uboot/common/dlmalloc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * This code is based on a version (aka dlmalloc) of malloc/free/realloc written
   4 * by Doug Lea and released to the public domain, as explained at
   5 * http://creativecommons.org/publicdomain/zero/1.0/-
   6 *
   7 * The original code is available at http://gee.cs.oswego.edu/pub/misc/
   8 * as file malloc-2.6.6.c.
   9 */
  10
  11#include <common.h>
  12#include <log.h>
  13#include <asm/global_data.h>
  14
  15#if CONFIG_IS_ENABLED(UNIT_TEST)
  16#define DEBUG
  17#endif
  18
  19#include <malloc.h>
  20#include <asm/io.h>
  21
  22#ifdef DEBUG
  23#if __STD_C
  24static void malloc_update_mallinfo (void);
  25void malloc_stats (void);
  26#else
  27static void malloc_update_mallinfo ();
  28void malloc_stats();
  29#endif
  30#endif  /* DEBUG */
  31
  32DECLARE_GLOBAL_DATA_PTR;
  33
  34/*
  35  Emulation of sbrk for WIN32
  36  All code within the ifdef WIN32 is untested by me.
  37
  38  Thanks to Martin Fong and others for supplying this.
  39*/
  40
  41
  42#ifdef WIN32
  43
  44#define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
  45~(malloc_getpagesize-1))
  46#define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
  47
  48/* resrve 64MB to insure large contiguous space */
  49#define RESERVED_SIZE (1024*1024*64)
  50#define NEXT_SIZE (2048*1024)
  51#define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
  52
  53struct GmListElement;
  54typedef struct GmListElement GmListElement;
  55
  56struct GmListElement
  57{
  58        GmListElement* next;
  59        void* base;
  60};
  61
  62static GmListElement* head = 0;
  63static unsigned int gNextAddress = 0;
  64static unsigned int gAddressBase = 0;
  65static unsigned int gAllocatedSize = 0;
  66
  67static
  68GmListElement* makeGmListElement (void* bas)
  69{
  70        GmListElement* this;
  71        this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
  72        assert (this);
  73        if (this)
  74        {
  75                this->base = bas;
  76                this->next = head;
  77                head = this;
  78        }
  79        return this;
  80}
  81
  82void gcleanup ()
  83{
  84        BOOL rval;
  85        assert ( (head == NULL) || (head->base == (void*)gAddressBase));
  86        if (gAddressBase && (gNextAddress - gAddressBase))
  87        {
  88                rval = VirtualFree ((void*)gAddressBase,
  89                                                        gNextAddress - gAddressBase,
  90                                                        MEM_DECOMMIT);
  91        assert (rval);
  92        }
  93        while (head)
  94        {
  95                GmListElement* next = head->next;
  96                rval = VirtualFree (head->base, 0, MEM_RELEASE);
  97                assert (rval);
  98                LocalFree (head);
  99                head = next;
 100        }
 101}
 102
 103static
 104void* findRegion (void* start_address, unsigned long size)
 105{
 106        MEMORY_BASIC_INFORMATION info;
 107        if (size >= TOP_MEMORY) return NULL;
 108
 109        while ((unsigned long)start_address + size < TOP_MEMORY)
 110        {
 111                VirtualQuery (start_address, &info, sizeof (info));
 112                if ((info.State == MEM_FREE) && (info.RegionSize >= size))
 113                        return start_address;
 114                else
 115                {
 116                        /* Requested region is not available so see if the */
 117                        /* next region is available.  Set 'start_address' */
 118                        /* to the next region and call 'VirtualQuery()' */
 119                        /* again. */
 120
 121                        start_address = (char*)info.BaseAddress + info.RegionSize;
 122
 123                        /* Make sure we start looking for the next region */
 124                        /* on the *next* 64K boundary.  Otherwise, even if */
 125                        /* the new region is free according to */
 126                        /* 'VirtualQuery()', the subsequent call to */
 127                        /* 'VirtualAlloc()' (which follows the call to */
 128                        /* this routine in 'wsbrk()') will round *down* */
 129                        /* the requested address to a 64K boundary which */
 130                        /* we already know is an address in the */
 131                        /* unavailable region.  Thus, the subsequent call */
 132                        /* to 'VirtualAlloc()' will fail and bring us back */
 133                        /* here, causing us to go into an infinite loop. */
 134
 135                        start_address =
 136                                (void *) AlignPage64K((unsigned long) start_address);
 137                }
 138        }
 139        return NULL;
 140
 141}
 142
 143
 144void* wsbrk (long size)
 145{
 146        void* tmp;
 147        if (size > 0)
 148        {
 149                if (gAddressBase == 0)
 150                {
 151                        gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
 152                        gNextAddress = gAddressBase =
 153                                (unsigned int)VirtualAlloc (NULL, gAllocatedSize,
 154                                                                                        MEM_RESERVE, PAGE_NOACCESS);
 155                } else if (AlignPage (gNextAddress + size) > (gAddressBase +
 156gAllocatedSize))
 157                {
 158                        long new_size = max (NEXT_SIZE, AlignPage (size));
 159                        void* new_address = (void*)(gAddressBase+gAllocatedSize);
 160                        do
 161                        {
 162                                new_address = findRegion (new_address, new_size);
 163
 164                                if (!new_address)
 165                                        return (void*)-1;
 166
 167                                gAddressBase = gNextAddress =
 168                                        (unsigned int)VirtualAlloc (new_address, new_size,
 169                                                                                                MEM_RESERVE, PAGE_NOACCESS);
 170                                /* repeat in case of race condition */
 171                                /* The region that we found has been snagged */
 172                                /* by another thread */
 173                        }
 174                        while (gAddressBase == 0);
 175
 176                        assert (new_address == (void*)gAddressBase);
 177
 178                        gAllocatedSize = new_size;
 179
 180                        if (!makeGmListElement ((void*)gAddressBase))
 181                                return (void*)-1;
 182                }
 183                if ((size + gNextAddress) > AlignPage (gNextAddress))
 184                {
 185                        void* res;
 186                        res = VirtualAlloc ((void*)AlignPage (gNextAddress),
 187                                                                (size + gNextAddress -
 188                                                                 AlignPage (gNextAddress)),
 189                                                                MEM_COMMIT, PAGE_READWRITE);
 190                        if (!res)
 191                                return (void*)-1;
 192                }
 193                tmp = (void*)gNextAddress;
 194                gNextAddress = (unsigned int)tmp + size;
 195                return tmp;
 196        }
 197        else if (size < 0)
 198        {
 199                unsigned int alignedGoal = AlignPage (gNextAddress + size);
 200                /* Trim by releasing the virtual memory */
 201                if (alignedGoal >= gAddressBase)
 202                {
 203                        VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
 204                                                 MEM_DECOMMIT);
 205                        gNextAddress = gNextAddress + size;
 206                        return (void*)gNextAddress;
 207                }
 208                else
 209                {
 210                        VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
 211                                                 MEM_DECOMMIT);
 212                        gNextAddress = gAddressBase;
 213                        return (void*)-1;
 214                }
 215        }
 216        else
 217        {
 218                return (void*)gNextAddress;
 219        }
 220}
 221
 222#endif
 223
 224
 225
 226/*
 227  Type declarations
 228*/
 229
 230
 231struct malloc_chunk
 232{
 233  INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
 234  INTERNAL_SIZE_T size;      /* Size in bytes, including overhead. */
 235  struct malloc_chunk* fd;   /* double links -- used only if free. */
 236  struct malloc_chunk* bk;
 237} __attribute__((__may_alias__)) ;
 238
 239typedef struct malloc_chunk* mchunkptr;
 240
 241/*
 242
 243   malloc_chunk details:
 244
 245    (The following includes lightly edited explanations by Colin Plumb.)
 246
 247    Chunks of memory are maintained using a `boundary tag' method as
 248    described in e.g., Knuth or Standish.  (See the paper by Paul
 249    Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
 250    survey of such techniques.)  Sizes of free chunks are stored both
 251    in the front of each chunk and at the end.  This makes
 252    consolidating fragmented chunks into bigger chunks very fast.  The
 253    size fields also hold bits representing whether chunks are free or
 254    in use.
 255
 256    An allocated chunk looks like this:
 257
 258
 259    chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 260            |             Size of previous chunk, if allocated            | |
 261            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 262            |             Size of chunk, in bytes                         |P|
 263      mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 264            |             User data starts here...                          .
 265            .                                                               .
 266            .             (malloc_usable_space() bytes)                     .
 267            .                                                               |
 268nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 269            |             Size of chunk                                     |
 270            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 271
 272
 273    Where "chunk" is the front of the chunk for the purpose of most of
 274    the malloc code, but "mem" is the pointer that is returned to the
 275    user.  "Nextchunk" is the beginning of the next contiguous chunk.
 276
 277    Chunks always begin on even word boundries, so the mem portion
 278    (which is returned to the user) is also on an even word boundary, and
 279    thus double-word aligned.
 280
 281    Free chunks are stored in circular doubly-linked lists, and look like this:
 282
 283    chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 284            |             Size of previous chunk                            |
 285            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 286    `head:' |             Size of chunk, in bytes                         |P|
 287      mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 288            |             Forward pointer to next chunk in list             |
 289            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 290            |             Back pointer to previous chunk in list            |
 291            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 292            |             Unused space (may be 0 bytes long)                .
 293            .                                                               .
 294            .                                                               |
 295
 296nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 297    `foot:' |             Size of chunk, in bytes                           |
 298            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 299
 300    The P (PREV_INUSE) bit, stored in the unused low-order bit of the
 301    chunk size (which is always a multiple of two words), is an in-use
 302    bit for the *previous* chunk.  If that bit is *clear*, then the
 303    word before the current chunk size contains the previous chunk
 304    size, and can be used to find the front of the previous chunk.
 305    (The very first chunk allocated always has this bit set,
 306    preventing access to non-existent (or non-owned) memory.)
 307
 308    Note that the `foot' of the current chunk is actually represented
 309    as the prev_size of the NEXT chunk. (This makes it easier to
 310    deal with alignments etc).
 311
 312    The two exceptions to all this are
 313
 314     1. The special chunk `top', which doesn't bother using the
 315        trailing size field since there is no
 316        next contiguous chunk that would have to index off it. (After
 317        initialization, `top' is forced to always exist.  If it would
 318        become less than MINSIZE bytes long, it is replenished via
 319        malloc_extend_top.)
 320
 321     2. Chunks allocated via mmap, which have the second-lowest-order
 322        bit (IS_MMAPPED) set in their size fields.  Because they are
 323        never merged or traversed from any other chunk, they have no
 324        foot size or inuse information.
 325
 326    Available chunks are kept in any of several places (all declared below):
 327
 328    * `av': An array of chunks serving as bin headers for consolidated
 329       chunks. Each bin is doubly linked.  The bins are approximately
 330       proportionally (log) spaced.  There are a lot of these bins
 331       (128). This may look excessive, but works very well in
 332       practice.  All procedures maintain the invariant that no
 333       consolidated chunk physically borders another one. Chunks in
 334       bins are kept in size order, with ties going to the
 335       approximately least recently used chunk.
 336
 337       The chunks in each bin are maintained in decreasing sorted order by
 338       size.  This is irrelevant for the small bins, which all contain
 339       the same-sized chunks, but facilitates best-fit allocation for
 340       larger chunks. (These lists are just sequential. Keeping them in
 341       order almost never requires enough traversal to warrant using
 342       fancier ordered data structures.)  Chunks of the same size are
 343       linked with the most recently freed at the front, and allocations
 344       are taken from the back.  This results in LRU or FIFO allocation
 345       order, which tends to give each chunk an equal opportunity to be
 346       consolidated with adjacent freed chunks, resulting in larger free
 347       chunks and less fragmentation.
 348
 349    * `top': The top-most available chunk (i.e., the one bordering the
 350       end of available memory) is treated specially. It is never
 351       included in any bin, is used only if no other chunk is
 352       available, and is released back to the system if it is very
 353       large (see M_TRIM_THRESHOLD).
 354
 355    * `last_remainder': A bin holding only the remainder of the
 356       most recently split (non-top) chunk. This bin is checked
 357       before other non-fitting chunks, so as to provide better
 358       locality for runs of sequentially allocated chunks.
 359
 360    *  Implicitly, through the host system's memory mapping tables.
 361       If supported, requests greater than a threshold are usually
 362       serviced via calls to mmap, and then later released via munmap.
 363
 364*/
 365
 366/*  sizes, alignments */
 367
 368#define SIZE_SZ                (sizeof(INTERNAL_SIZE_T))
 369#define MALLOC_ALIGNMENT       (SIZE_SZ + SIZE_SZ)
 370#define MALLOC_ALIGN_MASK      (MALLOC_ALIGNMENT - 1)
 371#define MINSIZE                (sizeof(struct malloc_chunk))
 372
 373/* conversion from malloc headers to user pointers, and back */
 374
 375#define chunk2mem(p)   ((Void_t*)((char*)(p) + 2*SIZE_SZ))
 376#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
 377
 378/* pad request bytes into a usable size */
 379
 380#define request2size(req) \
 381 (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
 382  (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
 383   (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
 384
 385/* Check if m has acceptable alignment */
 386
 387#define aligned_OK(m)    (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
 388
 389
 390
 391
 392/*
 393  Physical chunk operations
 394*/
 395
 396
 397/* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
 398
 399#define PREV_INUSE 0x1
 400
 401/* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
 402
 403#define IS_MMAPPED 0x2
 404
 405/* Bits to mask off when extracting size */
 406
 407#define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
 408
 409
 410/* Ptr to next physical malloc_chunk. */
 411
 412#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
 413
 414/* Ptr to previous physical malloc_chunk */
 415
 416#define prev_chunk(p)\
 417   ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
 418
 419
 420/* Treat space at ptr + offset as a chunk */
 421
 422#define chunk_at_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))
 423
 424
 425
 426
 427/*
 428  Dealing with use bits
 429*/
 430
 431/* extract p's inuse bit */
 432
 433#define inuse(p)\
 434((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
 435
 436/* extract inuse bit of previous chunk */
 437
 438#define prev_inuse(p)  ((p)->size & PREV_INUSE)
 439
 440/* check for mmap()'ed chunk */
 441
 442#define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
 443
 444/* set/clear chunk as in use without otherwise disturbing */
 445
 446#define set_inuse(p)\
 447((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
 448
 449#define clear_inuse(p)\
 450((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
 451
 452/* check/set/clear inuse bits in known places */
 453
 454#define inuse_bit_at_offset(p, s)\
 455 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
 456
 457#define set_inuse_bit_at_offset(p, s)\
 458 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
 459
 460#define clear_inuse_bit_at_offset(p, s)\
 461 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
 462
 463
 464
 465
 466/*
 467  Dealing with size fields
 468*/
 469
 470/* Get size, ignoring use bits */
 471
 472#define chunksize(p)          ((p)->size & ~(SIZE_BITS))
 473
 474/* Set size at head, without disturbing its use bit */
 475
 476#define set_head_size(p, s)   ((p)->size = (((p)->size & PREV_INUSE) | (s)))
 477
 478/* Set size/use ignoring previous bits in header */
 479
 480#define set_head(p, s)        ((p)->size = (s))
 481
 482/* Set size at footer (only when chunk is not in use) */
 483
 484#define set_foot(p, s)   (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
 485
 486
 487
 488
 489
 490/*
 491   Bins
 492
 493    The bins, `av_' are an array of pairs of pointers serving as the
 494    heads of (initially empty) doubly-linked lists of chunks, laid out
 495    in a way so that each pair can be treated as if it were in a
 496    malloc_chunk. (This way, the fd/bk offsets for linking bin heads
 497    and chunks are the same).
 498
 499    Bins for sizes < 512 bytes contain chunks of all the same size, spaced
 500    8 bytes apart. Larger bins are approximately logarithmically
 501    spaced. (See the table below.) The `av_' array is never mentioned
 502    directly in the code, but instead via bin access macros.
 503
 504    Bin layout:
 505
 506    64 bins of size       8
 507    32 bins of size      64
 508    16 bins of size     512
 509     8 bins of size    4096
 510     4 bins of size   32768
 511     2 bins of size  262144
 512     1 bin  of size what's left
 513
 514    There is actually a little bit of slop in the numbers in bin_index
 515    for the sake of speed. This makes no difference elsewhere.
 516
 517    The special chunks `top' and `last_remainder' get their own bins,
 518    (this is implemented via yet more trickery with the av_ array),
 519    although `top' is never properly linked to its bin since it is
 520    always handled specially.
 521
 522*/
 523
 524#define NAV             128   /* number of bins */
 525
 526typedef struct malloc_chunk* mbinptr;
 527
 528/* access macros */
 529
 530#define bin_at(i)      ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
 531#define next_bin(b)    ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
 532#define prev_bin(b)    ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
 533
 534/*
 535   The first 2 bins are never indexed. The corresponding av_ cells are instead
 536   used for bookkeeping. This is not to save space, but to simplify
 537   indexing, maintain locality, and avoid some initialization tests.
 538*/
 539
 540#define top            (av_[2])          /* The topmost chunk */
 541#define last_remainder (bin_at(1))       /* remainder from last split */
 542
 543
 544/*
 545   Because top initially points to its own bin with initial
 546   zero size, thus forcing extension on the first malloc request,
 547   we avoid having any special code in malloc to check whether
 548   it even exists yet. But we still need to in malloc_extend_top.
 549*/
 550
 551#define initial_top    ((mchunkptr)(bin_at(0)))
 552
 553/* Helper macro to initialize bins */
 554
 555#define IAV(i)  bin_at(i), bin_at(i)
 556
 557static mbinptr av_[NAV * 2 + 2] = {
 558 NULL, NULL,
 559 IAV(0),   IAV(1),   IAV(2),   IAV(3),   IAV(4),   IAV(5),   IAV(6),   IAV(7),
 560 IAV(8),   IAV(9),   IAV(10),  IAV(11),  IAV(12),  IAV(13),  IAV(14),  IAV(15),
 561 IAV(16),  IAV(17),  IAV(18),  IAV(19),  IAV(20),  IAV(21),  IAV(22),  IAV(23),
 562 IAV(24),  IAV(25),  IAV(26),  IAV(27),  IAV(28),  IAV(29),  IAV(30),  IAV(31),
 563 IAV(32),  IAV(33),  IAV(34),  IAV(35),  IAV(36),  IAV(37),  IAV(38),  IAV(39),
 564 IAV(40),  IAV(41),  IAV(42),  IAV(43),  IAV(44),  IAV(45),  IAV(46),  IAV(47),
 565 IAV(48),  IAV(49),  IAV(50),  IAV(51),  IAV(52),  IAV(53),  IAV(54),  IAV(55),
 566 IAV(56),  IAV(57),  IAV(58),  IAV(59),  IAV(60),  IAV(61),  IAV(62),  IAV(63),
 567 IAV(64),  IAV(65),  IAV(66),  IAV(67),  IAV(68),  IAV(69),  IAV(70),  IAV(71),
 568 IAV(72),  IAV(73),  IAV(74),  IAV(75),  IAV(76),  IAV(77),  IAV(78),  IAV(79),
 569 IAV(80),  IAV(81),  IAV(82),  IAV(83),  IAV(84),  IAV(85),  IAV(86),  IAV(87),
 570 IAV(88),  IAV(89),  IAV(90),  IAV(91),  IAV(92),  IAV(93),  IAV(94),  IAV(95),
 571 IAV(96),  IAV(97),  IAV(98),  IAV(99),  IAV(100), IAV(101), IAV(102), IAV(103),
 572 IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
 573 IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
 574 IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
 575};
 576
 577#ifdef CONFIG_NEEDS_MANUAL_RELOC
 578static void malloc_bin_reloc(void)
 579{
 580        mbinptr *p = &av_[2];
 581        size_t i;
 582
 583        for (i = 2; i < ARRAY_SIZE(av_); ++i, ++p)
 584                *p = (mbinptr)((ulong)*p + gd->reloc_off);
 585}
 586#else
 587static inline void malloc_bin_reloc(void) {}
 588#endif
 589
 590#ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
 591static void malloc_init(void);
 592#endif
 593
 594ulong mem_malloc_start = 0;
 595ulong mem_malloc_end = 0;
 596ulong mem_malloc_brk = 0;
 597
 598void *sbrk(ptrdiff_t increment)
 599{
 600        ulong old = mem_malloc_brk;
 601        ulong new = old + increment;
 602
 603        /*
 604         * if we are giving memory back make sure we clear it out since
 605         * we set MORECORE_CLEARS to 1
 606         */
 607        if (increment < 0)
 608                memset((void *)new, 0, -increment);
 609
 610        if ((new < mem_malloc_start) || (new > mem_malloc_end))
 611                return (void *)MORECORE_FAILURE;
 612
 613        mem_malloc_brk = new;
 614
 615        return (void *)old;
 616}
 617
 618void mem_malloc_init(ulong start, ulong size)
 619{
 620        mem_malloc_start = start;
 621        mem_malloc_end = start + size;
 622        mem_malloc_brk = start;
 623
 624#ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
 625        malloc_init();
 626#endif
 627
 628        debug("using memory %#lx-%#lx for malloc()\n", mem_malloc_start,
 629              mem_malloc_end);
 630#ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
 631        memset((void *)mem_malloc_start, 0x0, size);
 632#endif
 633        malloc_bin_reloc();
 634}
 635
 636/* field-extraction macros */
 637
 638#define first(b) ((b)->fd)
 639#define last(b)  ((b)->bk)
 640
 641/*
 642  Indexing into bins
 643*/
 644
 645#define bin_index(sz)                                                          \
 646(((((unsigned long)(sz)) >> 9) ==    0) ?       (((unsigned long)(sz)) >>  3): \
 647 ((((unsigned long)(sz)) >> 9) <=    4) ?  56 + (((unsigned long)(sz)) >>  6): \
 648 ((((unsigned long)(sz)) >> 9) <=   20) ?  91 + (((unsigned long)(sz)) >>  9): \
 649 ((((unsigned long)(sz)) >> 9) <=   84) ? 110 + (((unsigned long)(sz)) >> 12): \
 650 ((((unsigned long)(sz)) >> 9) <=  340) ? 119 + (((unsigned long)(sz)) >> 15): \
 651 ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
 652                                          126)
 653/*
 654  bins for chunks < 512 are all spaced 8 bytes apart, and hold
 655  identically sized chunks. This is exploited in malloc.
 656*/
 657
 658#define MAX_SMALLBIN         63
 659#define MAX_SMALLBIN_SIZE   512
 660#define SMALLBIN_WIDTH        8
 661
 662#define smallbin_index(sz)  (((unsigned long)(sz)) >> 3)
 663
 664/*
 665   Requests are `small' if both the corresponding and the next bin are small
 666*/
 667
 668#define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
 669
 670
 671
 672/*
 673    To help compensate for the large number of bins, a one-level index
 674    structure is used for bin-by-bin searching.  `binblocks' is a
 675    one-word bitvector recording whether groups of BINBLOCKWIDTH bins
 676    have any (possibly) non-empty bins, so they can be skipped over
 677    all at once during during traversals. The bits are NOT always
 678    cleared as soon as all bins in a block are empty, but instead only
 679    when all are noticed to be empty during traversal in malloc.
 680*/
 681
 682#define BINBLOCKWIDTH     4   /* bins per block */
 683
 684#define binblocks_r     ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */
 685#define binblocks_w     (av_[1])
 686
 687/* bin<->block macros */
 688
 689#define idx2binblock(ix)    ((unsigned)1 << (ix / BINBLOCKWIDTH))
 690#define mark_binblock(ii)   (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii)))
 691#define clear_binblock(ii)  (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii))))
 692
 693
 694
 695
 696
 697/*  Other static bookkeeping data */
 698
 699/* variables holding tunable values */
 700
 701static unsigned long trim_threshold   = DEFAULT_TRIM_THRESHOLD;
 702static unsigned long top_pad          = DEFAULT_TOP_PAD;
 703static unsigned int  n_mmaps_max      = DEFAULT_MMAP_MAX;
 704static unsigned long mmap_threshold   = DEFAULT_MMAP_THRESHOLD;
 705
 706/* The first value returned from sbrk */
 707static char* sbrk_base = (char*)(-1);
 708
 709/* The maximum memory obtained from system via sbrk */
 710static unsigned long max_sbrked_mem = 0;
 711
 712/* The maximum via either sbrk or mmap */
 713static unsigned long max_total_mem = 0;
 714
 715/* internal working copy of mallinfo */
 716static struct mallinfo current_mallinfo = {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
 717
 718/* The total memory obtained from system via sbrk */
 719#define sbrked_mem  (current_mallinfo.arena)
 720
 721/* Tracking mmaps */
 722
 723#ifdef DEBUG
 724static unsigned int n_mmaps = 0;
 725#endif  /* DEBUG */
 726static unsigned long mmapped_mem = 0;
 727#if HAVE_MMAP
 728static unsigned int max_n_mmaps = 0;
 729static unsigned long max_mmapped_mem = 0;
 730#endif
 731
 732#ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
 733static void malloc_init(void)
 734{
 735        int i, j;
 736
 737        debug("bins (av_ array) are at %p\n", (void *)av_);
 738
 739        av_[0] = NULL; av_[1] = NULL;
 740        for (i = 2, j = 2; i < NAV * 2 + 2; i += 2, j++) {
 741                av_[i] = bin_at(j - 2);
 742                av_[i + 1] = bin_at(j - 2);
 743
 744                /* Just print the first few bins so that
 745                 * we can see there are alright.
 746                 */
 747                if (i < 10)
 748                        debug("av_[%d]=%lx av_[%d]=%lx\n",
 749                              i, (ulong)av_[i],
 750                              i + 1, (ulong)av_[i + 1]);
 751        }
 752
 753        /* Init the static bookkeeping as well */
 754        sbrk_base = (char *)(-1);
 755        max_sbrked_mem = 0;
 756        max_total_mem = 0;
 757#ifdef DEBUG
 758        memset((void *)&current_mallinfo, 0, sizeof(struct mallinfo));
 759#endif
 760}
 761#endif
 762
 763/*
 764  Debugging support
 765*/
 766
 767#ifdef DEBUG
 768
 769
 770/*
 771  These routines make a number of assertions about the states
 772  of data structures that should be true at all times. If any
 773  are not true, it's very likely that a user program has somehow
 774  trashed memory. (It's also possible that there is a coding error
 775  in malloc. In which case, please report it!)
 776*/
 777
 778#if __STD_C
 779static void do_check_chunk(mchunkptr p)
 780#else
 781static void do_check_chunk(p) mchunkptr p;
 782#endif
 783{
 784  INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
 785
 786  /* No checkable chunk is mmapped */
 787  assert(!chunk_is_mmapped(p));
 788
 789  /* Check for legal address ... */
 790  assert((char*)p >= sbrk_base);
 791  if (p != top)
 792    assert((char*)p + sz <= (char*)top);
 793  else
 794    assert((char*)p + sz <= sbrk_base + sbrked_mem);
 795
 796}
 797
 798
 799#if __STD_C
 800static void do_check_free_chunk(mchunkptr p)
 801#else
 802static void do_check_free_chunk(p) mchunkptr p;
 803#endif
 804{
 805  INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
 806  mchunkptr next = chunk_at_offset(p, sz);
 807
 808  do_check_chunk(p);
 809
 810  /* Check whether it claims to be free ... */
 811  assert(!inuse(p));
 812
 813  /* Unless a special marker, must have OK fields */
 814  if ((long)sz >= (long)MINSIZE)
 815  {
 816    assert((sz & MALLOC_ALIGN_MASK) == 0);
 817    assert(aligned_OK(chunk2mem(p)));
 818    /* ... matching footer field */
 819    assert(next->prev_size == sz);
 820    /* ... and is fully consolidated */
 821    assert(prev_inuse(p));
 822    assert (next == top || inuse(next));
 823
 824    /* ... and has minimally sane links */
 825    assert(p->fd->bk == p);
 826    assert(p->bk->fd == p);
 827  }
 828  else /* markers are always of size SIZE_SZ */
 829    assert(sz == SIZE_SZ);
 830}
 831
 832#if __STD_C
 833static void do_check_inuse_chunk(mchunkptr p)
 834#else
 835static void do_check_inuse_chunk(p) mchunkptr p;
 836#endif
 837{
 838  mchunkptr next = next_chunk(p);
 839  do_check_chunk(p);
 840
 841  /* Check whether it claims to be in use ... */
 842  assert(inuse(p));
 843
 844  /* ... and is surrounded by OK chunks.
 845    Since more things can be checked with free chunks than inuse ones,
 846    if an inuse chunk borders them and debug is on, it's worth doing them.
 847  */
 848  if (!prev_inuse(p))
 849  {
 850    mchunkptr prv = prev_chunk(p);
 851    assert(next_chunk(prv) == p);
 852    do_check_free_chunk(prv);
 853  }
 854  if (next == top)
 855  {
 856    assert(prev_inuse(next));
 857    assert(chunksize(next) >= MINSIZE);
 858  }
 859  else if (!inuse(next))
 860    do_check_free_chunk(next);
 861
 862}
 863
 864#if __STD_C
 865static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
 866#else
 867static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
 868#endif
 869{
 870  INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
 871  long room = sz - s;
 872
 873  do_check_inuse_chunk(p);
 874
 875  /* Legal size ... */
 876  assert((long)sz >= (long)MINSIZE);
 877  assert((sz & MALLOC_ALIGN_MASK) == 0);
 878  assert(room >= 0);
 879  assert(room < (long)MINSIZE);
 880
 881  /* ... and alignment */
 882  assert(aligned_OK(chunk2mem(p)));
 883
 884
 885  /* ... and was allocated at front of an available chunk */
 886  assert(prev_inuse(p));
 887
 888}
 889
 890
 891#define check_free_chunk(P)  do_check_free_chunk(P)
 892#define check_inuse_chunk(P) do_check_inuse_chunk(P)
 893#define check_chunk(P) do_check_chunk(P)
 894#define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
 895#else
 896#define check_free_chunk(P)
 897#define check_inuse_chunk(P)
 898#define check_chunk(P)
 899#define check_malloced_chunk(P,N)
 900#endif
 901
 902
 903
 904/*
 905  Macro-based internal utilities
 906*/
 907
 908
 909/*
 910  Linking chunks in bin lists.
 911  Call these only with variables, not arbitrary expressions, as arguments.
 912*/
 913
 914/*
 915  Place chunk p of size s in its bin, in size order,
 916  putting it ahead of others of same size.
 917*/
 918
 919
 920#define frontlink(P, S, IDX, BK, FD)                                          \
 921{                                                                             \
 922  if (S < MAX_SMALLBIN_SIZE)                                                  \
 923  {                                                                           \
 924    IDX = smallbin_index(S);                                                  \
 925    mark_binblock(IDX);                                                       \
 926    BK = bin_at(IDX);                                                         \
 927    FD = BK->fd;                                                              \
 928    P->bk = BK;                                                               \
 929    P->fd = FD;                                                               \
 930    FD->bk = BK->fd = P;                                                      \
 931  }                                                                           \
 932  else                                                                        \
 933  {                                                                           \
 934    IDX = bin_index(S);                                                       \
 935    BK = bin_at(IDX);                                                         \
 936    FD = BK->fd;                                                              \
 937    if (FD == BK) mark_binblock(IDX);                                         \
 938    else                                                                      \
 939    {                                                                         \
 940      while (FD != BK && S < chunksize(FD)) FD = FD->fd;                      \
 941      BK = FD->bk;                                                            \
 942    }                                                                         \
 943    P->bk = BK;                                                               \
 944    P->fd = FD;                                                               \
 945    FD->bk = BK->fd = P;                                                      \
 946  }                                                                           \
 947}
 948
 949
 950/* take a chunk off a list */
 951
 952#define unlink(P, BK, FD)                                                     \
 953{                                                                             \
 954  BK = P->bk;                                                                 \
 955  FD = P->fd;                                                                 \
 956  FD->bk = BK;                                                                \
 957  BK->fd = FD;                                                                \
 958}                                                                             \
 959
 960/* Place p as the last remainder */
 961
 962#define link_last_remainder(P)                                                \
 963{                                                                             \
 964  last_remainder->fd = last_remainder->bk =  P;                               \
 965  P->fd = P->bk = last_remainder;                                             \
 966}
 967
 968/* Clear the last_remainder bin */
 969
 970#define clear_last_remainder \
 971  (last_remainder->fd = last_remainder->bk = last_remainder)
 972
 973
 974
 975
 976
 977/* Routines dealing with mmap(). */
 978
 979#if HAVE_MMAP
 980
 981#if __STD_C
 982static mchunkptr mmap_chunk(size_t size)
 983#else
 984static mchunkptr mmap_chunk(size) size_t size;
 985#endif
 986{
 987  size_t page_mask = malloc_getpagesize - 1;
 988  mchunkptr p;
 989
 990#ifndef MAP_ANONYMOUS
 991  static int fd = -1;
 992#endif
 993
 994  if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
 995
 996  /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
 997   * there is no following chunk whose prev_size field could be used.
 998   */
 999  size = (size + SIZE_SZ + page_mask) & ~page_mask;
1000
1001#ifdef MAP_ANONYMOUS
1002  p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
1003                      MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
1004#else /* !MAP_ANONYMOUS */
1005  if (fd < 0)
1006  {
1007    fd = open("/dev/zero", O_RDWR);
1008    if(fd < 0) return 0;
1009  }
1010  p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
1011#endif
1012
1013  if(p == (mchunkptr)-1) return 0;
1014
1015  n_mmaps++;
1016  if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
1017
1018  /* We demand that eight bytes into a page must be 8-byte aligned. */
1019  assert(aligned_OK(chunk2mem(p)));
1020
1021  /* The offset to the start of the mmapped region is stored
1022   * in the prev_size field of the chunk; normally it is zero,
1023   * but that can be changed in memalign().
1024   */
1025  p->prev_size = 0;
1026  set_head(p, size|IS_MMAPPED);
1027
1028  mmapped_mem += size;
1029  if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1030    max_mmapped_mem = mmapped_mem;
1031  if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1032    max_total_mem = mmapped_mem + sbrked_mem;
1033  return p;
1034}
1035
1036#if __STD_C
1037static void munmap_chunk(mchunkptr p)
1038#else
1039static void munmap_chunk(p) mchunkptr p;
1040#endif
1041{
1042  INTERNAL_SIZE_T size = chunksize(p);
1043  int ret;
1044
1045  assert (chunk_is_mmapped(p));
1046  assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1047  assert((n_mmaps > 0));
1048  assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
1049
1050  n_mmaps--;
1051  mmapped_mem -= (size + p->prev_size);
1052
1053  ret = munmap((char *)p - p->prev_size, size + p->prev_size);
1054
1055  /* munmap returns non-zero on failure */
1056  assert(ret == 0);
1057}
1058
1059#if HAVE_MREMAP
1060
1061#if __STD_C
1062static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
1063#else
1064static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
1065#endif
1066{
1067  size_t page_mask = malloc_getpagesize - 1;
1068  INTERNAL_SIZE_T offset = p->prev_size;
1069  INTERNAL_SIZE_T size = chunksize(p);
1070  char *cp;
1071
1072  assert (chunk_is_mmapped(p));
1073  assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1074  assert((n_mmaps > 0));
1075  assert(((size + offset) & (malloc_getpagesize-1)) == 0);
1076
1077  /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1078  new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
1079
1080  cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
1081
1082  if (cp == (char *)-1) return 0;
1083
1084  p = (mchunkptr)(cp + offset);
1085
1086  assert(aligned_OK(chunk2mem(p)));
1087
1088  assert((p->prev_size == offset));
1089  set_head(p, (new_size - offset)|IS_MMAPPED);
1090
1091  mmapped_mem -= size + offset;
1092  mmapped_mem += new_size;
1093  if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1094    max_mmapped_mem = mmapped_mem;
1095  if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1096    max_total_mem = mmapped_mem + sbrked_mem;
1097  return p;
1098}
1099
1100#endif /* HAVE_MREMAP */
1101
1102#endif /* HAVE_MMAP */
1103
1104/*
1105  Extend the top-most chunk by obtaining memory from system.
1106  Main interface to sbrk (but see also malloc_trim).
1107*/
1108
1109#if __STD_C
1110static void malloc_extend_top(INTERNAL_SIZE_T nb)
1111#else
1112static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
1113#endif
1114{
1115  char*     brk;                  /* return value from sbrk */
1116  INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
1117  INTERNAL_SIZE_T correction;     /* bytes for 2nd sbrk call */
1118  char*     new_brk;              /* return of 2nd sbrk call */
1119  INTERNAL_SIZE_T top_size;       /* new size of top chunk */
1120
1121  mchunkptr old_top     = top;  /* Record state of old top */
1122  INTERNAL_SIZE_T old_top_size = chunksize(old_top);
1123  char*     old_end      = (char*)(chunk_at_offset(old_top, old_top_size));
1124
1125  /* Pad request with top_pad plus minimal overhead */
1126
1127  INTERNAL_SIZE_T    sbrk_size     = nb + top_pad + MINSIZE;
1128  unsigned long pagesz    = malloc_getpagesize;
1129
1130  /* If not the first time through, round to preserve page boundary */
1131  /* Otherwise, we need to correct to a page size below anyway. */
1132  /* (We also correct below if an intervening foreign sbrk call.) */
1133
1134  if (sbrk_base != (char*)(-1))
1135    sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
1136
1137  brk = (char*)(MORECORE (sbrk_size));
1138
1139  /* Fail if sbrk failed or if a foreign sbrk call killed our space */
1140  if (brk == (char*)(MORECORE_FAILURE) ||
1141      (brk < old_end && old_top != initial_top))
1142    return;
1143
1144  sbrked_mem += sbrk_size;
1145
1146  if (brk == old_end) /* can just add bytes to current top */
1147  {
1148    top_size = sbrk_size + old_top_size;
1149    set_head(top, top_size | PREV_INUSE);
1150  }
1151  else
1152  {
1153    if (sbrk_base == (char*)(-1))  /* First time through. Record base */
1154      sbrk_base = brk;
1155    else  /* Someone else called sbrk().  Count those bytes as sbrked_mem. */
1156      sbrked_mem += brk - (char*)old_end;
1157
1158    /* Guarantee alignment of first new chunk made from this space */
1159    front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
1160    if (front_misalign > 0)
1161    {
1162      correction = (MALLOC_ALIGNMENT) - front_misalign;
1163      brk += correction;
1164    }
1165    else
1166      correction = 0;
1167
1168    /* Guarantee the next brk will be at a page boundary */
1169
1170    correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
1171                   ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
1172
1173    /* Allocate correction */
1174    new_brk = (char*)(MORECORE (correction));
1175    if (new_brk == (char*)(MORECORE_FAILURE)) return;
1176
1177    sbrked_mem += correction;
1178
1179    top = (mchunkptr)brk;
1180    top_size = new_brk - brk + correction;
1181    set_head(top, top_size | PREV_INUSE);
1182
1183    if (old_top != initial_top)
1184    {
1185
1186      /* There must have been an intervening foreign sbrk call. */
1187      /* A double fencepost is necessary to prevent consolidation */
1188
1189      /* If not enough space to do this, then user did something very wrong */
1190      if (old_top_size < MINSIZE)
1191      {
1192        set_head(top, PREV_INUSE); /* will force null return from malloc */
1193        return;
1194      }
1195
1196      /* Also keep size a multiple of MALLOC_ALIGNMENT */
1197      old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
1198      set_head_size(old_top, old_top_size);
1199      chunk_at_offset(old_top, old_top_size          )->size =
1200        SIZE_SZ|PREV_INUSE;
1201      chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
1202        SIZE_SZ|PREV_INUSE;
1203      /* If possible, release the rest. */
1204      if (old_top_size >= MINSIZE)
1205        fREe(chunk2mem(old_top));
1206    }
1207  }
1208
1209  if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
1210    max_sbrked_mem = sbrked_mem;
1211  if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1212    max_total_mem = mmapped_mem + sbrked_mem;
1213
1214  /* We always land on a page boundary */
1215  assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
1216}
1217
1218
1219
1220
1221/* Main public routines */
1222
1223
1224/*
1225  Malloc Algorthim:
1226
1227    The requested size is first converted into a usable form, `nb'.
1228    This currently means to add 4 bytes overhead plus possibly more to
1229    obtain 8-byte alignment and/or to obtain a size of at least
1230    MINSIZE (currently 16 bytes), the smallest allocatable size.
1231    (All fits are considered `exact' if they are within MINSIZE bytes.)
1232
1233    From there, the first successful of the following steps is taken:
1234
1235      1. The bin corresponding to the request size is scanned, and if
1236         a chunk of exactly the right size is found, it is taken.
1237
1238      2. The most recently remaindered chunk is used if it is big
1239         enough.  This is a form of (roving) first fit, used only in
1240         the absence of exact fits. Runs of consecutive requests use
1241         the remainder of the chunk used for the previous such request
1242         whenever possible. This limited use of a first-fit style
1243         allocation strategy tends to give contiguous chunks
1244         coextensive lifetimes, which improves locality and can reduce
1245         fragmentation in the long run.
1246
1247      3. Other bins are scanned in increasing size order, using a
1248         chunk big enough to fulfill the request, and splitting off
1249         any remainder.  This search is strictly by best-fit; i.e.,
1250         the smallest (with ties going to approximately the least
1251         recently used) chunk that fits is selected.
1252
1253      4. If large enough, the chunk bordering the end of memory
1254         (`top') is split off. (This use of `top' is in accord with
1255         the best-fit search rule.  In effect, `top' is treated as
1256         larger (and thus less well fitting) than any other available
1257         chunk since it can be extended to be as large as necessary
1258         (up to system limitations).
1259
1260      5. If the request size meets the mmap threshold and the
1261         system supports mmap, and there are few enough currently
1262         allocated mmapped regions, and a call to mmap succeeds,
1263         the request is allocated via direct memory mapping.
1264
1265      6. Otherwise, the top of memory is extended by
1266         obtaining more space from the system (normally using sbrk,
1267         but definable to anything else via the MORECORE macro).
1268         Memory is gathered from the system (in system page-sized
1269         units) in a way that allows chunks obtained across different
1270         sbrk calls to be consolidated, but does not require
1271         contiguous memory. Thus, it should be safe to intersperse
1272         mallocs with other sbrk calls.
1273
1274
1275      All allocations are made from the the `lowest' part of any found
1276      chunk. (The implementation invariant is that prev_inuse is
1277      always true of any allocated chunk; i.e., that each allocated
1278      chunk borders either a previously allocated and still in-use chunk,
1279      or the base of its memory arena.)
1280
1281*/
1282
1283#if __STD_C
1284Void_t* mALLOc(size_t bytes)
1285#else
1286Void_t* mALLOc(bytes) size_t bytes;
1287#endif
1288{
1289  mchunkptr victim;                  /* inspected/selected chunk */
1290  INTERNAL_SIZE_T victim_size;       /* its size */
1291  int       idx;                     /* index for bin traversal */
1292  mbinptr   bin;                     /* associated bin */
1293  mchunkptr remainder;               /* remainder from a split */
1294  long      remainder_size;          /* its size */
1295  int       remainder_index;         /* its bin index */
1296  unsigned long block;               /* block traverser bit */
1297  int       startidx;                /* first bin of a traversed block */
1298  mchunkptr fwd;                     /* misc temp for linking */
1299  mchunkptr bck;                     /* misc temp for linking */
1300  mbinptr q;                         /* misc temp */
1301
1302  INTERNAL_SIZE_T nb;
1303
1304#if CONFIG_VAL(SYS_MALLOC_F_LEN)
1305        if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT))
1306                return malloc_simple(bytes);
1307#endif
1308
1309  /* check if mem_malloc_init() was run */
1310  if ((mem_malloc_start == 0) && (mem_malloc_end == 0)) {
1311    /* not initialized yet */
1312    return NULL;
1313  }
1314
1315  if ((long)bytes < 0) return NULL;
1316
1317  nb = request2size(bytes);  /* padded request size; */
1318
1319  /* Check for exact match in a bin */
1320
1321  if (is_small_request(nb))  /* Faster version for small requests */
1322  {
1323    idx = smallbin_index(nb);
1324
1325    /* No traversal or size check necessary for small bins.  */
1326
1327    q = bin_at(idx);
1328    victim = last(q);
1329
1330    /* Also scan the next one, since it would have a remainder < MINSIZE */
1331    if (victim == q)
1332    {
1333      q = next_bin(q);
1334      victim = last(q);
1335    }
1336    if (victim != q)
1337    {
1338      victim_size = chunksize(victim);
1339      unlink(victim, bck, fwd);
1340      set_inuse_bit_at_offset(victim, victim_size);
1341      check_malloced_chunk(victim, nb);
1342      return chunk2mem(victim);
1343    }
1344
1345    idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
1346
1347  }
1348  else
1349  {
1350    idx = bin_index(nb);
1351    bin = bin_at(idx);
1352
1353    for (victim = last(bin); victim != bin; victim = victim->bk)
1354    {
1355      victim_size = chunksize(victim);
1356      remainder_size = victim_size - nb;
1357
1358      if (remainder_size >= (long)MINSIZE) /* too big */
1359      {
1360        --idx; /* adjust to rescan below after checking last remainder */
1361        break;
1362      }
1363
1364      else if (remainder_size >= 0) /* exact fit */
1365      {
1366        unlink(victim, bck, fwd);
1367        set_inuse_bit_at_offset(victim, victim_size);
1368        check_malloced_chunk(victim, nb);
1369        return chunk2mem(victim);
1370      }
1371    }
1372
1373    ++idx;
1374
1375  }
1376
1377  /* Try to use the last split-off remainder */
1378
1379  if ( (victim = last_remainder->fd) != last_remainder)
1380  {
1381    victim_size = chunksize(victim);
1382    remainder_size = victim_size - nb;
1383
1384    if (remainder_size >= (long)MINSIZE) /* re-split */
1385    {
1386      remainder = chunk_at_offset(victim, nb);
1387      set_head(victim, nb | PREV_INUSE);
1388      link_last_remainder(remainder);
1389      set_head(remainder, remainder_size | PREV_INUSE);
1390      set_foot(remainder, remainder_size);
1391      check_malloced_chunk(victim, nb);
1392      return chunk2mem(victim);
1393    }
1394
1395    clear_last_remainder;
1396
1397    if (remainder_size >= 0)  /* exhaust */
1398    {
1399      set_inuse_bit_at_offset(victim, victim_size);
1400      check_malloced_chunk(victim, nb);
1401      return chunk2mem(victim);
1402    }
1403
1404    /* Else place in bin */
1405
1406    frontlink(victim, victim_size, remainder_index, bck, fwd);
1407  }
1408
1409  /*
1410     If there are any possibly nonempty big-enough blocks,
1411     search for best fitting chunk by scanning bins in blockwidth units.
1412  */
1413
1414  if ( (block = idx2binblock(idx)) <= binblocks_r)
1415  {
1416
1417    /* Get to the first marked block */
1418
1419    if ( (block & binblocks_r) == 0)
1420    {
1421      /* force to an even block boundary */
1422      idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
1423      block <<= 1;
1424      while ((block & binblocks_r) == 0)
1425      {
1426        idx += BINBLOCKWIDTH;
1427        block <<= 1;
1428      }
1429    }
1430
1431    /* For each possibly nonempty block ... */
1432    for (;;)
1433    {
1434      startidx = idx;          /* (track incomplete blocks) */
1435      q = bin = bin_at(idx);
1436
1437      /* For each bin in this block ... */
1438      do
1439      {
1440        /* Find and use first big enough chunk ... */
1441
1442        for (victim = last(bin); victim != bin; victim = victim->bk)
1443        {
1444          victim_size = chunksize(victim);
1445          remainder_size = victim_size - nb;
1446
1447          if (remainder_size >= (long)MINSIZE) /* split */
1448          {
1449            remainder = chunk_at_offset(victim, nb);
1450            set_head(victim, nb | PREV_INUSE);
1451            unlink(victim, bck, fwd);
1452            link_last_remainder(remainder);
1453            set_head(remainder, remainder_size | PREV_INUSE);
1454            set_foot(remainder, remainder_size);
1455            check_malloced_chunk(victim, nb);
1456            return chunk2mem(victim);
1457          }
1458
1459          else if (remainder_size >= 0)  /* take */
1460          {
1461            set_inuse_bit_at_offset(victim, victim_size);
1462            unlink(victim, bck, fwd);
1463            check_malloced_chunk(victim, nb);
1464            return chunk2mem(victim);
1465          }
1466
1467        }
1468
1469       bin = next_bin(bin);
1470
1471      } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
1472
1473      /* Clear out the block bit. */
1474
1475      do   /* Possibly backtrack to try to clear a partial block */
1476      {
1477        if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
1478        {
1479          av_[1] = (mbinptr)(binblocks_r & ~block);
1480          break;
1481        }
1482        --startidx;
1483       q = prev_bin(q);
1484      } while (first(q) == q);
1485
1486      /* Get to the next possibly nonempty block */
1487
1488      if ( (block <<= 1) <= binblocks_r && (block != 0) )
1489      {
1490        while ((block & binblocks_r) == 0)
1491        {
1492          idx += BINBLOCKWIDTH;
1493          block <<= 1;
1494        }
1495      }
1496      else
1497        break;
1498    }
1499  }
1500
1501
1502  /* Try to use top chunk */
1503
1504  /* Require that there be a remainder, ensuring top always exists  */
1505  if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
1506  {
1507
1508#if HAVE_MMAP
1509    /* If big and would otherwise need to extend, try to use mmap instead */
1510    if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
1511        (victim = mmap_chunk(nb)))
1512      return chunk2mem(victim);
1513#endif
1514
1515    /* Try to extend */
1516    malloc_extend_top(nb);
1517    if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
1518      return NULL; /* propagate failure */
1519  }
1520
1521  victim = top;
1522  set_head(victim, nb | PREV_INUSE);
1523  top = chunk_at_offset(victim, nb);
1524  set_head(top, remainder_size | PREV_INUSE);
1525  check_malloced_chunk(victim, nb);
1526  return chunk2mem(victim);
1527
1528}
1529
1530
1531
1532
1533/*
1534
1535  free() algorithm :
1536
1537    cases:
1538
1539       1. free(0) has no effect.
1540
1541       2. If the chunk was allocated via mmap, it is release via munmap().
1542
1543       3. If a returned chunk borders the current high end of memory,
1544          it is consolidated into the top, and if the total unused
1545          topmost memory exceeds the trim threshold, malloc_trim is
1546          called.
1547
1548       4. Other chunks are consolidated as they arrive, and
1549          placed in corresponding bins. (This includes the case of
1550          consolidating with the current `last_remainder').
1551
1552*/
1553
1554
1555#if __STD_C
1556void fREe(Void_t* mem)
1557#else
1558void fREe(mem) Void_t* mem;
1559#endif
1560{
1561  mchunkptr p;         /* chunk corresponding to mem */
1562  INTERNAL_SIZE_T hd;  /* its head field */
1563  INTERNAL_SIZE_T sz;  /* its size */
1564  int       idx;       /* its bin index */
1565  mchunkptr next;      /* next contiguous chunk */
1566  INTERNAL_SIZE_T nextsz; /* its size */
1567  INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
1568  mchunkptr bck;       /* misc temp for linking */
1569  mchunkptr fwd;       /* misc temp for linking */
1570  int       islr;      /* track whether merging with last_remainder */
1571
1572#if CONFIG_VAL(SYS_MALLOC_F_LEN)
1573        /* free() is a no-op - all the memory will be freed on relocation */
1574        if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT))
1575                return;
1576#endif
1577
1578  if (mem == NULL)                              /* free(0) has no effect */
1579    return;
1580
1581  p = mem2chunk(mem);
1582  hd = p->size;
1583
1584#if HAVE_MMAP
1585  if (hd & IS_MMAPPED)                       /* release mmapped memory. */
1586  {
1587    munmap_chunk(p);
1588    return;
1589  }
1590#endif
1591
1592  check_inuse_chunk(p);
1593
1594  sz = hd & ~PREV_INUSE;
1595  next = chunk_at_offset(p, sz);
1596  nextsz = chunksize(next);
1597
1598  if (next == top)                            /* merge with top */
1599  {
1600    sz += nextsz;
1601
1602    if (!(hd & PREV_INUSE))                    /* consolidate backward */
1603    {
1604      prevsz = p->prev_size;
1605      p = chunk_at_offset(p, -((long) prevsz));
1606      sz += prevsz;
1607      unlink(p, bck, fwd);
1608    }
1609
1610    set_head(p, sz | PREV_INUSE);
1611    top = p;
1612    if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
1613      malloc_trim(top_pad);
1614    return;
1615  }
1616
1617  set_head(next, nextsz);                    /* clear inuse bit */
1618
1619  islr = 0;
1620
1621  if (!(hd & PREV_INUSE))                    /* consolidate backward */
1622  {
1623    prevsz = p->prev_size;
1624    p = chunk_at_offset(p, -((long) prevsz));
1625    sz += prevsz;
1626
1627    if (p->fd == last_remainder)             /* keep as last_remainder */
1628      islr = 1;
1629    else
1630      unlink(p, bck, fwd);
1631  }
1632
1633  if (!(inuse_bit_at_offset(next, nextsz)))   /* consolidate forward */
1634  {
1635    sz += nextsz;
1636
1637    if (!islr && next->fd == last_remainder)  /* re-insert last_remainder */
1638    {
1639      islr = 1;
1640      link_last_remainder(p);
1641    }
1642    else
1643      unlink(next, bck, fwd);
1644  }
1645
1646
1647  set_head(p, sz | PREV_INUSE);
1648  set_foot(p, sz);
1649  if (!islr)
1650    frontlink(p, sz, idx, bck, fwd);
1651}
1652
1653
1654
1655
1656
1657/*
1658
1659  Realloc algorithm:
1660
1661    Chunks that were obtained via mmap cannot be extended or shrunk
1662    unless HAVE_MREMAP is defined, in which case mremap is used.
1663    Otherwise, if their reallocation is for additional space, they are
1664    copied.  If for less, they are just left alone.
1665
1666    Otherwise, if the reallocation is for additional space, and the
1667    chunk can be extended, it is, else a malloc-copy-free sequence is
1668    taken.  There are several different ways that a chunk could be
1669    extended. All are tried:
1670
1671       * Extending forward into following adjacent free chunk.
1672       * Shifting backwards, joining preceding adjacent space
1673       * Both shifting backwards and extending forward.
1674       * Extending into newly sbrked space
1675
1676    Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
1677    size argument of zero (re)allocates a minimum-sized chunk.
1678
1679    If the reallocation is for less space, and the new request is for
1680    a `small' (<512 bytes) size, then the newly unused space is lopped
1681    off and freed.
1682
1683    The old unix realloc convention of allowing the last-free'd chunk
1684    to be used as an argument to realloc is no longer supported.
1685    I don't know of any programs still relying on this feature,
1686    and allowing it would also allow too many other incorrect
1687    usages of realloc to be sensible.
1688
1689
1690*/
1691
1692
1693#if __STD_C
1694Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
1695#else
1696Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
1697#endif
1698{
1699  INTERNAL_SIZE_T    nb;      /* padded request size */
1700
1701  mchunkptr oldp;             /* chunk corresponding to oldmem */
1702  INTERNAL_SIZE_T    oldsize; /* its size */
1703
1704  mchunkptr newp;             /* chunk to return */
1705  INTERNAL_SIZE_T    newsize; /* its size */
1706  Void_t*   newmem;           /* corresponding user mem */
1707
1708  mchunkptr next;             /* next contiguous chunk after oldp */
1709  INTERNAL_SIZE_T  nextsize;  /* its size */
1710
1711  mchunkptr prev;             /* previous contiguous chunk before oldp */
1712  INTERNAL_SIZE_T  prevsize;  /* its size */
1713
1714  mchunkptr remainder;        /* holds split off extra space from newp */
1715  INTERNAL_SIZE_T  remainder_size;   /* its size */
1716
1717  mchunkptr bck;              /* misc temp for linking */
1718  mchunkptr fwd;              /* misc temp for linking */
1719
1720#ifdef REALLOC_ZERO_BYTES_FREES
1721  if (!bytes) {
1722        fREe(oldmem);
1723        return NULL;
1724  }
1725#endif
1726
1727  if ((long)bytes < 0) return NULL;
1728
1729  /* realloc of null is supposed to be same as malloc */
1730  if (oldmem == NULL) return mALLOc(bytes);
1731
1732#if CONFIG_VAL(SYS_MALLOC_F_LEN)
1733        if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
1734                /* This is harder to support and should not be needed */
1735                panic("pre-reloc realloc() is not supported");
1736        }
1737#endif
1738
1739  newp    = oldp    = mem2chunk(oldmem);
1740  newsize = oldsize = chunksize(oldp);
1741
1742
1743  nb = request2size(bytes);
1744
1745#if HAVE_MMAP
1746  if (chunk_is_mmapped(oldp))
1747  {
1748#if HAVE_MREMAP
1749    newp = mremap_chunk(oldp, nb);
1750    if(newp) return chunk2mem(newp);
1751#endif
1752    /* Note the extra SIZE_SZ overhead. */
1753    if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
1754    /* Must alloc, copy, free. */
1755    newmem = mALLOc(bytes);
1756    if (!newmem)
1757        return NULL; /* propagate failure */
1758    MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
1759    munmap_chunk(oldp);
1760    return newmem;
1761  }
1762#endif
1763
1764  check_inuse_chunk(oldp);
1765
1766  if ((long)(oldsize) < (long)(nb))
1767  {
1768
1769    /* Try expanding forward */
1770
1771    next = chunk_at_offset(oldp, oldsize);
1772    if (next == top || !inuse(next))
1773    {
1774      nextsize = chunksize(next);
1775
1776      /* Forward into top only if a remainder */
1777      if (next == top)
1778      {
1779        if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
1780        {
1781          newsize += nextsize;
1782          top = chunk_at_offset(oldp, nb);
1783          set_head(top, (newsize - nb) | PREV_INUSE);
1784          set_head_size(oldp, nb);
1785          return chunk2mem(oldp);
1786        }
1787      }
1788
1789      /* Forward into next chunk */
1790      else if (((long)(nextsize + newsize) >= (long)(nb)))
1791      {
1792        unlink(next, bck, fwd);
1793        newsize  += nextsize;
1794        goto split;
1795      }
1796    }
1797    else
1798    {
1799      next = NULL;
1800      nextsize = 0;
1801    }
1802
1803    /* Try shifting backwards. */
1804
1805    if (!prev_inuse(oldp))
1806    {
1807      prev = prev_chunk(oldp);
1808      prevsize = chunksize(prev);
1809
1810      /* try forward + backward first to save a later consolidation */
1811
1812      if (next != NULL)
1813      {
1814        /* into top */
1815        if (next == top)
1816        {
1817          if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
1818          {
1819            unlink(prev, bck, fwd);
1820            newp = prev;
1821            newsize += prevsize + nextsize;
1822            newmem = chunk2mem(newp);
1823            MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1824            top = chunk_at_offset(newp, nb);
1825            set_head(top, (newsize - nb) | PREV_INUSE);
1826            set_head_size(newp, nb);
1827            return newmem;
1828          }
1829        }
1830
1831        /* into next chunk */
1832        else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
1833        {
1834          unlink(next, bck, fwd);
1835          unlink(prev, bck, fwd);
1836          newp = prev;
1837          newsize += nextsize + prevsize;
1838          newmem = chunk2mem(newp);
1839          MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1840          goto split;
1841        }
1842      }
1843
1844      /* backward only */
1845      if (prev != NULL && (long)(prevsize + newsize) >= (long)nb)
1846      {
1847        unlink(prev, bck, fwd);
1848        newp = prev;
1849        newsize += prevsize;
1850        newmem = chunk2mem(newp);
1851        MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1852        goto split;
1853      }
1854    }
1855
1856    /* Must allocate */
1857
1858    newmem = mALLOc (bytes);
1859
1860    if (newmem == NULL)  /* propagate failure */
1861      return NULL;
1862
1863    /* Avoid copy if newp is next chunk after oldp. */
1864    /* (This can only happen when new chunk is sbrk'ed.) */
1865
1866    if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
1867    {
1868      newsize += chunksize(newp);
1869      newp = oldp;
1870      goto split;
1871    }
1872
1873    /* Otherwise copy, free, and exit */
1874    MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1875    fREe(oldmem);
1876    return newmem;
1877  }
1878
1879
1880 split:  /* split off extra room in old or expanded chunk */
1881
1882  if (newsize - nb >= MINSIZE) /* split off remainder */
1883  {
1884    remainder = chunk_at_offset(newp, nb);
1885    remainder_size = newsize - nb;
1886    set_head_size(newp, nb);
1887    set_head(remainder, remainder_size | PREV_INUSE);
1888    set_inuse_bit_at_offset(remainder, remainder_size);
1889    fREe(chunk2mem(remainder)); /* let free() deal with it */
1890  }
1891  else
1892  {
1893    set_head_size(newp, newsize);
1894    set_inuse_bit_at_offset(newp, newsize);
1895  }
1896
1897  check_inuse_chunk(newp);
1898  return chunk2mem(newp);
1899}
1900
1901
1902
1903
1904/*
1905
1906  memalign algorithm:
1907
1908    memalign requests more than enough space from malloc, finds a spot
1909    within that chunk that meets the alignment request, and then
1910    possibly frees the leading and trailing space.
1911
1912    The alignment argument must be a power of two. This property is not
1913    checked by memalign, so misuse may result in random runtime errors.
1914
1915    8-byte alignment is guaranteed by normal malloc calls, so don't
1916    bother calling memalign with an argument of 8 or less.
1917
1918    Overreliance on memalign is a sure way to fragment space.
1919
1920*/
1921
1922
1923#if __STD_C
1924Void_t* mEMALIGn(size_t alignment, size_t bytes)
1925#else
1926Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
1927#endif
1928{
1929  INTERNAL_SIZE_T    nb;      /* padded  request size */
1930  char*     m;                /* memory returned by malloc call */
1931  mchunkptr p;                /* corresponding chunk */
1932  char*     brk;              /* alignment point within p */
1933  mchunkptr newp;             /* chunk to return */
1934  INTERNAL_SIZE_T  newsize;   /* its size */
1935  INTERNAL_SIZE_T  leadsize;  /* leading space befor alignment point */
1936  mchunkptr remainder;        /* spare room at end to split off */
1937  long      remainder_size;   /* its size */
1938
1939  if ((long)bytes < 0) return NULL;
1940
1941#if CONFIG_VAL(SYS_MALLOC_F_LEN)
1942        if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
1943                return memalign_simple(alignment, bytes);
1944        }
1945#endif
1946
1947  /* If need less alignment than we give anyway, just relay to malloc */
1948
1949  if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
1950
1951  /* Otherwise, ensure that it is at least a minimum chunk size */
1952
1953  if (alignment <  MINSIZE) alignment = MINSIZE;
1954
1955  /* Call malloc with worst case padding to hit alignment. */
1956
1957  nb = request2size(bytes);
1958  m  = (char*)(mALLOc(nb + alignment + MINSIZE));
1959
1960  /*
1961  * The attempt to over-allocate (with a size large enough to guarantee the
1962  * ability to find an aligned region within allocated memory) failed.
1963  *
1964  * Try again, this time only allocating exactly the size the user wants. If
1965  * the allocation now succeeds and just happens to be aligned, we can still
1966  * fulfill the user's request.
1967  */
1968  if (m == NULL) {
1969    size_t extra, extra2;
1970    /*
1971     * Use bytes not nb, since mALLOc internally calls request2size too, and
1972     * each call increases the size to allocate, to account for the header.
1973     */
1974    m  = (char*)(mALLOc(bytes));
1975    /* Aligned -> return it */
1976    if ((((unsigned long)(m)) % alignment) == 0)
1977      return m;
1978    /*
1979     * Otherwise, try again, requesting enough extra space to be able to
1980     * acquire alignment.
1981     */
1982    fREe(m);
1983    /* Add in extra bytes to match misalignment of unexpanded allocation */
1984    extra = alignment - (((unsigned long)(m)) % alignment);
1985    m  = (char*)(mALLOc(bytes + extra));
1986    /*
1987     * m might not be the same as before. Validate that the previous value of
1988     * extra still works for the current value of m.
1989     * If (!m), extra2=alignment so 
1990     */
1991    if (m) {
1992      extra2 = alignment - (((unsigned long)(m)) % alignment);
1993      if (extra2 > extra) {
1994        fREe(m);
1995        m = NULL;
1996      }
1997    }
1998    /* Fall through to original NULL check and chunk splitting logic */
1999  }
2000
2001  if (m == NULL) return NULL; /* propagate failure */
2002
2003  p = mem2chunk(m);
2004
2005  if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
2006  {
2007#if HAVE_MMAP
2008    if(chunk_is_mmapped(p))
2009      return chunk2mem(p); /* nothing more to do */
2010#endif
2011  }
2012  else /* misaligned */
2013  {
2014    /*
2015      Find an aligned spot inside chunk.
2016      Since we need to give back leading space in a chunk of at
2017      least MINSIZE, if the first calculation places us at
2018      a spot with less than MINSIZE leader, we can move to the
2019      next aligned spot -- we've allocated enough total room so that
2020      this is always possible.
2021    */
2022
2023    brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
2024    if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
2025
2026    newp = (mchunkptr)brk;
2027    leadsize = brk - (char*)(p);
2028    newsize = chunksize(p) - leadsize;
2029
2030#if HAVE_MMAP
2031    if(chunk_is_mmapped(p))
2032    {
2033      newp->prev_size = p->prev_size + leadsize;
2034      set_head(newp, newsize|IS_MMAPPED);
2035      return chunk2mem(newp);
2036    }
2037#endif
2038
2039    /* give back leader, use the rest */
2040
2041    set_head(newp, newsize | PREV_INUSE);
2042    set_inuse_bit_at_offset(newp, newsize);
2043    set_head_size(p, leadsize);
2044    fREe(chunk2mem(p));
2045    p = newp;
2046
2047    assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
2048  }
2049
2050  /* Also give back spare room at the end */
2051
2052  remainder_size = chunksize(p) - nb;
2053
2054  if (remainder_size >= (long)MINSIZE)
2055  {
2056    remainder = chunk_at_offset(p, nb);
2057    set_head(remainder, remainder_size | PREV_INUSE);
2058    set_head_size(p, nb);
2059    fREe(chunk2mem(remainder));
2060  }
2061
2062  check_inuse_chunk(p);
2063  return chunk2mem(p);
2064
2065}
2066
2067
2068
2069
2070/*
2071    valloc just invokes memalign with alignment argument equal
2072    to the page size of the system (or as near to this as can
2073    be figured out from all the includes/defines above.)
2074*/
2075
2076#if __STD_C
2077Void_t* vALLOc(size_t bytes)
2078#else
2079Void_t* vALLOc(bytes) size_t bytes;
2080#endif
2081{
2082  return mEMALIGn (malloc_getpagesize, bytes);
2083}
2084
2085/*
2086  pvalloc just invokes valloc for the nearest pagesize
2087  that will accommodate request
2088*/
2089
2090
2091#if __STD_C
2092Void_t* pvALLOc(size_t bytes)
2093#else
2094Void_t* pvALLOc(bytes) size_t bytes;
2095#endif
2096{
2097  size_t pagesize = malloc_getpagesize;
2098  return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
2099}
2100
2101/*
2102
2103  calloc calls malloc, then zeroes out the allocated chunk.
2104
2105*/
2106
2107#if __STD_C
2108Void_t* cALLOc(size_t n, size_t elem_size)
2109#else
2110Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
2111#endif
2112{
2113  mchunkptr p;
2114  INTERNAL_SIZE_T csz;
2115
2116  INTERNAL_SIZE_T sz = n * elem_size;
2117
2118
2119  /* check if expand_top called, in which case don't need to clear */
2120#ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
2121#if MORECORE_CLEARS
2122  mchunkptr oldtop = top;
2123  INTERNAL_SIZE_T oldtopsize = chunksize(top);
2124#endif
2125#endif
2126  Void_t* mem = mALLOc (sz);
2127
2128  if ((long)n < 0) return NULL;
2129
2130  if (mem == NULL)
2131    return NULL;
2132  else
2133  {
2134#if CONFIG_VAL(SYS_MALLOC_F_LEN)
2135        if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
2136                memset(mem, 0, sz);
2137                return mem;
2138        }
2139#endif
2140    p = mem2chunk(mem);
2141
2142    /* Two optional cases in which clearing not necessary */
2143
2144
2145#if HAVE_MMAP
2146    if (chunk_is_mmapped(p)) return mem;
2147#endif
2148
2149    csz = chunksize(p);
2150
2151#ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
2152#if MORECORE_CLEARS
2153    if (p == oldtop && csz > oldtopsize)
2154    {
2155      /* clear only the bytes from non-freshly-sbrked memory */
2156      csz = oldtopsize;
2157    }
2158#endif
2159#endif
2160
2161    MALLOC_ZERO(mem, csz - SIZE_SZ);
2162    return mem;
2163  }
2164}
2165
2166/*
2167
2168  cfree just calls free. It is needed/defined on some systems
2169  that pair it with calloc, presumably for odd historical reasons.
2170
2171*/
2172
2173#if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
2174#if __STD_C
2175void cfree(Void_t *mem)
2176#else
2177void cfree(mem) Void_t *mem;
2178#endif
2179{
2180  fREe(mem);
2181}
2182#endif
2183
2184
2185
2186/*
2187
2188    Malloc_trim gives memory back to the system (via negative
2189    arguments to sbrk) if there is unused memory at the `high' end of
2190    the malloc pool. You can call this after freeing large blocks of
2191    memory to potentially reduce the system-level memory requirements
2192    of a program. However, it cannot guarantee to reduce memory. Under
2193    some allocation patterns, some large free blocks of memory will be
2194    locked between two used chunks, so they cannot be given back to
2195    the system.
2196
2197    The `pad' argument to malloc_trim represents the amount of free
2198    trailing space to leave untrimmed. If this argument is zero,
2199    only the minimum amount of memory to maintain internal data
2200    structures will be left (one page or less). Non-zero arguments
2201    can be supplied to maintain enough trailing space to service
2202    future expected allocations without having to re-obtain memory
2203    from the system.
2204
2205    Malloc_trim returns 1 if it actually released any memory, else 0.
2206
2207*/
2208
2209#if __STD_C
2210int malloc_trim(size_t pad)
2211#else
2212int malloc_trim(pad) size_t pad;
2213#endif
2214{
2215  long  top_size;        /* Amount of top-most memory */
2216  long  extra;           /* Amount to release */
2217  char* current_brk;     /* address returned by pre-check sbrk call */
2218  char* new_brk;         /* address returned by negative sbrk call */
2219
2220  unsigned long pagesz = malloc_getpagesize;
2221
2222  top_size = chunksize(top);
2223  extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
2224
2225  if (extra < (long)pagesz)  /* Not enough memory to release */
2226    return 0;
2227
2228  else
2229  {
2230    /* Test to make sure no one else called sbrk */
2231    current_brk = (char*)(MORECORE (0));
2232    if (current_brk != (char*)(top) + top_size)
2233      return 0;     /* Apparently we don't own memory; must fail */
2234
2235    else
2236    {
2237      new_brk = (char*)(MORECORE (-extra));
2238
2239      if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
2240      {
2241        /* Try to figure out what we have */
2242        current_brk = (char*)(MORECORE (0));
2243        top_size = current_brk - (char*)top;
2244        if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
2245        {
2246          sbrked_mem = current_brk - sbrk_base;
2247          set_head(top, top_size | PREV_INUSE);
2248        }
2249        check_chunk(top);
2250        return 0;
2251      }
2252
2253      else
2254      {
2255        /* Success. Adjust top accordingly. */
2256        set_head(top, (top_size - extra) | PREV_INUSE);
2257        sbrked_mem -= extra;
2258        check_chunk(top);
2259        return 1;
2260      }
2261    }
2262  }
2263}
2264
2265
2266
2267/*
2268  malloc_usable_size:
2269
2270    This routine tells you how many bytes you can actually use in an
2271    allocated chunk, which may be more than you requested (although
2272    often not). You can use this many bytes without worrying about
2273    overwriting other allocated objects. Not a particularly great
2274    programming practice, but still sometimes useful.
2275
2276*/
2277
2278#if __STD_C
2279size_t malloc_usable_size(Void_t* mem)
2280#else
2281size_t malloc_usable_size(mem) Void_t* mem;
2282#endif
2283{
2284  mchunkptr p;
2285  if (mem == NULL)
2286    return 0;
2287  else
2288  {
2289    p = mem2chunk(mem);
2290    if(!chunk_is_mmapped(p))
2291    {
2292      if (!inuse(p)) return 0;
2293      check_inuse_chunk(p);
2294      return chunksize(p) - SIZE_SZ;
2295    }
2296    return chunksize(p) - 2*SIZE_SZ;
2297  }
2298}
2299
2300
2301
2302
2303/* Utility to update current_mallinfo for malloc_stats and mallinfo() */
2304
2305#ifdef DEBUG
2306static void malloc_update_mallinfo()
2307{
2308  int i;
2309  mbinptr b;
2310  mchunkptr p;
2311#ifdef DEBUG
2312  mchunkptr q;
2313#endif
2314
2315  INTERNAL_SIZE_T avail = chunksize(top);
2316  int   navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
2317
2318  for (i = 1; i < NAV; ++i)
2319  {
2320    b = bin_at(i);
2321    for (p = last(b); p != b; p = p->bk)
2322    {
2323#ifdef DEBUG
2324      check_free_chunk(p);
2325      for (q = next_chunk(p);
2326           q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
2327           q = next_chunk(q))
2328        check_inuse_chunk(q);
2329#endif
2330      avail += chunksize(p);
2331      navail++;
2332    }
2333  }
2334
2335  current_mallinfo.ordblks = navail;
2336  current_mallinfo.uordblks = sbrked_mem - avail;
2337  current_mallinfo.fordblks = avail;
2338  current_mallinfo.hblks = n_mmaps;
2339  current_mallinfo.hblkhd = mmapped_mem;
2340  current_mallinfo.keepcost = chunksize(top);
2341
2342}
2343#endif  /* DEBUG */
2344
2345
2346
2347/*
2348
2349  malloc_stats:
2350
2351    Prints on the amount of space obtain from the system (both
2352    via sbrk and mmap), the maximum amount (which may be more than
2353    current if malloc_trim and/or munmap got called), the maximum
2354    number of simultaneous mmap regions used, and the current number
2355    of bytes allocated via malloc (or realloc, etc) but not yet
2356    freed. (Note that this is the number of bytes allocated, not the
2357    number requested. It will be larger than the number requested
2358    because of alignment and bookkeeping overhead.)
2359
2360*/
2361
2362#ifdef DEBUG
2363void malloc_stats()
2364{
2365  malloc_update_mallinfo();
2366  printf("max system bytes = %10u\n",
2367          (unsigned int)(max_total_mem));
2368  printf("system bytes     = %10u\n",
2369          (unsigned int)(sbrked_mem + mmapped_mem));
2370  printf("in use bytes     = %10u\n",
2371          (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
2372#if HAVE_MMAP
2373  printf("max mmap regions = %10u\n",
2374          (unsigned int)max_n_mmaps);
2375#endif
2376}
2377#endif  /* DEBUG */
2378
2379/*
2380  mallinfo returns a copy of updated current mallinfo.
2381*/
2382
2383#ifdef DEBUG
2384struct mallinfo mALLINFo()
2385{
2386  malloc_update_mallinfo();
2387  return current_mallinfo;
2388}
2389#endif  /* DEBUG */
2390
2391
2392
2393
2394/*
2395  mallopt:
2396
2397    mallopt is the general SVID/XPG interface to tunable parameters.
2398    The format is to provide a (parameter-number, parameter-value) pair.
2399    mallopt then sets the corresponding parameter to the argument
2400    value if it can (i.e., so long as the value is meaningful),
2401    and returns 1 if successful else 0.
2402
2403    See descriptions of tunable parameters above.
2404
2405*/
2406
2407#if __STD_C
2408int mALLOPt(int param_number, int value)
2409#else
2410int mALLOPt(param_number, value) int param_number; int value;
2411#endif
2412{
2413  switch(param_number)
2414  {
2415    case M_TRIM_THRESHOLD:
2416      trim_threshold = value; return 1;
2417    case M_TOP_PAD:
2418      top_pad = value; return 1;
2419    case M_MMAP_THRESHOLD:
2420      mmap_threshold = value; return 1;
2421    case M_MMAP_MAX:
2422#if HAVE_MMAP
2423      n_mmaps_max = value; return 1;
2424#else
2425      if (value != 0) return 0; else  n_mmaps_max = value; return 1;
2426#endif
2427
2428    default:
2429      return 0;
2430  }
2431}
2432
2433int initf_malloc(void)
2434{
2435#if CONFIG_VAL(SYS_MALLOC_F_LEN)
2436        assert(gd->malloc_base);        /* Set up by crt0.S */
2437        gd->malloc_limit = CONFIG_VAL(SYS_MALLOC_F_LEN);
2438        gd->malloc_ptr = 0;
2439#endif
2440
2441        return 0;
2442}
2443
2444/*
2445
2446History:
2447
2448    V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee)
2449      * return null for negative arguments
2450      * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com>
2451         * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
2452          (e.g. WIN32 platforms)
2453         * Cleanup up header file inclusion for WIN32 platforms
2454         * Cleanup code to avoid Microsoft Visual C++ compiler complaints
2455         * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
2456           memory allocation routines
2457         * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
2458         * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
2459           usage of 'assert' in non-WIN32 code
2460         * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
2461           avoid infinite loop
2462      * Always call 'fREe()' rather than 'free()'
2463
2464    V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee)
2465      * Fixed ordering problem with boundary-stamping
2466
2467    V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
2468      * Added pvalloc, as recommended by H.J. Liu
2469      * Added 64bit pointer support mainly from Wolfram Gloger
2470      * Added anonymously donated WIN32 sbrk emulation
2471      * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
2472      * malloc_extend_top: fix mask error that caused wastage after
2473        foreign sbrks
2474      * Add linux mremap support code from HJ Liu
2475
2476    V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
2477      * Integrated most documentation with the code.
2478      * Add support for mmap, with help from
2479        Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
2480      * Use last_remainder in more cases.
2481      * Pack bins using idea from  colin@nyx10.cs.du.edu
2482      * Use ordered bins instead of best-fit threshhold
2483      * Eliminate block-local decls to simplify tracing and debugging.
2484      * Support another case of realloc via move into top
2485      * Fix error occuring when initial sbrk_base not word-aligned.
2486      * Rely on page size for units instead of SBRK_UNIT to
2487        avoid surprises about sbrk alignment conventions.
2488      * Add mallinfo, mallopt. Thanks to Raymond Nijssen
2489        (raymond@es.ele.tue.nl) for the suggestion.
2490      * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
2491      * More precautions for cases where other routines call sbrk,
2492        courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
2493      * Added macros etc., allowing use in linux libc from
2494        H.J. Lu (hjl@gnu.ai.mit.edu)
2495      * Inverted this history list
2496
2497    V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
2498      * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
2499      * Removed all preallocation code since under current scheme
2500        the work required to undo bad preallocations exceeds
2501        the work saved in good cases for most test programs.
2502      * No longer use return list or unconsolidated bins since
2503        no scheme using them consistently outperforms those that don't
2504        given above changes.
2505      * Use best fit for very large chunks to prevent some worst-cases.
2506      * Added some support for debugging
2507
2508    V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
2509      * Removed footers when chunks are in use. Thanks to
2510        Paul Wilson (wilson@cs.texas.edu) for the suggestion.
2511
2512    V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
2513      * Added malloc_trim, with help from Wolfram Gloger
2514        (wmglo@Dent.MED.Uni-Muenchen.DE).
2515
2516    V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)
2517
2518    V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
2519      * realloc: try to expand in both directions
2520      * malloc: swap order of clean-bin strategy;
2521      * realloc: only conditionally expand backwards
2522      * Try not to scavenge used bins
2523      * Use bin counts as a guide to preallocation
2524      * Occasionally bin return list chunks in first scan
2525      * Add a few optimizations from colin@nyx10.cs.du.edu
2526
2527    V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
2528      * faster bin computation & slightly different binning
2529      * merged all consolidations to one part of malloc proper
2530         (eliminating old malloc_find_space & malloc_clean_bin)
2531      * Scan 2 returns chunks (not just 1)
2532      * Propagate failure in realloc if malloc returns 0
2533      * Add stuff to allow compilation on non-ANSI compilers
2534          from kpv@research.att.com
2535
2536    V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
2537      * removed potential for odd address access in prev_chunk
2538      * removed dependency on getpagesize.h
2539      * misc cosmetics and a bit more internal documentation
2540      * anticosmetics: mangled names in macros to evade debugger strangeness
2541      * tested on sparc, hp-700, dec-mips, rs6000
2542          with gcc & native cc (hp, dec only) allowing
2543          Detlefs & Zorn comparison study (in SIGPLAN Notices.)
2544
2545    Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
2546      * Based loosely on libg++-1.2X malloc. (It retains some of the overall
2547         structure of old version,  but most details differ.)
2548
2549*/
2550