uboot/drivers/ram/rockchip/dmc-rk3368.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * (C) Copyright 2017 Theobroma Systems Design und Consulting GmbH
   4 */
   5
   6#include <common.h>
   7#include <clk.h>
   8#include <dm.h>
   9#include <hang.h>
  10#include <log.h>
  11#include <dt-bindings/memory/rk3368-dmc.h>
  12#include <dt-structs.h>
  13#include <ram.h>
  14#include <regmap.h>
  15#include <syscon.h>
  16#include <asm/io.h>
  17#include <asm/arch-rockchip/clock.h>
  18#include <asm/arch-rockchip/cru_rk3368.h>
  19#include <asm/arch-rockchip/grf_rk3368.h>
  20#include <asm/arch-rockchip/ddr_rk3368.h>
  21#include <asm/arch-rockchip/sdram.h>
  22#include <asm/arch-rockchip/sdram_rk3288.h>
  23#include <linux/bitops.h>
  24#include <linux/delay.h>
  25#include <linux/err.h>
  26
  27struct dram_info {
  28        struct ram_info info;
  29        struct clk ddr_clk;
  30        struct rk3368_cru *cru;
  31        struct rk3368_grf *grf;
  32        struct rk3368_ddr_pctl *pctl;
  33        struct rk3368_ddrphy *phy;
  34        struct rk3368_pmu_grf *pmugrf;
  35        struct rk3368_msch *msch;
  36};
  37
  38struct rk3368_sdram_params {
  39#if CONFIG_IS_ENABLED(OF_PLATDATA)
  40        struct dtd_rockchip_rk3368_dmc of_plat;
  41#endif
  42        struct rk3288_sdram_pctl_timing pctl_timing;
  43        u32 trefi_mem_ddr3;
  44        struct rk3288_sdram_channel chan;
  45        struct regmap *map;
  46        u32 ddr_freq;
  47        u32 memory_schedule;
  48        u32 ddr_speed_bin;
  49        u32 tfaw_mult;
  50};
  51
  52/* PTCL bits */
  53enum {
  54        /* PCTL_DFISTCFG0 */
  55        DFI_INIT_START = BIT(0),
  56        DFI_DATA_BYTE_DISABLE_EN = BIT(2),
  57
  58        /* PCTL_DFISTCFG1 */
  59        DFI_DRAM_CLK_SR_EN = BIT(0),
  60        DFI_DRAM_CLK_DPD_EN = BIT(1),
  61        ODT_LEN_BL8_W_SHIFT = 16,
  62
  63        /* PCTL_DFISTCFG2 */
  64        DFI_PARITY_INTR_EN = BIT(0),
  65        DFI_PARITY_EN = BIT(1),
  66
  67        /* PCTL_DFILPCFG0 */
  68        TLP_RESP_TIME_SHIFT = 16,
  69        LP_SR_EN = BIT(8),
  70        LP_PD_EN = BIT(0),
  71
  72        /* PCTL_DFIODTCFG */
  73        RANK0_ODT_WRITE_SEL = BIT(3),
  74        RANK1_ODT_WRITE_SEL = BIT(11),
  75
  76        /* PCTL_SCFG */
  77        HW_LOW_POWER_EN = BIT(0),
  78
  79        /* PCTL_MCMD */
  80        START_CMD = BIT(31),
  81        MCMD_RANK0 = BIT(20),
  82        MCMD_RANK1 = BIT(21),
  83        DESELECT_CMD = 0,
  84        PREA_CMD,
  85        REF_CMD,
  86        MRS_CMD,
  87        ZQCS_CMD,
  88        ZQCL_CMD,
  89        RSTL_CMD,
  90        MRR_CMD = 8,
  91        DPDE_CMD,
  92
  93        /* PCTL_POWCTL */
  94        POWER_UP_START = BIT(0),
  95
  96        /* PCTL_POWSTAT */
  97        POWER_UP_DONE = BIT(0),
  98
  99        /* PCTL_SCTL */
 100        INIT_STATE = 0,
 101        CFG_STATE,
 102        GO_STATE,
 103        SLEEP_STATE,
 104        WAKEUP_STATE,
 105
 106        /* PCTL_STAT */
 107        LP_TRIG_SHIFT = 4,
 108        LP_TRIG_MASK = 7,
 109        PCTL_STAT_MSK = 7,
 110        INIT_MEM = 0,
 111        CONFIG,
 112        CONFIG_REQ,
 113        ACCESS,
 114        ACCESS_REQ,
 115        LOW_POWER,
 116        LOW_POWER_ENTRY_REQ,
 117        LOW_POWER_EXIT_REQ,
 118
 119        /* PCTL_MCFG */
 120        DDR2_DDR3_BL_8 = BIT(0),
 121        DDR3_EN = BIT(5),
 122        TFAW_TRRD_MULT4 = (0 << 18),
 123        TFAW_TRRD_MULT5 = (1 << 18),
 124        TFAW_TRRD_MULT6 = (2 << 18),
 125};
 126
 127#define DDR3_MR0_WR(n) \
 128        ((n <= 8) ? ((n - 4) << 9) : (((n >> 1) & 0x7) << 9))
 129#define DDR3_MR0_CL(n) \
 130        ((((n - 4) & 0x7) << 4) | (((n - 4) & 0x8) >> 2))
 131#define DDR3_MR0_BL8 \
 132        (0 << 0)
 133#define DDR3_MR0_DLL_RESET \
 134        (1 << 8)
 135#define DDR3_MR1_RTT120OHM \
 136        ((0 << 9) | (1 << 6) | (0 << 2))
 137#define DDR3_MR2_TWL(n) \
 138        (((n - 5) & 0x7) << 3)
 139
 140
 141#ifdef CONFIG_TPL_BUILD
 142
 143static void ddr_set_noc_spr_err_stall(struct rk3368_grf *grf, bool enable)
 144{
 145        if (enable)
 146                rk_setreg(&grf->ddrc0_con0, NOC_RSP_ERR_STALL);
 147        else
 148                rk_clrreg(&grf->ddrc0_con0, NOC_RSP_ERR_STALL);
 149}
 150
 151static void ddr_set_ddr3_mode(struct rk3368_grf *grf, bool ddr3_mode)
 152{
 153        if (ddr3_mode)
 154                rk_setreg(&grf->ddrc0_con0, MSCH0_MAINDDR3_DDR3);
 155        else
 156                rk_clrreg(&grf->ddrc0_con0, MSCH0_MAINDDR3_DDR3);
 157}
 158
 159static void ddrphy_config(struct rk3368_ddrphy *phy,
 160                          u32 tcl, u32 tal, u32 tcwl)
 161{
 162        int i;
 163
 164        /* Set to DDR3 mode */
 165        clrsetbits_le32(&phy->reg[1], 0x3, 0x0);
 166
 167        /* DDRPHY_REGB: CL, AL */
 168        clrsetbits_le32(&phy->reg[0xb], 0xff, tcl << 4 | tal);
 169        /* DDRPHY_REGC: CWL */
 170        clrsetbits_le32(&phy->reg[0xc], 0x0f, tcwl);
 171
 172        /* Update drive-strength */
 173        writel(0xcc, &phy->reg[0x11]);
 174        writel(0xaa, &phy->reg[0x16]);
 175        /*
 176         * Update NRCOMP/PRCOMP for all 4 channels (for details of all
 177         * affected registers refer to the documentation of DDRPHY_REG20
 178         * and DDRPHY_REG21 in the RK3368 TRM.
 179         */
 180        for (i = 0; i < 4; ++i) {
 181                writel(0xcc, &phy->reg[0x20 + i * 0x10]);
 182                writel(0x44, &phy->reg[0x21 + i * 0x10]);
 183        }
 184
 185        /* Enable write-leveling calibration bypass */
 186        setbits_le32(&phy->reg[2], BIT(3));
 187}
 188
 189static void copy_to_reg(u32 *dest, const u32 *src, u32 n)
 190{
 191        int i;
 192
 193        for (i = 0; i < n / sizeof(u32); i++)
 194                writel(*src++, dest++);
 195}
 196
 197static void send_command(struct rk3368_ddr_pctl *pctl, u32 rank, u32 cmd)
 198{
 199        u32 mcmd = START_CMD | cmd | rank;
 200
 201        debug("%s: writing %x to MCMD\n", __func__, mcmd);
 202        writel(mcmd, &pctl->mcmd);
 203        while (readl(&pctl->mcmd) & START_CMD)
 204                /* spin */;
 205}
 206
 207static void send_mrs(struct rk3368_ddr_pctl *pctl,
 208                            u32 rank, u32 mr_num, u32 mr_data)
 209{
 210        u32 mcmd = START_CMD | MRS_CMD | rank | (mr_num << 17) | (mr_data << 4);
 211
 212        debug("%s: writing %x to MCMD\n", __func__, mcmd);
 213        writel(mcmd, &pctl->mcmd);
 214        while (readl(&pctl->mcmd) & START_CMD)
 215                /* spin */;
 216}
 217
 218static int memory_init(struct rk3368_ddr_pctl *pctl,
 219                       struct rk3368_sdram_params *params)
 220{
 221        u32 mr[4];
 222        const ulong timeout_ms = 500;
 223        ulong tmp;
 224
 225        /*
 226         * Power up DRAM by DDR_PCTL_POWCTL[0] register of PCTL and
 227         * wait power up DRAM finish with DDR_PCTL_POWSTAT[0] register
 228         * of PCTL.
 229         */
 230        writel(POWER_UP_START, &pctl->powctl);
 231
 232        tmp = get_timer(0);
 233        do {
 234                if (get_timer(tmp) > timeout_ms) {
 235                        pr_err("%s: POWER_UP_START did not complete in %ld ms\n",
 236                              __func__, timeout_ms);
 237                        return -ETIME;
 238                }
 239        } while (!(readl(&pctl->powstat) & POWER_UP_DONE));
 240
 241        /* Configure MR0 through MR3 */
 242        mr[0] = DDR3_MR0_WR(params->pctl_timing.twr) |
 243                DDR3_MR0_CL(params->pctl_timing.tcl) |
 244                DDR3_MR0_DLL_RESET;
 245        mr[1] = DDR3_MR1_RTT120OHM;
 246        mr[2] = DDR3_MR2_TWL(params->pctl_timing.tcwl);
 247        mr[3] = 0;
 248
 249        /*
 250         * Also see RK3368 Technical Reference Manual:
 251         *   "16.6.2 Initialization (DDR3 Initialization Sequence)"
 252         */
 253        send_command(pctl, MCMD_RANK0 | MCMD_RANK1, DESELECT_CMD);
 254        udelay(1);
 255        send_command(pctl, MCMD_RANK0 | MCMD_RANK1, PREA_CMD);
 256        send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 2, mr[2]);
 257        send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 3, mr[3]);
 258        send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 1, mr[1]);
 259        send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 0, mr[0]);
 260        send_command(pctl, MCMD_RANK0 | MCMD_RANK1, ZQCL_CMD);
 261
 262        return 0;
 263}
 264
 265static void move_to_config_state(struct rk3368_ddr_pctl *pctl)
 266{
 267        /*
 268         * Also see RK3368 Technical Reference Manual:
 269         *   "16.6.1 State transition of PCTL (Moving to Config State)"
 270         */
 271        u32 state = readl(&pctl->stat) & PCTL_STAT_MSK;
 272
 273        switch (state) {
 274        case LOW_POWER:
 275                writel(WAKEUP_STATE, &pctl->sctl);
 276                while ((readl(&pctl->stat) & PCTL_STAT_MSK) != ACCESS)
 277                        /* spin */;
 278
 279                /* fall-through */
 280        case ACCESS:
 281        case INIT_MEM:
 282                writel(CFG_STATE, &pctl->sctl);
 283                while ((readl(&pctl->stat) & PCTL_STAT_MSK) != CONFIG)
 284                        /* spin */;
 285                break;
 286
 287        case CONFIG:
 288                return;
 289
 290        default:
 291                break;
 292        }
 293}
 294
 295static void move_to_access_state(struct rk3368_ddr_pctl *pctl)
 296{
 297        /*
 298         * Also see RK3368 Technical Reference Manual:
 299         *   "16.6.1 State transition of PCTL (Moving to Access State)"
 300         */
 301        u32 state = readl(&pctl->stat) & PCTL_STAT_MSK;
 302
 303        switch (state) {
 304        case LOW_POWER:
 305                if (((readl(&pctl->stat) >> LP_TRIG_SHIFT) &
 306                     LP_TRIG_MASK) == 1)
 307                        return;
 308
 309                writel(WAKEUP_STATE, &pctl->sctl);
 310                while ((readl(&pctl->stat) & PCTL_STAT_MSK) != ACCESS)
 311                        /* spin */;
 312
 313                /* fall-through */
 314        case INIT_MEM:
 315                writel(CFG_STATE, &pctl->sctl);
 316                while ((readl(&pctl->stat) & PCTL_STAT_MSK) != CONFIG)
 317                        /* spin */;
 318
 319                /* fall-through */
 320        case CONFIG:
 321                writel(GO_STATE, &pctl->sctl);
 322                while ((readl(&pctl->stat) & PCTL_STAT_MSK) == CONFIG)
 323                        /* spin */;
 324                break;
 325
 326        case ACCESS:
 327                return;
 328
 329        default:
 330                break;
 331        }
 332}
 333
 334static void ddrctl_reset(struct rk3368_cru *cru)
 335{
 336        const u32 ctl_reset = BIT(3) | BIT(2);
 337        const u32 phy_reset = BIT(1) | BIT(0);
 338
 339        /*
 340         * The PHY reset should be released before the PCTL reset.
 341         *
 342         * Note that the following sequence (including the number of
 343         * us to delay between releasing the PHY and PCTL reset) has
 344         * been adapted per feedback received from Rockchips, so do
 345         * not try to optimise.
 346         */
 347        rk_setreg(&cru->softrst_con[10], ctl_reset | phy_reset);
 348        udelay(1);
 349        rk_clrreg(&cru->softrst_con[10], phy_reset);
 350        udelay(5);
 351        rk_clrreg(&cru->softrst_con[10], ctl_reset);
 352}
 353
 354static void ddrphy_reset(struct rk3368_ddrphy *ddrphy)
 355{
 356        /*
 357         * The analog part of the PHY should be release at least 1000
 358         * DRAM cycles before the digital part of the PHY (waiting for
 359         * 5us will ensure this for a DRAM clock as low as 200MHz).
 360         */
 361        clrbits_le32(&ddrphy->reg[0], BIT(3) | BIT(2));
 362        udelay(1);
 363        setbits_le32(&ddrphy->reg[0], BIT(2));
 364        udelay(5);
 365        setbits_le32(&ddrphy->reg[0], BIT(3));
 366}
 367
 368static void ddrphy_config_delays(struct rk3368_ddrphy *ddrphy, u32 freq)
 369{
 370        u32 dqs_dll_delay;
 371
 372        setbits_le32(&ddrphy->reg[0x13], BIT(4));
 373        clrbits_le32(&ddrphy->reg[0x14], BIT(3));
 374
 375        setbits_le32(&ddrphy->reg[0x26], BIT(4));
 376        clrbits_le32(&ddrphy->reg[0x27], BIT(3));
 377
 378        setbits_le32(&ddrphy->reg[0x36], BIT(4));
 379        clrbits_le32(&ddrphy->reg[0x37], BIT(3));
 380
 381        setbits_le32(&ddrphy->reg[0x46], BIT(4));
 382        clrbits_le32(&ddrphy->reg[0x47], BIT(3));
 383
 384        setbits_le32(&ddrphy->reg[0x56], BIT(4));
 385        clrbits_le32(&ddrphy->reg[0x57], BIT(3));
 386
 387        if (freq <= 400000000)
 388                setbits_le32(&ddrphy->reg[0xa4], 0x1f);
 389        else
 390                clrbits_le32(&ddrphy->reg[0xa4], 0x1f);
 391
 392        if (freq < 681000000)
 393                dqs_dll_delay = 3; /* 67.5 degree delay */
 394        else
 395                dqs_dll_delay = 2; /* 45 degree delay */
 396
 397        writel(dqs_dll_delay, &ddrphy->reg[0x28]);
 398        writel(dqs_dll_delay, &ddrphy->reg[0x38]);
 399        writel(dqs_dll_delay, &ddrphy->reg[0x48]);
 400        writel(dqs_dll_delay, &ddrphy->reg[0x58]);
 401}
 402
 403static int dfi_cfg(struct rk3368_ddr_pctl *pctl)
 404{
 405        const ulong timeout_ms = 200;
 406        ulong tmp;
 407
 408        writel(DFI_DATA_BYTE_DISABLE_EN, &pctl->dfistcfg0);
 409
 410        writel(DFI_DRAM_CLK_SR_EN | DFI_DRAM_CLK_DPD_EN,
 411               &pctl->dfistcfg1);
 412        writel(DFI_PARITY_INTR_EN | DFI_PARITY_EN, &pctl->dfistcfg2);
 413        writel(7 << TLP_RESP_TIME_SHIFT | LP_SR_EN | LP_PD_EN,
 414               &pctl->dfilpcfg0);
 415
 416        writel(1, &pctl->dfitphyupdtype0);
 417
 418        writel(0x1f, &pctl->dfitphyrdlat);
 419        writel(0, &pctl->dfitphywrdata);
 420        writel(0, &pctl->dfiupdcfg);  /* phyupd and ctrlupd disabled */
 421
 422        setbits_le32(&pctl->dfistcfg0, DFI_INIT_START);
 423
 424        tmp = get_timer(0);
 425        do {
 426                if (get_timer(tmp) > timeout_ms) {
 427                        pr_err("%s: DFI init did not complete within %ld ms\n",
 428                              __func__, timeout_ms);
 429                        return -ETIME;
 430                }
 431        } while ((readl(&pctl->dfiststat0) & 1) == 0);
 432
 433        return 0;
 434}
 435
 436static inline u32 ps_to_tCK(const u32 ps, const ulong freq)
 437{
 438        const ulong MHz = 1000000;
 439        return DIV_ROUND_UP(ps * freq, 1000000 * MHz);
 440}
 441
 442static inline u32 ns_to_tCK(const u32 ns, const ulong freq)
 443{
 444        return ps_to_tCK(ns * 1000, freq);
 445}
 446
 447static inline u32 tCK_to_ps(const ulong tCK, const ulong freq)
 448{
 449        const ulong MHz = 1000000;
 450        return DIV_ROUND_UP(tCK * 1000000 * MHz, freq);
 451}
 452
 453static int pctl_calc_timings(struct rk3368_sdram_params *params,
 454                              ulong freq)
 455{
 456        struct rk3288_sdram_pctl_timing *pctl_timing = &params->pctl_timing;
 457        const ulong MHz = 1000000;
 458        u32 tccd;
 459        u32 tfaw_as_ps;
 460
 461        if (params->ddr_speed_bin != DDR3_1600K) {
 462                pr_err("%s: unimplemented DDR3 speed bin %d\n",
 463                      __func__, params->ddr_speed_bin);
 464                return -1;
 465        }
 466
 467        /* PCTL is clocked at 1/2 the DRAM clock; err on the side of caution */
 468        pctl_timing->togcnt1u = DIV_ROUND_UP(freq, 2 * MHz);
 469        pctl_timing->togcnt100n = DIV_ROUND_UP(freq / 10, 2 * MHz);
 470
 471        pctl_timing->tinit = 200;                 /* 200 usec                */
 472        pctl_timing->trsth = 500;                 /* 500 usec                */
 473        pctl_timing->trefi = 78;                  /* 7.8usec = 78 * 100ns    */
 474        params->trefi_mem_ddr3 = ns_to_tCK(pctl_timing->trefi * 100, freq);
 475
 476        if (freq <= (400 * MHz)) {
 477                pctl_timing->tcl = 6;
 478                pctl_timing->tcwl = 10;
 479        } else if (freq <= (533 * MHz)) {
 480                pctl_timing->tcl = 8;
 481                pctl_timing->tcwl = 6;
 482        } else if (freq <= (666 * MHz)) {
 483                pctl_timing->tcl = 10;
 484                pctl_timing->tcwl = 7;
 485        } else {
 486                pctl_timing->tcl = 11;
 487                pctl_timing->tcwl = 8;
 488        }
 489
 490        pctl_timing->tmrd = 4;                    /* 4 tCK (all speed bins)  */
 491        pctl_timing->trfc = ns_to_tCK(350, freq); /* tRFC: 350 (max) @ 8GBit */
 492        pctl_timing->trp = max(4u, ps_to_tCK(13750, freq));
 493        /*
 494         * JESD-79:
 495         *   READ to WRITE Command Delay = RL + tCCD / 2 + 2tCK - WL
 496         */
 497        tccd = 4;
 498        pctl_timing->trtw = pctl_timing->tcl + tccd/2 + 2 - pctl_timing->tcwl;
 499        pctl_timing->tal = 0;
 500        pctl_timing->tras = ps_to_tCK(35000, freq);
 501        pctl_timing->trc = ps_to_tCK(48750, freq);
 502        pctl_timing->trcd = ps_to_tCK(13750, freq);
 503        pctl_timing->trrd = max(4u, ps_to_tCK(7500, freq));
 504        pctl_timing->trtp = max(4u, ps_to_tCK(7500, freq));
 505        pctl_timing->twr = ps_to_tCK(15000, freq);
 506        /* The DDR3 mode-register does only support even values for tWR > 8. */
 507        if (pctl_timing->twr > 8)
 508                pctl_timing->twr = (pctl_timing->twr + 1) & ~1;
 509        pctl_timing->twtr = max(4u, ps_to_tCK(7500, freq));
 510        pctl_timing->texsr = 512;                 /* tEXSR(max) is tDLLLK    */
 511        pctl_timing->txp = max(3u, ps_to_tCK(6000, freq));
 512        pctl_timing->txpdll = max(10u, ps_to_tCK(24000, freq));
 513        pctl_timing->tzqcs = max(64u, ps_to_tCK(80000, freq));
 514        pctl_timing->tzqcsi = 10000;               /* as used by Rockchip    */
 515        pctl_timing->tdqs = 1;                     /* fixed for DDR3         */
 516        pctl_timing->tcksre = max(5u, ps_to_tCK(10000, freq));
 517        pctl_timing->tcksrx = max(5u, ps_to_tCK(10000, freq));
 518        pctl_timing->tcke = max(3u, ps_to_tCK(5000, freq));
 519        pctl_timing->tmod = max(12u, ps_to_tCK(15000, freq));
 520        pctl_timing->trstl = ns_to_tCK(100, freq);
 521        pctl_timing->tzqcl = max(256u, ps_to_tCK(320000, freq));   /* tZQoper */
 522        pctl_timing->tmrr = 0;
 523        pctl_timing->tckesr = pctl_timing->tcke + 1;  /* JESD-79: tCKE + 1tCK */
 524        pctl_timing->tdpd = 0;    /* RK3368 TRM: "allowed values for DDR3: 0" */
 525
 526
 527        /*
 528         * The controller can represent tFAW as 4x, 5x or 6x tRRD only.
 529         * We want to use the smallest multiplier that satisfies the tFAW
 530         * requirements of the given speed-bin.  If necessary, we stretch out
 531         * tRRD to allow us to operate on a 6x multiplier for tFAW.
 532         */
 533        tfaw_as_ps = 40000;      /* 40ns: tFAW for DDR3-1600K, 2KB page-size */
 534        if (tCK_to_ps(pctl_timing->trrd * 6, freq) < tfaw_as_ps) {
 535                /* If tFAW is > 6 x tRRD, we need to stretch tRRD */
 536                pctl_timing->trrd = ps_to_tCK(DIV_ROUND_UP(40000, 6), freq);
 537                params->tfaw_mult = TFAW_TRRD_MULT6;
 538        } else if (tCK_to_ps(pctl_timing->trrd * 5, freq) < tfaw_as_ps) {
 539                params->tfaw_mult = TFAW_TRRD_MULT6;
 540        } else if (tCK_to_ps(pctl_timing->trrd * 4, freq) < tfaw_as_ps) {
 541                params->tfaw_mult = TFAW_TRRD_MULT5;
 542        } else {
 543                params->tfaw_mult = TFAW_TRRD_MULT4;
 544        }
 545
 546        return 0;
 547}
 548
 549static void pctl_cfg(struct rk3368_ddr_pctl *pctl,
 550                     struct rk3368_sdram_params *params,
 551                     struct rk3368_grf *grf)
 552{
 553        /* Configure PCTL timing registers */
 554        params->pctl_timing.trefi |= BIT(31);   /* see PCTL_TREFI */
 555        copy_to_reg(&pctl->togcnt1u, &params->pctl_timing.togcnt1u,
 556                    sizeof(params->pctl_timing));
 557        writel(params->trefi_mem_ddr3, &pctl->trefi_mem_ddr3);
 558
 559        /* Set up ODT write selector and ODT write length */
 560        writel((RANK0_ODT_WRITE_SEL | RANK1_ODT_WRITE_SEL), &pctl->dfiodtcfg);
 561        writel(7 << ODT_LEN_BL8_W_SHIFT, &pctl->dfiodtcfg1);
 562
 563        /* Set up the CL/CWL-dependent timings of DFI */
 564        writel((params->pctl_timing.tcl - 1) / 2 - 1, &pctl->dfitrddataen);
 565        writel((params->pctl_timing.tcwl - 1) / 2 - 1, &pctl->dfitphywrlat);
 566
 567        /* DDR3 */
 568        writel(params->tfaw_mult | DDR3_EN | DDR2_DDR3_BL_8, &pctl->mcfg);
 569        writel(0x001c0004, &grf->ddrc0_con0);
 570
 571        setbits_le32(&pctl->scfg, HW_LOW_POWER_EN);
 572}
 573
 574static int ddrphy_data_training(struct rk3368_ddr_pctl *pctl,
 575                                struct rk3368_ddrphy *ddrphy)
 576{
 577        const u32 trefi = readl(&pctl->trefi);
 578        const ulong timeout_ms = 500;
 579        ulong tmp;
 580
 581        /* disable auto-refresh */
 582        writel(0 | BIT(31), &pctl->trefi);
 583
 584        clrsetbits_le32(&ddrphy->reg[2], 0x33, 0x20);
 585        clrsetbits_le32(&ddrphy->reg[2], 0x33, 0x21);
 586
 587        tmp = get_timer(0);
 588        do {
 589                if (get_timer(tmp) > timeout_ms) {
 590                        pr_err("%s: did not complete within %ld ms\n",
 591                              __func__, timeout_ms);
 592                        return -ETIME;
 593                }
 594        } while ((readl(&ddrphy->reg[0xff]) & 0xf) != 0xf);
 595
 596        send_command(pctl, MCMD_RANK0 | MCMD_RANK1, PREA_CMD);
 597        clrsetbits_le32(&ddrphy->reg[2], 0x33, 0x20);
 598        /* resume auto-refresh */
 599        writel(trefi | BIT(31), &pctl->trefi);
 600
 601        return 0;
 602}
 603
 604static int sdram_col_row_detect(struct udevice *dev)
 605{
 606        struct dram_info *priv = dev_get_priv(dev);
 607        struct rk3368_sdram_params *params = dev_get_plat(dev);
 608        struct rk3368_ddr_pctl *pctl = priv->pctl;
 609        struct rk3368_msch *msch = priv->msch;
 610        const u32 test_pattern = 0x5aa5f00f;
 611        int row, col;
 612        uintptr_t addr;
 613
 614        move_to_config_state(pctl);
 615        writel(6, &msch->ddrconf);
 616        move_to_access_state(pctl);
 617
 618        /* Detect col */
 619        for (col = 11; col >= 9; col--) {
 620                writel(0, CONFIG_SYS_SDRAM_BASE);
 621                addr = CONFIG_SYS_SDRAM_BASE +
 622                        (1 << (col + params->chan.bw - 1));
 623                writel(test_pattern, addr);
 624                if ((readl(addr) == test_pattern) &&
 625                    (readl(CONFIG_SYS_SDRAM_BASE) == 0))
 626                        break;
 627        }
 628
 629        if (col == 8) {
 630                pr_err("%s: col detect error\n", __func__);
 631                return -EINVAL;
 632        }
 633
 634        move_to_config_state(pctl);
 635        writel(15, &msch->ddrconf);
 636        move_to_access_state(pctl);
 637
 638        /* Detect row*/
 639        for (row = 16; row >= 12; row--) {
 640                writel(0, CONFIG_SYS_SDRAM_BASE);
 641                addr = CONFIG_SYS_SDRAM_BASE + (1 << (row + 15 - 1));
 642                writel(test_pattern, addr);
 643                if ((readl(addr) == test_pattern) &&
 644                    (readl(CONFIG_SYS_SDRAM_BASE) == 0))
 645                        break;
 646        }
 647
 648        if (row == 11) {
 649                pr_err("%s: row detect error\n", __func__);
 650                return -EINVAL;
 651        }
 652
 653        /* Record results */
 654        debug("%s: col %d, row %d\n", __func__, col, row);
 655        params->chan.col = col;
 656        params->chan.cs0_row = row;
 657        params->chan.cs1_row = row;
 658        params->chan.row_3_4 = 0;
 659
 660        return 0;
 661}
 662
 663static int msch_niu_config(struct rk3368_msch *msch,
 664                           struct rk3368_sdram_params *params)
 665{
 666        int i;
 667        const u8 cols = params->chan.col - ((params->chan.bw == 2) ? 0 : 1);
 668        const u8 rows = params->chan.cs0_row;
 669
 670        /*
 671         * The DDR address-translation table always assumes a 32bit
 672         * bus and the comparison below takes care of adjusting for
 673         * a 16bit bus (i.e. one column-address is consumed).
 674         */
 675        const struct {
 676                u8 rows;
 677                u8 columns;
 678                u8 type;
 679        } ddrconf_table[] = {
 680                /*
 681                 * C-B-R-D patterns are first. For these we require an
 682                 * exact match for the columns and rows (as there's
 683                 * one entry per possible configuration).
 684                 */
 685                [0] =  { .rows = 13, .columns = 10, .type = DMC_MSCH_CBRD },
 686                [1] =  { .rows = 14, .columns = 10, .type = DMC_MSCH_CBRD },
 687                [2] =  { .rows = 15, .columns = 10, .type = DMC_MSCH_CBRD },
 688                [3] =  { .rows = 16, .columns = 10, .type = DMC_MSCH_CBRD },
 689                [4] =  { .rows = 14, .columns = 11, .type = DMC_MSCH_CBRD },
 690                [5] =  { .rows = 15, .columns = 11, .type = DMC_MSCH_CBRD },
 691                [6] =  { .rows = 16, .columns = 11, .type = DMC_MSCH_CBRD },
 692                [7] =  { .rows = 13, .columns = 9, .type = DMC_MSCH_CBRD },
 693                [8] =  { .rows = 14, .columns = 9, .type = DMC_MSCH_CBRD },
 694                [9] =  { .rows = 15, .columns = 9, .type = DMC_MSCH_CBRD },
 695                [10] = { .rows = 16, .columns = 9, .type = DMC_MSCH_CBRD },
 696                /*
 697                 * 11 through 13 are C-R-B-D patterns. These are
 698                 * matched for an exact number of columns and to
 699                 * ensure that the hardware uses at least as many rows
 700                 * as the pattern requires (i.e. we make sure that
 701                 * there's no gaps up until we hit the device/chip-select;
 702                 * however, these patterns can accept up to 16 rows,
 703                 * as the row-address continues right after the CS
 704                 * switching)
 705                 */
 706                [11] = { .rows = 15, .columns = 10, .type = DMC_MSCH_CRBD },
 707                [12] = { .rows = 14, .columns = 11, .type = DMC_MSCH_CRBD },
 708                [13] = { .rows = 13, .columns = 10, .type = DMC_MSCH_CRBD },
 709                /*
 710                 * 14 and 15 are catch-all variants using a C-B-D-R
 711                 * scheme (i.e. alternating the chip-select every time
 712                 * C-B overflows) and stuffing the remaining C-bits
 713                 * into the top. Matching needs to make sure that the
 714                 * number of columns is either an exact match (i.e. we
 715                 * can use less the the maximum number of rows) -or-
 716                 * that the columns exceed what is given in this table
 717                 * and the rows are an exact match (in which case the
 718                 * remaining C-bits will be stuffed onto the top after
 719                 * the device/chip-select switches).
 720                 */
 721                [14] = { .rows = 16, .columns = 10, .type = DMC_MSCH_CBDR },
 722                [15] = { .rows = 16, .columns = 9, .type = DMC_MSCH_CBDR },
 723        };
 724
 725        /*
 726         * For C-B-R-D, we need an exact match (i.e. both for the number of
 727         * columns and rows), while for C-B-D-R, only the the number of
 728         * columns needs to match.
 729         */
 730        for (i = 0; i < ARRAY_SIZE(ddrconf_table); i++) {
 731                bool match = false;
 732
 733                /* If this entry if for a different matcher, then skip it */
 734                if (ddrconf_table[i].type != params->memory_schedule)
 735                        continue;
 736
 737                /*
 738                 * Match according to the rules (exact/inexact/at-least)
 739                 * documented in the ddrconf_table above.
 740                 */
 741                switch (params->memory_schedule) {
 742                case DMC_MSCH_CBRD:
 743                        match = (ddrconf_table[i].columns == cols) &&
 744                                (ddrconf_table[i].rows == rows);
 745                        break;
 746
 747                case DMC_MSCH_CRBD:
 748                        match = (ddrconf_table[i].columns == cols) &&
 749                                (ddrconf_table[i].rows <= rows);
 750                        break;
 751
 752                case DMC_MSCH_CBDR:
 753                        match = (ddrconf_table[i].columns == cols) ||
 754                                ((ddrconf_table[i].columns <= cols) &&
 755                                 (ddrconf_table[i].rows == rows));
 756                        break;
 757
 758                default:
 759                        break;
 760                }
 761
 762                if (match) {
 763                        debug("%s: setting ddrconf 0x%x\n", __func__, i);
 764                        writel(i, &msch->ddrconf);
 765                        return 0;
 766                }
 767        }
 768
 769        pr_err("%s: ddrconf (NIU config) not found\n", __func__);
 770        return -EINVAL;
 771}
 772
 773static void dram_all_config(struct udevice *dev)
 774{
 775        struct dram_info *priv = dev_get_priv(dev);
 776        struct rk3368_pmu_grf *pmugrf = priv->pmugrf;
 777        struct rk3368_sdram_params *params = dev_get_plat(dev);
 778        const struct rk3288_sdram_channel *info = &params->chan;
 779        u32 sys_reg = 0;
 780        const int chan = 0;
 781
 782        sys_reg |= DDR3 << SYS_REG_DDRTYPE_SHIFT;
 783        sys_reg |= 0 << SYS_REG_NUM_CH_SHIFT;
 784
 785        sys_reg |= info->row_3_4 << SYS_REG_ROW_3_4_SHIFT(chan);
 786        sys_reg |= 1 << SYS_REG_CHINFO_SHIFT(chan);
 787        sys_reg |= (info->rank - 1) << SYS_REG_RANK_SHIFT(chan);
 788        sys_reg |= (info->col - 9) << SYS_REG_COL_SHIFT(chan);
 789        sys_reg |= info->bk == 3 ? 0 : 1 << SYS_REG_BK_SHIFT(chan);
 790        sys_reg |= (info->cs0_row - 13) << SYS_REG_CS0_ROW_SHIFT(chan);
 791        sys_reg |= (info->cs1_row - 13) << SYS_REG_CS1_ROW_SHIFT(chan);
 792        sys_reg |= (2 >> info->bw) << SYS_REG_BW_SHIFT(chan);
 793        sys_reg |= (2 >> info->dbw) << SYS_REG_DBW_SHIFT(chan);
 794
 795        writel(sys_reg, &pmugrf->os_reg[2]);
 796}
 797
 798static int setup_sdram(struct udevice *dev)
 799{
 800        struct dram_info *priv = dev_get_priv(dev);
 801        struct rk3368_sdram_params *params = dev_get_plat(dev);
 802
 803        struct rk3368_ddr_pctl *pctl = priv->pctl;
 804        struct rk3368_ddrphy *ddrphy = priv->phy;
 805        struct rk3368_cru *cru = priv->cru;
 806        struct rk3368_grf *grf = priv->grf;
 807        struct rk3368_msch *msch = priv->msch;
 808
 809        int ret;
 810
 811        /* The input clock (i.e. DPLL) needs to be 2x the DRAM frequency */
 812        ret = clk_set_rate(&priv->ddr_clk, 2 * params->ddr_freq);
 813        if (ret < 0) {
 814                debug("%s: could not set DDR clock: %d\n", __func__, ret);
 815                return ret;
 816        }
 817
 818        /* Update the read-latency for the RK3368 */
 819        writel(0x32, &msch->readlatency);
 820
 821        /* Initialise the DDR PCTL and DDR PHY */
 822        ddrctl_reset(cru);
 823        ddrphy_reset(ddrphy);
 824        ddrphy_config_delays(ddrphy, params->ddr_freq);
 825        dfi_cfg(pctl);
 826        /* Configure relative system information of grf_ddrc0_con0 register */
 827        ddr_set_ddr3_mode(grf, true);
 828        ddr_set_noc_spr_err_stall(grf, true);
 829        /* Calculate timings */
 830        pctl_calc_timings(params, params->ddr_freq);
 831        /* Initialise the device timings in protocol controller */
 832        pctl_cfg(pctl, params, grf);
 833        /* Configure AL, CL ... information of PHY registers */
 834        ddrphy_config(ddrphy,
 835                      params->pctl_timing.tcl,
 836                      params->pctl_timing.tal,
 837                      params->pctl_timing.tcwl);
 838
 839        /* Initialize DRAM and configure with mode-register values */
 840        ret = memory_init(pctl, params);
 841        if (ret)
 842                goto error;
 843
 844        move_to_config_state(pctl);
 845        /* Perform data-training */
 846        ddrphy_data_training(pctl, ddrphy);
 847        move_to_access_state(pctl);
 848
 849        /* TODO(prt): could detect rank in training... */
 850#ifdef CONFIG_TARGET_EVB_PX5
 851        params->chan.rank = 1;
 852#else
 853        params->chan.rank = 2;
 854#endif
 855        /* TODO(prt): bus width is not auto-detected (yet)... */
 856        params->chan.bw = 2;  /* 32bit wide bus */
 857        params->chan.dbw = params->chan.dbw;  /* 32bit wide bus */
 858
 859        /* DDR3 is always 8 bank */
 860        params->chan.bk = 3;
 861        /* Detect col and row number */
 862        ret = sdram_col_row_detect(dev);
 863        if (ret)
 864                goto error;
 865
 866        /* Configure NIU DDR configuration */
 867        ret = msch_niu_config(msch, params);
 868        if (ret)
 869                goto error;
 870
 871        /* set up OS_REG to communicate w/ next stage and OS */
 872        dram_all_config(dev);
 873
 874        return 0;
 875
 876error:
 877        printf("DRAM init failed!\n");
 878        hang();
 879}
 880#endif
 881
 882static int rk3368_dmc_of_to_plat(struct udevice *dev)
 883{
 884        int ret = 0;
 885
 886        if (CONFIG_IS_ENABLED(OF_REAL)) {
 887                struct rk3368_sdram_params *plat = dev_get_plat(dev);
 888
 889                ret = regmap_init_mem(dev_ofnode(dev), &plat->map);
 890                if (ret)
 891                        return ret;
 892        }
 893
 894        return ret;
 895}
 896
 897#if CONFIG_IS_ENABLED(OF_PLATDATA)
 898static int conv_of_plat(struct udevice *dev)
 899{
 900        struct rk3368_sdram_params *plat = dev_get_plat(dev);
 901        struct dtd_rockchip_rk3368_dmc *of_plat = &plat->of_plat;
 902
 903        plat->ddr_freq = of_plat->rockchip_ddr_frequency;
 904        plat->ddr_speed_bin = of_plat->rockchip_ddr_speed_bin;
 905        plat->memory_schedule = of_plat->rockchip_memory_schedule;
 906
 907        return 0;
 908}
 909#endif
 910
 911static int rk3368_dmc_probe(struct udevice *dev)
 912{
 913#ifdef CONFIG_TPL_BUILD
 914        struct rk3368_sdram_params *plat = dev_get_plat(dev);
 915        struct rk3368_ddr_pctl *pctl;
 916        struct rk3368_ddrphy *ddrphy;
 917        struct rk3368_cru *cru;
 918        struct rk3368_grf *grf;
 919        struct rk3368_msch *msch;
 920        int ret;
 921        struct udevice *dev_clk;
 922#endif
 923        struct dram_info *priv = dev_get_priv(dev);
 924
 925#if CONFIG_IS_ENABLED(OF_PLATDATA)
 926        ret = conv_of_plat(dev);
 927        if (ret)
 928                return ret;
 929#endif
 930
 931        priv->pmugrf = syscon_get_first_range(ROCKCHIP_SYSCON_PMUGRF);
 932        debug("%s: pmugrf=%p\n", __func__, priv->pmugrf);
 933
 934#ifdef CONFIG_TPL_BUILD
 935        pctl = (struct rk3368_ddr_pctl *)plat->of_plat.reg[0];
 936        ddrphy = (struct rk3368_ddrphy *)plat->of_plat.reg[2];
 937        msch = syscon_get_first_range(ROCKCHIP_SYSCON_MSCH);
 938        grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF);
 939
 940        priv->pctl = pctl;
 941        priv->phy = ddrphy;
 942        priv->msch = msch;
 943        priv->grf = grf;
 944
 945        ret = rockchip_get_clk(&dev_clk);
 946        if (ret)
 947                return ret;
 948        priv->ddr_clk.id = CLK_DDR;
 949        ret = clk_request(dev_clk, &priv->ddr_clk);
 950        if (ret)
 951                return ret;
 952
 953        cru = rockchip_get_cru();
 954        priv->cru = cru;
 955        if (IS_ERR(priv->cru))
 956                return PTR_ERR(priv->cru);
 957
 958        ret = setup_sdram(dev);
 959        if (ret)
 960                return ret;
 961#endif
 962
 963        priv->info.base = 0;
 964        priv->info.size =
 965                rockchip_sdram_size((phys_addr_t)&priv->pmugrf->os_reg[2]);
 966
 967        /*
 968        * we use the 0x00000000~0xfdffffff space since 0xff000000~0xffffffff
 969        * is SoC register space (i.e. reserved), and 0xfe000000~0xfeffffff is
 970        * inaccessible for some IP controller.
 971        */
 972        priv->info.size = min(priv->info.size, (size_t)0xfe000000);
 973
 974        return 0;
 975}
 976
 977static int rk3368_dmc_get_info(struct udevice *dev, struct ram_info *info)
 978{
 979        struct dram_info *priv = dev_get_priv(dev);
 980
 981        *info = priv->info;
 982        return 0;
 983}
 984
 985static struct ram_ops rk3368_dmc_ops = {
 986        .get_info = rk3368_dmc_get_info,
 987};
 988
 989
 990static const struct udevice_id rk3368_dmc_ids[] = {
 991        { .compatible = "rockchip,rk3368-dmc" },
 992        { }
 993};
 994
 995U_BOOT_DRIVER(rockchip_rk3368_dmc) = {
 996        .name = "rockchip_rk3368_dmc",
 997        .id = UCLASS_RAM,
 998        .of_match = rk3368_dmc_ids,
 999        .ops = &rk3368_dmc_ops,
1000        .probe = rk3368_dmc_probe,
1001        .priv_auto      = sizeof(struct dram_info),
1002        .of_to_plat = rk3368_dmc_of_to_plat,
1003        .probe = rk3368_dmc_probe,
1004        .priv_auto      = sizeof(struct dram_info),
1005        .plat_auto      = sizeof(struct rk3368_sdram_params),
1006};
1007