uboot/lib/efi_loader/efi_memory.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 *  EFI application memory management
   4 *
   5 *  Copyright (c) 2016 Alexander Graf
   6 */
   7
   8#include <common.h>
   9#include <efi_loader.h>
  10#include <init.h>
  11#include <malloc.h>
  12#include <mapmem.h>
  13#include <watchdog.h>
  14#include <asm/cache.h>
  15#include <asm/global_data.h>
  16#include <linux/list_sort.h>
  17#include <linux/sizes.h>
  18
  19DECLARE_GLOBAL_DATA_PTR;
  20
  21/* Magic number identifying memory allocated from pool */
  22#define EFI_ALLOC_POOL_MAGIC 0x1fe67ddf6491caa2
  23
  24efi_uintn_t efi_memory_map_key;
  25
  26struct efi_mem_list {
  27        struct list_head link;
  28        struct efi_mem_desc desc;
  29};
  30
  31#define EFI_CARVE_NO_OVERLAP            -1
  32#define EFI_CARVE_LOOP_AGAIN            -2
  33#define EFI_CARVE_OVERLAPS_NONRAM       -3
  34
  35/* This list contains all memory map items */
  36LIST_HEAD(efi_mem);
  37
  38#ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
  39void *efi_bounce_buffer;
  40#endif
  41
  42/**
  43 * struct efi_pool_allocation - memory block allocated from pool
  44 *
  45 * @num_pages:  number of pages allocated
  46 * @checksum:   checksum
  47 * @data:       allocated pool memory
  48 *
  49 * U-Boot services each UEFI AllocatePool() request as a separate
  50 * (multiple) page allocation. We have to track the number of pages
  51 * to be able to free the correct amount later.
  52 *
  53 * The checksum calculated in function checksum() is used in FreePool() to avoid
  54 * freeing memory not allocated by AllocatePool() and duplicate freeing.
  55 *
  56 * EFI requires 8 byte alignment for pool allocations, so we can
  57 * prepend each allocation with these header fields.
  58 */
  59struct efi_pool_allocation {
  60        u64 num_pages;
  61        u64 checksum;
  62        char data[] __aligned(ARCH_DMA_MINALIGN);
  63};
  64
  65/**
  66 * checksum() - calculate checksum for memory allocated from pool
  67 *
  68 * @alloc:      allocation header
  69 * Return:      checksum, always non-zero
  70 */
  71static u64 checksum(struct efi_pool_allocation *alloc)
  72{
  73        u64 addr = (uintptr_t)alloc;
  74        u64 ret = (addr >> 32) ^ (addr << 32) ^ alloc->num_pages ^
  75                  EFI_ALLOC_POOL_MAGIC;
  76        if (!ret)
  77                ++ret;
  78        return ret;
  79}
  80
  81/*
  82 * Sorts the memory list from highest address to lowest address
  83 *
  84 * When allocating memory we should always start from the highest
  85 * address chunk, so sort the memory list such that the first list
  86 * iterator gets the highest address and goes lower from there.
  87 */
  88static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b)
  89{
  90        struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link);
  91        struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link);
  92
  93        if (mema->desc.physical_start == memb->desc.physical_start)
  94                return 0;
  95        else if (mema->desc.physical_start < memb->desc.physical_start)
  96                return 1;
  97        else
  98                return -1;
  99}
 100
 101static uint64_t desc_get_end(struct efi_mem_desc *desc)
 102{
 103        return desc->physical_start + (desc->num_pages << EFI_PAGE_SHIFT);
 104}
 105
 106static void efi_mem_sort(void)
 107{
 108        struct list_head *lhandle;
 109        struct efi_mem_list *prevmem = NULL;
 110        bool merge_again = true;
 111
 112        list_sort(NULL, &efi_mem, efi_mem_cmp);
 113
 114        /* Now merge entries that can be merged */
 115        while (merge_again) {
 116                merge_again = false;
 117                list_for_each(lhandle, &efi_mem) {
 118                        struct efi_mem_list *lmem;
 119                        struct efi_mem_desc *prev = &prevmem->desc;
 120                        struct efi_mem_desc *cur;
 121                        uint64_t pages;
 122
 123                        lmem = list_entry(lhandle, struct efi_mem_list, link);
 124                        if (!prevmem) {
 125                                prevmem = lmem;
 126                                continue;
 127                        }
 128
 129                        cur = &lmem->desc;
 130
 131                        if ((desc_get_end(cur) == prev->physical_start) &&
 132                            (prev->type == cur->type) &&
 133                            (prev->attribute == cur->attribute)) {
 134                                /* There is an existing map before, reuse it */
 135                                pages = cur->num_pages;
 136                                prev->num_pages += pages;
 137                                prev->physical_start -= pages << EFI_PAGE_SHIFT;
 138                                prev->virtual_start -= pages << EFI_PAGE_SHIFT;
 139                                list_del(&lmem->link);
 140                                free(lmem);
 141
 142                                merge_again = true;
 143                                break;
 144                        }
 145
 146                        prevmem = lmem;
 147                }
 148        }
 149}
 150
 151/** efi_mem_carve_out - unmap memory region
 152 *
 153 * @map:                memory map
 154 * @carve_desc:         memory region to unmap
 155 * @overlap_only_ram:   the carved out region may only overlap RAM
 156 * Return Value:        the number of overlapping pages which have been
 157 *                      removed from the map,
 158 *                      EFI_CARVE_NO_OVERLAP, if the regions don't overlap,
 159 *                      EFI_CARVE_OVERLAPS_NONRAM, if the carve and map overlap,
 160 *                      and the map contains anything but free ram
 161 *                      (only when overlap_only_ram is true),
 162 *                      EFI_CARVE_LOOP_AGAIN, if the mapping list should be
 163 *                      traversed again, as it has been altered.
 164 *
 165 * Unmaps all memory occupied by the carve_desc region from the list entry
 166 * pointed to by map.
 167 *
 168 * In case of EFI_CARVE_OVERLAPS_NONRAM it is the callers responsibility
 169 * to re-add the already carved out pages to the mapping.
 170 */
 171static s64 efi_mem_carve_out(struct efi_mem_list *map,
 172                             struct efi_mem_desc *carve_desc,
 173                             bool overlap_only_ram)
 174{
 175        struct efi_mem_list *newmap;
 176        struct efi_mem_desc *map_desc = &map->desc;
 177        uint64_t map_start = map_desc->physical_start;
 178        uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT);
 179        uint64_t carve_start = carve_desc->physical_start;
 180        uint64_t carve_end = carve_start +
 181                             (carve_desc->num_pages << EFI_PAGE_SHIFT);
 182
 183        /* check whether we're overlapping */
 184        if ((carve_end <= map_start) || (carve_start >= map_end))
 185                return EFI_CARVE_NO_OVERLAP;
 186
 187        /* We're overlapping with non-RAM, warn the caller if desired */
 188        if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY))
 189                return EFI_CARVE_OVERLAPS_NONRAM;
 190
 191        /* Sanitize carve_start and carve_end to lie within our bounds */
 192        carve_start = max(carve_start, map_start);
 193        carve_end = min(carve_end, map_end);
 194
 195        /* Carving at the beginning of our map? Just move it! */
 196        if (carve_start == map_start) {
 197                if (map_end == carve_end) {
 198                        /* Full overlap, just remove map */
 199                        list_del(&map->link);
 200                        free(map);
 201                } else {
 202                        map->desc.physical_start = carve_end;
 203                        map->desc.virtual_start = carve_end;
 204                        map->desc.num_pages = (map_end - carve_end)
 205                                              >> EFI_PAGE_SHIFT;
 206                }
 207
 208                return (carve_end - carve_start) >> EFI_PAGE_SHIFT;
 209        }
 210
 211        /*
 212         * Overlapping maps, just split the list map at carve_start,
 213         * it will get moved or removed in the next iteration.
 214         *
 215         * [ map_desc |__carve_start__| newmap ]
 216         */
 217
 218        /* Create a new map from [ carve_start ... map_end ] */
 219        newmap = calloc(1, sizeof(*newmap));
 220        newmap->desc = map->desc;
 221        newmap->desc.physical_start = carve_start;
 222        newmap->desc.virtual_start = carve_start;
 223        newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT;
 224        /* Insert before current entry (descending address order) */
 225        list_add_tail(&newmap->link, &map->link);
 226
 227        /* Shrink the map to [ map_start ... carve_start ] */
 228        map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT;
 229
 230        return EFI_CARVE_LOOP_AGAIN;
 231}
 232
 233/**
 234 * efi_add_memory_map_pg() - add pages to the memory map
 235 *
 236 * @start:              start address, must be a multiple of EFI_PAGE_SIZE
 237 * @pages:              number of pages to add
 238 * @memory_type:        type of memory added
 239 * @overlap_only_ram:   region may only overlap RAM
 240 * Return:              status code
 241 */
 242static efi_status_t efi_add_memory_map_pg(u64 start, u64 pages,
 243                                          int memory_type,
 244                                          bool overlap_only_ram)
 245{
 246        struct list_head *lhandle;
 247        struct efi_mem_list *newlist;
 248        bool carve_again;
 249        uint64_t carved_pages = 0;
 250        struct efi_event *evt;
 251
 252        EFI_PRINT("%s: 0x%llx 0x%llx %d %s\n", __func__,
 253                  start, pages, memory_type, overlap_only_ram ? "yes" : "no");
 254
 255        if (memory_type >= EFI_MAX_MEMORY_TYPE)
 256                return EFI_INVALID_PARAMETER;
 257
 258        if (!pages)
 259                return EFI_SUCCESS;
 260
 261        ++efi_memory_map_key;
 262        newlist = calloc(1, sizeof(*newlist));
 263        newlist->desc.type = memory_type;
 264        newlist->desc.physical_start = start;
 265        newlist->desc.virtual_start = start;
 266        newlist->desc.num_pages = pages;
 267
 268        switch (memory_type) {
 269        case EFI_RUNTIME_SERVICES_CODE:
 270        case EFI_RUNTIME_SERVICES_DATA:
 271                newlist->desc.attribute = EFI_MEMORY_WB | EFI_MEMORY_RUNTIME;
 272                break;
 273        case EFI_MMAP_IO:
 274                newlist->desc.attribute = EFI_MEMORY_RUNTIME;
 275                break;
 276        default:
 277                newlist->desc.attribute = EFI_MEMORY_WB;
 278                break;
 279        }
 280
 281        /* Add our new map */
 282        do {
 283                carve_again = false;
 284                list_for_each(lhandle, &efi_mem) {
 285                        struct efi_mem_list *lmem;
 286                        s64 r;
 287
 288                        lmem = list_entry(lhandle, struct efi_mem_list, link);
 289                        r = efi_mem_carve_out(lmem, &newlist->desc,
 290                                              overlap_only_ram);
 291                        switch (r) {
 292                        case EFI_CARVE_OVERLAPS_NONRAM:
 293                                /*
 294                                 * The user requested to only have RAM overlaps,
 295                                 * but we hit a non-RAM region. Error out.
 296                                 */
 297                                return EFI_NO_MAPPING;
 298                        case EFI_CARVE_NO_OVERLAP:
 299                                /* Just ignore this list entry */
 300                                break;
 301                        case EFI_CARVE_LOOP_AGAIN:
 302                                /*
 303                                 * We split an entry, but need to loop through
 304                                 * the list again to actually carve it.
 305                                 */
 306                                carve_again = true;
 307                                break;
 308                        default:
 309                                /* We carved a number of pages */
 310                                carved_pages += r;
 311                                carve_again = true;
 312                                break;
 313                        }
 314
 315                        if (carve_again) {
 316                                /* The list changed, we need to start over */
 317                                break;
 318                        }
 319                }
 320        } while (carve_again);
 321
 322        if (overlap_only_ram && (carved_pages != pages)) {
 323                /*
 324                 * The payload wanted to have RAM overlaps, but we overlapped
 325                 * with an unallocated region. Error out.
 326                 */
 327                return EFI_NO_MAPPING;
 328        }
 329
 330        /* Add our new map */
 331        list_add_tail(&newlist->link, &efi_mem);
 332
 333        /* And make sure memory is listed in descending order */
 334        efi_mem_sort();
 335
 336        /* Notify that the memory map was changed */
 337        list_for_each_entry(evt, &efi_events, link) {
 338                if (evt->group &&
 339                    !guidcmp(evt->group,
 340                             &efi_guid_event_group_memory_map_change)) {
 341                        efi_signal_event(evt);
 342                        break;
 343                }
 344        }
 345
 346        return EFI_SUCCESS;
 347}
 348
 349/**
 350 * efi_add_memory_map() - add memory area to the memory map
 351 *
 352 * @start:              start address of the memory area
 353 * @size:               length in bytes of the memory area
 354 * @memory_type:        type of memory added
 355 *
 356 * Return:              status code
 357 *
 358 * This function automatically aligns the start and size of the memory area
 359 * to EFI_PAGE_SIZE.
 360 */
 361efi_status_t efi_add_memory_map(u64 start, u64 size, int memory_type)
 362{
 363        u64 pages;
 364
 365        pages = efi_size_in_pages(size + (start & EFI_PAGE_MASK));
 366        start &= ~EFI_PAGE_MASK;
 367
 368        return efi_add_memory_map_pg(start, pages, memory_type, false);
 369}
 370
 371/**
 372 * efi_check_allocated() - validate address to be freed
 373 *
 374 * Check that the address is within allocated memory:
 375 *
 376 * * The address must be in a range of the memory map.
 377 * * The address may not point to EFI_CONVENTIONAL_MEMORY.
 378 *
 379 * Page alignment is not checked as this is not a requirement of
 380 * efi_free_pool().
 381 *
 382 * @addr:               address of page to be freed
 383 * @must_be_allocated:  return success if the page is allocated
 384 * Return:              status code
 385 */
 386static efi_status_t efi_check_allocated(u64 addr, bool must_be_allocated)
 387{
 388        struct efi_mem_list *item;
 389
 390        list_for_each_entry(item, &efi_mem, link) {
 391                u64 start = item->desc.physical_start;
 392                u64 end = start + (item->desc.num_pages << EFI_PAGE_SHIFT);
 393
 394                if (addr >= start && addr < end) {
 395                        if (must_be_allocated ^
 396                            (item->desc.type == EFI_CONVENTIONAL_MEMORY))
 397                                return EFI_SUCCESS;
 398                        else
 399                                return EFI_NOT_FOUND;
 400                }
 401        }
 402
 403        return EFI_NOT_FOUND;
 404}
 405
 406static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr)
 407{
 408        struct list_head *lhandle;
 409
 410        /*
 411         * Prealign input max address, so we simplify our matching
 412         * logic below and can just reuse it as return pointer.
 413         */
 414        max_addr &= ~EFI_PAGE_MASK;
 415
 416        list_for_each(lhandle, &efi_mem) {
 417                struct efi_mem_list *lmem = list_entry(lhandle,
 418                        struct efi_mem_list, link);
 419                struct efi_mem_desc *desc = &lmem->desc;
 420                uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT;
 421                uint64_t desc_end = desc->physical_start + desc_len;
 422                uint64_t curmax = min(max_addr, desc_end);
 423                uint64_t ret = curmax - len;
 424
 425                /* We only take memory from free RAM */
 426                if (desc->type != EFI_CONVENTIONAL_MEMORY)
 427                        continue;
 428
 429                /* Out of bounds for max_addr */
 430                if ((ret + len) > max_addr)
 431                        continue;
 432
 433                /* Out of bounds for upper map limit */
 434                if ((ret + len) > desc_end)
 435                        continue;
 436
 437                /* Out of bounds for lower map limit */
 438                if (ret < desc->physical_start)
 439                        continue;
 440
 441                /* Return the highest address in this map within bounds */
 442                return ret;
 443        }
 444
 445        return 0;
 446}
 447
 448/*
 449 * Allocate memory pages.
 450 *
 451 * @type                type of allocation to be performed
 452 * @memory_type         usage type of the allocated memory
 453 * @pages               number of pages to be allocated
 454 * @memory              allocated memory
 455 * Return:              status code
 456 */
 457efi_status_t efi_allocate_pages(enum efi_allocate_type type,
 458                                enum efi_memory_type memory_type,
 459                                efi_uintn_t pages, uint64_t *memory)
 460{
 461        u64 len = pages << EFI_PAGE_SHIFT;
 462        efi_status_t ret;
 463        uint64_t addr;
 464
 465        /* Check import parameters */
 466        if (memory_type >= EFI_PERSISTENT_MEMORY_TYPE &&
 467            memory_type <= 0x6FFFFFFF)
 468                return EFI_INVALID_PARAMETER;
 469        if (!memory)
 470                return EFI_INVALID_PARAMETER;
 471
 472        switch (type) {
 473        case EFI_ALLOCATE_ANY_PAGES:
 474                /* Any page */
 475                addr = efi_find_free_memory(len, -1ULL);
 476                if (!addr)
 477                        return EFI_OUT_OF_RESOURCES;
 478                break;
 479        case EFI_ALLOCATE_MAX_ADDRESS:
 480                /* Max address */
 481                addr = efi_find_free_memory(len, *memory);
 482                if (!addr)
 483                        return EFI_OUT_OF_RESOURCES;
 484                break;
 485        case EFI_ALLOCATE_ADDRESS:
 486                /* Exact address, reserve it. The addr is already in *memory. */
 487                ret = efi_check_allocated(*memory, false);
 488                if (ret != EFI_SUCCESS)
 489                        return EFI_NOT_FOUND;
 490                addr = *memory;
 491                break;
 492        default:
 493                /* UEFI doesn't specify other allocation types */
 494                return EFI_INVALID_PARAMETER;
 495        }
 496
 497        /* Reserve that map in our memory maps */
 498        ret = efi_add_memory_map_pg(addr, pages, memory_type, true);
 499        if (ret != EFI_SUCCESS)
 500                /* Map would overlap, bail out */
 501                return  EFI_OUT_OF_RESOURCES;
 502
 503        *memory = addr;
 504
 505        return EFI_SUCCESS;
 506}
 507
 508void *efi_alloc(uint64_t len, int memory_type)
 509{
 510        uint64_t ret = 0;
 511        uint64_t pages = efi_size_in_pages(len);
 512        efi_status_t r;
 513
 514        r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type, pages,
 515                               &ret);
 516        if (r == EFI_SUCCESS)
 517                return (void*)(uintptr_t)ret;
 518
 519        return NULL;
 520}
 521
 522/**
 523 * efi_free_pages() - free memory pages
 524 *
 525 * @memory:     start of the memory area to be freed
 526 * @pages:      number of pages to be freed
 527 * Return:      status code
 528 */
 529efi_status_t efi_free_pages(uint64_t memory, efi_uintn_t pages)
 530{
 531        efi_status_t ret;
 532
 533        ret = efi_check_allocated(memory, true);
 534        if (ret != EFI_SUCCESS)
 535                return ret;
 536
 537        /* Sanity check */
 538        if (!memory || (memory & EFI_PAGE_MASK) || !pages) {
 539                printf("%s: illegal free 0x%llx, 0x%zx\n", __func__,
 540                       memory, pages);
 541                return EFI_INVALID_PARAMETER;
 542        }
 543
 544        ret = efi_add_memory_map_pg(memory, pages, EFI_CONVENTIONAL_MEMORY,
 545                                    false);
 546        if (ret != EFI_SUCCESS)
 547                return EFI_NOT_FOUND;
 548
 549        return ret;
 550}
 551
 552/**
 553 * efi_alloc_aligned_pages - allocate
 554 *
 555 * @len:                len in bytes
 556 * @memory_type:        usage type of the allocated memory
 557 * @align:              alignment in bytes
 558 * Return:              aligned memory or NULL
 559 */
 560void *efi_alloc_aligned_pages(u64 len, int memory_type, size_t align)
 561{
 562        u64 req_pages = efi_size_in_pages(len);
 563        u64 true_pages = req_pages + efi_size_in_pages(align) - 1;
 564        u64 free_pages;
 565        u64 aligned_mem;
 566        efi_status_t r;
 567        u64 mem;
 568
 569        /* align must be zero or a power of two */
 570        if (align & (align - 1))
 571                return NULL;
 572
 573        /* Check for overflow */
 574        if (true_pages < req_pages)
 575                return NULL;
 576
 577        if (align < EFI_PAGE_SIZE) {
 578                r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type,
 579                                       req_pages, &mem);
 580                return (r == EFI_SUCCESS) ? (void *)(uintptr_t)mem : NULL;
 581        }
 582
 583        r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type,
 584                               true_pages, &mem);
 585        if (r != EFI_SUCCESS)
 586                return NULL;
 587
 588        aligned_mem = ALIGN(mem, align);
 589        /* Free pages before alignment */
 590        free_pages = efi_size_in_pages(aligned_mem - mem);
 591        if (free_pages)
 592                efi_free_pages(mem, free_pages);
 593
 594        /* Free trailing pages */
 595        free_pages = true_pages - (req_pages + free_pages);
 596        if (free_pages) {
 597                mem = aligned_mem + req_pages * EFI_PAGE_SIZE;
 598                efi_free_pages(mem, free_pages);
 599        }
 600
 601        return (void *)(uintptr_t)aligned_mem;
 602}
 603
 604/**
 605 * efi_allocate_pool - allocate memory from pool
 606 *
 607 * @pool_type:  type of the pool from which memory is to be allocated
 608 * @size:       number of bytes to be allocated
 609 * @buffer:     allocated memory
 610 * Return:      status code
 611 */
 612efi_status_t efi_allocate_pool(enum efi_memory_type pool_type, efi_uintn_t size, void **buffer)
 613{
 614        efi_status_t r;
 615        u64 addr;
 616        struct efi_pool_allocation *alloc;
 617        u64 num_pages = efi_size_in_pages(size +
 618                                          sizeof(struct efi_pool_allocation));
 619
 620        if (!buffer)
 621                return EFI_INVALID_PARAMETER;
 622
 623        if (size == 0) {
 624                *buffer = NULL;
 625                return EFI_SUCCESS;
 626        }
 627
 628        r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, pool_type, num_pages,
 629                               &addr);
 630        if (r == EFI_SUCCESS) {
 631                alloc = (struct efi_pool_allocation *)(uintptr_t)addr;
 632                alloc->num_pages = num_pages;
 633                alloc->checksum = checksum(alloc);
 634                *buffer = alloc->data;
 635        }
 636
 637        return r;
 638}
 639
 640/**
 641 * efi_free_pool() - free memory from pool
 642 *
 643 * @buffer:     start of memory to be freed
 644 * Return:      status code
 645 */
 646efi_status_t efi_free_pool(void *buffer)
 647{
 648        efi_status_t ret;
 649        struct efi_pool_allocation *alloc;
 650
 651        if (!buffer)
 652                return EFI_INVALID_PARAMETER;
 653
 654        ret = efi_check_allocated((uintptr_t)buffer, true);
 655        if (ret != EFI_SUCCESS)
 656                return ret;
 657
 658        alloc = container_of(buffer, struct efi_pool_allocation, data);
 659
 660        /* Check that this memory was allocated by efi_allocate_pool() */
 661        if (((uintptr_t)alloc & EFI_PAGE_MASK) ||
 662            alloc->checksum != checksum(alloc)) {
 663                printf("%s: illegal free 0x%p\n", __func__, buffer);
 664                return EFI_INVALID_PARAMETER;
 665        }
 666        /* Avoid double free */
 667        alloc->checksum = 0;
 668
 669        ret = efi_free_pages((uintptr_t)alloc, alloc->num_pages);
 670
 671        return ret;
 672}
 673
 674/*
 675 * Get map describing memory usage.
 676 *
 677 * @memory_map_size     on entry the size, in bytes, of the memory map buffer,
 678 *                      on exit the size of the copied memory map
 679 * @memory_map          buffer to which the memory map is written
 680 * @map_key             key for the memory map
 681 * @descriptor_size     size of an individual memory descriptor
 682 * @descriptor_version  version number of the memory descriptor structure
 683 * Return:              status code
 684 */
 685efi_status_t efi_get_memory_map(efi_uintn_t *memory_map_size,
 686                                struct efi_mem_desc *memory_map,
 687                                efi_uintn_t *map_key,
 688                                efi_uintn_t *descriptor_size,
 689                                uint32_t *descriptor_version)
 690{
 691        efi_uintn_t map_size = 0;
 692        int map_entries = 0;
 693        struct list_head *lhandle;
 694        efi_uintn_t provided_map_size;
 695
 696        if (!memory_map_size)
 697                return EFI_INVALID_PARAMETER;
 698
 699        provided_map_size = *memory_map_size;
 700
 701        list_for_each(lhandle, &efi_mem)
 702                map_entries++;
 703
 704        map_size = map_entries * sizeof(struct efi_mem_desc);
 705
 706        *memory_map_size = map_size;
 707
 708        if (descriptor_size)
 709                *descriptor_size = sizeof(struct efi_mem_desc);
 710
 711        if (descriptor_version)
 712                *descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION;
 713
 714        if (provided_map_size < map_size)
 715                return EFI_BUFFER_TOO_SMALL;
 716
 717        if (!memory_map)
 718                return EFI_INVALID_PARAMETER;
 719
 720        /* Copy list into array */
 721        /* Return the list in ascending order */
 722        memory_map = &memory_map[map_entries - 1];
 723        list_for_each(lhandle, &efi_mem) {
 724                struct efi_mem_list *lmem;
 725
 726                lmem = list_entry(lhandle, struct efi_mem_list, link);
 727                *memory_map = lmem->desc;
 728                memory_map--;
 729        }
 730
 731        if (map_key)
 732                *map_key = efi_memory_map_key;
 733
 734        return EFI_SUCCESS;
 735}
 736
 737/**
 738 * efi_add_conventional_memory_map() - add a RAM memory area to the map
 739 *
 740 * @ram_start:          start address of a RAM memory area
 741 * @ram_end:            end address of a RAM memory area
 742 * @ram_top:            max address to be used as conventional memory
 743 * Return:              status code
 744 */
 745efi_status_t efi_add_conventional_memory_map(u64 ram_start, u64 ram_end,
 746                                             u64 ram_top)
 747{
 748        u64 pages;
 749
 750        /* Remove partial pages */
 751        ram_end &= ~EFI_PAGE_MASK;
 752        ram_start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
 753
 754        if (ram_end <= ram_start) {
 755                /* Invalid mapping */
 756                return EFI_INVALID_PARAMETER;
 757        }
 758
 759        pages = (ram_end - ram_start) >> EFI_PAGE_SHIFT;
 760
 761        efi_add_memory_map_pg(ram_start, pages,
 762                              EFI_CONVENTIONAL_MEMORY, false);
 763
 764        /*
 765         * Boards may indicate to the U-Boot memory core that they
 766         * can not support memory above ram_top. Let's honor this
 767         * in the efi_loader subsystem too by declaring any memory
 768         * above ram_top as "already occupied by firmware".
 769         */
 770        if (ram_top < ram_start) {
 771                /* ram_top is before this region, reserve all */
 772                efi_add_memory_map_pg(ram_start, pages,
 773                                      EFI_BOOT_SERVICES_DATA, true);
 774        } else if (ram_top < ram_end) {
 775                /* ram_top is inside this region, reserve parts */
 776                pages = (ram_end - ram_top) >> EFI_PAGE_SHIFT;
 777
 778                efi_add_memory_map_pg(ram_top, pages,
 779                                      EFI_BOOT_SERVICES_DATA, true);
 780        }
 781
 782        return EFI_SUCCESS;
 783}
 784
 785__weak void efi_add_known_memory(void)
 786{
 787        u64 ram_top = board_get_usable_ram_top(0) & ~EFI_PAGE_MASK;
 788        int i;
 789
 790        /*
 791         * ram_top is just outside mapped memory. So use an offset of one for
 792         * mapping the sandbox address.
 793         */
 794        ram_top = (uintptr_t)map_sysmem(ram_top - 1, 0) + 1;
 795
 796        /* Fix for 32bit targets with ram_top at 4G */
 797        if (!ram_top)
 798                ram_top = 0x100000000ULL;
 799
 800        /* Add RAM */
 801        for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
 802                u64 ram_end, ram_start;
 803
 804                ram_start = (uintptr_t)map_sysmem(gd->bd->bi_dram[i].start, 0);
 805                ram_end = ram_start + gd->bd->bi_dram[i].size;
 806
 807                efi_add_conventional_memory_map(ram_start, ram_end, ram_top);
 808        }
 809}
 810
 811/* Add memory regions for U-Boot's memory and for the runtime services code */
 812static void add_u_boot_and_runtime(void)
 813{
 814        unsigned long runtime_start, runtime_end, runtime_pages;
 815        unsigned long runtime_mask = EFI_PAGE_MASK;
 816        unsigned long uboot_start, uboot_pages;
 817        unsigned long uboot_stack_size = CONFIG_STACK_SIZE;
 818
 819        /* Add U-Boot */
 820        uboot_start = ((uintptr_t)map_sysmem(gd->start_addr_sp, 0) -
 821                       uboot_stack_size) & ~EFI_PAGE_MASK;
 822        uboot_pages = ((uintptr_t)map_sysmem(gd->ram_top - 1, 0) -
 823                       uboot_start + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
 824        efi_add_memory_map_pg(uboot_start, uboot_pages, EFI_LOADER_DATA,
 825                              false);
 826
 827#if defined(__aarch64__)
 828        /*
 829         * Runtime Services must be 64KiB aligned according to the
 830         * "AArch64 Platforms" section in the UEFI spec (2.7+).
 831         */
 832
 833        runtime_mask = SZ_64K - 1;
 834#endif
 835
 836        /*
 837         * Add Runtime Services. We mark surrounding boottime code as runtime as
 838         * well to fulfill the runtime alignment constraints but avoid padding.
 839         */
 840        runtime_start = (ulong)&__efi_runtime_start & ~runtime_mask;
 841        runtime_end = (ulong)&__efi_runtime_stop;
 842        runtime_end = (runtime_end + runtime_mask) & ~runtime_mask;
 843        runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT;
 844        efi_add_memory_map_pg(runtime_start, runtime_pages,
 845                              EFI_RUNTIME_SERVICES_CODE, false);
 846}
 847
 848int efi_memory_init(void)
 849{
 850        efi_add_known_memory();
 851
 852        add_u_boot_and_runtime();
 853
 854#ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
 855        /* Request a 32bit 64MB bounce buffer region */
 856        uint64_t efi_bounce_buffer_addr = 0xffffffff;
 857
 858        if (efi_allocate_pages(EFI_ALLOCATE_MAX_ADDRESS, EFI_LOADER_DATA,
 859                               (64 * 1024 * 1024) >> EFI_PAGE_SHIFT,
 860                               &efi_bounce_buffer_addr) != EFI_SUCCESS)
 861                return -1;
 862
 863        efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr;
 864#endif
 865
 866        return 0;
 867}
 868