uboot/drivers/spi/ich.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Copyright (c) 2011-12 The Chromium OS Authors.
   4 *
   5 * This file is derived from the flashrom project.
   6 */
   7
   8#define LOG_CATEGORY    UCLASS_SPI
   9
  10#include <common.h>
  11#include <bootstage.h>
  12#include <div64.h>
  13#include <dm.h>
  14#include <dt-structs.h>
  15#include <errno.h>
  16#include <log.h>
  17#include <malloc.h>
  18#include <pch.h>
  19#include <pci.h>
  20#include <pci_ids.h>
  21#include <spi.h>
  22#include <spi_flash.h>
  23#include <spi-mem.h>
  24#include <spl.h>
  25#include <asm/fast_spi.h>
  26#include <asm/io.h>
  27#include <dm/uclass-internal.h>
  28#include <asm/mtrr.h>
  29#include <linux/bitops.h>
  30#include <linux/delay.h>
  31#include <linux/sizes.h>
  32
  33#include "ich.h"
  34
  35#ifdef DEBUG_TRACE
  36#define debug_trace(fmt, args...) debug(fmt, ##args)
  37#else
  38#define debug_trace(x, args...)
  39#endif
  40
  41static u8 ich_readb(struct ich_spi_priv *priv, int reg)
  42{
  43        u8 value = readb(priv->base + reg);
  44
  45        debug_trace("read %2.2x from %4.4x\n", value, reg);
  46
  47        return value;
  48}
  49
  50static u16 ich_readw(struct ich_spi_priv *priv, int reg)
  51{
  52        u16 value = readw(priv->base + reg);
  53
  54        debug_trace("read %4.4x from %4.4x\n", value, reg);
  55
  56        return value;
  57}
  58
  59static u32 ich_readl(struct ich_spi_priv *priv, int reg)
  60{
  61        u32 value = readl(priv->base + reg);
  62
  63        debug_trace("read %8.8x from %4.4x\n", value, reg);
  64
  65        return value;
  66}
  67
  68static void ich_writeb(struct ich_spi_priv *priv, u8 value, int reg)
  69{
  70        writeb(value, priv->base + reg);
  71        debug_trace("wrote %2.2x to %4.4x\n", value, reg);
  72}
  73
  74static void ich_writew(struct ich_spi_priv *priv, u16 value, int reg)
  75{
  76        writew(value, priv->base + reg);
  77        debug_trace("wrote %4.4x to %4.4x\n", value, reg);
  78}
  79
  80static void ich_writel(struct ich_spi_priv *priv, u32 value, int reg)
  81{
  82        writel(value, priv->base + reg);
  83        debug_trace("wrote %8.8x to %4.4x\n", value, reg);
  84}
  85
  86static void write_reg(struct ich_spi_priv *priv, const void *value,
  87                      int dest_reg, uint32_t size)
  88{
  89        memcpy_toio(priv->base + dest_reg, value, size);
  90}
  91
  92static void read_reg(struct ich_spi_priv *priv, int src_reg, void *value,
  93                     uint32_t size)
  94{
  95        memcpy_fromio(value, priv->base + src_reg, size);
  96}
  97
  98static void ich_set_bbar(struct ich_spi_priv *ctlr, uint32_t minaddr)
  99{
 100        const uint32_t bbar_mask = 0x00ffff00;
 101        uint32_t ichspi_bbar;
 102
 103        if (ctlr->bbar) {
 104                minaddr &= bbar_mask;
 105                ichspi_bbar = ich_readl(ctlr, ctlr->bbar) & ~bbar_mask;
 106                ichspi_bbar |= minaddr;
 107                ich_writel(ctlr, ichspi_bbar, ctlr->bbar);
 108        }
 109}
 110
 111/* @return 1 if the SPI flash supports the 33MHz speed */
 112static bool ich9_can_do_33mhz(struct udevice *dev)
 113{
 114        struct ich_spi_priv *priv = dev_get_priv(dev);
 115        u32 fdod, speed;
 116
 117        if (!CONFIG_IS_ENABLED(PCI) || !priv->pch)
 118                return false;
 119        /* Observe SPI Descriptor Component Section 0 */
 120        dm_pci_write_config32(priv->pch, 0xb0, 0x1000);
 121
 122        /* Extract the Write/Erase SPI Frequency from descriptor */
 123        dm_pci_read_config32(priv->pch, 0xb4, &fdod);
 124
 125        /* Bits 23:21 have the fast read clock frequency, 0=20MHz, 1=33MHz */
 126        speed = (fdod >> 21) & 7;
 127
 128        return speed == 1;
 129}
 130
 131static void spi_lock_down(struct ich_spi_plat *plat, void *sbase)
 132{
 133        if (plat->ich_version == ICHV_7) {
 134                struct ich7_spi_regs *ich7_spi = sbase;
 135
 136                setbits_le16(&ich7_spi->spis, SPIS_LOCK);
 137        } else if (plat->ich_version == ICHV_9) {
 138                struct ich9_spi_regs *ich9_spi = sbase;
 139
 140                setbits_le16(&ich9_spi->hsfs, HSFS_FLOCKDN);
 141        }
 142}
 143
 144static bool spi_lock_status(struct ich_spi_plat *plat, void *sbase)
 145{
 146        int lock = 0;
 147
 148        if (plat->ich_version == ICHV_7) {
 149                struct ich7_spi_regs *ich7_spi = sbase;
 150
 151                lock = readw(&ich7_spi->spis) & SPIS_LOCK;
 152        } else if (plat->ich_version == ICHV_9) {
 153                struct ich9_spi_regs *ich9_spi = sbase;
 154
 155                lock = readw(&ich9_spi->hsfs) & HSFS_FLOCKDN;
 156        }
 157
 158        return lock != 0;
 159}
 160
 161static int spi_setup_opcode(struct ich_spi_priv *ctlr, struct spi_trans *trans,
 162                            bool lock)
 163{
 164        uint16_t optypes;
 165        uint8_t opmenu[ctlr->menubytes];
 166
 167        if (!lock) {
 168                /* The lock is off, so just use index 0. */
 169                ich_writeb(ctlr, trans->opcode, ctlr->opmenu);
 170                optypes = ich_readw(ctlr, ctlr->optype);
 171                optypes = (optypes & 0xfffc) | (trans->type & 0x3);
 172                ich_writew(ctlr, optypes, ctlr->optype);
 173                return 0;
 174        } else {
 175                /* The lock is on. See if what we need is on the menu. */
 176                uint8_t optype;
 177                uint16_t opcode_index;
 178
 179                /* Write Enable is handled as atomic prefix */
 180                if (trans->opcode == SPI_OPCODE_WREN)
 181                        return 0;
 182
 183                read_reg(ctlr, ctlr->opmenu, opmenu, sizeof(opmenu));
 184                for (opcode_index = 0; opcode_index < ctlr->menubytes;
 185                                opcode_index++) {
 186                        if (opmenu[opcode_index] == trans->opcode)
 187                                break;
 188                }
 189
 190                if (opcode_index == ctlr->menubytes) {
 191                        debug("ICH SPI: Opcode %x not found\n", trans->opcode);
 192                        return -EINVAL;
 193                }
 194
 195                optypes = ich_readw(ctlr, ctlr->optype);
 196                optype = (optypes >> (opcode_index * 2)) & 0x3;
 197
 198                if (optype != trans->type) {
 199                        debug("ICH SPI: Transaction doesn't fit type %d\n",
 200                              optype);
 201                        return -ENOSPC;
 202                }
 203                return opcode_index;
 204        }
 205}
 206
 207/*
 208 * Wait for up to 6s til status register bit(s) turn 1 (in case wait_til_set
 209 * below is true) or 0. In case the wait was for the bit(s) to set - write
 210 * those bits back, which would cause resetting them.
 211 *
 212 * Return the last read status value on success or -1 on failure.
 213 */
 214static int ich_status_poll(struct ich_spi_priv *ctlr, u16 bitmask,
 215                           int wait_til_set)
 216{
 217        int timeout = 600000; /* This will result in 6s */
 218        u16 status = 0;
 219
 220        while (timeout--) {
 221                status = ich_readw(ctlr, ctlr->status);
 222                if (wait_til_set ^ ((status & bitmask) == 0)) {
 223                        if (wait_til_set) {
 224                                ich_writew(ctlr, status & bitmask,
 225                                           ctlr->status);
 226                        }
 227                        return status;
 228                }
 229                udelay(10);
 230        }
 231        debug("ICH SPI: SCIP timeout, read %x, expected %x, wts %x %x\n",
 232              status, bitmask, wait_til_set, status & bitmask);
 233
 234        return -ETIMEDOUT;
 235}
 236
 237static void ich_spi_config_opcode(struct udevice *dev)
 238{
 239        struct ich_spi_priv *ctlr = dev_get_priv(dev);
 240
 241        /*
 242         * PREOP, OPTYPE, OPMENU1/OPMENU2 registers can be locked down
 243         * to prevent accidental or intentional writes. Before they get
 244         * locked down, these registers should be initialized properly.
 245         */
 246        ich_writew(ctlr, SPI_OPPREFIX, ctlr->preop);
 247        ich_writew(ctlr, SPI_OPTYPE, ctlr->optype);
 248        ich_writel(ctlr, SPI_OPMENU_LOWER, ctlr->opmenu);
 249        ich_writel(ctlr, SPI_OPMENU_UPPER, ctlr->opmenu + sizeof(u32));
 250}
 251
 252static int ich_spi_exec_op_swseq(struct spi_slave *slave,
 253                                 const struct spi_mem_op *op)
 254{
 255        struct udevice *bus = dev_get_parent(slave->dev);
 256        struct ich_spi_plat *plat = dev_get_plat(bus);
 257        struct ich_spi_priv *ctlr = dev_get_priv(bus);
 258        uint16_t control;
 259        int16_t opcode_index;
 260        int with_address;
 261        int status;
 262        struct spi_trans *trans = &ctlr->trans;
 263        bool lock = spi_lock_status(plat, ctlr->base);
 264        int ret = 0;
 265
 266        trans->in = NULL;
 267        trans->out = NULL;
 268        trans->type = 0xFF;
 269
 270        if (op->data.nbytes) {
 271                if (op->data.dir == SPI_MEM_DATA_IN) {
 272                        trans->in = op->data.buf.in;
 273                        trans->bytesin = op->data.nbytes;
 274                } else {
 275                        trans->out = op->data.buf.out;
 276                        trans->bytesout = op->data.nbytes;
 277                }
 278        }
 279
 280        if (trans->opcode != op->cmd.opcode)
 281                trans->opcode = op->cmd.opcode;
 282
 283        if (lock && trans->opcode == SPI_OPCODE_WRDIS)
 284                return 0;
 285
 286        if (trans->opcode == SPI_OPCODE_WREN) {
 287                /*
 288                 * Treat Write Enable as Atomic Pre-Op if possible
 289                 * in order to prevent the Management Engine from
 290                 * issuing a transaction between WREN and DATA.
 291                 */
 292                if (!lock)
 293                        ich_writew(ctlr, trans->opcode, ctlr->preop);
 294                return 0;
 295        }
 296
 297        ret = ich_status_poll(ctlr, SPIS_SCIP, 0);
 298        if (ret < 0)
 299                return ret;
 300
 301        if (plat->ich_version == ICHV_7)
 302                ich_writew(ctlr, SPIS_CDS | SPIS_FCERR, ctlr->status);
 303        else
 304                ich_writeb(ctlr, SPIS_CDS | SPIS_FCERR, ctlr->status);
 305
 306        /* Try to guess spi transaction type */
 307        if (op->data.dir == SPI_MEM_DATA_OUT) {
 308                if (op->addr.nbytes)
 309                        trans->type = SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS;
 310                else
 311                        trans->type = SPI_OPCODE_TYPE_WRITE_NO_ADDRESS;
 312        } else {
 313                if (op->addr.nbytes)
 314                        trans->type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS;
 315                else
 316                        trans->type = SPI_OPCODE_TYPE_READ_NO_ADDRESS;
 317        }
 318        /* Special erase case handling */
 319        if (op->addr.nbytes && !op->data.buswidth)
 320                trans->type = SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS;
 321
 322        opcode_index = spi_setup_opcode(ctlr, trans, lock);
 323        if (opcode_index < 0)
 324                return -EINVAL;
 325
 326        if (op->addr.nbytes) {
 327                trans->offset = op->addr.val;
 328                with_address = 1;
 329        }
 330
 331        if (ctlr->speed && ctlr->max_speed >= 33000000) {
 332                int byte;
 333
 334                byte = ich_readb(ctlr, ctlr->speed);
 335                if (ctlr->cur_speed >= 33000000)
 336                        byte |= SSFC_SCF_33MHZ;
 337                else
 338                        byte &= ~SSFC_SCF_33MHZ;
 339                ich_writeb(ctlr, byte, ctlr->speed);
 340        }
 341
 342        /* Preset control fields */
 343        control = SPIC_SCGO | ((opcode_index & 0x07) << 4);
 344
 345        /* Issue atomic preop cycle if needed */
 346        if (ich_readw(ctlr, ctlr->preop))
 347                control |= SPIC_ACS;
 348
 349        if (!trans->bytesout && !trans->bytesin) {
 350                /* SPI addresses are 24 bit only */
 351                if (with_address) {
 352                        ich_writel(ctlr, trans->offset & 0x00FFFFFF,
 353                                   ctlr->addr);
 354                }
 355                /*
 356                 * This is a 'no data' command (like Write Enable), its
 357                 * bitesout size was 1, decremented to zero while executing
 358                 * spi_setup_opcode() above. Tell the chip to send the
 359                 * command.
 360                 */
 361                ich_writew(ctlr, control, ctlr->control);
 362
 363                /* wait for the result */
 364                status = ich_status_poll(ctlr, SPIS_CDS | SPIS_FCERR, 1);
 365                if (status < 0)
 366                        return status;
 367
 368                if (status & SPIS_FCERR) {
 369                        debug("ICH SPI: Command transaction error\n");
 370                        return -EIO;
 371                }
 372
 373                return 0;
 374        }
 375
 376        while (trans->bytesout || trans->bytesin) {
 377                uint32_t data_length;
 378
 379                /* SPI addresses are 24 bit only */
 380                ich_writel(ctlr, trans->offset & 0x00FFFFFF, ctlr->addr);
 381
 382                if (trans->bytesout)
 383                        data_length = min(trans->bytesout, ctlr->databytes);
 384                else
 385                        data_length = min(trans->bytesin, ctlr->databytes);
 386
 387                /* Program data into FDATA0 to N */
 388                if (trans->bytesout) {
 389                        write_reg(ctlr, trans->out, ctlr->data, data_length);
 390                        trans->bytesout -= data_length;
 391                }
 392
 393                /* Add proper control fields' values */
 394                control &= ~((ctlr->databytes - 1) << 8);
 395                control |= SPIC_DS;
 396                control |= (data_length - 1) << 8;
 397
 398                /* write it */
 399                ich_writew(ctlr, control, ctlr->control);
 400
 401                /* Wait for Cycle Done Status or Flash Cycle Error */
 402                status = ich_status_poll(ctlr, SPIS_CDS | SPIS_FCERR, 1);
 403                if (status < 0)
 404                        return status;
 405
 406                if (status & SPIS_FCERR) {
 407                        debug("ICH SPI: Data transaction error %x\n", status);
 408                        return -EIO;
 409                }
 410
 411                if (trans->bytesin) {
 412                        read_reg(ctlr, ctlr->data, trans->in, data_length);
 413                        trans->bytesin -= data_length;
 414                }
 415        }
 416
 417        /* Clear atomic preop now that xfer is done */
 418        if (!lock)
 419                ich_writew(ctlr, 0, ctlr->preop);
 420
 421        return 0;
 422}
 423
 424/*
 425 * Ensure read/write xfer len is not greater than SPIBAR_FDATA_FIFO_SIZE and
 426 * that the operation does not cross page boundary.
 427 */
 428static uint get_xfer_len(u32 offset, int len, int page_size)
 429{
 430        uint xfer_len = min(len, SPIBAR_FDATA_FIFO_SIZE);
 431        uint bytes_left = ALIGN(offset, page_size) - offset;
 432
 433        if (bytes_left)
 434                xfer_len = min(xfer_len, bytes_left);
 435
 436        return xfer_len;
 437}
 438
 439/* Fill FDATAn FIFO in preparation for a write transaction */
 440static void fill_xfer_fifo(struct fast_spi_regs *regs, const void *data,
 441                           uint len)
 442{
 443        memcpy(regs->fdata, data, len);
 444}
 445
 446/* Drain FDATAn FIFO after a read transaction populates data */
 447static void drain_xfer_fifo(struct fast_spi_regs *regs, void *dest, uint len)
 448{
 449        memcpy(dest, regs->fdata, len);
 450}
 451
 452/* Fire up a transfer using the hardware sequencer */
 453static void start_hwseq_xfer(struct fast_spi_regs *regs, uint hsfsts_cycle,
 454                             uint offset, uint len)
 455{
 456        /* Make sure all W1C status bits get cleared */
 457        u32 hsfsts;
 458
 459        hsfsts = readl(&regs->hsfsts_ctl);
 460        hsfsts &= ~(HSFSTS_FCYCLE_MASK | HSFSTS_FDBC_MASK);
 461        hsfsts |= HSFSTS_AEL | HSFSTS_FCERR | HSFSTS_FDONE;
 462
 463        /* Set up transaction parameters */
 464        hsfsts |= hsfsts_cycle << HSFSTS_FCYCLE_SHIFT;
 465        hsfsts |= ((len - 1) << HSFSTS_FDBC_SHIFT) & HSFSTS_FDBC_MASK;
 466        hsfsts |= HSFSTS_FGO;
 467
 468        writel(offset, &regs->faddr);
 469        writel(hsfsts, &regs->hsfsts_ctl);
 470}
 471
 472static int wait_for_hwseq_xfer(struct fast_spi_regs *regs, uint offset)
 473{
 474        ulong start;
 475        u32 hsfsts;
 476
 477        start = get_timer(0);
 478        do {
 479                hsfsts = readl(&regs->hsfsts_ctl);
 480                if (hsfsts & HSFSTS_FCERR) {
 481                        debug("SPI transaction error at offset %x HSFSTS = %08x\n",
 482                              offset, hsfsts);
 483                        return -EIO;
 484                }
 485                if (hsfsts & HSFSTS_AEL)
 486                        return -EPERM;
 487
 488                if (hsfsts & HSFSTS_FDONE)
 489                        return 0;
 490        } while (get_timer(start) < SPIBAR_HWSEQ_XFER_TIMEOUT_MS);
 491
 492        debug("SPI transaction timeout at offset %x HSFSTS = %08x, timer %d\n",
 493              offset, hsfsts, (uint)get_timer(start));
 494
 495        return -ETIMEDOUT;
 496}
 497
 498/**
 499 * exec_sync_hwseq_xfer() - Execute flash transfer by hardware sequencing
 500 *
 501 * This waits until complete or timeout
 502 *
 503 * @regs: SPI registers
 504 * @hsfsts_cycle: Cycle type (enum hsfsts_cycle_t)
 505 * @offset: Offset to access
 506 * @len: Number of bytes to transfer (can be 0)
 507 * Return: 0 if OK, -EIO on flash-cycle error (FCERR), -EPERM on access error
 508 *      (AEL), -ETIMEDOUT on timeout
 509 */
 510static int exec_sync_hwseq_xfer(struct fast_spi_regs *regs, uint hsfsts_cycle,
 511                                uint offset, uint len)
 512{
 513        start_hwseq_xfer(regs, hsfsts_cycle, offset, len);
 514
 515        return wait_for_hwseq_xfer(regs, offset);
 516}
 517
 518static int ich_spi_exec_op_hwseq(struct spi_slave *slave,
 519                                 const struct spi_mem_op *op)
 520{
 521        struct spi_flash *flash = dev_get_uclass_priv(slave->dev);
 522        struct udevice *bus = dev_get_parent(slave->dev);
 523        struct ich_spi_priv *priv = dev_get_priv(bus);
 524        struct fast_spi_regs *regs = priv->base;
 525        uint page_size;
 526        uint offset;
 527        int cycle;
 528        uint len;
 529        bool out;
 530        int ret;
 531        u8 *buf;
 532
 533        offset = op->addr.val;
 534        len = op->data.nbytes;
 535
 536        switch (op->cmd.opcode) {
 537        case SPINOR_OP_RDID:
 538                cycle = HSFSTS_CYCLE_RDID;
 539                break;
 540        case SPINOR_OP_READ_FAST:
 541                cycle = HSFSTS_CYCLE_READ;
 542                break;
 543        case SPINOR_OP_PP:
 544                cycle = HSFSTS_CYCLE_WRITE;
 545                break;
 546        case SPINOR_OP_WREN:
 547                /* Nothing needs to be done */
 548                return 0;
 549        case SPINOR_OP_WRSR:
 550                cycle = HSFSTS_CYCLE_WR_STATUS;
 551                break;
 552        case SPINOR_OP_RDSR:
 553                cycle = HSFSTS_CYCLE_RD_STATUS;
 554                break;
 555        case SPINOR_OP_WRDI:
 556                return 0;  /* ignore */
 557        case SPINOR_OP_BE_4K:
 558                cycle = HSFSTS_CYCLE_4K_ERASE;
 559                ret = exec_sync_hwseq_xfer(regs, cycle, offset, 0);
 560                return ret;
 561        default:
 562                debug("Unknown cycle %x\n", op->cmd.opcode);
 563                return -EINVAL;
 564        };
 565
 566        out = op->data.dir == SPI_MEM_DATA_OUT;
 567        buf = out ? (u8 *)op->data.buf.out : op->data.buf.in;
 568        page_size = flash->page_size ? : 256;
 569
 570        while (len) {
 571                uint xfer_len = get_xfer_len(offset, len, page_size);
 572
 573                if (out)
 574                        fill_xfer_fifo(regs, buf, xfer_len);
 575
 576                ret = exec_sync_hwseq_xfer(regs, cycle, offset, xfer_len);
 577                if (ret)
 578                        return ret;
 579
 580                if (!out)
 581                        drain_xfer_fifo(regs, buf, xfer_len);
 582
 583                offset += xfer_len;
 584                buf += xfer_len;
 585                len -= xfer_len;
 586        }
 587
 588        return 0;
 589}
 590
 591static int ich_spi_exec_op(struct spi_slave *slave, const struct spi_mem_op *op)
 592{
 593        struct udevice *bus = dev_get_parent(slave->dev);
 594        struct ich_spi_plat *plat = dev_get_plat(bus);
 595        int ret;
 596
 597        bootstage_start(BOOTSTAGE_ID_ACCUM_SPI, "fast_spi");
 598        if (plat->hwseq)
 599                ret = ich_spi_exec_op_hwseq(slave, op);
 600        else
 601                ret = ich_spi_exec_op_swseq(slave, op);
 602        bootstage_accum(BOOTSTAGE_ID_ACCUM_SPI);
 603
 604        return ret;
 605}
 606
 607#if CONFIG_IS_ENABLED(OF_REAL)
 608/**
 609 * ich_spi_get_basics() - Get basic information about the ICH device
 610 *
 611 * This works without probing any devices if requested.
 612 *
 613 * @bus: SPI controller to use
 614 * @can_probe: true if this function is allowed to probe the PCH
 615 * @pchp: Returns a pointer to the pch, or NULL if not found
 616 * @ich_versionp: Returns ICH version detected on success
 617 * @mmio_basep: Returns the address of the SPI registers on success
 618 * Return: 0 if OK, -EPROTOTYPE if the PCH could not be found, -EAGAIN if
 619 *      the function cannot success without probing, possible another error if
 620 *      pch_get_spi_base() fails
 621 */
 622static int ich_spi_get_basics(struct udevice *bus, bool can_probe,
 623                              struct udevice **pchp,
 624                              enum ich_version *ich_versionp, ulong *mmio_basep)
 625{
 626        struct udevice *pch = NULL;
 627        int ret = 0;
 628
 629        /* Find a PCH if there is one */
 630        if (can_probe) {
 631                pch = dev_get_parent(bus);
 632                if (device_get_uclass_id(pch) != UCLASS_PCH) {
 633                        uclass_first_device(UCLASS_PCH, &pch);
 634                        if (!pch)
 635                                ; /* ignore this error since we don't need it */
 636                }
 637        }
 638
 639        *ich_versionp = dev_get_driver_data(bus);
 640        if (*ich_versionp == ICHV_APL)
 641                *mmio_basep = dm_pci_read_bar32(bus, 0);
 642        else if (pch)
 643                ret = pch_get_spi_base(pch, mmio_basep);
 644        else
 645                return -EAGAIN;
 646        *pchp = pch;
 647
 648        return ret;
 649}
 650#endif
 651
 652/**
 653 * ich_get_mmap_bus() - Handle the get_mmap() method for a bus
 654 *
 655 * There are several cases to consider:
 656 * 1. Using of-platdata, in which case we have the BDF and can access the
 657 *      registers by reading the BAR
 658 * 2. Not using of-platdata, but still with a SPI controller that is on its own
 659 * PCI PDF. In this case we read the BDF from the parent plat and again get
 660 *      the registers by reading the BAR
 661 * 3. Using a SPI controller that is a child of the PCH, in which case we try
 662 *      to find the registers by asking the PCH. This only works if the PCH has
 663 *      been probed (which it will be if the bus is probed since parents are
 664 *      probed before children), since the PCH may not have a PCI address until
 665 *      its parent (the PCI bus itself) has been probed. If you are using this
 666 *      method then you should make sure the SPI bus is probed.
 667 *
 668 * The first two cases are useful in early init. The last one is more useful
 669 * afterwards.
 670 */
 671static int ich_get_mmap_bus(struct udevice *bus, ulong *map_basep,
 672                            uint *map_sizep, uint *offsetp)
 673{
 674        pci_dev_t spi_bdf;
 675#if CONFIG_IS_ENABLED(OF_REAL)
 676        if (device_is_on_pci_bus(bus)) {
 677                struct pci_child_plat *pplat;
 678
 679                pplat = dev_get_parent_plat(bus);
 680                spi_bdf = pplat->devfn;
 681        } else {
 682                enum ich_version ich_version;
 683                struct fast_spi_regs *regs;
 684                struct udevice *pch;
 685                ulong mmio_base;
 686                int ret;
 687
 688                ret = ich_spi_get_basics(bus, device_active(bus), &pch,
 689                                         &ich_version, &mmio_base);
 690                if (ret)
 691                        return log_msg_ret("basics", ret);
 692                regs = (struct fast_spi_regs *)mmio_base;
 693
 694                return fast_spi_get_bios_mmap_regs(regs, map_basep, map_sizep,
 695                                                   offsetp);
 696        }
 697#else
 698        struct ich_spi_plat *plat = dev_get_plat(bus);
 699
 700        /*
 701         * We cannot rely on plat->bdf being set up yet since this method can
 702         * be called before the device is probed. Use the of-platdata directly
 703         * instead.
 704         */
 705        spi_bdf = pci_ofplat_get_devfn(plat->dtplat.reg[0]);
 706#endif
 707
 708        return fast_spi_get_bios_mmap(spi_bdf, map_basep, map_sizep, offsetp);
 709}
 710
 711static int ich_get_mmap(struct udevice *dev, ulong *map_basep, uint *map_sizep,
 712                        uint *offsetp)
 713{
 714        struct udevice *bus = dev_get_parent(dev);
 715
 716        return ich_get_mmap_bus(bus, map_basep, map_sizep, offsetp);
 717}
 718
 719static int ich_spi_adjust_size(struct spi_slave *slave, struct spi_mem_op *op)
 720{
 721        unsigned int page_offset;
 722        int addr = op->addr.val;
 723        unsigned int byte_count = op->data.nbytes;
 724
 725        if (hweight32(ICH_BOUNDARY) == 1) {
 726                page_offset = addr & (ICH_BOUNDARY - 1);
 727        } else {
 728                u64 aux = addr;
 729
 730                page_offset = do_div(aux, ICH_BOUNDARY);
 731        }
 732
 733        if (op->data.dir == SPI_MEM_DATA_IN) {
 734                if (slave->max_read_size) {
 735                        op->data.nbytes = min(ICH_BOUNDARY - page_offset,
 736                                              slave->max_read_size);
 737                }
 738        } else if (slave->max_write_size) {
 739                op->data.nbytes = min(ICH_BOUNDARY - page_offset,
 740                                      slave->max_write_size);
 741        }
 742
 743        op->data.nbytes = min(op->data.nbytes, byte_count);
 744
 745        return 0;
 746}
 747
 748static int ich_protect_lockdown(struct udevice *dev)
 749{
 750        struct ich_spi_plat *plat = dev_get_plat(dev);
 751        struct ich_spi_priv *priv = dev_get_priv(dev);
 752        int ret = -ENOSYS;
 753
 754        /* Disable the BIOS write protect so write commands are allowed */
 755        if (priv->pch)
 756                ret = pch_set_spi_protect(priv->pch, false);
 757        if (ret == -ENOSYS) {
 758                u8 bios_cntl;
 759
 760                bios_cntl = ich_readb(priv, priv->bcr);
 761                bios_cntl &= ~BIT(5);   /* clear Enable InSMM_STS (EISS) */
 762                bios_cntl |= 1;         /* Write Protect Disable (WPD) */
 763                ich_writeb(priv, bios_cntl, priv->bcr);
 764        } else if (ret) {
 765                debug("%s: Failed to disable write-protect: err=%d\n",
 766                      __func__, ret);
 767                return ret;
 768        }
 769
 770        /* Lock down SPI controller settings if required */
 771        if (plat->lockdown) {
 772                ich_spi_config_opcode(dev);
 773                spi_lock_down(plat, priv->base);
 774        }
 775
 776        return 0;
 777}
 778
 779static int ich_init_controller(struct udevice *dev,
 780                               struct ich_spi_plat *plat,
 781                               struct ich_spi_priv *ctlr)
 782{
 783        if (spl_phase() == PHASE_TPL) {
 784                struct ich_spi_plat *plat = dev_get_plat(dev);
 785                int ret;
 786
 787                ret = fast_spi_early_init(plat->bdf, plat->mmio_base);
 788                if (ret)
 789                        return ret;
 790        }
 791
 792        ctlr->base = (void *)plat->mmio_base;
 793        if (plat->ich_version == ICHV_7) {
 794                struct ich7_spi_regs *ich7_spi = ctlr->base;
 795
 796                ctlr->opmenu = offsetof(struct ich7_spi_regs, opmenu);
 797                ctlr->menubytes = sizeof(ich7_spi->opmenu);
 798                ctlr->optype = offsetof(struct ich7_spi_regs, optype);
 799                ctlr->addr = offsetof(struct ich7_spi_regs, spia);
 800                ctlr->data = offsetof(struct ich7_spi_regs, spid);
 801                ctlr->databytes = sizeof(ich7_spi->spid);
 802                ctlr->status = offsetof(struct ich7_spi_regs, spis);
 803                ctlr->control = offsetof(struct ich7_spi_regs, spic);
 804                ctlr->bbar = offsetof(struct ich7_spi_regs, bbar);
 805                ctlr->preop = offsetof(struct ich7_spi_regs, preop);
 806        } else if (plat->ich_version == ICHV_9) {
 807                struct ich9_spi_regs *ich9_spi = ctlr->base;
 808
 809                ctlr->opmenu = offsetof(struct ich9_spi_regs, opmenu);
 810                ctlr->menubytes = sizeof(ich9_spi->opmenu);
 811                ctlr->optype = offsetof(struct ich9_spi_regs, optype);
 812                ctlr->addr = offsetof(struct ich9_spi_regs, faddr);
 813                ctlr->data = offsetof(struct ich9_spi_regs, fdata);
 814                ctlr->databytes = sizeof(ich9_spi->fdata);
 815                ctlr->status = offsetof(struct ich9_spi_regs, ssfs);
 816                ctlr->control = offsetof(struct ich9_spi_regs, ssfc);
 817                ctlr->speed = ctlr->control + 2;
 818                ctlr->bbar = offsetof(struct ich9_spi_regs, bbar);
 819                ctlr->preop = offsetof(struct ich9_spi_regs, preop);
 820                ctlr->bcr = offsetof(struct ich9_spi_regs, bcr);
 821                ctlr->pr = &ich9_spi->pr[0];
 822        } else if (plat->ich_version == ICHV_APL) {
 823        } else {
 824                debug("ICH SPI: Unrecognised ICH version %d\n",
 825                      plat->ich_version);
 826                return -EINVAL;
 827        }
 828
 829        /* Work out the maximum speed we can support */
 830        ctlr->max_speed = 20000000;
 831        if (plat->ich_version == ICHV_9 && ich9_can_do_33mhz(dev))
 832                ctlr->max_speed = 33000000;
 833        debug("ICH SPI: Version ID %d detected at %lx, speed %ld\n",
 834              plat->ich_version, plat->mmio_base, ctlr->max_speed);
 835
 836        ich_set_bbar(ctlr, 0);
 837
 838        return 0;
 839}
 840
 841static int ich_cache_bios_region(struct udevice *dev)
 842{
 843        ulong map_base;
 844        uint map_size;
 845        uint offset;
 846        ulong base;
 847        int ret;
 848
 849        ret = ich_get_mmap_bus(dev, &map_base, &map_size, &offset);
 850        if (ret)
 851                return ret;
 852
 853        /* Don't use WRBACK since we are not supposed to write to SPI flash */
 854        base = SZ_4G - map_size;
 855        mtrr_set_next_var(MTRR_TYPE_WRPROT, base, map_size);
 856        log_debug("BIOS cache base=%lx, size=%x\n", base, (uint)map_size);
 857
 858        return 0;
 859}
 860
 861static int ich_spi_probe(struct udevice *dev)
 862{
 863        struct ich_spi_plat *plat = dev_get_plat(dev);
 864        struct ich_spi_priv *priv = dev_get_priv(dev);
 865        int ret;
 866
 867        ret = ich_init_controller(dev, plat, priv);
 868        if (ret)
 869                return ret;
 870
 871        if (spl_phase() == PHASE_TPL) {
 872                /* Cache the BIOS to speed things up */
 873                ret = ich_cache_bios_region(dev);
 874                if (ret)
 875                        return ret;
 876        } else {
 877                ret = ich_protect_lockdown(dev);
 878                if (ret)
 879                        return ret;
 880        }
 881        priv->cur_speed = priv->max_speed;
 882
 883        return 0;
 884}
 885
 886static int ich_spi_remove(struct udevice *bus)
 887{
 888        /*
 889         * Configure SPI controller so that the Linux MTD driver can fully
 890         * access the SPI NOR chip
 891         */
 892        ich_spi_config_opcode(bus);
 893
 894        return 0;
 895}
 896
 897static int ich_spi_set_speed(struct udevice *bus, uint speed)
 898{
 899        struct ich_spi_priv *priv = dev_get_priv(bus);
 900
 901        priv->cur_speed = speed;
 902
 903        return 0;
 904}
 905
 906static int ich_spi_set_mode(struct udevice *bus, uint mode)
 907{
 908        debug("%s: mode=%d\n", __func__, mode);
 909
 910        return 0;
 911}
 912
 913static int ich_spi_child_pre_probe(struct udevice *dev)
 914{
 915        struct udevice *bus = dev_get_parent(dev);
 916        struct ich_spi_plat *plat = dev_get_plat(bus);
 917        struct ich_spi_priv *priv = dev_get_priv(bus);
 918        struct spi_slave *slave = dev_get_parent_priv(dev);
 919
 920        /*
 921         * Yes this controller can only transfer a small number of bytes at
 922         * once! The limit is typically 64 bytes. For hardware sequencing a
 923         * a loop is used to get around this.
 924         */
 925        if (!plat->hwseq) {
 926                slave->max_read_size = priv->databytes;
 927                slave->max_write_size = priv->databytes;
 928        }
 929        /*
 930         * ICH 7 SPI controller only supports array read command
 931         * and byte program command for SST flash
 932         */
 933        if (plat->ich_version == ICHV_7)
 934                slave->mode = SPI_RX_SLOW | SPI_TX_BYTE;
 935
 936        return 0;
 937}
 938
 939static int ich_spi_of_to_plat(struct udevice *dev)
 940{
 941        struct ich_spi_plat *plat = dev_get_plat(dev);
 942
 943#if CONFIG_IS_ENABLED(OF_REAL)
 944        struct ich_spi_priv *priv = dev_get_priv(dev);
 945        int ret;
 946
 947        ret = ich_spi_get_basics(dev, true, &priv->pch, &plat->ich_version,
 948                                 &plat->mmio_base);
 949        if (ret)
 950                return log_msg_ret("basics", ret);
 951        plat->lockdown = dev_read_bool(dev, "intel,spi-lock-down");
 952        /*
 953         * Use an int so that the property is present in of-platdata even
 954         * when false.
 955         */
 956        plat->hwseq = dev_read_u32_default(dev, "intel,hardware-seq", 0);
 957#else
 958        plat->ich_version = ICHV_APL;
 959        plat->mmio_base = plat->dtplat.early_regs[0];
 960        plat->bdf = pci_ofplat_get_devfn(plat->dtplat.reg[0]);
 961        plat->hwseq = plat->dtplat.intel_hardware_seq;
 962#endif
 963        debug("%s: mmio_base=%lx\n", __func__, plat->mmio_base);
 964
 965        return 0;
 966}
 967
 968static const struct spi_controller_mem_ops ich_controller_mem_ops = {
 969        .adjust_op_size = ich_spi_adjust_size,
 970        .supports_op    = NULL,
 971        .exec_op        = ich_spi_exec_op,
 972};
 973
 974static const struct dm_spi_ops ich_spi_ops = {
 975        /* xfer is not supported */
 976        .set_speed      = ich_spi_set_speed,
 977        .set_mode       = ich_spi_set_mode,
 978        .mem_ops        = &ich_controller_mem_ops,
 979        .get_mmap       = ich_get_mmap,
 980        /*
 981         * cs_info is not needed, since we require all chip selects to be
 982         * in the device tree explicitly
 983         */
 984};
 985
 986static const struct udevice_id ich_spi_ids[] = {
 987        { .compatible = "intel,ich7-spi", ICHV_7 },
 988        { .compatible = "intel,ich9-spi", ICHV_9 },
 989        { .compatible = "intel,fast-spi", ICHV_APL },
 990        { }
 991};
 992
 993U_BOOT_DRIVER(intel_fast_spi) = {
 994        .name   = "intel_fast_spi",
 995        .id     = UCLASS_SPI,
 996        .of_match = ich_spi_ids,
 997        .ops    = &ich_spi_ops,
 998        .of_to_plat = ich_spi_of_to_plat,
 999        .plat_auto      = sizeof(struct ich_spi_plat),
1000        .priv_auto      = sizeof(struct ich_spi_priv),
1001        .child_pre_probe = ich_spi_child_pre_probe,
1002        .probe  = ich_spi_probe,
1003        .remove = ich_spi_remove,
1004        .flags  = DM_FLAG_OS_PREPARE,
1005};
1006