uboot/include/linux/mtd/nand.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 *  Copyright 2017 - Free Electrons
   4 *
   5 *  Authors:
   6 *      Boris Brezillon <boris.brezillon@free-electrons.com>
   7 *      Peter Pan <peterpandong@micron.com>
   8 */
   9
  10#ifndef __LINUX_MTD_NAND_H
  11#define __LINUX_MTD_NAND_H
  12
  13#include <linux/mtd/mtd.h>
  14
  15/**
  16 * struct nand_memory_organization - Memory organization structure
  17 * @bits_per_cell: number of bits per NAND cell
  18 * @pagesize: page size
  19 * @oobsize: OOB area size
  20 * @pages_per_eraseblock: number of pages per eraseblock
  21 * @eraseblocks_per_lun: number of eraseblocks per LUN (Logical Unit Number)
  22 * @planes_per_lun: number of planes per LUN
  23 * @luns_per_target: number of LUN per target (target is a synonym for die)
  24 * @ntargets: total number of targets exposed by the NAND device
  25 */
  26struct nand_memory_organization {
  27        unsigned int bits_per_cell;
  28        unsigned int pagesize;
  29        unsigned int oobsize;
  30        unsigned int pages_per_eraseblock;
  31        unsigned int eraseblocks_per_lun;
  32        unsigned int planes_per_lun;
  33        unsigned int luns_per_target;
  34        unsigned int ntargets;
  35};
  36
  37#define NAND_MEMORG(bpc, ps, os, ppe, epl, ppl, lpt, nt)        \
  38        {                                                       \
  39                .bits_per_cell = (bpc),                         \
  40                .pagesize = (ps),                               \
  41                .oobsize = (os),                                \
  42                .pages_per_eraseblock = (ppe),                  \
  43                .eraseblocks_per_lun = (epl),                   \
  44                .planes_per_lun = (ppl),                        \
  45                .luns_per_target = (lpt),                       \
  46                .ntargets = (nt),                               \
  47        }
  48
  49/**
  50 * struct nand_row_converter - Information needed to convert an absolute offset
  51 *                             into a row address
  52 * @lun_addr_shift: position of the LUN identifier in the row address
  53 * @eraseblock_addr_shift: position of the eraseblock identifier in the row
  54 *                         address
  55 */
  56struct nand_row_converter {
  57        unsigned int lun_addr_shift;
  58        unsigned int eraseblock_addr_shift;
  59};
  60
  61/**
  62 * struct nand_pos - NAND position object
  63 * @target: the NAND target/die
  64 * @lun: the LUN identifier
  65 * @plane: the plane within the LUN
  66 * @eraseblock: the eraseblock within the LUN
  67 * @page: the page within the LUN
  68 *
  69 * These information are usually used by specific sub-layers to select the
  70 * appropriate target/die and generate a row address to pass to the device.
  71 */
  72struct nand_pos {
  73        unsigned int target;
  74        unsigned int lun;
  75        unsigned int plane;
  76        unsigned int eraseblock;
  77        unsigned int page;
  78};
  79
  80/**
  81 * struct nand_page_io_req - NAND I/O request object
  82 * @pos: the position this I/O request is targeting
  83 * @dataoffs: the offset within the page
  84 * @datalen: number of data bytes to read from/write to this page
  85 * @databuf: buffer to store data in or get data from
  86 * @ooboffs: the OOB offset within the page
  87 * @ooblen: the number of OOB bytes to read from/write to this page
  88 * @oobbuf: buffer to store OOB data in or get OOB data from
  89 * @mode: one of the %MTD_OPS_XXX mode
  90 *
  91 * This object is used to pass per-page I/O requests to NAND sub-layers. This
  92 * way all useful information are already formatted in a useful way and
  93 * specific NAND layers can focus on translating these information into
  94 * specific commands/operations.
  95 */
  96struct nand_page_io_req {
  97        struct nand_pos pos;
  98        unsigned int dataoffs;
  99        unsigned int datalen;
 100        union {
 101                const void *out;
 102                void *in;
 103        } databuf;
 104        unsigned int ooboffs;
 105        unsigned int ooblen;
 106        union {
 107                const void *out;
 108                void *in;
 109        } oobbuf;
 110        int mode;
 111};
 112
 113/**
 114 * struct nand_ecc_req - NAND ECC requirements
 115 * @strength: ECC strength
 116 * @step_size: ECC step/block size
 117 */
 118struct nand_ecc_req {
 119        unsigned int strength;
 120        unsigned int step_size;
 121};
 122
 123#define NAND_ECCREQ(str, stp) { .strength = (str), .step_size = (stp) }
 124
 125/**
 126 * struct nand_bbt - bad block table object
 127 * @cache: in memory BBT cache
 128 */
 129struct nand_bbt {
 130        unsigned long *cache;
 131};
 132
 133struct nand_device;
 134
 135/**
 136 * struct nand_ops - NAND operations
 137 * @erase: erase a specific block. No need to check if the block is bad before
 138 *         erasing, this has been taken care of by the generic NAND layer
 139 * @markbad: mark a specific block bad. No need to check if the block is
 140 *           already marked bad, this has been taken care of by the generic
 141 *           NAND layer. This method should just write the BBM (Bad Block
 142 *           Marker) so that future call to struct_nand_ops->isbad() return
 143 *           true
 144 * @isbad: check whether a block is bad or not. This method should just read
 145 *         the BBM and return whether the block is bad or not based on what it
 146 *         reads
 147 *
 148 * These are all low level operations that should be implemented by specialized
 149 * NAND layers (SPI NAND, raw NAND, ...).
 150 */
 151struct nand_ops {
 152        int (*erase)(struct nand_device *nand, const struct nand_pos *pos);
 153        int (*markbad)(struct nand_device *nand, const struct nand_pos *pos);
 154        bool (*isbad)(struct nand_device *nand, const struct nand_pos *pos);
 155};
 156
 157/**
 158 * struct nand_device - NAND device
 159 * @mtd: MTD instance attached to the NAND device
 160 * @memorg: memory layout
 161 * @eccreq: ECC requirements
 162 * @rowconv: position to row address converter
 163 * @bbt: bad block table info
 164 * @ops: NAND operations attached to the NAND device
 165 *
 166 * Generic NAND object. Specialized NAND layers (raw NAND, SPI NAND, OneNAND)
 167 * should declare their own NAND object embedding a nand_device struct (that's
 168 * how inheritance is done).
 169 * struct_nand_device->memorg and struct_nand_device->eccreq should be filled
 170 * at device detection time to reflect the NAND device
 171 * capabilities/requirements. Once this is done nanddev_init() can be called.
 172 * It will take care of converting NAND information into MTD ones, which means
 173 * the specialized NAND layers should never manually tweak
 174 * struct_nand_device->mtd except for the ->_read/write() hooks.
 175 */
 176struct nand_device {
 177        struct mtd_info *mtd;
 178        struct nand_memory_organization memorg;
 179        struct nand_ecc_req eccreq;
 180        struct nand_row_converter rowconv;
 181        struct nand_bbt bbt;
 182        const struct nand_ops *ops;
 183};
 184
 185/**
 186 * struct nand_io_iter - NAND I/O iterator
 187 * @req: current I/O request
 188 * @oobbytes_per_page: maximum number of OOB bytes per page
 189 * @dataleft: remaining number of data bytes to read/write
 190 * @oobleft: remaining number of OOB bytes to read/write
 191 *
 192 * Can be used by specialized NAND layers to iterate over all pages covered
 193 * by an MTD I/O request, which should greatly simplifies the boiler-plate
 194 * code needed to read/write data from/to a NAND device.
 195 */
 196struct nand_io_iter {
 197        struct nand_page_io_req req;
 198        unsigned int oobbytes_per_page;
 199        unsigned int dataleft;
 200        unsigned int oobleft;
 201};
 202
 203/**
 204 * mtd_to_nanddev() - Get the NAND device attached to the MTD instance
 205 * @mtd: MTD instance
 206 *
 207 * Return: the NAND device embedding @mtd.
 208 */
 209static inline struct nand_device *mtd_to_nanddev(struct mtd_info *mtd)
 210{
 211        return mtd->priv;
 212}
 213
 214/**
 215 * nanddev_to_mtd() - Get the MTD device attached to a NAND device
 216 * @nand: NAND device
 217 *
 218 * Return: the MTD device embedded in @nand.
 219 */
 220static inline struct mtd_info *nanddev_to_mtd(struct nand_device *nand)
 221{
 222        return nand->mtd;
 223}
 224
 225/*
 226 * nanddev_bits_per_cell() - Get the number of bits per cell
 227 * @nand: NAND device
 228 *
 229 * Return: the number of bits per cell.
 230 */
 231static inline unsigned int nanddev_bits_per_cell(const struct nand_device *nand)
 232{
 233        return nand->memorg.bits_per_cell;
 234}
 235
 236/**
 237 * nanddev_page_size() - Get NAND page size
 238 * @nand: NAND device
 239 *
 240 * Return: the page size.
 241 */
 242static inline size_t nanddev_page_size(const struct nand_device *nand)
 243{
 244        return nand->memorg.pagesize;
 245}
 246
 247/**
 248 * nanddev_per_page_oobsize() - Get NAND OOB size
 249 * @nand: NAND device
 250 *
 251 * Return: the OOB size.
 252 */
 253static inline unsigned int
 254nanddev_per_page_oobsize(const struct nand_device *nand)
 255{
 256        return nand->memorg.oobsize;
 257}
 258
 259/**
 260 * nanddev_pages_per_eraseblock() - Get the number of pages per eraseblock
 261 * @nand: NAND device
 262 *
 263 * Return: the number of pages per eraseblock.
 264 */
 265static inline unsigned int
 266nanddev_pages_per_eraseblock(const struct nand_device *nand)
 267{
 268        return nand->memorg.pages_per_eraseblock;
 269}
 270
 271/**
 272 * nanddev_per_page_oobsize() - Get NAND erase block size
 273 * @nand: NAND device
 274 *
 275 * Return: the eraseblock size.
 276 */
 277static inline size_t nanddev_eraseblock_size(const struct nand_device *nand)
 278{
 279        return nand->memorg.pagesize * nand->memorg.pages_per_eraseblock;
 280}
 281
 282/**
 283 * nanddev_eraseblocks_per_lun() - Get the number of eraseblocks per LUN
 284 * @nand: NAND device
 285 *
 286 * Return: the number of eraseblocks per LUN.
 287 */
 288static inline unsigned int
 289nanddev_eraseblocks_per_lun(const struct nand_device *nand)
 290{
 291        return nand->memorg.eraseblocks_per_lun;
 292}
 293
 294/**
 295 * nanddev_target_size() - Get the total size provided by a single target/die
 296 * @nand: NAND device
 297 *
 298 * Return: the total size exposed by a single target/die in bytes.
 299 */
 300static inline u64 nanddev_target_size(const struct nand_device *nand)
 301{
 302        return (u64)nand->memorg.luns_per_target *
 303               nand->memorg.eraseblocks_per_lun *
 304               nand->memorg.pages_per_eraseblock *
 305               nand->memorg.pagesize;
 306}
 307
 308/**
 309 * nanddev_ntarget() - Get the total of targets
 310 * @nand: NAND device
 311 *
 312 * Return: the number of targets/dies exposed by @nand.
 313 */
 314static inline unsigned int nanddev_ntargets(const struct nand_device *nand)
 315{
 316        return nand->memorg.ntargets;
 317}
 318
 319/**
 320 * nanddev_neraseblocks() - Get the total number of erasablocks
 321 * @nand: NAND device
 322 *
 323 * Return: the total number of eraseblocks exposed by @nand.
 324 */
 325static inline unsigned int nanddev_neraseblocks(const struct nand_device *nand)
 326{
 327        return (u64)nand->memorg.luns_per_target *
 328               nand->memorg.eraseblocks_per_lun *
 329               nand->memorg.pages_per_eraseblock;
 330}
 331
 332/**
 333 * nanddev_size() - Get NAND size
 334 * @nand: NAND device
 335 *
 336 * Return: the total size (in bytes) exposed by @nand.
 337 */
 338static inline u64 nanddev_size(const struct nand_device *nand)
 339{
 340        return nanddev_target_size(nand) * nanddev_ntargets(nand);
 341}
 342
 343/**
 344 * nanddev_get_memorg() - Extract memory organization info from a NAND device
 345 * @nand: NAND device
 346 *
 347 * This can be used by the upper layer to fill the memorg info before calling
 348 * nanddev_init().
 349 *
 350 * Return: the memorg object embedded in the NAND device.
 351 */
 352static inline struct nand_memory_organization *
 353nanddev_get_memorg(struct nand_device *nand)
 354{
 355        return &nand->memorg;
 356}
 357
 358int nanddev_init(struct nand_device *nand, const struct nand_ops *ops,
 359                 struct module *owner);
 360void nanddev_cleanup(struct nand_device *nand);
 361
 362/**
 363 * nanddev_register() - Register a NAND device
 364 * @nand: NAND device
 365 *
 366 * Register a NAND device.
 367 * This function is just a wrapper around mtd_device_register()
 368 * registering the MTD device embedded in @nand.
 369 *
 370 * Return: 0 in case of success, a negative error code otherwise.
 371 */
 372static inline int nanddev_register(struct nand_device *nand)
 373{
 374        return mtd_device_register(nand->mtd, NULL, 0);
 375}
 376
 377/**
 378 * nanddev_unregister() - Unregister a NAND device
 379 * @nand: NAND device
 380 *
 381 * Unregister a NAND device.
 382 * This function is just a wrapper around mtd_device_unregister()
 383 * unregistering the MTD device embedded in @nand.
 384 *
 385 * Return: 0 in case of success, a negative error code otherwise.
 386 */
 387static inline int nanddev_unregister(struct nand_device *nand)
 388{
 389        return mtd_device_unregister(nand->mtd);
 390}
 391
 392#ifndef __UBOOT__
 393/**
 394 * nanddev_set_of_node() - Attach a DT node to a NAND device
 395 * @nand: NAND device
 396 * @np: DT node
 397 *
 398 * Attach a DT node to a NAND device.
 399 */
 400static inline void nanddev_set_of_node(struct nand_device *nand,
 401                                       const struct device_node *np)
 402{
 403        mtd_set_of_node(nand->mtd, np);
 404}
 405
 406/**
 407 * nanddev_get_of_node() - Retrieve the DT node attached to a NAND device
 408 * @nand: NAND device
 409 *
 410 * Return: the DT node attached to @nand.
 411 */
 412static inline const struct device_node *nanddev_get_of_node(struct nand_device *nand)
 413{
 414        return mtd_get_of_node(nand->mtd);
 415}
 416#else
 417/**
 418 * nanddev_set_of_node() - Attach a DT node to a NAND device
 419 * @nand: NAND device
 420 * @node: ofnode
 421 *
 422 * Attach a DT node to a NAND device.
 423 */
 424static inline void nanddev_set_ofnode(struct nand_device *nand, ofnode node)
 425{
 426        mtd_set_ofnode(nand->mtd, node);
 427}
 428#endif /* __UBOOT__ */
 429
 430/**
 431 * nanddev_offs_to_pos() - Convert an absolute NAND offset into a NAND position
 432 * @nand: NAND device
 433 * @offs: absolute NAND offset (usually passed by the MTD layer)
 434 * @pos: a NAND position object to fill in
 435 *
 436 * Converts @offs into a nand_pos representation.
 437 *
 438 * Return: the offset within the NAND page pointed by @pos.
 439 */
 440static inline unsigned int nanddev_offs_to_pos(struct nand_device *nand,
 441                                               loff_t offs,
 442                                               struct nand_pos *pos)
 443{
 444        unsigned int pageoffs;
 445        u64 tmp = offs;
 446
 447        pageoffs = do_div(tmp, nand->memorg.pagesize);
 448        pos->page = do_div(tmp, nand->memorg.pages_per_eraseblock);
 449        pos->eraseblock = do_div(tmp, nand->memorg.eraseblocks_per_lun);
 450        pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
 451        pos->lun = do_div(tmp, nand->memorg.luns_per_target);
 452        pos->target = tmp;
 453
 454        return pageoffs;
 455}
 456
 457/**
 458 * nanddev_pos_cmp() - Compare two NAND positions
 459 * @a: First NAND position
 460 * @b: Second NAND position
 461 *
 462 * Compares two NAND positions.
 463 *
 464 * Return: -1 if @a < @b, 0 if @a == @b and 1 if @a > @b.
 465 */
 466static inline int nanddev_pos_cmp(const struct nand_pos *a,
 467                                  const struct nand_pos *b)
 468{
 469        if (a->target != b->target)
 470                return a->target < b->target ? -1 : 1;
 471
 472        if (a->lun != b->lun)
 473                return a->lun < b->lun ? -1 : 1;
 474
 475        if (a->eraseblock != b->eraseblock)
 476                return a->eraseblock < b->eraseblock ? -1 : 1;
 477
 478        if (a->page != b->page)
 479                return a->page < b->page ? -1 : 1;
 480
 481        return 0;
 482}
 483
 484/**
 485 * nanddev_pos_to_offs() - Convert a NAND position into an absolute offset
 486 * @nand: NAND device
 487 * @pos: the NAND position to convert
 488 *
 489 * Converts @pos NAND position into an absolute offset.
 490 *
 491 * Return: the absolute offset. Note that @pos points to the beginning of a
 492 *         page, if one wants to point to a specific offset within this page
 493 *         the returned offset has to be adjusted manually.
 494 */
 495static inline loff_t nanddev_pos_to_offs(struct nand_device *nand,
 496                                         const struct nand_pos *pos)
 497{
 498        unsigned int npages;
 499
 500        npages = pos->page +
 501                 ((pos->eraseblock +
 502                   (pos->lun +
 503                    (pos->target * nand->memorg.luns_per_target)) *
 504                   nand->memorg.eraseblocks_per_lun) *
 505                  nand->memorg.pages_per_eraseblock);
 506
 507        return (loff_t)npages * nand->memorg.pagesize;
 508}
 509
 510/**
 511 * nanddev_pos_to_row() - Extract a row address from a NAND position
 512 * @nand: NAND device
 513 * @pos: the position to convert
 514 *
 515 * Converts a NAND position into a row address that can then be passed to the
 516 * device.
 517 *
 518 * Return: the row address extracted from @pos.
 519 */
 520static inline unsigned int nanddev_pos_to_row(struct nand_device *nand,
 521                                              const struct nand_pos *pos)
 522{
 523        return (pos->lun << nand->rowconv.lun_addr_shift) |
 524               (pos->eraseblock << nand->rowconv.eraseblock_addr_shift) |
 525               pos->page;
 526}
 527
 528/**
 529 * nanddev_pos_next_target() - Move a position to the next target/die
 530 * @nand: NAND device
 531 * @pos: the position to update
 532 *
 533 * Updates @pos to point to the start of the next target/die. Useful when you
 534 * want to iterate over all targets/dies of a NAND device.
 535 */
 536static inline void nanddev_pos_next_target(struct nand_device *nand,
 537                                           struct nand_pos *pos)
 538{
 539        pos->page = 0;
 540        pos->plane = 0;
 541        pos->eraseblock = 0;
 542        pos->lun = 0;
 543        pos->target++;
 544}
 545
 546/**
 547 * nanddev_pos_next_lun() - Move a position to the next LUN
 548 * @nand: NAND device
 549 * @pos: the position to update
 550 *
 551 * Updates @pos to point to the start of the next LUN. Useful when you want to
 552 * iterate over all LUNs of a NAND device.
 553 */
 554static inline void nanddev_pos_next_lun(struct nand_device *nand,
 555                                        struct nand_pos *pos)
 556{
 557        if (pos->lun >= nand->memorg.luns_per_target - 1)
 558                return nanddev_pos_next_target(nand, pos);
 559
 560        pos->lun++;
 561        pos->page = 0;
 562        pos->plane = 0;
 563        pos->eraseblock = 0;
 564}
 565
 566/**
 567 * nanddev_pos_next_eraseblock() - Move a position to the next eraseblock
 568 * @nand: NAND device
 569 * @pos: the position to update
 570 *
 571 * Updates @pos to point to the start of the next eraseblock. Useful when you
 572 * want to iterate over all eraseblocks of a NAND device.
 573 */
 574static inline void nanddev_pos_next_eraseblock(struct nand_device *nand,
 575                                               struct nand_pos *pos)
 576{
 577        if (pos->eraseblock >= nand->memorg.eraseblocks_per_lun - 1)
 578                return nanddev_pos_next_lun(nand, pos);
 579
 580        pos->eraseblock++;
 581        pos->page = 0;
 582        pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
 583}
 584
 585/**
 586 * nanddev_pos_next_eraseblock() - Move a position to the next page
 587 * @nand: NAND device
 588 * @pos: the position to update
 589 *
 590 * Updates @pos to point to the start of the next page. Useful when you want to
 591 * iterate over all pages of a NAND device.
 592 */
 593static inline void nanddev_pos_next_page(struct nand_device *nand,
 594                                         struct nand_pos *pos)
 595{
 596        if (pos->page >= nand->memorg.pages_per_eraseblock - 1)
 597                return nanddev_pos_next_eraseblock(nand, pos);
 598
 599        pos->page++;
 600}
 601
 602/**
 603 * nand_io_iter_init - Initialize a NAND I/O iterator
 604 * @nand: NAND device
 605 * @offs: absolute offset
 606 * @req: MTD request
 607 * @iter: NAND I/O iterator
 608 *
 609 * Initializes a NAND iterator based on the information passed by the MTD
 610 * layer.
 611 */
 612static inline void nanddev_io_iter_init(struct nand_device *nand,
 613                                        loff_t offs, struct mtd_oob_ops *req,
 614                                        struct nand_io_iter *iter)
 615{
 616        struct mtd_info *mtd = nanddev_to_mtd(nand);
 617
 618        iter->req.mode = req->mode;
 619        iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos);
 620        iter->req.ooboffs = req->ooboffs;
 621        iter->oobbytes_per_page = mtd_oobavail(mtd, req);
 622        iter->dataleft = req->len;
 623        iter->oobleft = req->ooblen;
 624        iter->req.databuf.in = req->datbuf;
 625        iter->req.datalen = min_t(unsigned int,
 626                                  nand->memorg.pagesize - iter->req.dataoffs,
 627                                  iter->dataleft);
 628        iter->req.oobbuf.in = req->oobbuf;
 629        iter->req.ooblen = min_t(unsigned int,
 630                                 iter->oobbytes_per_page - iter->req.ooboffs,
 631                                 iter->oobleft);
 632}
 633
 634/**
 635 * nand_io_iter_next_page - Move to the next page
 636 * @nand: NAND device
 637 * @iter: NAND I/O iterator
 638 *
 639 * Updates the @iter to point to the next page.
 640 */
 641static inline void nanddev_io_iter_next_page(struct nand_device *nand,
 642                                             struct nand_io_iter *iter)
 643{
 644        nanddev_pos_next_page(nand, &iter->req.pos);
 645        iter->dataleft -= iter->req.datalen;
 646        iter->req.databuf.in += iter->req.datalen;
 647        iter->oobleft -= iter->req.ooblen;
 648        iter->req.oobbuf.in += iter->req.ooblen;
 649        iter->req.dataoffs = 0;
 650        iter->req.ooboffs = 0;
 651        iter->req.datalen = min_t(unsigned int, nand->memorg.pagesize,
 652                                  iter->dataleft);
 653        iter->req.ooblen = min_t(unsigned int, iter->oobbytes_per_page,
 654                                 iter->oobleft);
 655}
 656
 657/**
 658 * nand_io_iter_end - Should end iteration or not
 659 * @nand: NAND device
 660 * @iter: NAND I/O iterator
 661 *
 662 * Check whether @iter has reached the end of the NAND portion it was asked to
 663 * iterate on or not.
 664 *
 665 * Return: true if @iter has reached the end of the iteration request, false
 666 *         otherwise.
 667 */
 668static inline bool nanddev_io_iter_end(struct nand_device *nand,
 669                                       const struct nand_io_iter *iter)
 670{
 671        if (iter->dataleft || iter->oobleft)
 672                return false;
 673
 674        return true;
 675}
 676
 677/**
 678 * nand_io_for_each_page - Iterate over all NAND pages contained in an MTD I/O
 679 *                         request
 680 * @nand: NAND device
 681 * @start: start address to read/write from
 682 * @req: MTD I/O request
 683 * @iter: NAND I/O iterator
 684 *
 685 * Should be used for iterate over pages that are contained in an MTD request.
 686 */
 687#define nanddev_io_for_each_page(nand, start, req, iter)                \
 688        for (nanddev_io_iter_init(nand, start, req, iter);              \
 689             !nanddev_io_iter_end(nand, iter);                          \
 690             nanddev_io_iter_next_page(nand, iter))
 691
 692bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos);
 693bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos);
 694int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos);
 695int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos);
 696
 697/* BBT related functions */
 698enum nand_bbt_block_status {
 699        NAND_BBT_BLOCK_STATUS_UNKNOWN,
 700        NAND_BBT_BLOCK_GOOD,
 701        NAND_BBT_BLOCK_WORN,
 702        NAND_BBT_BLOCK_RESERVED,
 703        NAND_BBT_BLOCK_FACTORY_BAD,
 704        NAND_BBT_BLOCK_NUM_STATUS,
 705};
 706
 707int nanddev_bbt_init(struct nand_device *nand);
 708void nanddev_bbt_cleanup(struct nand_device *nand);
 709int nanddev_bbt_update(struct nand_device *nand);
 710int nanddev_bbt_get_block_status(const struct nand_device *nand,
 711                                 unsigned int entry);
 712int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry,
 713                                 enum nand_bbt_block_status status);
 714int nanddev_bbt_markbad(struct nand_device *nand, unsigned int block);
 715
 716/**
 717 * nanddev_bbt_pos_to_entry() - Convert a NAND position into a BBT entry
 718 * @nand: NAND device
 719 * @pos: the NAND position we want to get BBT entry for
 720 *
 721 * Return the BBT entry used to store information about the eraseblock pointed
 722 * by @pos.
 723 *
 724 * Return: the BBT entry storing information about eraseblock pointed by @pos.
 725 */
 726static inline unsigned int nanddev_bbt_pos_to_entry(struct nand_device *nand,
 727                                                    const struct nand_pos *pos)
 728{
 729        return pos->eraseblock +
 730               ((pos->lun + (pos->target * nand->memorg.luns_per_target)) *
 731                nand->memorg.eraseblocks_per_lun);
 732}
 733
 734/**
 735 * nanddev_bbt_is_initialized() - Check if the BBT has been initialized
 736 * @nand: NAND device
 737 *
 738 * Return: true if the BBT has been initialized, false otherwise.
 739 */
 740static inline bool nanddev_bbt_is_initialized(struct nand_device *nand)
 741{
 742        return !!nand->bbt.cache;
 743}
 744
 745/* MTD -> NAND helper functions. */
 746int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo);
 747
 748#endif /* __LINUX_MTD_NAND_H */
 749