensor_type, enum motionsensor_location, and
2006         * enum motionsensor_chip.
2007         */
2008        MOTIONSENSE_CMD_INFO = 1,
2009
2010        /*
2011         * EC Rate command is a setter/getter command for the EC sampling rate
2012         * in milliseconds.
2013         * It is per sensor, the EC run sample task  at the minimum of all
2014         * sensors EC_RATE.
2015         * For sensors without hardware FIFO, EC_RATE should be equals to 1/ODR
2016         * to collect all the sensor samples.
2017         * For sensor with hardware FIFO, EC_RATE is used as the maximal delay
2018         * to process of all motion sensors in milliseconds.
2019         */
2020        MOTIONSENSE_CMD_EC_RATE = 2,
2021
2022        /*
2023         * Sensor ODR command is a setter/getter command for the output data
2024         * rate of a specific motion sensor in millihertz.
2025         */
2026        MOTIONSENSE_CMD_SENSOR_ODR = 3,
2027
2028        /*
2029         * Sensor range command is a setter/getter command for the range of
2030         * a specified motion sensor in +/-G's or +/- deg/s.
2031         */
2032        MOTIONSENSE_CMD_SENSOR_RANGE = 4,
2033
2034        /*
2035         * Setter/getter command for the keyboard wake angle. When the lid
2036         * angle is greater than this value, keyboard wake is disabled in S3,
2037         * and when the lid angle goes less than this value, keyboard wake is
2038         * enabled. Note, the lid angle measurement is an approximate,
2039         * un-calibrated value, hence the wake angle isn't exact.
2040         */
2041        MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5,
2042
2043        /*
2044         * Returns a single sensor data.
2045         */
2046        MOTIONSENSE_CMD_DATA = 6,
2047
2048        /*
2049         * Return sensor fifo info.
2050         */
2051        MOTIONSENSE_CMD_FIFO_INFO = 7,
2052
2053        /*
2054         * Insert a flush element in the fifo and return sensor fifo info.
2055         * The host can use that element to synchronize its operation.
2056         */
2057        MOTIONSENSE_CMD_FIFO_FLUSH = 8,
2058
2059        /*
2060         * Return a portion of the fifo.
2061         */
2062        MOTIONSENSE_CMD_FIFO_READ = 9,
2063
2064        /*
2065         * Perform low level calibration.
2066         * On sensors that support it, ask to do offset calibration.
2067         */
2068        MOTIONSENSE_CMD_PERFORM_CALIB = 10,
2069
2070        /*
2071         * Sensor Offset command is a setter/getter command for the offset
2072         * used for calibration.
2073         * The offsets can be calculated by the host, or via
2074         * PERFORM_CALIB command.
2075         */
2076        MOTIONSENSE_CMD_SENSOR_OFFSET = 11,
2077
2078        /*
2079         * List available activities for a MOTION sensor.
2080         * Indicates if they are enabled or disabled.
2081         */
2082        MOTIONSENSE_CMD_LIST_ACTIVITIES = 12,
2083
2084        /*
2085         * Activity management
2086         * Enable/Disable activity recognition.
2087         */
2088        MOTIONSENSE_CMD_SET_ACTIVITY = 13,
2089
2090        /*
2091         * Lid Angle
2092         */
2093        MOTIONSENSE_CMD_LID_ANGLE = 14,
2094
2095        /*
2096         * Allow the FIFO to trigger interrupt via MKBP events.
2097         * By default the FIFO does not send interrupt to process the FIFO
2098         * until the AP is ready or it is coming from a wakeup sensor.
2099         */
2100        MOTIONSENSE_CMD_FIFO_INT_ENABLE = 15,
2101
2102        /*
2103         * Spoof the readings of the sensors.  The spoofed readings can be set
2104         * to arbitrary values, or will lock to the last read actual values.
2105         */
2106        MOTIONSENSE_CMD_SPOOF = 16,
2107
2108        /* Number of motionsense sub-commands. */
2109        MOTIONSENSE_NUM_CMDS
2110};
2111
2112/* List of motion sensor types. */
2113enum motionsensor_type {
2114        MOTIONSENSE_TYPE_ACCEL = 0,
2115        MOTIONSENSE_TYPE_GYRO = 1,
2116        MOTIONSENSE_TYPE_MAG = 2,
2117        MOTIONSENSE_TYPE_PROX = 3,
2118        MOTIONSENSE_TYPE_LIGHT = 4,
2119        MOTIONSENSE_TYPE_ACTIVITY = 5,
2120        MOTIONSENSE_TYPE_BARO = 6,
2121        MOTIONSENSE_TYPE_MAX,
2122};
2123
2124/* List of motion sensor locations. */
2125enum motionsensor_location {
2126        MOTIONSENSE_LOC_BASE = 0,
2127        MOTIONSENSE_LOC_LID = 1,
2128        MOTIONSENSE_LOC_MAX,
2129};
2130
2131/* List of motion sensor chips. */
2132enum motionsensor_chip {
2133        MOTIONSENSE_CHIP_KXCJ9 = 0,
2134        MOTIONSENSE_CHIP_LSM6DS0 = 1,
2135        MOTIONSENSE_CHIP_BMI160 = 2,
2136        MOTIONSENSE_CHIP_SI1141 = 3,
2137        MOTIONSENSE_CHIP_SI1142 = 4,
2138        MOTIONSENSE_CHIP_SI1143 = 5,
2139        MOTIONSENSE_CHIP_KX022 = 6,
2140        MOTIONSENSE_CHIP_L3GD20H = 7,
2141        MOTIONSENSE_CHIP_BMA255 = 8,
2142        MOTIONSENSE_CHIP_BMP280 = 9,
2143        MOTIONSENSE_CHIP_OPT3001 = 10,
2144};
2145
2146struct __ec_todo_packed ec_response_motion_sensor_data {
2147        /* Flags for each sensor. */
2148        uint8_t flags;
2149        /* sensor number the data comes from */
2150        uint8_t sensor_num;
2151        /* Each sensor is up to 3-axis. */
2152        union {
2153                int16_t             data[3];
2154                struct __ec_todo_packed {
2155                        uint16_t    reserved;
2156                        uint32_t    timestamp;
2157                };
2158                struct __ec_todo_unpacked {
2159                        uint8_t     activity; /* motionsensor_activity */
2160                        uint8_t     state;
2161                        int16_t     add_info[2];
2162                };
2163        };
2164};
2165
2166/* Note: used in ec_response_get_next_data */
2167struct __ec_todo_packed ec_response_motion_sense_fifo_info {
2168        /* Size of the fifo */
2169        uint16_t size;
2170        /* Amount of space used in the fifo */
2171        uint16_t count;
2172        /* Timestamp recorded in us */
2173        uint32_t timestamp;
2174        /* Total amount of vector lost */
2175        uint16_t total_lost;
2176        /* Lost events since the last fifo_info, per sensors */
2177        uint16_t lost[0];
2178};
2179
2180struct __ec_todo_packed ec_response_motion_sense_fifo_data {
2181        uint32_t number_data;
2182        struct ec_response_motion_sensor_data data[0];
2183};
2184
2185/* List supported activity recognition */
2186enum motionsensor_activity {
2187        MOTIONSENSE_ACTIVITY_RESERVED = 0,
2188        MOTIONSENSE_ACTIVITY_SIG_MOTION = 1,
2189        MOTIONSENSE_ACTIVITY_DOUBLE_TAP = 2,
2190};
2191
2192struct __ec_todo_unpacked ec_motion_sense_activity {
2193        uint8_t sensor_num;
2194        uint8_t activity; /* one of enum motionsensor_activity */
2195        uint8_t enable;   /* 1: enable, 0: disable */
2196        uint8_t reserved;
2197        uint16_t parameters[3]; /* activity dependent parameters */
2198};
2199
2200/* Module flag masks used for the dump sub-command. */
2201#define MOTIONSENSE_MODULE_FLAG_ACTIVE (1<<0)
2202
2203/* Sensor flag masks used for the dump sub-command. */
2204#define MOTIONSENSE_SENSOR_FLAG_PRESENT (1<<0)
2205
2206/*
2207 * Flush entry for synchronization.
2208 * data contains time stamp
2209 */
2210#define MOTIONSENSE_SENSOR_FLAG_FLUSH (1<<0)
2211#define MOTIONSENSE_SENSOR_FLAG_TIMESTAMP (1<<1)
2212#define MOTIONSENSE_SENSOR_FLAG_WAKEUP (1<<2)
2213#define MOTIONSENSE_SENSOR_FLAG_TABLET_MODE (1<<3)
2214
2215/*
2216 * Send this value for the data element to only perform a read. If you
2217 * send any other value, the EC will interpret it as data to set and will
2218 * return the actual value set.
2219 */
2220#define EC_MOTION_SENSE_NO_VALUE -1
2221
2222#define EC_MOTION_SENSE_INVALID_CALIB_TEMP 0x8000
2223
2224/* MOTIONSENSE_CMD_SENSOR_OFFSET subcommand flag */
2225/* Set Calibration information */
2226#define MOTION_SENSE_SET_OFFSET 1
2227
2228#define LID_ANGLE_UNRELIABLE 500
2229
2230enum motionsense_spoof_mode {
2231        /* Disable spoof mode. */
2232        MOTIONSENSE_SPOOF_MODE_DISABLE = 0,
2233
2234        /* Enable spoof mode, but use provided component values. */
2235        MOTIONSENSE_SPOOF_MODE_CUSTOM,
2236
2237        /* Enable spoof mode, but use the current sensor values. */
2238        MOTIONSENSE_SPOOF_MODE_LOCK_CURRENT,
2239
2240        /* Query the current spoof mode status for the sensor. */
2241        MOTIONSENSE_SPOOF_MODE_QUERY,
2242};
2243
2244struct __ec_todo_packed ec_params_motion_sense {
2245        uint8_t cmd;
2246        union {
2247                /* Used for MOTIONSENSE_CMD_DUMP */
2248                struct __ec_todo_unpacked {
2249                        /*
2250                         * Maximal number of sensor the host is expecting.
2251                         * 0 means the host is only interested in the number
2252                         * of sensors controlled by the EC.
2253                         */
2254                        uint8_t max_sensor_count;
2255                } dump;
2256
2257                /*
2258                 * Used for MOTIONSENSE_CMD_KB_WAKE_ANGLE.
2259                 */
2260                struct __ec_todo_unpacked {
2261                        /* Data to set or EC_MOTION_SENSE_NO_VALUE to read.
2262                         * kb_wake_angle: angle to wakup AP.
2263                         */
2264                        int16_t data;
2265                } kb_wake_angle;
2266
2267                /* Used for MOTIONSENSE_CMD_INFO, MOTIONSENSE_CMD_DATA
2268                 * and MOTIONSENSE_CMD_PERFORM_CALIB. */
2269                struct __ec_todo_unpacked {
2270                        uint8_t sensor_num;
2271                } info, info_3, data, fifo_flush, perform_calib,
2272                                list_activities;
2273
2274                /*
2275                 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR
2276                 * and MOTIONSENSE_CMD_SENSOR_RANGE.
2277                 */
2278                struct __ec_todo_unpacked {
2279                        uint8_t sensor_num;
2280
2281                        /* Rounding flag, true for round-up, false for down. */
2282                        uint8_t roundup;
2283
2284                        uint16_t reserved;
2285
2286                        /* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
2287                        int32_t data;
2288                } ec_rate, sensor_odr, sensor_range;
2289
2290                /* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */
2291                struct __ec_todo_packed {
2292                        uint8_t sensor_num;
2293
2294                        /*
2295                         * bit 0: If set (MOTION_SENSE_SET_OFFSET), set
2296                         * the calibration information in the EC.
2297                         * If unset, just retrieve calibration information.
2298                         */
2299                        uint16_t flags;
2300
2301                        /*
2302                         * Temperature at calibration, in units of 0.01 C
2303                         * 0x8000: invalid / unknown.
2304                         * 0x0: 0C
2305                         * 0x7fff: +327.67C
2306                         */
2307                        int16_t temp;
2308
2309                        /*
2310                         * Offset for calibration.
2311                         * Unit:
2312                         * Accelerometer: 1/1024 g
2313                         * Gyro:          1/1024 deg/s
2314                         * Compass:       1/16 uT
2315                         */
2316                        int16_t offset[3];
2317                } sensor_offset;
2318
2319                /* Used for MOTIONSENSE_CMD_FIFO_INFO */
2320                struct __ec_todo_unpacked {
2321                } fifo_info;
2322
2323                /* Used for MOTIONSENSE_CMD_FIFO_READ */
2324                struct __ec_todo_unpacked {
2325                        /*
2326                         * Number of expected vector to return.
2327                         * EC may return less or 0 if none available.
2328                         */
2329                        uint32_t max_data_vector;
2330                } fifo_read;
2331
2332                struct ec_motion_sense_activity set_activity;
2333
2334                /* Used for MOTIONSENSE_CMD_LID_ANGLE */
2335                struct __ec_todo_unpacked {
2336                } lid_angle;
2337
2338                /* Used for MOTIONSENSE_CMD_FIFO_INT_ENABLE */
2339                struct __ec_todo_unpacked {
2340                        /*
2341                         * 1: enable, 0 disable fifo,
2342                         * EC_MOTION_SENSE_NO_VALUE return value.
2343                         */
2344                        int8_t enable;
2345                } fifo_int_enable;
2346
2347                /* Used for MOTIONSENSE_CMD_SPOOF */
2348                struct __ec_todo_packed {
2349                        uint8_t sensor_id;
2350
2351                        /* See enum motionsense_spoof_mode. */
2352                        uint8_t spoof_enable;
2353
2354                        /* Ignored, used for alignment. */
2355                        uint8_t reserved;
2356
2357                        /* Individual component values to spoof. */
2358                        int16_t components[3];
2359                } spoof;
2360        };
2361};
2362
2363struct __ec_todo_packed ec_response_motion_sense {
2364        union {
2365                /* Used for MOTIONSENSE_CMD_DUMP */
2366                struct __ec_todo_unpacked {
2367                        /* Flags representing the motion sensor module. */
2368                        uint8_t module_flags;
2369
2370                        /* Number of sensors managed directly by the EC */
2371                        uint8_t sensor_count;
2372
2373                        /*
2374                         * sensor data is truncated if response_max is too small
2375                         * for holding all the data.
2376                         */
2377                        struct ec_response_motion_sensor_data sensor[0];
2378                } dump;
2379
2380                /* Used for MOTIONSENSE_CMD_INFO. */
2381                struct __ec_todo_unpacked {
2382                        /* Should be element of enum motionsensor_type. */
2383                        uint8_t type;
2384
2385                        /* Should be element of enum motionsensor_location. */
2386                        uint8_t location;
2387
2388                        /* Should be element of enum motionsensor_chip. */
2389                        uint8_t chip;
2390                } info;
2391
2392                /* Used for MOTIONSENSE_CMD_INFO version 3 */
2393                struct __ec_todo_unpacked {
2394                        /* Should be element of enum motionsensor_type. */
2395                        uint8_t type;
2396
2397                        /* Should be element of enum motionsensor_location. */
2398                        uint8_t location;
2399
2400                        /* Should be element of enum motionsensor_chip. */
2401                        uint8_t chip;
2402
2403                        /* Minimum sensor sampling frequency */
2404                        uint32_t min_frequency;
2405
2406                        /* Maximum sensor sampling frequency */
2407                        uint32_t max_frequency;
2408
2409                        /* Max number of sensor events that could be in fifo */
2410                        uint32_t fifo_max_event_count;
2411                } info_3;
2412
2413                /* Used for MOTIONSENSE_CMD_DATA */
2414                struct ec_response_motion_sensor_data data;
2415
2416                /*
2417                 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR,
2418                 * MOTIONSENSE_CMD_SENSOR_RANGE,
2419                 * MOTIONSENSE_CMD_KB_WAKE_ANGLE,
2420                 * MOTIONSENSE_CMD_FIFO_INT_ENABLE and
2421                 * MOTIONSENSE_CMD_SPOOF.
2422                 */
2423                struct __ec_todo_unpacked {
2424                        /* Current value of the parameter queried. */
2425                        int32_t ret;
2426                } ec_rate, sensor_odr, sensor_range, kb_wake_angle,
2427                  fifo_int_enable, spoof;
2428
2429                /* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */
2430                struct __ec_todo_unpacked  {
2431                        int16_t temp;
2432                        int16_t offset[3];
2433                } sensor_offset, perform_calib;
2434
2435                struct ec_response_motion_sense_fifo_info fifo_info, fifo_flush;
2436
2437                struct ec_response_motion_sense_fifo_data fifo_read;
2438
2439                struct __ec_todo_packed {
2440                        uint16_t reserved;
2441                        uint32_t enabled;
2442                        uint32_t disabled;
2443                } list_activities;
2444
2445                struct __ec_todo_unpacked {
2446                } set_activity;
2447
2448                /* Used for MOTIONSENSE_CMD_LID_ANGLE */
2449                struct __ec_todo_unpacked {
2450                        /*
2451                         * Angle between 0 and 360 degree if available,
2452                         * LID_ANGLE_UNRELIABLE otherwise.
2453                         */
2454                        uint16_t value;
2455                } lid_angle;
2456        };
2457};
2458
2459/*****************************************************************************/
2460/* Force lid open command */
2461
2462/* Make lid event always open */
2463#define EC_CMD_FORCE_LID_OPEN 0x002C
2464
2465struct __ec_align1 ec_params_force_lid_open {
2466        uint8_t enabled;
2467};
2468
2469/*****************************************************************************/
2470/* Configure the behavior of the power button */
2471#define EC_CMD_CONFIG_POWER_BUTTON 0x002D
2472
2473enum ec_config_power_button_flags {
2474        /* Enable/Disable power button pulses for x86 devices */
2475        EC_POWER_BUTTON_ENABLE_PULSE = (1 << 0),
2476};
2477
2478struct __ec_align1 ec_params_config_power_button {
2479        /* See enum ec_config_power_button_flags */
2480        uint8_t flags;
2481};
2482
2483/*****************************************************************************/
2484/* USB charging control commands */
2485
2486/* Set USB port charging mode */
2487#define EC_CMD_USB_CHARGE_SET_MODE 0x0030
2488
2489struct __ec_align1 ec_params_usb_charge_set_mode {
2490        uint8_t usb_port_id;
2491        uint8_t mode;
2492};
2493
2494/*****************************************************************************/
2495/* Persistent storage for host */
2496
2497/* Maximum bytes that can be read/written in a single command */
2498#define EC_PSTORE_SIZE_MAX 64
2499
2500/* Get persistent storage info */
2501#define EC_CMD_PSTORE_INFO 0x0040
2502
2503struct __ec_align4 ec_response_pstore_info {
2504        /* Persistent storage size, in bytes */
2505        uint32_t pstore_size;
2506        /* Access size; read/write offset and size must be a multiple of this */
2507        uint32_t access_size;
2508};
2509
2510/*
2511 * Read persistent storage
2512 *
2513 * Response is params.size bytes of data.
2514 */
2515#define EC_CMD_PSTORE_READ 0x0041
2516
2517struct __ec_align4 ec_params_pstore_read {
2518        uint32_t offset;   /* Byte offset to read */
2519        uint32_t size;     /* Size to read in bytes */
2520};
2521
2522/* Write persistent storage */
2523#define EC_CMD_PSTORE_WRITE 0x0042
2524
2525struct __ec_align4 ec_params_pstore_write {
2526        uint32_t offset;   /* Byte offset to write */
2527        uint32_t size;     /* Size to write in bytes */
2528        uint8_t data[EC_PSTORE_SIZE_MAX];
2529};
2530
2531/*****************************************************************************/
2532/* Real-time clock */
2533
2534/* RTC params and response structures */
2535struct __ec_align4 ec_params_rtc {
2536        uint32_t time;
2537};
2538
2539struct __ec_align4 ec_response_rtc {
2540        uint32_t time;
2541};
2542
2543/* These use ec_response_rtc */
2544#define EC_CMD_RTC_GET_VALUE 0x0044
2545#define EC_CMD_RTC_GET_ALARM 0x0045
2546
2547/* These all use ec_params_rtc */
2548#define EC_CMD_RTC_SET_VALUE 0x0046
2549#define EC_CMD_RTC_SET_ALARM 0x0047
2550
2551/* Pass as time param to SET_ALARM to clear the current alarm */
2552#define EC_RTC_ALARM_CLEAR 0
2553
2554/*****************************************************************************/
2555/* Port80 log access */
2556
2557/* Maximum entries that can be read/written in a single command */
2558#define EC_PORT80_SIZE_MAX 32
2559
2560/* Get last port80 code from previous boot */
2561#define EC_CMD_PORT80_LAST_BOOT 0x0048
2562#define EC_CMD_PORT80_READ 0x0048
2563
2564enum ec_port80_subcmd {
2565        EC_PORT80_GET_INFO = 0,
2566        EC_PORT80_READ_BUFFER,
2567};
2568
2569struct __ec_todo_packed ec_params_port80_read {
2570        uint16_t subcmd;
2571        union {
2572                struct __ec_todo_unpacked {
2573                        uint32_t offset;
2574                        uint32_t num_entries;
2575                } read_buffer;
2576        };
2577};
2578
2579struct __ec_todo_packed ec_response_port80_read {
2580        union {
2581                struct __ec_todo_unpacked {
2582                        uint32_t writes;
2583                        uint32_t history_size;
2584                        uint32_t last_boot;
2585                } get_info;
2586                struct __ec_todo_unpacked {
2587                        uint16_t codes[EC_PORT80_SIZE_MAX];
2588                } data;
2589        };
2590};
2591
2592struct __ec_align2 ec_response_port80_last_boot {
2593        uint16_t code;
2594};
2595
2596/*****************************************************************************/
2597/* Temporary secure storage for host verified boot use */
2598
2599/* Number of bytes in a vstore slot */
2600#define EC_VSTORE_SLOT_SIZE 64
2601
2602/* Maximum number of vstore slots */
2603#define EC_VSTORE_SLOT_MAX 32
2604
2605/* Get persistent storage info */
2606#define EC_CMD_VSTORE_INFO 0x0049
2607struct __ec_align_size1 ec_response_vstore_info {
2608        /* Indicates which slots are locked */
2609        uint32_t slot_locked;
2610        /* Total number of slots available */
2611        uint8_t slot_count;
2612};
2613
2614/*
2615 * Read temporary secure storage
2616 *
2617 * Response is EC_VSTORE_SLOT_SIZE bytes of data.
2618 */
2619#define EC_CMD_VSTORE_READ 0x004A
2620
2621struct __ec_align1 ec_params_vstore_read {
2622        uint8_t slot; /* Slot to read from */
2623};
2624
2625struct __ec_align1 ec_response_vstore_read {
2626        uint8_t data[EC_VSTORE_SLOT_SIZE];
2627};
2628
2629/*
2630 * Write temporary secure storage and lock it.
2631 */
2632#define EC_CMD_VSTORE_WRITE 0x004B
2633
2634struct __ec_align1 ec_params_vstore_write {
2635        uint8_t slot; /* Slot to write to */
2636        uint8_t data[EC_VSTORE_SLOT_SIZE];
2637};
2638
2639/*****************************************************************************/
2640/* Thermal engine commands. Note that there are two implementations. We'll
2641 * reuse the command number, but the data and behavior is incompatible.
2642 * Version 0 is what originally shipped on Link.
2643 * Version 1 separates the CPU thermal limits from the fan control.
2644 */
2645
2646#define EC_CMD_THERMAL_SET_THRESHOLD 0x0050
2647#define EC_CMD_THERMAL_GET_THRESHOLD 0x0051
2648
2649/* The version 0 structs are opaque. You have to know what they are for
2650 * the get/set commands to make any sense.
2651 */
2652
2653/* Version 0 - set */
2654struct __ec_align2 ec_params_thermal_set_threshold {
2655        uint8_t sensor_type;
2656        uint8_t threshold_id;
2657        uint16_t value;
2658};
2659
2660/* Version 0 - get */
2661struct __ec_align1 ec_params_thermal_get_threshold {
2662        uint8_t sensor_type;
2663        uint8_t threshold_id;
2664};
2665
2666struct __ec_align2 ec_response_thermal_get_threshold {
2667        uint16_t value;
2668};
2669
2670
2671/* The version 1 structs are visible. */
2672enum ec_temp_thresholds {
2673        EC_TEMP_THRESH_WARN = 0,
2674        EC_TEMP_THRESH_HIGH,
2675        EC_TEMP_THRESH_HALT,
2676
2677        EC_TEMP_THRESH_COUNT
2678};
2679
2680/*
2681 * Thermal configuration for one temperature sensor. Temps are in degrees K.
2682 * Zero values will be silently ignored by the thermal task.
2683 *
2684 * Note that this structure is a sub-structure of
2685 * ec_params_thermal_set_threshold_v1, but maintains its alignment there.
2686 */
2687struct __ec_align4 ec_thermal_config {
2688        uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */
2689        uint32_t temp_fan_off;          /* no active cooling needed */
2690        uint32_t temp_fan_max;          /* max active cooling needed */
2691};
2692
2693/* Version 1 - get config for one sensor. */
2694struct __ec_align4 ec_params_thermal_get_threshold_v1 {
2695        uint32_t sensor_num;
2696};
2697/* This returns a struct ec_thermal_config */
2698
2699/* Version 1 - set config for one sensor.
2700 * Use read-modify-write for best results! */
2701struct __ec_align4 ec_params_thermal_set_threshold_v1 {
2702        uint32_t sensor_num;
2703        struct ec_thermal_config cfg;
2704};
2705/* This returns no data */
2706
2707/****************************************************************************/
2708
2709/* Toggle automatic fan control */
2710#define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x0052
2711
2712/* Version 1 of input params */
2713struct __ec_align1 ec_params_auto_fan_ctrl_v1 {
2714        uint8_t fan_idx;
2715};
2716
2717/* Get/Set TMP006 calibration data */
2718#define EC_CMD_TMP006_GET_CALIBRATION 0x0053
2719#define EC_CMD_TMP006_SET_CALIBRATION 0x0054
2720
2721/*
2722 * The original TMP006 calibration only needed four params, but now we need
2723 * more. Since the algorithm is nothing but magic numbers anyway, we'll leave
2724 * the params opaque. The v1 "get" response will include the algorithm number
2725 * and how many params it requires. That way we can change the EC code without
2726 * needing to update this file. We can also use a different algorithm on each
2727 * sensor.
2728 */
2729
2730/* This is the same struct for both v0 and v1. */
2731struct __ec_align1 ec_params_tmp006_get_calibration {
2732        uint8_t index;
2733};
2734
2735/* Version 0 */
2736struct __ec_align4 ec_response_tmp006_get_calibration_v0 {
2737        float s0;
2738        float b0;
2739        float b1;
2740        float b2;
2741};
2742
2743struct __ec_align4 ec_params_tmp006_set_calibration_v0 {
2744        uint8_t index;
2745        uint8_t reserved[3];
2746        float s0;
2747        float b0;
2748        float b1;
2749        float b2;
2750};
2751
2752/* Version 1 */
2753struct __ec_align4 ec_response_tmp006_get_calibration_v1 {
2754        uint8_t algorithm;
2755        uint8_t num_params;
2756        uint8_t reserved[2];
2757        float val[0];
2758};
2759
2760struct __ec_align4 ec_params_tmp006_set_calibration_v1 {
2761        uint8_t index;
2762        uint8_t algorithm;
2763        uint8_t num_params;
2764        uint8_t reserved;
2765        float val[0];
2766};
2767
2768
2769/* Read raw TMP006 data */
2770#define EC_CMD_TMP006_GET_RAW 0x0055
2771
2772struct __ec_align1 ec_params_tmp006_get_raw {
2773        uint8_t index;
2774};
2775
2776struct __ec_align4 ec_response_tmp006_get_raw {
2777        int32_t t;  /* In 1/100 K */
2778        int32_t v;  /* In nV */
2779};
2780
2781/*****************************************************************************/
2782/* MKBP - Matrix KeyBoard Protocol */
2783
2784/*
2785 * Read key state
2786 *
2787 * Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for
2788 * expected response size.
2789 *
2790 * NOTE: This has been superseded by EC_CMD_MKBP_GET_NEXT_EVENT.  If you wish
2791 * to obtain the instantaneous state, use EC_CMD_MKBP_INFO with the type
2792 * EC_MKBP_INFO_CURRENT and event EC_MKBP_EVENT_KEY_MATRIX.
2793 */
2794#define EC_CMD_MKBP_STATE 0x0060
2795
2796/*
2797 * Provide information about various MKBP things.  See enum ec_mkbp_info_type.
2798 */
2799#define EC_CMD_MKBP_INFO 0x0061
2800
2801struct __ec_align_size1 ec_response_mkbp_info {
2802        uint32_t rows;
2803        uint32_t cols;
2804        /* Formerly "switches", which was 0. */
2805        uint8_t reserved;
2806};
2807
2808struct __ec_align1 ec_params_mkbp_info {
2809        uint8_t info_type;
2810        uint8_t event_type;
2811};
2812
2813enum ec_mkbp_info_type {
2814        /*
2815         * Info about the keyboard matrix: number of rows and columns.
2816         *
2817         * Returns struct ec_response_mkbp_info.
2818         */
2819        EC_MKBP_INFO_KBD = 0,
2820
2821        /*
2822         * For buttons and switches, info about which specifically are
2823         * supported.  event_type must be set to one of the values in enum
2824         * ec_mkbp_event.
2825         *
2826         * For EC_MKBP_EVENT_BUTTON and EC_MKBP_EVENT_SWITCH, returns a 4 byte
2827         * bitmask indicating which buttons or switches are present.  See the
2828         * bit inidices below.
2829         */
2830        EC_MKBP_INFO_SUPPORTED = 1,
2831
2832        /*
2833         * Instantaneous state of buttons and switches.
2834         *
2835         * event_type must be set to one of the values in enum ec_mkbp_event.
2836         *
2837         * For EC_MKBP_EVENT_KEY_MATRIX, returns uint8_t key_matrix[13]
2838         * indicating the current state of the keyboard matrix.
2839         *
2840         * For EC_MKBP_EVENT_HOST_EVENT, return uint32_t host_event, the raw
2841         * event state.
2842         *
2843         * For EC_MKBP_EVENT_BUTTON, returns uint32_t buttons, indicating the
2844         * state of supported buttons.
2845         *
2846         * For EC_MKBP_EVENT_SWITCH, returns uint32_t switches, indicating the
2847         * state of supported switches.
2848         */
2849        EC_MKBP_INFO_CURRENT = 2,
2850};
2851
2852/* Simulate key press */
2853#define EC_CMD_MKBP_SIMULATE_KEY 0x0062
2854
2855struct __ec_align1 ec_params_mkbp_simulate_key {
2856        uint8_t col;
2857        uint8_t row;
2858        uint8_t pressed;
2859};
2860
2861/* Configure keyboard scanning */
2862#define EC_CMD_MKBP_SET_CONFIG 0x0064
2863#define EC_CMD_MKBP_GET_CONFIG 0x0065
2864
2865/* flags */
2866enum mkbp_config_flags {
2867        EC_MKBP_FLAGS_ENABLE = 1,       /* Enable keyboard scanning */
2868};
2869
2870enum mkbp_config_valid {
2871        EC_MKBP_VALID_SCAN_PERIOD               = 1 << 0,
2872        EC_MKBP_VALID_POLL_TIMEOUT              = 1 << 1,
2873        EC_MKBP_VALID_MIN_POST_SCAN_DELAY       = 1 << 3,
2874        EC_MKBP_VALID_OUTPUT_SETTLE             = 1 << 4,
2875        EC_MKBP_VALID_DEBOUNCE_DOWN             = 1 << 5,
2876        EC_MKBP_VALID_DEBOUNCE_UP               = 1 << 6,
2877        EC_MKBP_VALID_FIFO_MAX_DEPTH            = 1 << 7,
2878};
2879
2880/*
2881 * Configuration for our key scanning algorithm.
2882 *
2883 * Note that this is used as a sub-structure of
2884 * ec_{params/response}_mkbp_get_config.
2885 */
2886struct __ec_align_size1 ec_mkbp_config {
2887        uint32_t valid_mask;            /* valid fields */
2888        uint8_t flags;          /* some flags (enum mkbp_config_flags) */
2889        uint8_t valid_flags;            /* which flags are valid */
2890        uint16_t scan_period_us;        /* period between start of scans */
2891        /* revert to interrupt mode after no activity for this long */
2892        uint32_t poll_timeout_us;
2893        /*
2894         * minimum post-scan relax time. Once we finish a scan we check
2895         * the time until we are due to start the next one. If this time is
2896         * shorter this field, we use this instead.
2897         */
2898        uint16_t min_post_scan_delay_us;
2899        /* delay between setting up output and waiting for it to settle */
2900        uint16_t output_settle_us;
2901        uint16_t debounce_down_us;      /* time for debounce on key down */
2902        uint16_t debounce_up_us;        /* time for debounce on key up */
2903        /* maximum depth to allow for fifo (0 = no keyscan output) */
2904        uint8_t fifo_max_depth;
2905};
2906
2907struct __ec_align_size1 ec_params_mkbp_set_config {
2908        struct ec_mkbp_config config;
2909};
2910
2911struct __ec_align_size1 ec_response_mkbp_get_config {
2912        struct ec_mkbp_config config;
2913};
2914
2915/* Run the key scan emulation */
2916#define EC_CMD_KEYSCAN_SEQ_CTRL 0x0066
2917
2918enum ec_keyscan_seq_cmd {
2919        EC_KEYSCAN_SEQ_STATUS = 0,      /* Get status information */
2920        EC_KEYSCAN_SEQ_CLEAR = 1,       /* Clear sequence */
2921        EC_KEYSCAN_SEQ_ADD = 2,         /* Add item to sequence */
2922        EC_KEYSCAN_SEQ_START = 3,       /* Start running sequence */
2923        EC_KEYSCAN_SEQ_COLLECT = 4,     /* Collect sequence summary data */
2924};
2925
2926enum ec_collect_flags {
2927        /*
2928         * Indicates this scan was processed by the EC. Due to timing, some
2929         * scans may be skipped.
2930         */
2931        EC_KEYSCAN_SEQ_FLAG_DONE        = 1 << 0,
2932};
2933
2934struct __ec_align1 ec_collect_item {
2935        uint8_t flags;          /* some flags (enum ec_collect_flags) */
2936};
2937
2938struct __ec_todo_packed ec_params_keyscan_seq_ctrl {
2939        uint8_t cmd;    /* Command to send (enum ec_keyscan_seq_cmd) */
2940        union {
2941                struct __ec_align1 {
2942                        uint8_t active;         /* still active */
2943                        uint8_t num_items;      /* number of items */
2944                        /* Current item being presented */
2945                        uint8_t cur_item;
2946                } status;
2947                struct __ec_todo_unpacked {
2948                        /*
2949                         * Absolute time for this scan, measured from the
2950                         * start of the sequence.
2951                         */
2952                        uint32_t time_us;
2953                        uint8_t scan[0];        /* keyscan data */
2954                } add;
2955                struct __ec_align1 {
2956                        uint8_t start_item;     /* First item to return */
2957                        uint8_t num_items;      /* Number of items to return */
2958                } collect;
2959        };
2960};
2961
2962struct __ec_todo_packed ec_result_keyscan_seq_ctrl {
2963        union {
2964                struct __ec_todo_unpacked {
2965                        uint8_t num_items;      /* Number of items */
2966                        /* Data for each item */
2967                        struct ec_collect_item item[0];
2968                } collect;
2969        };
2970};
2971
2972/*
2973 * Get the next pending MKBP event.
2974 *
2975 * Returns EC_RES_UNAVAILABLE if there is no event pending.
2976 */
2977#define EC_CMD_GET_NEXT_EVENT 0x0067
2978
2979enum ec_mkbp_event {
2980        /* Keyboard matrix changed. The event data is the new matrix state. */
2981        EC_MKBP_EVENT_KEY_MATRIX = 0,
2982
2983        /* New host event. The event data is 4 bytes of host event flags. */
2984        EC_MKBP_EVENT_HOST_EVENT = 1,
2985
2986        /* New Sensor FIFO data. The event data is fifo_info structure. */
2987        EC_MKBP_EVENT_SENSOR_FIFO = 2,
2988
2989        /* The state of the non-matrixed buttons have changed. */
2990        EC_MKBP_EVENT_BUTTON = 3,
2991
2992        /* The state of the switches have changed. */
2993        EC_MKBP_EVENT_SWITCH = 4,
2994
2995        /* New Fingerprint sensor event, the event data is fp_events bitmap. */
2996        EC_MKBP_EVENT_FINGERPRINT = 5,
2997
2998        /*
2999         * Sysrq event: send emulated sysrq. The event data is sysrq,
3000         * corresponding to the key to be pressed.
3001         */
3002        EC_MKBP_EVENT_SYSRQ = 6,
3003
3004        /* Number of MKBP events */
3005        EC_MKBP_EVENT_COUNT,
3006};
3007
3008union __ec_align_offset1 ec_response_get_next_data {
3009        uint8_t key_matrix[13];
3010
3011        /* Unaligned */
3012        uint32_t host_event;
3013
3014        struct __ec_todo_unpacked {
3015                /* For aligning the fifo_info */
3016                uint8_t reserved[3];
3017                struct ec_response_motion_sense_fifo_info info;
3018        } sensor_fifo;
3019
3020        uint32_t buttons;
3021
3022        uint32_t switches;
3023
3024        uint32_t fp_events;
3025
3026        uint32_t sysrq;
3027};
3028
3029struct __ec_align1 ec_response_get_next_event {
3030        uint8_t event_type;
3031        /* Followed by event data if any */
3032        union ec_response_get_next_data data;
3033};
3034
3035/* Bit indices for buttons and switches.*/
3036/* Buttons */
3037#define EC_MKBP_POWER_BUTTON    0
3038#define EC_MKBP_VOL_UP          1
3039#define EC_MKBP_VOL_DOWN        2
3040#define EC_MKBP_RECOVERY        3
3041
3042/* Switches */
3043#define EC_MKBP_LID_OPEN        0
3044#define EC_MKBP_TABLET_MODE     1
3045
3046/* Run keyboard factory test scanning */
3047#define EC_CMD_KEYBOARD_FACTORY_TEST 0x0068
3048
3049struct __ec_align2 ec_response_keyboard_factory_test {
3050        uint16_t shorted;       /* Keyboard pins are shorted */
3051};
3052
3053/* Fingerprint events in 'fp_events' for EC_MKBP_EVENT_FINGERPRINT */
3054#define EC_MKBP_FP_RAW_EVENT(fp_events) ((fp_events) & 0x00FFFFFF)
3055#define EC_MKBP_FP_FINGER_DOWN          (1 << 29)
3056#define EC_MKBP_FP_FINGER_UP            (1 << 30)
3057#define EC_MKBP_FP_IMAGE_READY          (1 << 31)
3058
3059/*****************************************************************************/
3060/* Temperature sensor commands */
3061
3062/* Read temperature sensor info */
3063#define EC_CMD_TEMP_SENSOR_GET_INFO 0x0070
3064
3065struct __ec_align1 ec_params_temp_sensor_get_info {
3066        uint8_t id;
3067};
3068
3069struct __ec_align1 ec_response_temp_sensor_get_info {
3070        char sensor_name[32];
3071        uint8_t sensor_type;
3072};
3073
3074/*****************************************************************************/
3075
3076/*
3077 * Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI
3078 * commands accidentally sent to the wrong interface.  See the ACPI section
3079 * below.
3080 */
3081
3082/*****************************************************************************/
3083/* Host event commands */
3084
3085
3086/* Obsolete. New implementation should use EC_CMD_PROGRAM_HOST_EVENT instead */
3087/*
3088 * Host event mask params and response structures, shared by all of the host
3089 * event commands below.
3090 */
3091struct __ec_align4 ec_params_host_event_mask {
3092        uint32_t mask;
3093};
3094
3095struct __ec_align4 ec_response_host_event_mask {
3096        uint32_t mask;
3097};
3098
3099/* These all use ec_response_host_event_mask */
3100#define EC_CMD_HOST_EVENT_GET_B         0x0087
3101#define EC_CMD_HOST_EVENT_GET_SMI_MASK  0x0088
3102#define EC_CMD_HOST_EVENT_GET_SCI_MASK  0x0089
3103#define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x008D
3104
3105/* These all use ec_params_host_event_mask */
3106#define EC_CMD_HOST_EVENT_SET_SMI_MASK  0x008A
3107#define EC_CMD_HOST_EVENT_SET_SCI_MASK  0x008B
3108#define EC_CMD_HOST_EVENT_CLEAR         0x008C
3109#define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x008E
3110#define EC_CMD_HOST_EVENT_CLEAR_B       0x008F
3111
3112/*
3113 * Unified host event programming interface - Should be used by newer versions
3114 * of BIOS/OS to program host events and masks
3115 */
3116
3117struct __ec_align4 ec_params_host_event {
3118
3119        /* Action requested by host - one of enum ec_host_event_action. */
3120        uint8_t action;
3121
3122        /*
3123         * Mask type that the host requested the action on - one of
3124         * enum ec_host_event_mask_type.
3125         */
3126        uint8_t mask_type;
3127
3128        /* Set to 0, ignore on read */
3129        uint16_t reserved;
3130
3131        /* Value to be used in case of set operations. */
3132        uint64_t value;
3133};
3134
3135/*
3136 * Response structure returned by EC_CMD_HOST_EVENT.
3137 * Update the value on a GET request. Set to 0 on GET/CLEAR
3138 */
3139
3140struct __ec_align4 ec_response_host_event {
3141
3142        /* Mask value in case of get operation */
3143        uint64_t value;
3144};
3145
3146enum ec_host_event_action {
3147        /*
3148         * params.value is ignored. Value of mask_type populated
3149         * in response.value
3150         */
3151        EC_HOST_EVENT_GET,
3152
3153        /* Bits in params.value are set */
3154        EC_HOST_EVENT_SET,
3155
3156        /* Bits in params.value are cleared */
3157        EC_HOST_EVENT_CLEAR,
3158};
3159
3160enum ec_host_event_mask_type {
3161
3162        /* Main host event copy */
3163        EC_HOST_EVENT_MAIN,
3164
3165        /* Copy B of host events */
3166        EC_HOST_EVENT_B,
3167
3168        /* SCI Mask */
3169        EC_HOST_EVENT_SCI_MASK,
3170
3171        /* SMI Mask */
3172        EC_HOST_EVENT_SMI_MASK,
3173
3174        /* Mask of events that should be always reported in hostevents */
3175        EC_HOST_EVENT_ALWAYS_REPORT_MASK,
3176
3177        /* Active wake mask */
3178        EC_HOST_EVENT_ACTIVE_WAKE_MASK,
3179
3180        /* Lazy wake mask for S0ix */
3181        EC_HOST_EVENT_LAZY_WAKE_MASK_S0IX,
3182
3183        /* Lazy wake mask for S3 */
3184        EC_HOST_EVENT_LAZY_WAKE_MASK_S3,
3185
3186        /* Lazy wake mask for S5 */
3187        EC_HOST_EVENT_LAZY_WAKE_MASK_S5,
3188};
3189
3190#define EC_CMD_HOST_EVENT       0x00A4
3191
3192/*****************************************************************************/
3193/* Switch commands */
3194
3195/* Enable/disable LCD backlight */
3196#define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x0090
3197
3198struct __ec_align1 ec_params_switch_enable_backlight {
3199        uint8_t enabled;
3200};
3201
3202/* Enable/disable WLAN/Bluetooth */
3203#define EC_CMD_SWITCH_ENABLE_WIRELESS 0x0091
3204#define EC_VER_SWITCH_ENABLE_WIRELESS 1
3205
3206/* Version 0 params; no response */
3207struct __ec_align1 ec_params_switch_enable_wireless_v0 {
3208        uint8_t enabled;
3209};
3210
3211/* Version 1 params */
3212struct __ec_align1 ec_params_switch_enable_wireless_v1 {
3213        /* Flags to enable now */
3214        uint8_t now_flags;
3215
3216        /* Which flags to copy from now_flags */
3217        uint8_t now_mask;
3218
3219        /*
3220         * Flags to leave enabled in S3, if they're on at the S0->S3
3221         * transition.  (Other flags will be disabled by the S0->S3
3222         * transition.)
3223         */
3224        uint8_t suspend_flags;
3225
3226        /* Which flags to copy from suspend_flags */
3227        uint8_t suspend_mask;
3228};
3229
3230/* Version 1 response */
3231struct __ec_align1 ec_response_switch_enable_wireless_v1 {
3232        /* Flags to enable now */
3233        uint8_t now_flags;
3234
3235        /* Flags to leave enabled in S3 */
3236        uint8_t suspend_flags;
3237};
3238
3239/*****************************************************************************/
3240/* GPIO commands. Only available on EC if write protect has been disabled. */
3241
3242/* Set GPIO output value */
3243#define EC_CMD_GPIO_SET 0x0092
3244
3245struct __ec_align1 ec_params_gpio_set {
3246        char name[32];
3247        uint8_t val;
3248};
3249
3250/* Get GPIO value */
3251#define EC_CMD_GPIO_GET 0x0093
3252
3253/* Version 0 of input params and response */
3254struct __ec_align1 ec_params_gpio_get {
3255        char name[32];
3256};
3257
3258struct __ec_align1 ec_response_gpio_get {
3259        uint8_t val;
3260};
3261
3262/* Version 1 of input params and response */
3263struct __ec_align1 ec_params_gpio_get_v1 {
3264        uint8_t subcmd;
3265        union {
3266                struct __ec_align1 {
3267                        char name[32];
3268                } get_value_by_name;
3269                struct __ec_align1 {
3270                        uint8_t index;
3271                } get_info;
3272        };
3273};
3274
3275struct __ec_todo_packed ec_response_gpio_get_v1 {
3276        union {
3277                struct __ec_align1 {
3278                        uint8_t val;
3279                } get_value_by_name, get_count;
3280                struct __ec_todo_unpacked {
3281                        uint8_t val;
3282                        char name[32];
3283                        uint32_t flags;
3284                } get_info;
3285        };
3286};
3287
3288enum gpio_get_subcmd {
3289        EC_GPIO_GET_BY_NAME = 0,
3290        EC_GPIO_GET_COUNT = 1,
3291        EC_GPIO_GET_INFO = 2,
3292};
3293
3294/*****************************************************************************/
3295/* I2C commands. Only available when flash write protect is unlocked. */
3296
3297/*
3298 * CAUTION: These commands are deprecated, and are not supported anymore in EC
3299 * builds >= 8398.0.0 (see crosbug.com/p/23570).
3300 *
3301 * Use EC_CMD_I2C_PASSTHRU instead.
3302 */
3303
3304/* Read I2C bus */
3305#define EC_CMD_I2C_READ 0x0094
3306
3307struct __ec_align_size1 ec_params_i2c_read {
3308        uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
3309        uint8_t read_size; /* Either 8 or 16. */
3310        uint8_t port;
3311        uint8_t offset;
3312};
3313
3314struct __ec_align2 ec_response_i2c_read {
3315        uint16_t data;
3316};
3317
3318/* Write I2C bus */
3319#define EC_CMD_I2C_WRITE 0x0095
3320
3321struct __ec_align_size1 ec_params_i2c_write {
3322        uint16_t data;
3323        uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
3324        uint8_t write_size; /* Either 8 or 16. */
3325        uint8_t port;
3326        uint8_t offset;
3327};
3328
3329/*****************************************************************************/
3330/* Charge state commands. Only available when flash write protect unlocked. */
3331
3332/* Force charge state machine to stop charging the battery or force it to
3333 * discharge the battery.
3334 */
3335#define EC_CMD_CHARGE_CONTROL 0x0096
3336#define EC_VER_CHARGE_CONTROL 1
3337
3338enum ec_charge_control_mode {
3339        CHARGE_CONTROL_NORMAL = 0,
3340        CHARGE_CONTROL_IDLE,
3341        CHARGE_CONTROL_DISCHARGE,
3342};
3343
3344struct __ec_align4 ec_params_charge_control {
3345        uint32_t mode;  /* enum charge_control_mode */
3346};
3347
3348/*****************************************************************************/
3349/* Console commands. Only available when flash write protect is unlocked. */
3350
3351/* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */
3352#define EC_CMD_CONSOLE_SNAPSHOT 0x0097
3353
3354/*
3355 * Read data from the saved snapshot. If the subcmd parameter is
3356 * CONSOLE_READ_NEXT, this will return data starting from the beginning of
3357 * the latest snapshot. If it is CONSOLE_READ_RECENT, it will start from the
3358 * end of the previous snapshot.
3359 *
3360 * The params are only looked at in version >= 1 of this command. Prior
3361 * versions will just default to CONSOLE_READ_NEXT behavior.
3362 *
3363 * Response is null-terminated string.  Empty string, if there is no more
3364 * remaining output.
3365 */
3366#define EC_CMD_CONSOLE_READ 0x0098
3367
3368enum ec_console_read_subcmd {
3369        CONSOLE_READ_NEXT = 0,
3370        CONSOLE_READ_RECENT
3371};
3372
3373struct __ec_align1 ec_params_console_read_v1 {
3374        uint8_t subcmd; /* enum ec_console_read_subcmd */
3375};
3376
3377/*****************************************************************************/
3378
3379/*
3380 * Cut off battery power immediately or after the host has shut down.
3381 *
3382 * return EC_RES_INVALID_COMMAND if unsupported by a board/battery.
3383 *        EC_RES_SUCCESS if the command was successful.
3384 *        EC_RES_ERROR if the cut off command failed.
3385 */
3386#define EC_CMD_BATTERY_CUT_OFF 0x0099
3387
3388#define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN      (1 << 0)
3389
3390struct __ec_align1 ec_params_battery_cutoff {
3391        uint8_t flags;
3392};
3393
3394/*****************************************************************************/
3395/* USB port mux control. */
3396
3397/*
3398 * Switch USB mux or return to automatic switching.
3399 */
3400#define EC_CMD_USB_MUX 0x009A
3401
3402struct __ec_align1 ec_params_usb_mux {
3403        uint8_t mux;
3404};
3405
3406/*****************************************************************************/
3407/* LDOs / FETs control. */
3408
3409enum ec_ldo_state {
3410        EC_LDO_STATE_OFF = 0,   /* the LDO / FET is shut down */
3411        EC_LDO_STATE_ON = 1,    /* the LDO / FET is ON / providing power */
3412};
3413
3414/*
3415 * Switch on/off a LDO.
3416 */
3417#define EC_CMD_LDO_SET 0x009B
3418
3419struct __ec_align1 ec_params_ldo_set {
3420        uint8_t index;
3421        uint8_t state;
3422};
3423
3424/*
3425 * Get LDO state.
3426 */
3427#define EC_CMD_LDO_GET 0x009C
3428
3429struct __ec_align1 ec_params_ldo_get {
3430        uint8_t index;
3431};
3432
3433struct __ec_align1 ec_response_ldo_get {
3434        uint8_t state;
3435};
3436
3437/*****************************************************************************/
3438/* Power info. */
3439
3440/*
3441 * Get power info.
3442 */
3443#define EC_CMD_POWER_INFO 0x009D
3444
3445struct __ec_align4 ec_response_power_info {
3446        uint32_t usb_dev_type;
3447        uint16_t voltage_ac;
3448        uint16_t voltage_system;
3449        uint16_t current_system;
3450        uint16_t usb_current_limit;
3451};
3452
3453/*****************************************************************************/
3454/* I2C passthru command */
3455
3456#define EC_CMD_I2C_PASSTHRU 0x009E
3457
3458/* Read data; if not present, message is a write */
3459#define EC_I2C_FLAG_READ        (1 << 15)
3460
3461/* Mask for address */
3462#define EC_I2C_ADDR_MASK        0x3ff
3463
3464#define EC_I2C_STATUS_NAK       (1 << 0) /* Transfer was not acknowledged */
3465#define EC_I2C_STATUS_TIMEOUT   (1 << 1) /* Timeout during transfer */
3466
3467/* Any error */
3468#define EC_I2C_STATUS_ERROR     (EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT)
3469
3470struct __ec_align2 ec_params_i2c_passthru_msg {
3471        uint16_t addr_flags;    /* I2C slave address (7 or 10 bits) and flags */
3472        uint16_t len;           /* Number of bytes to read or write */
3473};
3474
3475struct __ec_align2 ec_params_i2c_passthru {
3476        uint8_t port;           /* I2C port number */
3477        uint8_t num_msgs;       /* Number of messages */
3478        struct ec_params_i2c_passthru_msg msg[];
3479        /* Data to write for all messages is concatenated here */
3480};
3481
3482struct __ec_align1 ec_response_i2c_passthru {
3483        uint8_t i2c_status;     /* Status flags (EC_I2C_STATUS_...) */
3484        uint8_t num_msgs;       /* Number of messages processed */
3485        uint8_t data[];         /* Data read by messages concatenated here */
3486};
3487
3488/*****************************************************************************/
3489/* Power button hang detect */
3490
3491#define EC_CMD_HANG_DETECT 0x009F
3492
3493/* Reasons to start hang detection timer */
3494/* Power button pressed */
3495#define EC_HANG_START_ON_POWER_PRESS  (1 << 0)
3496
3497/* Lid closed */
3498#define EC_HANG_START_ON_LID_CLOSE    (1 << 1)
3499
3500 /* Lid opened */
3501#define EC_HANG_START_ON_LID_OPEN     (1 << 2)
3502
3503/* Start of AP S3->S0 transition (booting or resuming from suspend) */
3504#define EC_HANG_START_ON_RESUME       (1 << 3)
3505
3506/* Reasons to cancel hang detection */
3507
3508/* Power button released */
3509#define EC_HANG_STOP_ON_POWER_RELEASE (1 << 8)
3510
3511/* Any host command from AP received */
3512#define EC_HANG_STOP_ON_HOST_COMMAND  (1 << 9)
3513
3514/* Stop on end of AP S0->S3 transition (suspending or shutting down) */
3515#define EC_HANG_STOP_ON_SUSPEND       (1 << 10)
3516
3517/*
3518 * If this flag is set, all the other fields are ignored, and the hang detect
3519 * timer is started.  This provides the AP a way to start the hang timer
3520 * without reconfiguring any of the other hang detect settings.  Note that
3521 * you must previously have configured the timeouts.
3522 */
3523#define EC_HANG_START_NOW             (1 << 30)
3524
3525/*
3526 * If this flag is set, all the other fields are ignored (including
3527 * EC_HANG_START_NOW).  This provides the AP a way to stop the hang timer
3528 * without reconfiguring any of the other hang detect settings.
3529 */
3530#define EC_HANG_STOP_NOW              (1 << 31)
3531
3532struct __ec_align4 ec_params_hang_detect {
3533        /* Flags; see EC_HANG_* */
3534        uint32_t flags;
3535
3536        /* Timeout in msec before generating host event, if enabled */
3537        uint16_t host_event_timeout_msec;
3538
3539        /* Timeout in msec before generating warm reboot, if enabled */
3540        uint16_t warm_reboot_timeout_msec;
3541};
3542
3543/*****************************************************************************/
3544/* Commands for battery charging */
3545
3546/*
3547 * This is the single catch-all host command to exchange data regarding the
3548 * charge state machine (v2 and up).
3549 */
3550#define EC_CMD_CHARGE_STATE 0x00A0
3551
3552/* Subcommands for this host command */
3553enum charge_state_command {
3554        CHARGE_STATE_CMD_GET_STATE,
3555        CHARGE_STATE_CMD_GET_PARAM,
3556        CHARGE_STATE_CMD_SET_PARAM,
3557        CHARGE_STATE_NUM_CMDS
3558};
3559
3560/*
3561 * Known param numbers are defined here. Ranges are reserved for board-specific
3562 * params, which are handled by the particular implementations.
3563 */
3564enum charge_state_params {
3565        CS_PARAM_CHG_VOLTAGE,         /* charger voltage limit */
3566        CS_PARAM_CHG_CURRENT,         /* charger current limit */
3567        CS_PARAM_CHG_INPUT_CURRENT,   /* charger input current limit */
3568        CS_PARAM_CHG_STATUS,          /* charger-specific status */
3569        CS_PARAM_CHG_OPTION,          /* charger-specific options */
3570        CS_PARAM_LIMIT_POWER,         /*
3571                                       * Check if power is limited due to
3572                                       * low battery and / or a weak external
3573                                       * charger. READ ONLY.
3574                                       */
3575        /* How many so far? */
3576        CS_NUM_BASE_PARAMS,
3577
3578        /* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */
3579        CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000,
3580        CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff,
3581
3582        /* Other custom param ranges go here... */
3583};
3584
3585struct __ec_todo_packed ec_params_charge_state {
3586        uint8_t cmd;                            /* enum charge_state_command */
3587        union {
3588                struct __ec_align1 {
3589                        /* no args */
3590                } get_state;
3591
3592                struct __ec_todo_unpacked {
3593                        uint32_t param;         /* enum charge_state_param */
3594                } get_param;
3595
3596                struct __ec_todo_unpacked {
3597                        uint32_t param;         /* param to set */
3598                        uint32_t value;         /* value to set */
3599                } set_param;
3600        };
3601};
3602
3603struct __ec_align4 ec_response_charge_state {
3604        union {
3605                struct __ec_align4 {
3606                        int ac;
3607                        int chg_voltage;
3608                        int chg_current;
3609                        int chg_input_current;
3610                        int batt_state_of_charge;
3611                } get_state;
3612
3613                struct __ec_align4 {
3614                        uint32_t value;
3615                } get_param;
3616                struct __ec_align4 {
3617                        /* no return values */
3618                } set_param;
3619        };
3620};
3621
3622
3623/*
3624 * Set maximum battery charging current.
3625 */
3626#define EC_CMD_CHARGE_CURRENT_LIMIT 0x00A1
3627
3628struct __ec_align4 ec_params_current_limit {
3629        uint32_t limit; /* in mA */
3630};
3631
3632/*
3633 * Set maximum external voltage / current.
3634 */
3635#define EC_CMD_EXTERNAL_POWER_LIMIT 0x00A2
3636
3637/* Command v0 is used only on Spring and is obsolete + unsupported */
3638struct __ec_align2 ec_params_external_power_limit_v1 {
3639        uint16_t current_lim; /* in mA, or EC_POWER_LIMIT_NONE to clear limit */
3640        uint16_t voltage_lim; /* in mV, or EC_POWER_LIMIT_NONE to clear limit */
3641};
3642
3643#define EC_POWER_LIMIT_NONE 0xffff
3644
3645/*
3646 * Set maximum voltage & current of a dedicated charge port
3647 */
3648#define EC_CMD_OVERRIDE_DEDICATED_CHARGER_LIMIT 0x00A3
3649
3650struct __ec_align2 ec_params_dedicated_charger_limit {
3651        uint16_t current_lim; /* in mA */
3652        uint16_t voltage_lim; /* in mV */
3653};
3654
3655/*****************************************************************************/
3656/* Hibernate/Deep Sleep Commands */
3657
3658/* Set the delay before going into hibernation. */
3659#define EC_CMD_HIBERNATION_DELAY 0x00A8
3660
3661struct __ec_align4 ec_params_hibernation_delay {
3662        /*
3663         * Seconds to wait in G3 before hibernate.  Pass in 0 to read the
3664         * current settings without changing them.
3665         */
3666        uint32_t seconds;
3667};
3668
3669struct __ec_align4 ec_response_hibernation_delay {
3670        /*
3671         * The current time in seconds in which the system has been in the G3
3672         * state.  This value is reset if the EC transitions out of G3.
3673         */
3674        uint32_t time_g3;
3675
3676        /*
3677         * The current time remaining in seconds until the EC should hibernate.
3678         * This value is also reset if the EC transitions out of G3.
3679         */
3680        uint32_t time_remaining;
3681
3682        /*
3683         * The current time in seconds that the EC should wait in G3 before
3684         * hibernating.
3685         */
3686        uint32_t hibernate_delay;
3687};
3688
3689/* Inform the EC when entering a sleep state */
3690#define EC_CMD_HOST_SLEEP_EVENT 0x00A9
3691
3692enum host_sleep_event {
3693        HOST_SLEEP_EVENT_S3_SUSPEND   = 1,
3694        HOST_SLEEP_EVENT_S3_RESUME    = 2,
3695        HOST_SLEEP_EVENT_S0IX_SUSPEND = 3,
3696        HOST_SLEEP_EVENT_S0IX_RESUME  = 4
3697};
3698
3699struct __ec_align1 ec_params_host_sleep_event {
3700        uint8_t sleep_event;
3701};
3702
3703/*****************************************************************************/
3704/* Device events */
3705#define EC_CMD_DEVICE_EVENT 0x00AA
3706
3707enum ec_device_event {
3708        EC_DEVICE_EVENT_TRACKPAD,
3709        EC_DEVICE_EVENT_DSP,
3710        EC_DEVICE_EVENT_WIFI,
3711};
3712
3713enum ec_device_event_param {
3714        /* Get and clear pending device events */
3715        EC_DEVICE_EVENT_PARAM_GET_CURRENT_EVENTS,
3716        /* Get device event mask */
3717        EC_DEVICE_EVENT_PARAM_GET_ENABLED_EVENTS,
3718        /* Set device event mask */
3719        EC_DEVICE_EVENT_PARAM_SET_ENABLED_EVENTS,
3720};
3721
3722#define EC_DEVICE_EVENT_MASK(event_code) (1UL << (event_code % 32))
3723
3724struct __ec_align_size1 ec_params_device_event {
3725        uint32_t event_mask;
3726        uint8_t param;
3727};
3728
3729struct __ec_align4 ec_response_device_event {
3730        uint32_t event_mask;
3731};
3732
3733/*****************************************************************************/
3734/* Smart battery pass-through */
3735
3736/* Get / Set 16-bit smart battery registers */
3737#define EC_CMD_SB_READ_WORD   0x00B0
3738#define EC_CMD_SB_WRITE_WORD  0x00B1
3739
3740/* Get / Set string smart battery parameters
3741 * formatted as SMBUS "block".
3742 */
3743#define EC_CMD_SB_READ_BLOCK  0x00B2
3744#define EC_CMD_SB_WRITE_BLOCK 0x00B3
3745
3746struct __ec_align1 ec_params_sb_rd {
3747        uint8_t reg;
3748};
3749
3750struct __ec_align2 ec_response_sb_rd_word {
3751        uint16_t value;
3752};
3753
3754struct __ec_align1 ec_params_sb_wr_word {
3755        uint8_t reg;
3756        uint16_t value;
3757};
3758
3759struct __ec_align1 ec_response_sb_rd_block {
3760        uint8_t data[32];
3761};
3762
3763struct __ec_align1 ec_params_sb_wr_block {
3764        uint8_t reg;
3765        uint16_t data[32];
3766};
3767
3768/*****************************************************************************/
3769/* Battery vendor parameters
3770 *
3771 * Get or set vendor-specific parameters in the battery. Implementations may
3772 * differ between boards or batteries. On a set operation, the response
3773 * contains the actual value set, which may be rounded or clipped from the
3774 * requested value.
3775 */
3776
3777#define EC_CMD_BATTERY_VENDOR_PARAM 0x00B4
3778
3779enum ec_battery_vendor_param_mode {
3780        BATTERY_VENDOR_PARAM_MODE_GET = 0,
3781        BATTERY_VENDOR_PARAM_MODE_SET,
3782};
3783
3784struct __ec_align_size1 ec_params_battery_vendor_param {
3785        uint32_t param;
3786        uint32_t value;
3787        uint8_t mode;
3788};
3789
3790struct __ec_align4 ec_response_battery_vendor_param {
3791        uint32_t value;
3792};
3793
3794/*****************************************************************************/
3795/*
3796 * Smart Battery Firmware Update Commands
3797 */
3798#define EC_CMD_SB_FW_UPDATE 0x00B5
3799
3800enum ec_sb_fw_update_subcmd {
3801        EC_SB_FW_UPDATE_PREPARE  = 0x0,
3802        EC_SB_FW_UPDATE_INFO     = 0x1, /*query sb info */
3803        EC_SB_FW_UPDATE_BEGIN    = 0x2, /*check if protected */
3804        EC_SB_FW_UPDATE_WRITE    = 0x3, /*check if protected */
3805        EC_SB_FW_UPDATE_END      = 0x4,
3806        EC_SB_FW_UPDATE_STATUS   = 0x5,
3807        EC_SB_FW_UPDATE_PROTECT  = 0x6,
3808        EC_SB_FW_UPDATE_MAX      = 0x7,
3809};
3810
3811#define SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE 32
3812#define SB_FW_UPDATE_CMD_STATUS_SIZE 2
3813#define SB_FW_UPDATE_CMD_INFO_SIZE 8
3814
3815struct __ec_align4 ec_sb_fw_update_header {
3816        uint16_t subcmd;  /* enum ec_sb_fw_update_subcmd */
3817        uint16_t fw_id;   /* firmware id */
3818};
3819
3820struct __ec_align4 ec_params_sb_fw_update {
3821        struct ec_sb_fw_update_header hdr;
3822        union {
3823                /* EC_SB_FW_UPDATE_PREPARE  = 0x0 */
3824                /* EC_SB_FW_UPDATE_INFO     = 0x1 */
3825                /* EC_SB_FW_UPDATE_BEGIN    = 0x2 */
3826                /* EC_SB_FW_UPDATE_END      = 0x4 */
3827                /* EC_SB_FW_UPDATE_STATUS   = 0x5 */
3828                /* EC_SB_FW_UPDATE_PROTECT  = 0x6 */
3829                struct __ec_align4 {
3830                        /* no args */
3831                } dummy;
3832
3833                /* EC_SB_FW_UPDATE_WRITE    = 0x3 */
3834                struct __ec_align4 {
3835                        uint8_t  data[SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE];
3836                } write;
3837        };
3838};
3839
3840struct __ec_align1 ec_response_sb_fw_update {
3841        union {
3842                /* EC_SB_FW_UPDATE_INFO     = 0x1 */
3843                struct __ec_align1 {
3844                        uint8_t data[SB_FW_UPDATE_CMD_INFO_SIZE];
3845                } info;
3846
3847                /* EC_SB_FW_UPDATE_STATUS   = 0x5 */
3848                struct __ec_align1 {
3849                        uint8_t data[SB_FW_UPDATE_CMD_STATUS_SIZE];
3850                } status;
3851        };
3852};
3853
3854/*
3855 * Entering Verified Boot Mode Command
3856 * Default mode is VBOOT_MODE_NORMAL if EC did not receive this command.
3857 * Valid Modes are: normal, developer, and recovery.
3858 */
3859#define EC_CMD_ENTERING_MODE 0x00B6
3860
3861struct __ec_align4 ec_params_entering_mode {
3862        int vboot_mode;
3863};
3864
3865#define VBOOT_MODE_NORMAL    0
3866#define VBOOT_MODE_DEVELOPER 1
3867#define VBOOT_MODE_RECOVERY  2
3868
3869/*****************************************************************************/
3870/*
3871 * I2C passthru protection command: Protects I2C tunnels against access on
3872 * certain addresses (board-specific).
3873 */
3874#define EC_CMD_I2C_PASSTHRU_PROTECT 0x00B7
3875
3876enum ec_i2c_passthru_protect_subcmd {
3877        EC_CMD_I2C_PASSTHRU_PROTECT_STATUS = 0x0,
3878        EC_CMD_I2C_PASSTHRU_PROTECT_ENABLE = 0x1,
3879};
3880
3881struct __ec_align1 ec_params_i2c_passthru_protect {
3882        uint8_t subcmd;
3883        uint8_t port;           /* I2C port number */
3884};
3885
3886struct __ec_align1 ec_response_i2c_passthru_protect {
3887        uint8_t status;         /* Status flags (0: unlocked, 1: locked) */
3888};
3889
3890/*****************************************************************************/
3891/* System commands */
3892
3893/*
3894 * TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't
3895 * necessarily reboot the EC.  Rename to "image" or something similar?
3896 */
3897#define EC_CMD_REBOOT_EC 0x00D2
3898
3899/* Command */
3900enum ec_reboot_cmd {
3901        EC_REBOOT_CANCEL = 0,        /* Cancel a pending reboot */
3902        EC_REBOOT_JUMP_RO = 1,       /* Jump to RO without rebooting */
3903        EC_REBOOT_JUMP_RW = 2,       /* Jump to RW without rebooting */
3904        /* (command 3 was jump to RW-B) */
3905        EC_REBOOT_COLD = 4,          /* Cold-reboot */
3906        EC_REBOOT_DISABLE_JUMP = 5,  /* Disable jump until next reboot */
3907        EC_REBOOT_HIBERNATE = 6,     /* Hibernate EC */
3908        EC_REBOOT_HIBERNATE_CLEAR_AP_OFF = 7, /* and clears AP_OFF flag */
3909};
3910
3911/* Flags for ec_params_reboot_ec.reboot_flags */
3912#define EC_REBOOT_FLAG_RESERVED0      (1 << 0)  /* Was recovery request */
3913#define EC_REBOOT_FLAG_ON_AP_SHUTDOWN (1 << 1)  /* Reboot after AP shutdown */
3914#define EC_REBOOT_FLAG_SWITCH_RW_SLOT (1 << 2)  /* Switch RW slot */
3915
3916struct __ec_align1 ec_params_reboot_ec {
3917        uint8_t cmd;           /* enum ec_reboot_cmd */
3918        uint8_t flags;         /* See EC_REBOOT_FLAG_* */
3919};
3920
3921/*
3922 * Get information on last EC panic.
3923 *
3924 * Returns variable-length platform-dependent panic information.  See panic.h
3925 * for details.
3926 */
3927#define EC_CMD_GET_PANIC_INFO 0x00D3
3928
3929/*****************************************************************************/
3930/*
3931 * Special commands
3932 *
3933 * These do not follow the normal rules for commands.  See each command for
3934 * details.
3935 */
3936
3937/*
3938 * Reboot NOW
3939 *
3940 * This command will work even when the EC LPC interface is busy, because the
3941 * reboot command is processed at interrupt level.  Note that when the EC
3942 * reboots, the host will reboot too, so there is no response to this command.
3943 *
3944 * Use EC_CMD_REBOOT_EC to reboot the EC more politely.
3945 */
3946#define EC_CMD_REBOOT 0x00D1  /* Think "die" */
3947
3948/*
3949 * Resend last response (not supported on LPC).
3950 *
3951 * Returns EC_RES_UNAVAILABLE if there is no response available - for example,
3952 * there was no previous command, or the previous command's response was too
3953 * big to save.
3954 */
3955#define EC_CMD_RESEND_RESPONSE 0x00DB
3956
3957/*
3958 * This header byte on a command indicate version 0. Any header byte less
3959 * than this means that we are talking to an old EC which doesn't support
3960 * versioning. In that case, we assume version 0.
3961 *
3962 * Header bytes greater than this indicate a later version. For example,
3963 * EC_CMD_VERSION0 + 1 means we are using version 1.
3964 *
3965 * The old EC interface must not use commands 0xdc or higher.
3966 */
3967#define EC_CMD_VERSION0 0x00DC
3968
3969/*****************************************************************************/
3970/*
3971 * PD commands
3972 *
3973 * These commands are for PD MCU communication.
3974 */
3975
3976/* EC to PD MCU exchange status command */
3977#define EC_CMD_PD_EXCHANGE_STATUS 0x0100
3978#define EC_VER_PD_EXCHANGE_STATUS 2
3979
3980enum pd_charge_state {
3981        PD_CHARGE_NO_CHANGE = 0, /* Don't change charge state */
3982        PD_CHARGE_NONE,          /* No charging allowed */
3983        PD_CHARGE_5V,            /* 5V charging only */
3984        PD_CHARGE_MAX            /* Charge at max voltage */
3985};
3986
3987/* Status of EC being sent to PD */
3988#define EC_STATUS_HIBERNATING   (1 << 0)
3989
3990struct __ec_align1 ec_params_pd_status {
3991        uint8_t status;       /* EC status */
3992        int8_t batt_soc;      /* battery state of charge */
3993        uint8_t charge_state; /* charging state (from enum pd_charge_state) */
3994};
3995
3996/* Status of PD being sent back to EC */
3997#define PD_STATUS_HOST_EVENT      (1 << 0) /* Forward host event to AP */
3998#define PD_STATUS_IN_RW           (1 << 1) /* Running RW image */
3999#define PD_STATUS_JUMPED_TO_IMAGE (1 << 2) /* Current image was jumped to */
4000#define PD_STATUS_TCPC_ALERT_0    (1 << 3) /* Alert active in port 0 TCPC */
4001#define PD_STATUS_TCPC_ALERT_1    (1 << 4) /* Alert active in port 1 TCPC */
4002#define PD_STATUS_TCPC_ALERT_2    (1 << 5) /* Alert active in port 2 TCPC */
4003#define PD_STATUS_TCPC_ALERT_3    (1 << 6) /* Alert active in port 3 TCPC */
4004#define PD_STATUS_EC_INT_ACTIVE  (PD_STATUS_TCPC_ALERT_0 | \
4005                                      PD_STATUS_TCPC_ALERT_1 | \
4006                                      PD_STATUS_HOST_EVENT)
4007struct __ec_align_size1 ec_response_pd_status {
4008        uint32_t curr_lim_ma;       /* input current limit */
4009        uint16_t status;            /* PD MCU status */
4010        int8_t active_charge_port;  /* active charging port */
4011};
4012
4013/* AP to PD MCU host event status command, cleared on read */
4014#define EC_CMD_PD_HOST_EVENT_STATUS 0x0104
4015
4016/* PD MCU host event status bits */
4017#define PD_EVENT_UPDATE_DEVICE     (1 << 0)
4018#define PD_EVENT_POWER_CHANGE      (1 << 1)
4019#define PD_EVENT_IDENTITY_RECEIVED (1 << 2)
4020#define PD_EVENT_DATA_SWAP         (1 << 3)
4021struct __ec_align4 ec_response_host_event_status {
4022        uint32_t status;      /* PD MCU host event status */
4023};
4024
4025/* Set USB type-C port role and muxes */
4026#define EC_CMD_USB_PD_CONTROL 0x0101
4027
4028enum usb_pd_control_role {
4029        USB_PD_CTRL_ROLE_NO_CHANGE = 0,
4030        USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */
4031        USB_PD_CTRL_ROLE_TOGGLE_OFF = 2,
4032        USB_PD_CTRL_ROLE_FORCE_SINK = 3,
4033        USB_PD_CTRL_ROLE_FORCE_SOURCE = 4,
4034        USB_PD_CTRL_ROLE_COUNT
4035};
4036
4037enum usb_pd_control_mux {
4038        USB_PD_CTRL_MUX_NO_CHANGE = 0,
4039        USB_PD_CTRL_MUX_NONE = 1,
4040        USB_PD_CTRL_MUX_USB = 2,
4041        USB_PD_CTRL_MUX_DP = 3,
4042        USB_PD_CTRL_MUX_DOCK = 4,
4043        USB_PD_CTRL_MUX_AUTO = 5,
4044        USB_PD_CTRL_MUX_COUNT
4045};
4046
4047enum usb_pd_control_swap {
4048        USB_PD_CTRL_SWAP_NONE = 0,
4049        USB_PD_CTRL_SWAP_DATA = 1,
4050        USB_PD_CTRL_SWAP_POWER = 2,
4051        USB_PD_CTRL_SWAP_VCONN = 3,
4052        USB_PD_CTRL_SWAP_COUNT
4053};
4054
4055struct __ec_align1 ec_params_usb_pd_control {
4056        uint8_t port;
4057        uint8_t role;
4058        uint8_t mux;
4059        uint8_t swap;
4060};
4061
4062#define PD_CTRL_RESP_ENABLED_COMMS      (1 << 0) /* Communication enabled */
4063#define PD_CTRL_RESP_ENABLED_CONNECTED  (1 << 1) /* Device connected */
4064#define PD_CTRL_RESP_ENABLED_PD_CAPABLE (1 << 2) /* Partner is PD capable */
4065
4066#define PD_CTRL_RESP_ROLE_POWER         (1 << 0) /* 0=SNK/1=SRC */
4067#define PD_CTRL_RESP_ROLE_DATA          (1 << 1) /* 0=UFP/1=DFP */
4068#define PD_CTRL_RESP_ROLE_VCONN         (1 << 2) /* Vconn status */
4069#define PD_CTRL_RESP_ROLE_DR_POWER      (1 << 3) /* Partner is dualrole power */
4070#define PD_CTRL_RESP_ROLE_DR_DATA       (1 << 4) /* Partner is dualrole data */
4071#define PD_CTRL_RESP_ROLE_USB_COMM      (1 << 5) /* Partner USB comm capable */
4072#define PD_CTRL_RESP_ROLE_EXT_POWERED   (1 << 6) /* Partner externally powerd */
4073
4074struct __ec_align1 ec_response_usb_pd_control {
4075        uint8_t enabled;
4076        uint8_t role;
4077        uint8_t polarity;
4078        uint8_t state;
4079};
4080
4081struct __ec_align1 ec_response_usb_pd_control_v1 {
4082        uint8_t enabled;
4083        uint8_t role;
4084        uint8_t polarity;
4085        char state[32];
4086};
4087
4088#define EC_CMD_USB_PD_PORTS 0x0102
4089
4090/* Maximum number of PD ports on a device, num_ports will be <= this */
4091#define EC_USB_PD_MAX_PORTS 8
4092
4093struct __ec_align1 ec_response_usb_pd_ports {
4094        uint8_t num_ports;
4095};
4096
4097#define EC_CMD_USB_PD_POWER_INFO 0x0103
4098
4099#define PD_POWER_CHARGING_PORT 0xff
4100struct __ec_align1 ec_params_usb_pd_power_info {
4101        uint8_t port;
4102};
4103
4104enum usb_chg_type {
4105        USB_CHG_TYPE_NONE,
4106        USB_CHG_TYPE_PD,
4107        USB_CHG_TYPE_C,
4108        USB_CHG_TYPE_PROPRIETARY,
4109        USB_CHG_TYPE_BC12_DCP,
4110        USB_CHG_TYPE_BC12_CDP,
4111        USB_CHG_TYPE_BC12_SDP,
4112        USB_CHG_TYPE_OTHER,
4113        USB_CHG_TYPE_VBUS,
4114        USB_CHG_TYPE_UNKNOWN,
4115};
4116enum usb_power_roles {
4117        USB_PD_PORT_POWER_DISCONNECTED,
4118        USB_PD_PORT_POWER_SOURCE,
4119        USB_PD_PORT_POWER_SINK,
4120        USB_PD_PORT_POWER_SINK_NOT_CHARGING,
4121};
4122
4123struct __ec_align2 usb_chg_measures {
4124        uint16_t voltage_max;
4125        uint16_t voltage_now;
4126        uint16_t current_max;
4127        uint16_t current_lim;
4128};
4129
4130struct __ec_align4 ec_response_usb_pd_power_info {
4131        uint8_t role;
4132        uint8_t type;
4133        uint8_t dualrole;
4134        uint8_t reserved1;
4135        struct usb_chg_measures meas;
4136        uint32_t max_power;
4137};
4138
4139/* Write USB-PD device FW */
4140#define EC_CMD_USB_PD_FW_UPDATE 0x0110
4141
4142enum usb_pd_fw_update_cmds {
4143        USB_PD_FW_REBOOT,
4144        USB_PD_FW_FLASH_ERASE,
4145        USB_PD_FW_FLASH_WRITE,
4146        USB_PD_FW_ERASE_SIG,
4147};
4148
4149struct __ec_align4 ec_params_usb_pd_fw_update {
4150        uint16_t dev_id;
4151        uint8_t cmd;
4152        uint8_t port;
4153        uint32_t size;     /* Size to write in bytes */
4154        /* Followed by data to write */
4155};
4156
4157/* Write USB-PD Accessory RW_HASH table entry */
4158#define EC_CMD_USB_PD_RW_HASH_ENTRY 0x0111
4159/* RW hash is first 20 bytes of SHA-256 of RW section */
4160#define PD_RW_HASH_SIZE 20
4161struct __ec_align1 ec_params_usb_pd_rw_hash_entry {
4162        uint16_t dev_id;
4163        uint8_t dev_rw_hash[PD_RW_HASH_SIZE];
4164        uint8_t reserved;        /* For alignment of current_image
4165                                  * TODO(rspangler) but it's not aligned!
4166                                  * Should have been reserved[2]. */
4167        uint32_t current_image;  /* One of ec_current_image */
4168};
4169
4170/* Read USB-PD Accessory info */
4171#define EC_CMD_USB_PD_DEV_INFO 0x0112
4172
4173struct __ec_align1 ec_params_usb_pd_info_request {
4174        uint8_t port;
4175};
4176
4177/* Read USB-PD Device discovery info */
4178#define EC_CMD_USB_PD_DISCOVERY 0x0113
4179struct __ec_align_size1 ec_params_usb_pd_discovery_entry {
4180        uint16_t vid;  /* USB-IF VID */
4181        uint16_t pid;  /* USB-IF PID */
4182        uint8_t ptype; /* product type (hub,periph,cable,ama) */
4183};
4184
4185/* Override default charge behavior */
4186#define EC_CMD_PD_CHARGE_PORT_OVERRIDE 0x0114
4187
4188/* Negative port parameters have special meaning */
4189enum usb_pd_override_ports {
4190        OVERRIDE_DONT_CHARGE = -2,
4191        OVERRIDE_OFF = -1,
4192        /* [0, CONFIG_USB_PD_PORT_COUNT): Port# */
4193};
4194
4195struct __ec_align2 ec_params_charge_port_override {
4196        int16_t override_port; /* Override port# */
4197};
4198
4199/* Read (and delete) one entry of PD event log */
4200#define EC_CMD_PD_GET_LOG_ENTRY 0x0115
4201
4202struct __ec_align4 ec_response_pd_log {
4203        uint32_t timestamp; /* relative timestamp in milliseconds */
4204        uint8_t type;       /* event type : see PD_EVENT_xx below */
4205        uint8_t size_port;  /* [7:5] port number [4:0] payload size in bytes */
4206        uint16_t data;      /* type-defined data payload */
4207        uint8_t payload[0]; /* optional additional data payload: 0..16 bytes */
4208};
4209
4210
4211/* The timestamp is the microsecond counter shifted to get about a ms. */
4212#define PD_LOG_TIMESTAMP_SHIFT 10 /* 1 LSB = 1024us */
4213
4214#define PD_LOG_SIZE_MASK  0x1f
4215#define PD_LOG_PORT_MASK  0xe0
4216#define PD_LOG_PORT_SHIFT    5
4217#define PD_LOG_PORT_SIZE(port, size) (((port) << PD_LOG_PORT_SHIFT) | \
4218                                      ((size) & PD_LOG_SIZE_MASK))
4219#define PD_LOG_PORT(size_port) ((size_port) >> PD_LOG_PORT_SHIFT)
4220#define PD_LOG_SIZE(size_port) ((size_port) & PD_LOG_SIZE_MASK)
4221
4222/* PD event log : entry types */
4223/* PD MCU events */
4224#define PD_EVENT_MCU_BASE       0x00
4225#define PD_EVENT_MCU_CHARGE             (PD_EVENT_MCU_BASE+0)
4226#define PD_EVENT_MCU_CONNECT            (PD_EVENT_MCU_BASE+1)
4227/* Reserved for custom board event */
4228#define PD_EVENT_MCU_BOARD_CUSTOM       (PD_EVENT_MCU_BASE+2)
4229/* PD generic accessory events */
4230#define PD_EVENT_ACC_BASE       0x20
4231#define PD_EVENT_ACC_RW_FAIL   (PD_EVENT_ACC_BASE+0)
4232#define PD_EVENT_ACC_RW_ERASE  (PD_EVENT_ACC_BASE+1)
4233/* PD power supply events */
4234#define PD_EVENT_PS_BASE        0x40
4235#define PD_EVENT_PS_FAULT      (PD_EVENT_PS_BASE+0)
4236/* PD video dongles events */
4237#define PD_EVENT_VIDEO_BASE     0x60
4238#define PD_EVENT_VIDEO_DP_MODE (PD_EVENT_VIDEO_BASE+0)
4239#define PD_EVENT_VIDEO_CODEC   (PD_EVENT_VIDEO_BASE+1)
4240/* Returned in the "type" field, when there is no entry available */
4241#define PD_EVENT_NO_ENTRY       0xff
4242
4243/*
4244 * PD_EVENT_MCU_CHARGE event definition :
4245 * the payload is "struct usb_chg_measures"
4246 * the data field contains the port state flags as defined below :
4247 */
4248/* Port partner is a dual role device */
4249#define CHARGE_FLAGS_DUAL_ROLE         (1 << 15)
4250/* Port is the pending override port */
4251#define CHARGE_FLAGS_DELAYED_OVERRIDE  (1 << 14)
4252/* Port is the override port */
4253#define CHARGE_FLAGS_OVERRIDE          (1 << 13)
4254/* Charger type */
4255#define CHARGE_FLAGS_TYPE_SHIFT               3
4256#define CHARGE_FLAGS_TYPE_MASK       (0xf << CHARGE_FLAGS_TYPE_SHIFT)
4257/* Power delivery role */
4258#define CHARGE_FLAGS_ROLE_MASK         (7 <<  0)
4259
4260/*
4261 * PD_EVENT_PS_FAULT data field flags definition :
4262 */
4263#define PS_FAULT_OCP                          1
4264#define PS_FAULT_FAST_OCP                     2
4265#define PS_FAULT_OVP                          3
4266#define PS_FAULT_DISCH                        4
4267
4268/*
4269 * PD_EVENT_VIDEO_CODEC payload is "struct mcdp_info".
4270 */
4271struct __ec_align4 mcdp_version {
4272        uint8_t major;
4273        uint8_t minor;
4274        uint16_t build;
4275};
4276
4277struct __ec_align4 mcdp_info {
4278        uint8_t family[2];
4279        uint8_t chipid[2];
4280        struct mcdp_version irom;
4281        struct mcdp_version fw;
4282};
4283
4284/* struct mcdp_info field decoding */
4285#define MCDP_CHIPID(chipid) ((chipid[0] << 8) | chipid[1])
4286#define MCDP_FAMILY(family) ((family[0] << 8) | family[1])
4287
4288/* Get/Set USB-PD Alternate mode info */
4289#define EC_CMD_USB_PD_GET_AMODE 0x0116
4290struct __ec_align_size1 ec_params_usb_pd_get_mode_request {
4291        uint16_t svid_idx; /* SVID index to get */
4292        uint8_t port;      /* port */
4293};
4294
4295struct __ec_align4 ec_params_usb_pd_get_mode_response {
4296        uint16_t svid;   /* SVID */
4297        uint16_t opos;    /* Object Position */
4298        uint32_t vdo[6]; /* Mode VDOs */
4299};
4300
4301#define EC_CMD_USB_PD_SET_AMODE 0x0117
4302
4303enum pd_mode_cmd {
4304        PD_EXIT_MODE = 0,
4305        PD_ENTER_MODE = 1,
4306        /* Not a command.  Do NOT remove. */
4307        PD_MODE_CMD_COUNT,
4308};
4309
4310struct __ec_align4 ec_params_usb_pd_set_mode_request {
4311        uint32_t cmd;  /* enum pd_mode_cmd */
4312        uint16_t svid; /* SVID to set */
4313        uint8_t opos;  /* Object Position */
4314        uint8_t port;  /* port */
4315};
4316
4317/* Ask the PD MCU to record a log of a requested type */
4318#define EC_CMD_PD_WRITE_LOG_ENTRY 0x0118
4319
4320struct __ec_align1 ec_params_pd_write_log_entry {
4321        uint8_t type; /* event type : see PD_EVENT_xx above */
4322        uint8_t port; /* port#, or 0 for events unrelated to a given port */
4323};
4324
4325
4326/* Control USB-PD chip */
4327#define EC_CMD_PD_CONTROL 0x0119
4328
4329enum ec_pd_control_cmd {
4330        PD_SUSPEND = 0,      /* Suspend the PD chip (EC: stop talking to PD) */
4331        PD_RESUME,           /* Resume the PD chip (EC: start talking to PD) */
4332        PD_RESET,            /* Force reset the PD chip */
4333        PD_CONTROL_DISABLE   /* Disable further calls to this command */
4334};
4335
4336struct __ec_align1 ec_params_pd_control {
4337        uint8_t chip;         /* chip id (should be 0) */
4338        uint8_t subcmd;
4339};
4340
4341/* Get info about USB-C SS muxes */
4342#define EC_CMD_USB_PD_MUX_INFO 0x011A
4343
4344struct __ec_align1 ec_params_usb_pd_mux_info {
4345        uint8_t port; /* USB-C port number */
4346};
4347
4348/* Flags representing mux state */
4349#define USB_PD_MUX_USB_ENABLED       (1 << 0)
4350#define USB_PD_MUX_DP_ENABLED        (1 << 1)
4351#define USB_PD_MUX_POLARITY_INVERTED (1 << 2)
4352#define USB_PD_MUX_HPD_IRQ           (1 << 3)
4353
4354struct __ec_align1 ec_response_usb_pd_mux_info {
4355        uint8_t flags; /* USB_PD_MUX_*-encoded USB mux state */
4356};
4357
4358#define EC_CMD_PD_CHIP_INFO             0x011B
4359
4360struct __ec_align1 ec_params_pd_chip_info {
4361        uint8_t port;   /* USB-C port number */
4362        uint8_t renew;  /* Force renewal */
4363};
4364
4365struct __ec_align2 ec_response_pd_chip_info {
4366        uint16_t vendor_id;
4367        uint16_t product_id;
4368        uint16_t device_id;
4369        union {
4370                uint8_t fw_version_string[8];
4371                uint64_t fw_version_number;
4372        };
4373};
4374
4375/* Run RW signature verification and get status */
4376#define EC_CMD_RWSIG_CHECK_STATUS       0x011C
4377
4378struct __ec_align4 ec_response_rwsig_check_status {
4379        uint32_t status;
4380};
4381
4382/* For controlling RWSIG task */
4383#define EC_CMD_RWSIG_ACTION     0x011D
4384
4385enum rwsig_action {
4386        RWSIG_ACTION_ABORT = 0,         /* Abort RWSIG and prevent jumping */
4387        RWSIG_ACTION_CONTINUE = 1,      /* Jump to RW immediately */
4388};
4389
4390struct __ec_align4 ec_params_rwsig_action {
4391        uint32_t action;
4392};
4393
4394/* Run verification on a slot */
4395#define EC_CMD_EFS_VERIFY       0x011E
4396
4397struct __ec_align1 ec_params_efs_verify {
4398        uint8_t region;         /* enum ec_flash_region */
4399};
4400
4401/*
4402 * Retrieve info from Cros Board Info store. Response is based on the data
4403 * type. Integers return a uint32. Strings return a string, using the response
4404 * size to determine how big it is.
4405 */
4406#define EC_CMD_GET_CROS_BOARD_INFO      0x011F
4407/*
4408 * Write info into Cros Board Info on EEPROM. Write fails if the board has
4409 * hardware write-protect enabled.
4410 */
4411#define EC_CMD_SET_CROS_BOARD_INFO      0x0120
4412
4413enum cbi_data_tag {
4414        CBI_TAG_BOARD_VERSION = 0, /* uint16_t or uint8_t[] = {minor,major} */
4415        CBI_TAG_OEM_ID = 1,        /* uint8_t */
4416        CBI_TAG_SKU_ID = 2,        /* uint8_t */
4417        CBI_TAG_COUNT,
4418};
4419
4420/*
4421 * Flags to control read operation
4422 *
4423 * RELOAD:  Invalidate cache and read data from EEPROM. Useful to verify
4424 *          write was successful without reboot.
4425 */
4426#define CBI_GET_RELOAD          (1 << 0)
4427
4428struct __ec_align4 ec_params_get_cbi {
4429        uint32_t type;          /* enum cbi_data_tag */
4430        uint32_t flag;          /* CBI_GET_* */
4431};
4432
4433/*
4434 * Flags to control write behavior.
4435 *
4436 * NO_SYNC: Makes EC update data in RAM but skip writing to EEPROM. It's
4437 *          useful when writing multiple fields in a row.
4438 * INIT:    Needs to be set when creating a new CBI from scratch. All fields
4439 *          will be initialized to zero first.
4440 */
4441#define CBI_SET_NO_SYNC         (1 << 0)
4442#define CBI_SET_INIT            (1 << 1)
4443
4444struct __ec_align1 ec_params_set_cbi {
4445        uint32_t tag;           /* enum cbi_data_tag */
4446        uint32_t flag;          /* CBI_SET_* */
4447        uint32_t size;          /* Data size */
4448        uint8_t data[];         /* For string and raw data */
4449};
4450
4451/*****************************************************************************/
4452/* The command range 0x200-0x2FF is reserved for Rotor. */
4453
4454/*****************************************************************************/
4455/*
4456 * Reserve a range of host commands for the CR51 firmware.
4457 */
4458#define EC_CMD_CR51_BASE 0x0300
4459#define EC_CMD_CR51_LAST 0x03FF
4460
4461/*****************************************************************************/
4462/* Fingerprint MCU commands: range 0x0400-0x040x */
4463
4464/* Fingerprint SPI sensor passthru command: prototyping ONLY */
4465#define EC_CMD_FP_PASSTHRU 0x0400
4466
4467#define EC_FP_FLAG_NOT_COMPLETE 0x1
4468
4469struct __ec_align2 ec_params_fp_passthru {
4470        uint16_t len;           /* Number of bytes to write then read */
4471        uint16_t flags;         /* EC_FP_FLAG_xxx */
4472        uint8_t data[];         /* Data to send */
4473};
4474
4475/* Fingerprint sensor configuration command: prototyping ONLY */
4476#define EC_CMD_FP_SENSOR_CONFIG 0x0401
4477
4478#define EC_FP_SENSOR_CONFIG_MAX_REGS 16
4479
4480struct __ec_align2 ec_params_fp_sensor_config {
4481        uint8_t count;          /* Number of setup registers */
4482        /*
4483         * the value to send to each of the 'count' setup registers
4484         * is stored in the 'data' array for 'len' bytes just after
4485         * the previous one.
4486         */
4487        uint8_t len[EC_FP_SENSOR_CONFIG_MAX_REGS];
4488        uint8_t data[];
4489};
4490
4491/* Configure the Fingerprint MCU behavior */
4492#define EC_CMD_FP_MODE 0x0402
4493
4494/* Put the sensor in its lowest power mode */
4495#define FP_MODE_DEEPSLEEP     (1<<0)
4496/* Wait to see a finger on the sensor */
4497#define FP_MODE_FINGER_DOWN   (1<<1)
4498/* Poll until the finger has left the sensor */
4499#define FP_MODE_FINGER_UP     (1<<2)
4500/* Capture the current finger image */
4501#define FP_MODE_CAPTURE       (1<<3)
4502/* special value: don't change anything just read back current mode */
4503#define FP_MODE_DONT_CHANGE   (1<<31)
4504
4505struct __ec_align4 ec_params_fp_mode {
4506        uint32_t mode; /* as defined by FP_MODE_ constants */
4507        /* TBD */
4508};
4509
4510struct __ec_align4 ec_response_fp_mode {
4511        uint32_t mode; /* as defined by FP_MODE_ constants */
4512        /* TBD */
4513};
4514
4515/* Retrieve Fingerprint sensor information */
4516#define EC_CMD_FP_INFO 0x0403
4517
4518struct __ec_align2 ec_response_fp_info {
4519        /* Sensor identification */
4520        uint32_t vendor_id;
4521        uint32_t product_id;
4522        uint32_t model_id;
4523        uint32_t version;
4524        /* Image frame characteristics */
4525        uint32_t frame_size;
4526        uint32_t pixel_format; /* using V4L2_PIX_FMT_ */
4527        uint16_t width;
4528        uint16_t height;
4529        uint16_t bpp;
4530};
4531
4532/* Get the last captured finger frame: TODO: will be AES-encrypted */
4533#define EC_CMD_FP_FRAME 0x0404
4534
4535struct __ec_align4 ec_params_fp_frame {
4536        uint32_t offset;
4537        uint32_t size;
4538};
4539
4540/*****************************************************************************/
4541/* Touchpad MCU commands: range 0x0500-0x05FF */
4542
4543/* Perform touchpad self test */
4544#define EC_CMD_TP_SELF_TEST 0x0500
4545
4546/* Get number of frame types, and the size of each type */
4547#define EC_CMD_TP_FRAME_INFO 0x0501
4548
4549struct __ec_align4 ec_response_tp_frame_info {
4550        uint32_t n_frames;
4551        uint32_t frame_sizes[0];
4552};
4553
4554/* Create a snapshot of current frame readings */
4555#define EC_CMD_TP_FRAME_SNAPSHOT 0x0502
4556
4557/* Read the frame */
4558#define EC_CMD_TP_FRAME_GET 0x0503
4559
4560struct __ec_align4 ec_params_tp_frame_get {
4561        uint32_t frame_index;
4562        uint32_t offset;
4563        uint32_t size;
4564};
4565
4566/*****************************************************************************/
4567/*
4568 * Reserve a range of host commands for board-specific, experimental, or
4569 * special purpose features. These can be (re)used without updating this file.
4570 *
4571 * CAUTION: Don't go nuts with this. Shipping products should document ALL
4572 * their EC commands for easier development, testing, debugging, and support.
4573 *
4574 * All commands MUST be #defined to be 4-digit UPPER CASE hex values
4575 * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
4576 *
4577 * In your experimental code, you may want to do something like this:
4578 *
4579 *   #define EC_CMD_MAGIC_FOO 0x0000
4580 *   #define EC_CMD_MAGIC_BAR 0x0001
4581 *   #define EC_CMD_MAGIC_HEY 0x0002
4582 *
4583 *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_FOO, magic_foo_handler,
4584 *      EC_VER_MASK(0);
4585 *
4586 *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_BAR, magic_bar_handler,
4587 *      EC_VER_MASK(0);
4588 *
4589 *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_HEY, magic_hey_handler,
4590 *      EC_VER_MASK(0);
4591 */
4592#define EC_CMD_BOARD_SPECIFIC_BASE 0x3E00
4593#define EC_CMD_BOARD_SPECIFIC_LAST 0x3FFF
4594
4595/*
4596 * Given the private host command offset, calculate the true private host
4597 * command value.
4598 */
4599#define EC_PRIVATE_HOST_COMMAND_VALUE(command) \
4600        (EC_CMD_BOARD_SPECIFIC_BASE + (command))
4601
4602/*****************************************************************************/
4603/*
4604 * Passthru commands
4605 *
4606 * Some platforms have sub-processors chained to each other.  For example.
4607 *
4608 *     AP <--> EC <--> PD MCU
4609 *
4610 * The top 2 bits of the command number are used to indicate which device the
4611 * command is intended for.  Device 0 is always the device receiving the
4612 * command; other device mapping is board-specific.
4613 *
4614 * When a device receives a command to be passed to a sub-processor, it passes
4615 * it on with the device number set back to 0.  This allows the sub-processor
4616 * to remain blissfully unaware of whether the command originated on the next
4617 * device up the chain, or was passed through from the AP.
4618 *
4619 * In the above example, if the AP wants to send command 0x0002 to the PD MCU,
4620 *     AP sends command 0x4002 to the EC
4621 *     EC sends command 0x0002 to the PD MCU
4622 *     EC forwards PD MCU response back to the AP
4623 */
4624
4625/* Offset and max command number for sub-device n */
4626#define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n))
4627#define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff)
4628
4629/*****************************************************************************/
4630/*
4631 * Deprecated constants. These constants have been renamed for clarity. The
4632 * meaning and size has not changed. Programs that use the old names should
4633 * switch to the new names soon, as the old names may not be carried forward
4634 * forever.
4635 */
4636#define EC_HOST_PARAM_SIZE      EC_PROTO2_MAX_PARAM_SIZE
4637#define EC_LPC_ADDR_OLD_PARAM   EC_HOST_CMD_REGION1
4638#define EC_OLD_PARAM_SIZE       EC_HOST_CMD_REGION_SIZE
4639
4640#endif  /* !__ACPI__ && !__KERNEL__ */
4641
4642#endif  /* __CROS_EC_COMMANDS_H */
4643