uboot/drivers/mtd/nand/raw/fsl_ifc_spl.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * NAND boot for Freescale Integrated Flash Controller, NAND FCM
   4 *
   5 * Copyright 2011 Freescale Semiconductor, Inc.
   6 * Author: Dipen Dudhat <dipen.dudhat@freescale.com>
   7 */
   8
   9#include <common.h>
  10#include <cpu_func.h>
  11#include <asm/io.h>
  12#include <fsl_ifc.h>
  13#include <part.h>
  14#include <linux/mtd/rawnand.h>
  15#ifdef CONFIG_CHAIN_OF_TRUST
  16#include <fsl_validate.h>
  17#endif
  18
  19static inline int is_blank(uchar *addr, int page_size)
  20{
  21        int i;
  22
  23        for (i = 0; i < page_size; i++) {
  24                if (__raw_readb(&addr[i]) != 0xff)
  25                        return 0;
  26        }
  27
  28        /*
  29         * For the SPL, don't worry about uncorrectable errors
  30         * where the main area is all FFs but shouldn't be.
  31         */
  32        return 1;
  33}
  34
  35/* returns nonzero if entire page is blank */
  36static inline int check_read_ecc(uchar *buf, u32 *eccstat,
  37                                 unsigned int bufnum, int page_size)
  38{
  39        u32 reg = eccstat[bufnum / 4];
  40        int errors = (reg >> ((3 - bufnum % 4) * 8)) & 0xf;
  41
  42        if (errors == 0xf) { /* uncorrectable */
  43                /* Blank pages fail hw ECC checks */
  44                if (is_blank(buf, page_size))
  45                        return 1;
  46
  47                puts("ecc error\n");
  48                for (;;)
  49                        ;
  50        }
  51
  52        return 0;
  53}
  54
  55static inline struct fsl_ifc_runtime *runtime_regs_address(void)
  56{
  57        struct fsl_ifc regs = {(void *)CONFIG_SYS_IFC_ADDR, NULL};
  58        int ver = 0;
  59
  60        ver = ifc_in32(&regs.gregs->ifc_rev);
  61        if (ver >= FSL_IFC_V2_0_0)
  62                regs.rregs = (void *)CONFIG_SYS_IFC_ADDR + IFC_RREGS_64KOFFSET;
  63        else
  64                regs.rregs = (void *)CONFIG_SYS_IFC_ADDR + IFC_RREGS_4KOFFSET;
  65
  66        return regs.rregs;
  67}
  68
  69static inline void nand_wait(uchar *buf, int bufnum, int page_size)
  70{
  71        struct fsl_ifc_runtime *ifc = runtime_regs_address();
  72        u32 status;
  73        u32 eccstat[8];
  74        int bufperpage = page_size / 512;
  75        int bufnum_end, i;
  76
  77        bufnum *= bufperpage;
  78        bufnum_end = bufnum + bufperpage - 1;
  79
  80        do {
  81                status = ifc_in32(&ifc->ifc_nand.nand_evter_stat);
  82        } while (!(status & IFC_NAND_EVTER_STAT_OPC));
  83
  84        if (status & IFC_NAND_EVTER_STAT_FTOER) {
  85                puts("flash time out error\n");
  86                for (;;)
  87                        ;
  88        }
  89
  90        for (i = bufnum / 4; i <= bufnum_end / 4; i++)
  91                eccstat[i] = ifc_in32(&ifc->ifc_nand.nand_eccstat[i]);
  92
  93        for (i = bufnum; i <= bufnum_end; i++) {
  94                if (check_read_ecc(buf, eccstat, i, page_size))
  95                        break;
  96        }
  97
  98        ifc_out32(&ifc->ifc_nand.nand_evter_stat, status);
  99}
 100
 101static inline int bad_block(uchar *marker, int port_size)
 102{
 103        if (port_size == 8)
 104                return __raw_readb(marker) != 0xff;
 105        else
 106                return __raw_readw((u16 *)marker) != 0xffff;
 107}
 108
 109int nand_spl_load_image(uint32_t offs, unsigned int uboot_size, void *vdst)
 110{
 111        struct fsl_ifc_fcm *gregs = (void *)CONFIG_SYS_IFC_ADDR;
 112        struct fsl_ifc_runtime *ifc = NULL;
 113        uchar *buf = (uchar *)CONFIG_SYS_NAND_BASE;
 114        int page_size;
 115        int port_size;
 116        int pages_per_blk;
 117        int blk_size;
 118        int bad_marker = 0;
 119        int bufnum_mask, bufnum, ver = 0;
 120
 121        int csor, cspr;
 122        int pos = 0;
 123        int j = 0;
 124
 125        int sram_addr;
 126        int pg_no;
 127        uchar *dst = vdst;
 128
 129        ifc = runtime_regs_address();
 130
 131        /* Get NAND Flash configuration */
 132        csor = CONFIG_SYS_NAND_CSOR;
 133        cspr = CONFIG_SYS_NAND_CSPR;
 134
 135        port_size = (cspr & CSPR_PORT_SIZE_16) ? 16 : 8;
 136
 137        if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_8K) {
 138                page_size = 8192;
 139                bufnum_mask = 0x0;
 140        } else if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_4K) {
 141                page_size = 4096;
 142                bufnum_mask = 0x1;
 143        } else if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_2K) {
 144                page_size = 2048;
 145                bufnum_mask = 0x3;
 146        } else {
 147                page_size = 512;
 148                bufnum_mask = 0xf;
 149
 150                if (port_size == 8)
 151                        bad_marker = 5;
 152        }
 153
 154        ver = ifc_in32(&gregs->ifc_rev);
 155        if (ver >= FSL_IFC_V2_0_0)
 156                bufnum_mask = (bufnum_mask * 2) + 1;
 157
 158        pages_per_blk =
 159                32 << ((csor & CSOR_NAND_PB_MASK) >> CSOR_NAND_PB_SHIFT);
 160
 161        blk_size = pages_per_blk * page_size;
 162
 163        /* Open Full SRAM mapping for spare are access */
 164        ifc_out32(&ifc->ifc_nand.ncfgr, 0x0);
 165
 166        /* Clear Boot events */
 167        ifc_out32(&ifc->ifc_nand.nand_evter_stat, 0xffffffff);
 168
 169        /* Program FIR/FCR for Large/Small page */
 170        if (page_size > 512) {
 171                ifc_out32(&ifc->ifc_nand.nand_fir0,
 172                          (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 173                          (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
 174                          (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
 175                          (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
 176                          (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP4_SHIFT));
 177                ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0);
 178
 179                ifc_out32(&ifc->ifc_nand.nand_fcr0,
 180                          (NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
 181                          (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT));
 182        } else {
 183                ifc_out32(&ifc->ifc_nand.nand_fir0,
 184                          (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 185                          (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
 186                          (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) |
 187                          (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP3_SHIFT));
 188                ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0);
 189
 190                ifc_out32(&ifc->ifc_nand.nand_fcr0,
 191                          NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT);
 192        }
 193
 194        /* Program FBCR = 0 for full page read */
 195        ifc_out32(&ifc->ifc_nand.nand_fbcr, 0);
 196
 197        /* Read and copy u-boot on SDRAM from NAND device, In parallel
 198         * check for Bad block if found skip it and read continue to
 199         * next Block
 200         */
 201        while (pos < uboot_size) {
 202                int i = 0;
 203                do {
 204                        pg_no = offs / page_size;
 205                        bufnum = pg_no & bufnum_mask;
 206                        sram_addr = bufnum * page_size * 2;
 207
 208                        ifc_out32(&ifc->ifc_nand.row0, pg_no);
 209                        ifc_out32(&ifc->ifc_nand.col0, 0);
 210                        /* start read */
 211                        ifc_out32(&ifc->ifc_nand.nandseq_strt,
 212                                  IFC_NAND_SEQ_STRT_FIR_STRT);
 213
 214                        /* wait for read to complete */
 215                        nand_wait(&buf[sram_addr], bufnum, page_size);
 216
 217                        /*
 218                         * If either of the first two pages are marked bad,
 219                         * continue to the next block.
 220                         */
 221                        if (i++ < 2 &&
 222                            bad_block(&buf[sram_addr + page_size + bad_marker],
 223                                      port_size)) {
 224                                puts("skipping\n");
 225                                offs = (offs + blk_size) & ~(blk_size - 1);
 226                                pos &= ~(blk_size - 1);
 227                                break;
 228                        }
 229
 230                        for (j = 0; j < page_size; j++)
 231                                dst[pos + j] = __raw_readb(&buf[sram_addr + j]);
 232
 233                        pos += page_size;
 234                        offs += page_size;
 235                } while ((offs & (blk_size - 1)) && (pos < uboot_size));
 236        }
 237
 238        return 0;
 239}
 240
 241/*
 242 * Main entrypoint for NAND Boot. It's necessary that SDRAM is already
 243 * configured and available since this code loads the main U-Boot image
 244 * from NAND into SDRAM and starts from there.
 245 */
 246void nand_boot(void)
 247{
 248        __attribute__((noreturn)) void (*uboot)(void);
 249        /*
 250         * Load U-Boot image from NAND into RAM
 251         */
 252        nand_spl_load_image(CONFIG_SYS_NAND_U_BOOT_OFFS,
 253                            CONFIG_SYS_NAND_U_BOOT_SIZE,
 254                            (uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
 255
 256#ifdef CONFIG_NAND_ENV_DST
 257        nand_spl_load_image(CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
 258                            (uchar *)CONFIG_NAND_ENV_DST);
 259
 260#ifdef CONFIG_ENV_OFFSET_REDUND
 261        nand_spl_load_image(CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
 262                            (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
 263#endif
 264#endif
 265        /*
 266         * Jump to U-Boot image
 267         */
 268#ifdef CONFIG_SPL_FLUSH_IMAGE
 269        /*
 270         * Clean d-cache and invalidate i-cache, to
 271         * make sure that no stale data is executed.
 272         */
 273        flush_cache(CONFIG_SYS_NAND_U_BOOT_DST, CONFIG_SYS_NAND_U_BOOT_SIZE);
 274#endif
 275
 276#ifdef CONFIG_CHAIN_OF_TRUST
 277        /*
 278         * U-Boot header is appended at end of U-boot image, so
 279         * calculate U-boot header address using U-boot header size.
 280         */
 281#define CONFIG_U_BOOT_HDR_ADDR \
 282                ((CONFIG_SYS_NAND_U_BOOT_START + \
 283                  CONFIG_SYS_NAND_U_BOOT_SIZE) - \
 284                 CONFIG_U_BOOT_HDR_SIZE)
 285        spl_validate_uboot(CONFIG_U_BOOT_HDR_ADDR,
 286                           CONFIG_SYS_NAND_U_BOOT_START);
 287        /*
 288         * In case of failure in validation, spl_validate_uboot would
 289         * not return back in case of Production environment with ITS=1.
 290         * Thus U-Boot will not start.
 291         * In Development environment (ITS=0 and SB_EN=1), the function
 292         * may return back in case of non-fatal failures.
 293         */
 294#endif
 295
 296        uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
 297        uboot();
 298}
 299
 300#ifndef CONFIG_SPL_NAND_INIT
 301void nand_init(void)
 302{
 303}
 304
 305void nand_deselect(void)
 306{
 307}
 308#endif
 309