uboot/lib/md5.c
<<
>>
Prefs
   1/*
   2 * This file was transplanted with slight modifications from Linux sources
   3 * (fs/cifs/md5.c) into U-Boot by Bartlomiej Sieka <tur@semihalf.com>.
   4 */
   5
   6/*
   7 * This code implements the MD5 message-digest algorithm.
   8 * The algorithm is due to Ron Rivest.  This code was
   9 * written by Colin Plumb in 1993, no copyright is claimed.
  10 * This code is in the public domain; do with it what you wish.
  11 *
  12 * Equivalent code is available from RSA Data Security, Inc.
  13 * This code has been tested against that, and is equivalent,
  14 * except that you don't need to include two pages of legalese
  15 * with every copy.
  16 *
  17 * To compute the message digest of a chunk of bytes, declare an
  18 * MD5Context structure, pass it to MD5Init, call MD5Update as
  19 * needed on buffers full of bytes, and then call MD5Final, which
  20 * will fill a supplied 16-byte array with the digest.
  21 */
  22
  23/* This code slightly modified to fit into Samba by
  24   abartlet@samba.org Jun 2001
  25   and to fit the cifs vfs by
  26   Steve French sfrench@us.ibm.com */
  27
  28#include "compiler.h"
  29
  30#ifndef USE_HOSTCC
  31#include <common.h>
  32#include <watchdog.h>
  33#endif /* USE_HOSTCC */
  34#include <u-boot/md5.h>
  35
  36static void
  37MD5Transform(__u32 buf[4], __u32 const in[16]);
  38
  39/*
  40 * Note: this code is harmless on little-endian machines.
  41 */
  42static void
  43byteReverse(unsigned char *buf, unsigned longs)
  44{
  45        __u32 t;
  46        do {
  47                t = (__u32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
  48                    ((unsigned) buf[1] << 8 | buf[0]);
  49                *(__u32 *) buf = t;
  50                buf += 4;
  51        } while (--longs);
  52}
  53
  54/*
  55 * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
  56 * initialization constants.
  57 */
  58static void
  59MD5Init(struct MD5Context *ctx)
  60{
  61        ctx->buf[0] = 0x67452301;
  62        ctx->buf[1] = 0xefcdab89;
  63        ctx->buf[2] = 0x98badcfe;
  64        ctx->buf[3] = 0x10325476;
  65
  66        ctx->bits[0] = 0;
  67        ctx->bits[1] = 0;
  68}
  69
  70/*
  71 * Update context to reflect the concatenation of another buffer full
  72 * of bytes.
  73 */
  74static void
  75MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
  76{
  77        register __u32 t;
  78
  79        /* Update bitcount */
  80
  81        t = ctx->bits[0];
  82        if ((ctx->bits[0] = t + ((__u32) len << 3)) < t)
  83                ctx->bits[1]++; /* Carry from low to high */
  84        ctx->bits[1] += len >> 29;
  85
  86        t = (t >> 3) & 0x3f;    /* Bytes already in shsInfo->data */
  87
  88        /* Handle any leading odd-sized chunks */
  89
  90        if (t) {
  91                unsigned char *p = (unsigned char *) ctx->in + t;
  92
  93                t = 64 - t;
  94                if (len < t) {
  95                        memmove(p, buf, len);
  96                        return;
  97                }
  98                memmove(p, buf, t);
  99                byteReverse(ctx->in, 16);
 100                MD5Transform(ctx->buf, (__u32 *) ctx->in);
 101                buf += t;
 102                len -= t;
 103        }
 104        /* Process data in 64-byte chunks */
 105
 106        while (len >= 64) {
 107                memmove(ctx->in, buf, 64);
 108                byteReverse(ctx->in, 16);
 109                MD5Transform(ctx->buf, (__u32 *) ctx->in);
 110                buf += 64;
 111                len -= 64;
 112        }
 113
 114        /* Handle any remaining bytes of data. */
 115
 116        memmove(ctx->in, buf, len);
 117}
 118
 119/*
 120 * Final wrapup - pad to 64-byte boundary with the bit pattern
 121 * 1 0* (64-bit count of bits processed, MSB-first)
 122 */
 123static void
 124MD5Final(unsigned char digest[16], struct MD5Context *ctx)
 125{
 126        unsigned int count;
 127        unsigned char *p;
 128
 129        /* Compute number of bytes mod 64 */
 130        count = (ctx->bits[0] >> 3) & 0x3F;
 131
 132        /* Set the first char of padding to 0x80.  This is safe since there is
 133           always at least one byte free */
 134        p = ctx->in + count;
 135        *p++ = 0x80;
 136
 137        /* Bytes of padding needed to make 64 bytes */
 138        count = 64 - 1 - count;
 139
 140        /* Pad out to 56 mod 64 */
 141        if (count < 8) {
 142                /* Two lots of padding:  Pad the first block to 64 bytes */
 143                memset(p, 0, count);
 144                byteReverse(ctx->in, 16);
 145                MD5Transform(ctx->buf, (__u32 *) ctx->in);
 146
 147                /* Now fill the next block with 56 bytes */
 148                memset(ctx->in, 0, 56);
 149        } else {
 150                /* Pad block to 56 bytes */
 151                memset(p, 0, count - 8);
 152        }
 153        byteReverse(ctx->in, 14);
 154
 155        /* Append length in bits and transform */
 156        ctx->in32[14] = ctx->bits[0];
 157        ctx->in32[15] = ctx->bits[1];
 158
 159        MD5Transform(ctx->buf, (__u32 *) ctx->in);
 160        byteReverse((unsigned char *) ctx->buf, 4);
 161        memmove(digest, ctx->buf, 16);
 162        memset(ctx, 0, sizeof(*ctx));   /* In case it's sensitive */
 163}
 164
 165/* The four core functions - F1 is optimized somewhat */
 166
 167/* #define F1(x, y, z) (x & y | ~x & z) */
 168#define F1(x, y, z) (z ^ (x & (y ^ z)))
 169#define F2(x, y, z) F1(z, x, y)
 170#define F3(x, y, z) (x ^ y ^ z)
 171#define F4(x, y, z) (y ^ (x | ~z))
 172
 173/* This is the central step in the MD5 algorithm. */
 174#define MD5STEP(f, w, x, y, z, data, s) \
 175        ( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
 176
 177/*
 178 * The core of the MD5 algorithm, this alters an existing MD5 hash to
 179 * reflect the addition of 16 longwords of new data.  MD5Update blocks
 180 * the data and converts bytes into longwords for this routine.
 181 */
 182static void
 183MD5Transform(__u32 buf[4], __u32 const in[16])
 184{
 185        register __u32 a, b, c, d;
 186
 187        a = buf[0];
 188        b = buf[1];
 189        c = buf[2];
 190        d = buf[3];
 191
 192        MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
 193        MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
 194        MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
 195        MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
 196        MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
 197        MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
 198        MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
 199        MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
 200        MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
 201        MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
 202        MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
 203        MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
 204        MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
 205        MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
 206        MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
 207        MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
 208
 209        MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
 210        MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
 211        MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
 212        MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
 213        MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
 214        MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
 215        MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
 216        MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
 217        MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
 218        MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
 219        MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
 220        MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
 221        MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
 222        MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
 223        MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
 224        MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
 225
 226        MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
 227        MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
 228        MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
 229        MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
 230        MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
 231        MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
 232        MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
 233        MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
 234        MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
 235        MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
 236        MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
 237        MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
 238        MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
 239        MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
 240        MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
 241        MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
 242
 243        MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
 244        MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
 245        MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
 246        MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
 247        MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
 248        MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
 249        MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
 250        MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
 251        MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
 252        MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
 253        MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
 254        MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
 255        MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
 256        MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
 257        MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
 258        MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
 259
 260        buf[0] += a;
 261        buf[1] += b;
 262        buf[2] += c;
 263        buf[3] += d;
 264}
 265
 266/*
 267 * Calculate and store in 'output' the MD5 digest of 'len' bytes at
 268 * 'input'. 'output' must have enough space to hold 16 bytes.
 269 */
 270void
 271md5 (unsigned char *input, int len, unsigned char output[16])
 272{
 273        struct MD5Context context;
 274
 275        MD5Init(&context);
 276        MD5Update(&context, input, len);
 277        MD5Final(output, &context);
 278}
 279
 280
 281/*
 282 * Calculate and store in 'output' the MD5 digest of 'len' bytes at 'input'.
 283 * 'output' must have enough space to hold 16 bytes. If 'chunk' Trigger the
 284 * watchdog every 'chunk_sz' bytes of input processed.
 285 */
 286void
 287md5_wd(const unsigned char *input, unsigned int len, unsigned char output[16],
 288        unsigned int chunk_sz)
 289{
 290        struct MD5Context context;
 291#if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
 292        const unsigned char *end, *curr;
 293        int chunk;
 294#endif
 295
 296        MD5Init(&context);
 297
 298#if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
 299        curr = input;
 300        end = input + len;
 301        while (curr < end) {
 302                chunk = end - curr;
 303                if (chunk > chunk_sz)
 304                        chunk = chunk_sz;
 305                MD5Update(&context, curr, chunk);
 306                curr += chunk;
 307                WATCHDOG_RESET ();
 308        }
 309#else
 310        MD5Update(&context, input, len);
 311#endif
 312
 313        MD5Final(output, &context);
 314}
 315