uboot/include/linux/mtd/spinand.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Copyright (c) 2016-2017 Micron Technology, Inc.
   4 *
   5 *  Authors:
   6 *      Peter Pan <peterpandong@micron.com>
   7 */
   8#ifndef __LINUX_MTD_SPINAND_H
   9#define __LINUX_MTD_SPINAND_H
  10
  11#ifndef __UBOOT__
  12#include <linux/mutex.h>
  13#include <linux/bitops.h>
  14#include <linux/device.h>
  15#include <linux/mtd/mtd.h>
  16#include <linux/mtd/nand.h>
  17#include <linux/spi/spi.h>
  18#include <linux/spi/spi-mem.h>
  19#else
  20#include <common.h>
  21#include <spi.h>
  22#include <spi-mem.h>
  23#include <linux/mtd/nand.h>
  24#endif
  25
  26/**
  27 * Standard SPI NAND flash operations
  28 */
  29
  30#define SPINAND_RESET_OP                                                \
  31        SPI_MEM_OP(SPI_MEM_OP_CMD(0xff, 1),                             \
  32                   SPI_MEM_OP_NO_ADDR,                                  \
  33                   SPI_MEM_OP_NO_DUMMY,                                 \
  34                   SPI_MEM_OP_NO_DATA)
  35
  36#define SPINAND_WR_EN_DIS_OP(enable)                                    \
  37        SPI_MEM_OP(SPI_MEM_OP_CMD((enable) ? 0x06 : 0x04, 1),           \
  38                   SPI_MEM_OP_NO_ADDR,                                  \
  39                   SPI_MEM_OP_NO_DUMMY,                                 \
  40                   SPI_MEM_OP_NO_DATA)
  41
  42#define SPINAND_READID_OP(ndummy, buf, len)                             \
  43        SPI_MEM_OP(SPI_MEM_OP_CMD(0x9f, 1),                             \
  44                   SPI_MEM_OP_NO_ADDR,                                  \
  45                   SPI_MEM_OP_DUMMY(ndummy, 1),                         \
  46                   SPI_MEM_OP_DATA_IN(len, buf, 1))
  47
  48#define SPINAND_SET_FEATURE_OP(reg, valptr)                             \
  49        SPI_MEM_OP(SPI_MEM_OP_CMD(0x1f, 1),                             \
  50                   SPI_MEM_OP_ADDR(1, reg, 1),                          \
  51                   SPI_MEM_OP_NO_DUMMY,                                 \
  52                   SPI_MEM_OP_DATA_OUT(1, valptr, 1))
  53
  54#define SPINAND_GET_FEATURE_OP(reg, valptr)                             \
  55        SPI_MEM_OP(SPI_MEM_OP_CMD(0x0f, 1),                             \
  56                   SPI_MEM_OP_ADDR(1, reg, 1),                          \
  57                   SPI_MEM_OP_NO_DUMMY,                                 \
  58                   SPI_MEM_OP_DATA_IN(1, valptr, 1))
  59
  60#define SPINAND_BLK_ERASE_OP(addr)                                      \
  61        SPI_MEM_OP(SPI_MEM_OP_CMD(0xd8, 1),                             \
  62                   SPI_MEM_OP_ADDR(3, addr, 1),                         \
  63                   SPI_MEM_OP_NO_DUMMY,                                 \
  64                   SPI_MEM_OP_NO_DATA)
  65
  66#define SPINAND_PAGE_READ_OP(addr)                                      \
  67        SPI_MEM_OP(SPI_MEM_OP_CMD(0x13, 1),                             \
  68                   SPI_MEM_OP_ADDR(3, addr, 1),                         \
  69                   SPI_MEM_OP_NO_DUMMY,                                 \
  70                   SPI_MEM_OP_NO_DATA)
  71
  72#define SPINAND_PAGE_READ_FROM_CACHE_OP(fast, addr, ndummy, buf, len)   \
  73        SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1),               \
  74                   SPI_MEM_OP_ADDR(2, addr, 1),                         \
  75                   SPI_MEM_OP_DUMMY(ndummy, 1),                         \
  76                   SPI_MEM_OP_DATA_IN(len, buf, 1))
  77
  78#define SPINAND_PAGE_READ_FROM_CACHE_X2_OP(addr, ndummy, buf, len)      \
  79        SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1),                             \
  80                   SPI_MEM_OP_ADDR(2, addr, 1),                         \
  81                   SPI_MEM_OP_DUMMY(ndummy, 1),                         \
  82                   SPI_MEM_OP_DATA_IN(len, buf, 2))
  83
  84#define SPINAND_PAGE_READ_FROM_CACHE_X4_OP(addr, ndummy, buf, len)      \
  85        SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1),                             \
  86                   SPI_MEM_OP_ADDR(2, addr, 1),                         \
  87                   SPI_MEM_OP_DUMMY(ndummy, 1),                         \
  88                   SPI_MEM_OP_DATA_IN(len, buf, 4))
  89
  90#define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(addr, ndummy, buf, len)  \
  91        SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1),                             \
  92                   SPI_MEM_OP_ADDR(2, addr, 2),                         \
  93                   SPI_MEM_OP_DUMMY(ndummy, 2),                         \
  94                   SPI_MEM_OP_DATA_IN(len, buf, 2))
  95
  96#define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(addr, ndummy, buf, len)  \
  97        SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1),                             \
  98                   SPI_MEM_OP_ADDR(2, addr, 4),                         \
  99                   SPI_MEM_OP_DUMMY(ndummy, 4),                         \
 100                   SPI_MEM_OP_DATA_IN(len, buf, 4))
 101
 102#define SPINAND_PROG_EXEC_OP(addr)                                      \
 103        SPI_MEM_OP(SPI_MEM_OP_CMD(0x10, 1),                             \
 104                   SPI_MEM_OP_ADDR(3, addr, 1),                         \
 105                   SPI_MEM_OP_NO_DUMMY,                                 \
 106                   SPI_MEM_OP_NO_DATA)
 107
 108#define SPINAND_PROG_LOAD(reset, addr, buf, len)                        \
 109        SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x02 : 0x84, 1),              \
 110                   SPI_MEM_OP_ADDR(2, addr, 1),                         \
 111                   SPI_MEM_OP_NO_DUMMY,                                 \
 112                   SPI_MEM_OP_DATA_OUT(len, buf, 1))
 113
 114#define SPINAND_PROG_LOAD_X4(reset, addr, buf, len)                     \
 115        SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x32 : 0x34, 1),              \
 116                   SPI_MEM_OP_ADDR(2, addr, 1),                         \
 117                   SPI_MEM_OP_NO_DUMMY,                                 \
 118                   SPI_MEM_OP_DATA_OUT(len, buf, 4))
 119
 120/**
 121 * Standard SPI NAND flash commands
 122 */
 123#define SPINAND_CMD_PROG_LOAD_X4                0x32
 124#define SPINAND_CMD_PROG_LOAD_RDM_DATA_X4       0x34
 125
 126/* feature register */
 127#define REG_BLOCK_LOCK          0xa0
 128#define BL_ALL_UNLOCKED         0x00
 129
 130/* configuration register */
 131#define REG_CFG                 0xb0
 132#define CFG_OTP_ENABLE          BIT(6)
 133#define CFG_ECC_ENABLE          BIT(4)
 134#define CFG_QUAD_ENABLE         BIT(0)
 135
 136/* status register */
 137#define REG_STATUS              0xc0
 138#define STATUS_BUSY             BIT(0)
 139#define STATUS_ERASE_FAILED     BIT(2)
 140#define STATUS_PROG_FAILED      BIT(3)
 141#define STATUS_ECC_MASK         GENMASK(5, 4)
 142#define STATUS_ECC_NO_BITFLIPS  (0 << 4)
 143#define STATUS_ECC_HAS_BITFLIPS (1 << 4)
 144#define STATUS_ECC_UNCOR_ERROR  (2 << 4)
 145
 146struct spinand_op;
 147struct spinand_device;
 148
 149#define SPINAND_MAX_ID_LEN      4
 150
 151/**
 152 * struct spinand_id - SPI NAND id structure
 153 * @data: buffer containing the id bytes. Currently 4 bytes large, but can
 154 *        be extended if required
 155 * @len: ID length
 156 *
 157 * struct_spinand_id->data contains all bytes returned after a READ_ID command,
 158 * including dummy bytes if the chip does not emit ID bytes right after the
 159 * READ_ID command. The responsibility to extract real ID bytes is left to
 160 * struct_manufacurer_ops->detect().
 161 */
 162struct spinand_id {
 163        u8 data[SPINAND_MAX_ID_LEN];
 164        int len;
 165};
 166
 167/**
 168 * struct manufacurer_ops - SPI NAND manufacturer specific operations
 169 * @detect: detect a SPI NAND device. Every time a SPI NAND device is probed
 170 *          the core calls the struct_manufacurer_ops->detect() hook of each
 171 *          registered manufacturer until one of them return 1. Note that
 172 *          the first thing to check in this hook is that the manufacturer ID
 173 *          in struct_spinand_device->id matches the manufacturer whose
 174 *          ->detect() hook has been called. Should return 1 if there's a
 175 *          match, 0 if the manufacturer ID does not match and a negative
 176 *          error code otherwise. When true is returned, the core assumes
 177 *          that properties of the NAND chip (spinand->base.memorg and
 178 *          spinand->base.eccreq) have been filled
 179 * @init: initialize a SPI NAND device
 180 * @cleanup: cleanup a SPI NAND device
 181 *
 182 * Each SPI NAND manufacturer driver should implement this interface so that
 183 * NAND chips coming from this vendor can be detected and initialized properly.
 184 */
 185struct spinand_manufacturer_ops {
 186        int (*detect)(struct spinand_device *spinand);
 187        int (*init)(struct spinand_device *spinand);
 188        void (*cleanup)(struct spinand_device *spinand);
 189};
 190
 191/**
 192 * struct spinand_manufacturer - SPI NAND manufacturer instance
 193 * @id: manufacturer ID
 194 * @name: manufacturer name
 195 * @ops: manufacturer operations
 196 */
 197struct spinand_manufacturer {
 198        u8 id;
 199        char *name;
 200        const struct spinand_manufacturer_ops *ops;
 201};
 202
 203/* SPI NAND manufacturers */
 204extern const struct spinand_manufacturer gigadevice_spinand_manufacturer;
 205extern const struct spinand_manufacturer macronix_spinand_manufacturer;
 206extern const struct spinand_manufacturer micron_spinand_manufacturer;
 207extern const struct spinand_manufacturer toshiba_spinand_manufacturer;
 208extern const struct spinand_manufacturer winbond_spinand_manufacturer;
 209
 210/**
 211 * struct spinand_op_variants - SPI NAND operation variants
 212 * @ops: the list of variants for a given operation
 213 * @nops: the number of variants
 214 *
 215 * Some operations like read-from-cache/write-to-cache have several variants
 216 * depending on the number of IO lines you use to transfer data or address
 217 * cycles. This structure is a way to describe the different variants supported
 218 * by a chip and let the core pick the best one based on the SPI mem controller
 219 * capabilities.
 220 */
 221struct spinand_op_variants {
 222        const struct spi_mem_op *ops;
 223        unsigned int nops;
 224};
 225
 226#define SPINAND_OP_VARIANTS(name, ...)                                  \
 227        const struct spinand_op_variants name = {                       \
 228                .ops = (struct spi_mem_op[]) { __VA_ARGS__ },           \
 229                .nops = sizeof((struct spi_mem_op[]){ __VA_ARGS__ }) /  \
 230                        sizeof(struct spi_mem_op),                      \
 231        }
 232
 233/**
 234 * spinand_ecc_info - description of the on-die ECC implemented by a SPI NAND
 235 *                    chip
 236 * @get_status: get the ECC status. Should return a positive number encoding
 237 *              the number of corrected bitflips if correction was possible or
 238 *              -EBADMSG if there are uncorrectable errors. I can also return
 239 *              other negative error codes if the error is not caused by
 240 *              uncorrectable bitflips
 241 * @ooblayout: the OOB layout used by the on-die ECC implementation
 242 */
 243struct spinand_ecc_info {
 244        int (*get_status)(struct spinand_device *spinand, u8 status);
 245        const struct mtd_ooblayout_ops *ooblayout;
 246};
 247
 248#define SPINAND_HAS_QE_BIT              BIT(0)
 249#define SPINAND_HAS_CR_FEAT_BIT         BIT(1)
 250
 251/**
 252 * struct spinand_info - Structure used to describe SPI NAND chips
 253 * @model: model name
 254 * @devid: device ID
 255 * @flags: OR-ing of the SPINAND_XXX flags
 256 * @memorg: memory organization
 257 * @eccreq: ECC requirements
 258 * @eccinfo: on-die ECC info
 259 * @op_variants: operations variants
 260 * @op_variants.read_cache: variants of the read-cache operation
 261 * @op_variants.write_cache: variants of the write-cache operation
 262 * @op_variants.update_cache: variants of the update-cache operation
 263 * @select_target: function used to select a target/die. Required only for
 264 *                 multi-die chips
 265 *
 266 * Each SPI NAND manufacturer driver should have a spinand_info table
 267 * describing all the chips supported by the driver.
 268 */
 269struct spinand_info {
 270        const char *model;
 271        u8 devid;
 272        u32 flags;
 273        struct nand_memory_organization memorg;
 274        struct nand_ecc_req eccreq;
 275        struct spinand_ecc_info eccinfo;
 276        struct {
 277                const struct spinand_op_variants *read_cache;
 278                const struct spinand_op_variants *write_cache;
 279                const struct spinand_op_variants *update_cache;
 280        } op_variants;
 281        int (*select_target)(struct spinand_device *spinand,
 282                             unsigned int target);
 283};
 284
 285#define SPINAND_INFO_OP_VARIANTS(__read, __write, __update)             \
 286        {                                                               \
 287                .read_cache = __read,                                   \
 288                .write_cache = __write,                                 \
 289                .update_cache = __update,                               \
 290        }
 291
 292#define SPINAND_ECCINFO(__ooblayout, __get_status)                      \
 293        .eccinfo = {                                                    \
 294                .ooblayout = __ooblayout,                               \
 295                .get_status = __get_status,                             \
 296        }
 297
 298#define SPINAND_SELECT_TARGET(__func)                                   \
 299        .select_target = __func,
 300
 301#define SPINAND_INFO(__model, __id, __memorg, __eccreq, __op_variants,  \
 302                     __flags, ...)                                      \
 303        {                                                               \
 304                .model = __model,                                       \
 305                .devid = __id,                                          \
 306                .memorg = __memorg,                                     \
 307                .eccreq = __eccreq,                                     \
 308                .op_variants = __op_variants,                           \
 309                .flags = __flags,                                       \
 310                __VA_ARGS__                                             \
 311        }
 312
 313/**
 314 * struct spinand_device - SPI NAND device instance
 315 * @base: NAND device instance
 316 * @slave: pointer to the SPI slave object
 317 * @lock: lock used to serialize accesses to the NAND
 318 * @id: NAND ID as returned by READ_ID
 319 * @flags: NAND flags
 320 * @op_templates: various SPI mem op templates
 321 * @op_templates.read_cache: read cache op template
 322 * @op_templates.write_cache: write cache op template
 323 * @op_templates.update_cache: update cache op template
 324 * @select_target: select a specific target/die. Usually called before sending
 325 *                 a command addressing a page or an eraseblock embedded in
 326 *                 this die. Only required if your chip exposes several dies
 327 * @cur_target: currently selected target/die
 328 * @eccinfo: on-die ECC information
 329 * @cfg_cache: config register cache. One entry per die
 330 * @databuf: bounce buffer for data
 331 * @oobbuf: bounce buffer for OOB data
 332 * @scratchbuf: buffer used for everything but page accesses. This is needed
 333 *              because the spi-mem interface explicitly requests that buffers
 334 *              passed in spi_mem_op be DMA-able, so we can't based the bufs on
 335 *              the stack
 336 * @manufacturer: SPI NAND manufacturer information
 337 * @priv: manufacturer private data
 338 */
 339struct spinand_device {
 340        struct nand_device base;
 341#ifndef __UBOOT__
 342        struct spi_mem *spimem;
 343        struct mutex lock;
 344#else
 345        struct spi_slave *slave;
 346#endif
 347        struct spinand_id id;
 348        u32 flags;
 349
 350        struct {
 351                const struct spi_mem_op *read_cache;
 352                const struct spi_mem_op *write_cache;
 353                const struct spi_mem_op *update_cache;
 354        } op_templates;
 355
 356        int (*select_target)(struct spinand_device *spinand,
 357                             unsigned int target);
 358        unsigned int cur_target;
 359
 360        struct spinand_ecc_info eccinfo;
 361
 362        u8 *cfg_cache;
 363        u8 *databuf;
 364        u8 *oobbuf;
 365        u8 *scratchbuf;
 366        const struct spinand_manufacturer *manufacturer;
 367        void *priv;
 368};
 369
 370/**
 371 * mtd_to_spinand() - Get the SPI NAND device attached to an MTD instance
 372 * @mtd: MTD instance
 373 *
 374 * Return: the SPI NAND device attached to @mtd.
 375 */
 376static inline struct spinand_device *mtd_to_spinand(struct mtd_info *mtd)
 377{
 378        return container_of(mtd_to_nanddev(mtd), struct spinand_device, base);
 379}
 380
 381/**
 382 * spinand_to_mtd() - Get the MTD device embedded in a SPI NAND device
 383 * @spinand: SPI NAND device
 384 *
 385 * Return: the MTD device embedded in @spinand.
 386 */
 387static inline struct mtd_info *spinand_to_mtd(struct spinand_device *spinand)
 388{
 389        return nanddev_to_mtd(&spinand->base);
 390}
 391
 392/**
 393 * nand_to_spinand() - Get the SPI NAND device embedding an NAND object
 394 * @nand: NAND object
 395 *
 396 * Return: the SPI NAND device embedding @nand.
 397 */
 398static inline struct spinand_device *nand_to_spinand(struct nand_device *nand)
 399{
 400        return container_of(nand, struct spinand_device, base);
 401}
 402
 403/**
 404 * spinand_to_nand() - Get the NAND device embedded in a SPI NAND object
 405 * @spinand: SPI NAND device
 406 *
 407 * Return: the NAND device embedded in @spinand.
 408 */
 409static inline struct nand_device *
 410spinand_to_nand(struct spinand_device *spinand)
 411{
 412        return &spinand->base;
 413}
 414
 415#ifndef __UBOOT__
 416/**
 417 * spinand_set_of_node - Attach a DT node to a SPI NAND device
 418 * @spinand: SPI NAND device
 419 * @np: DT node
 420 *
 421 * Attach a DT node to a SPI NAND device.
 422 */
 423static inline void spinand_set_of_node(struct spinand_device *spinand,
 424                                       const struct device_node *np)
 425{
 426        nanddev_set_of_node(&spinand->base, np);
 427}
 428#else
 429/**
 430 * spinand_set_of_node - Attach a DT node to a SPI NAND device
 431 * @spinand: SPI NAND device
 432 * @node: ofnode
 433 *
 434 * Attach a DT node to a SPI NAND device.
 435 */
 436static inline void spinand_set_ofnode(struct spinand_device *spinand,
 437                                      ofnode node)
 438{
 439        nanddev_set_ofnode(&spinand->base, node);
 440}
 441#endif /* __UBOOT__ */
 442
 443int spinand_match_and_init(struct spinand_device *dev,
 444                           const struct spinand_info *table,
 445                           unsigned int table_size, u8 devid);
 446
 447int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val);
 448int spinand_select_target(struct spinand_device *spinand, unsigned int target);
 449
 450#endif /* __LINUX_MTD_SPINAND_H */
 451