uboot/fs/ubifs/gc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Adrian Hunter
   8 *          Artem Bityutskiy (Битюцкий Артём)
   9 */
  10
  11/*
  12 * This file implements garbage collection. The procedure for garbage collection
  13 * is different depending on whether a LEB as an index LEB (contains index
  14 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
  15 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
  16 * nodes to the journal, at which point the garbage-collected LEB is free to be
  17 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
  18 * dirty in the TNC, and after the next commit, the garbage-collected LEB is
  19 * to be reused. Garbage collection will cause the number of dirty index nodes
  20 * to grow, however sufficient space is reserved for the index to ensure the
  21 * commit will never run out of space.
  22 *
  23 * Notes about dead watermark. At current UBIFS implementation we assume that
  24 * LEBs which have less than @c->dead_wm bytes of free + dirty space are full
  25 * and not worth garbage-collecting. The dead watermark is one min. I/O unit
  26 * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS
  27 * Garbage Collector has to synchronize the GC head's write buffer before
  28 * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can
  29 * actually reclaim even very small pieces of dirty space by garbage collecting
  30 * enough dirty LEBs, but we do not bother doing this at this implementation.
  31 *
  32 * Notes about dark watermark. The results of GC work depends on how big are
  33 * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed,
  34 * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would
  35 * have to waste large pieces of free space at the end of LEB B, because nodes
  36 * from LEB A would not fit. And the worst situation is when all nodes are of
  37 * maximum size. So dark watermark is the amount of free + dirty space in LEB
  38 * which are guaranteed to be reclaimable. If LEB has less space, the GC might
  39 * be unable to reclaim it. So, LEBs with free + dirty greater than dark
  40 * watermark are "good" LEBs from GC's point of few. The other LEBs are not so
  41 * good, and GC takes extra care when moving them.
  42 */
  43#ifndef __UBOOT__
  44#include <log.h>
  45#include <dm/devres.h>
  46#include <linux/slab.h>
  47#include <linux/pagemap.h>
  48#include <linux/list_sort.h>
  49#endif
  50#include "ubifs.h"
  51
  52#ifndef __UBOOT__
  53/*
  54 * GC may need to move more than one LEB to make progress. The below constants
  55 * define "soft" and "hard" limits on the number of LEBs the garbage collector
  56 * may move.
  57 */
  58#define SOFT_LEBS_LIMIT 4
  59#define HARD_LEBS_LIMIT 32
  60
  61/**
  62 * switch_gc_head - switch the garbage collection journal head.
  63 * @c: UBIFS file-system description object
  64 * @buf: buffer to write
  65 * @len: length of the buffer to write
  66 * @lnum: LEB number written is returned here
  67 * @offs: offset written is returned here
  68 *
  69 * This function switch the GC head to the next LEB which is reserved in
  70 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
  71 * and other negative error code in case of failures.
  72 */
  73static int switch_gc_head(struct ubifs_info *c)
  74{
  75        int err, gc_lnum = c->gc_lnum;
  76        struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
  77
  78        ubifs_assert(gc_lnum != -1);
  79        dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
  80               wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum,
  81               c->leb_size - wbuf->offs - wbuf->used);
  82
  83        err = ubifs_wbuf_sync_nolock(wbuf);
  84        if (err)
  85                return err;
  86
  87        /*
  88         * The GC write-buffer was synchronized, we may safely unmap
  89         * 'c->gc_lnum'.
  90         */
  91        err = ubifs_leb_unmap(c, gc_lnum);
  92        if (err)
  93                return err;
  94
  95        err = ubifs_wbuf_sync_nolock(wbuf);
  96        if (err)
  97                return err;
  98
  99        err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0);
 100        if (err)
 101                return err;
 102
 103        c->gc_lnum = -1;
 104        err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0);
 105        return err;
 106}
 107
 108/**
 109 * data_nodes_cmp - compare 2 data nodes.
 110 * @priv: UBIFS file-system description object
 111 * @a: first data node
 112 * @a: second data node
 113 *
 114 * This function compares data nodes @a and @b. Returns %1 if @a has greater
 115 * inode or block number, and %-1 otherwise.
 116 */
 117static int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
 118{
 119        ino_t inuma, inumb;
 120        struct ubifs_info *c = priv;
 121        struct ubifs_scan_node *sa, *sb;
 122
 123        cond_resched();
 124        if (a == b)
 125                return 0;
 126
 127        sa = list_entry(a, struct ubifs_scan_node, list);
 128        sb = list_entry(b, struct ubifs_scan_node, list);
 129
 130        ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY);
 131        ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY);
 132        ubifs_assert(sa->type == UBIFS_DATA_NODE);
 133        ubifs_assert(sb->type == UBIFS_DATA_NODE);
 134
 135        inuma = key_inum(c, &sa->key);
 136        inumb = key_inum(c, &sb->key);
 137
 138        if (inuma == inumb) {
 139                unsigned int blka = key_block(c, &sa->key);
 140                unsigned int blkb = key_block(c, &sb->key);
 141
 142                if (blka <= blkb)
 143                        return -1;
 144        } else if (inuma <= inumb)
 145                return -1;
 146
 147        return 1;
 148}
 149
 150/*
 151 * nondata_nodes_cmp - compare 2 non-data nodes.
 152 * @priv: UBIFS file-system description object
 153 * @a: first node
 154 * @a: second node
 155 *
 156 * This function compares nodes @a and @b. It makes sure that inode nodes go
 157 * first and sorted by length in descending order. Directory entry nodes go
 158 * after inode nodes and are sorted in ascending hash valuer order.
 159 */
 160static int nondata_nodes_cmp(void *priv, struct list_head *a,
 161                             struct list_head *b)
 162{
 163        ino_t inuma, inumb;
 164        struct ubifs_info *c = priv;
 165        struct ubifs_scan_node *sa, *sb;
 166
 167        cond_resched();
 168        if (a == b)
 169                return 0;
 170
 171        sa = list_entry(a, struct ubifs_scan_node, list);
 172        sb = list_entry(b, struct ubifs_scan_node, list);
 173
 174        ubifs_assert(key_type(c, &sa->key) != UBIFS_DATA_KEY &&
 175                     key_type(c, &sb->key) != UBIFS_DATA_KEY);
 176        ubifs_assert(sa->type != UBIFS_DATA_NODE &&
 177                     sb->type != UBIFS_DATA_NODE);
 178
 179        /* Inodes go before directory entries */
 180        if (sa->type == UBIFS_INO_NODE) {
 181                if (sb->type == UBIFS_INO_NODE)
 182                        return sb->len - sa->len;
 183                return -1;
 184        }
 185        if (sb->type == UBIFS_INO_NODE)
 186                return 1;
 187
 188        ubifs_assert(key_type(c, &sa->key) == UBIFS_DENT_KEY ||
 189                     key_type(c, &sa->key) == UBIFS_XENT_KEY);
 190        ubifs_assert(key_type(c, &sb->key) == UBIFS_DENT_KEY ||
 191                     key_type(c, &sb->key) == UBIFS_XENT_KEY);
 192        ubifs_assert(sa->type == UBIFS_DENT_NODE ||
 193                     sa->type == UBIFS_XENT_NODE);
 194        ubifs_assert(sb->type == UBIFS_DENT_NODE ||
 195                     sb->type == UBIFS_XENT_NODE);
 196
 197        inuma = key_inum(c, &sa->key);
 198        inumb = key_inum(c, &sb->key);
 199
 200        if (inuma == inumb) {
 201                uint32_t hasha = key_hash(c, &sa->key);
 202                uint32_t hashb = key_hash(c, &sb->key);
 203
 204                if (hasha <= hashb)
 205                        return -1;
 206        } else if (inuma <= inumb)
 207                return -1;
 208
 209        return 1;
 210}
 211
 212/**
 213 * sort_nodes - sort nodes for GC.
 214 * @c: UBIFS file-system description object
 215 * @sleb: describes nodes to sort and contains the result on exit
 216 * @nondata: contains non-data nodes on exit
 217 * @min: minimum node size is returned here
 218 *
 219 * This function sorts the list of inodes to garbage collect. First of all, it
 220 * kills obsolete nodes and separates data and non-data nodes to the
 221 * @sleb->nodes and @nondata lists correspondingly.
 222 *
 223 * Data nodes are then sorted in block number order - this is important for
 224 * bulk-read; data nodes with lower inode number go before data nodes with
 225 * higher inode number, and data nodes with lower block number go before data
 226 * nodes with higher block number;
 227 *
 228 * Non-data nodes are sorted as follows.
 229 *   o First go inode nodes - they are sorted in descending length order.
 230 *   o Then go directory entry nodes - they are sorted in hash order, which
 231 *     should supposedly optimize 'readdir()'. Direntry nodes with lower parent
 232 *     inode number go before direntry nodes with higher parent inode number,
 233 *     and direntry nodes with lower name hash values go before direntry nodes
 234 *     with higher name hash values.
 235 *
 236 * This function returns zero in case of success and a negative error code in
 237 * case of failure.
 238 */
 239static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
 240                      struct list_head *nondata, int *min)
 241{
 242        int err;
 243        struct ubifs_scan_node *snod, *tmp;
 244
 245        *min = INT_MAX;
 246
 247        /* Separate data nodes and non-data nodes */
 248        list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
 249                ubifs_assert(snod->type == UBIFS_INO_NODE  ||
 250                             snod->type == UBIFS_DATA_NODE ||
 251                             snod->type == UBIFS_DENT_NODE ||
 252                             snod->type == UBIFS_XENT_NODE ||
 253                             snod->type == UBIFS_TRUN_NODE);
 254
 255                if (snod->type != UBIFS_INO_NODE  &&
 256                    snod->type != UBIFS_DATA_NODE &&
 257                    snod->type != UBIFS_DENT_NODE &&
 258                    snod->type != UBIFS_XENT_NODE) {
 259                        /* Probably truncation node, zap it */
 260                        list_del(&snod->list);
 261                        kfree(snod);
 262                        continue;
 263                }
 264
 265                ubifs_assert(key_type(c, &snod->key) == UBIFS_DATA_KEY ||
 266                             key_type(c, &snod->key) == UBIFS_INO_KEY  ||
 267                             key_type(c, &snod->key) == UBIFS_DENT_KEY ||
 268                             key_type(c, &snod->key) == UBIFS_XENT_KEY);
 269
 270                err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum,
 271                                         snod->offs, 0);
 272                if (err < 0)
 273                        return err;
 274
 275                if (!err) {
 276                        /* The node is obsolete, remove it from the list */
 277                        list_del(&snod->list);
 278                        kfree(snod);
 279                        continue;
 280                }
 281
 282                if (snod->len < *min)
 283                        *min = snod->len;
 284
 285                if (key_type(c, &snod->key) != UBIFS_DATA_KEY)
 286                        list_move_tail(&snod->list, nondata);
 287        }
 288
 289        /* Sort data and non-data nodes */
 290        list_sort(c, &sleb->nodes, &data_nodes_cmp);
 291        list_sort(c, nondata, &nondata_nodes_cmp);
 292
 293        err = dbg_check_data_nodes_order(c, &sleb->nodes);
 294        if (err)
 295                return err;
 296        err = dbg_check_nondata_nodes_order(c, nondata);
 297        if (err)
 298                return err;
 299        return 0;
 300}
 301
 302/**
 303 * move_node - move a node.
 304 * @c: UBIFS file-system description object
 305 * @sleb: describes the LEB to move nodes from
 306 * @snod: the mode to move
 307 * @wbuf: write-buffer to move node to
 308 *
 309 * This function moves node @snod to @wbuf, changes TNC correspondingly, and
 310 * destroys @snod. Returns zero in case of success and a negative error code in
 311 * case of failure.
 312 */
 313static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
 314                     struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf)
 315{
 316        int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used;
 317
 318        cond_resched();
 319        err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len);
 320        if (err)
 321                return err;
 322
 323        err = ubifs_tnc_replace(c, &snod->key, sleb->lnum,
 324                                snod->offs, new_lnum, new_offs,
 325                                snod->len);
 326        list_del(&snod->list);
 327        kfree(snod);
 328        return err;
 329}
 330
 331/**
 332 * move_nodes - move nodes.
 333 * @c: UBIFS file-system description object
 334 * @sleb: describes the LEB to move nodes from
 335 *
 336 * This function moves valid nodes from data LEB described by @sleb to the GC
 337 * journal head. This function returns zero in case of success, %-EAGAIN if
 338 * commit is required, and other negative error codes in case of other
 339 * failures.
 340 */
 341static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb)
 342{
 343        int err, min;
 344        LIST_HEAD(nondata);
 345        struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
 346
 347        if (wbuf->lnum == -1) {
 348                /*
 349                 * The GC journal head is not set, because it is the first GC
 350                 * invocation since mount.
 351                 */
 352                err = switch_gc_head(c);
 353                if (err)
 354                        return err;
 355        }
 356
 357        err = sort_nodes(c, sleb, &nondata, &min);
 358        if (err)
 359                goto out;
 360
 361        /* Write nodes to their new location. Use the first-fit strategy */
 362        while (1) {
 363                int avail;
 364                struct ubifs_scan_node *snod, *tmp;
 365
 366                /* Move data nodes */
 367                list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
 368                        avail = c->leb_size - wbuf->offs - wbuf->used;
 369                        if  (snod->len > avail)
 370                                /*
 371                                 * Do not skip data nodes in order to optimize
 372                                 * bulk-read.
 373                                 */
 374                                break;
 375
 376                        err = move_node(c, sleb, snod, wbuf);
 377                        if (err)
 378                                goto out;
 379                }
 380
 381                /* Move non-data nodes */
 382                list_for_each_entry_safe(snod, tmp, &nondata, list) {
 383                        avail = c->leb_size - wbuf->offs - wbuf->used;
 384                        if (avail < min)
 385                                break;
 386
 387                        if  (snod->len > avail) {
 388                                /*
 389                                 * Keep going only if this is an inode with
 390                                 * some data. Otherwise stop and switch the GC
 391                                 * head. IOW, we assume that data-less inode
 392                                 * nodes and direntry nodes are roughly of the
 393                                 * same size.
 394                                 */
 395                                if (key_type(c, &snod->key) == UBIFS_DENT_KEY ||
 396                                    snod->len == UBIFS_INO_NODE_SZ)
 397                                        break;
 398                                continue;
 399                        }
 400
 401                        err = move_node(c, sleb, snod, wbuf);
 402                        if (err)
 403                                goto out;
 404                }
 405
 406                if (list_empty(&sleb->nodes) && list_empty(&nondata))
 407                        break;
 408
 409                /*
 410                 * Waste the rest of the space in the LEB and switch to the
 411                 * next LEB.
 412                 */
 413                err = switch_gc_head(c);
 414                if (err)
 415                        goto out;
 416        }
 417
 418        return 0;
 419
 420out:
 421        list_splice_tail(&nondata, &sleb->nodes);
 422        return err;
 423}
 424
 425/**
 426 * gc_sync_wbufs - sync write-buffers for GC.
 427 * @c: UBIFS file-system description object
 428 *
 429 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
 430 * be in a write-buffer instead. That is, a node could be written to a
 431 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
 432 * erased before the write-buffer is sync'd and then there is an unclean
 433 * unmount, then an existing node is lost. To avoid this, we sync all
 434 * write-buffers.
 435 *
 436 * This function returns %0 on success or a negative error code on failure.
 437 */
 438static int gc_sync_wbufs(struct ubifs_info *c)
 439{
 440        int err, i;
 441
 442        for (i = 0; i < c->jhead_cnt; i++) {
 443                if (i == GCHD)
 444                        continue;
 445                err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
 446                if (err)
 447                        return err;
 448        }
 449        return 0;
 450}
 451
 452/**
 453 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
 454 * @c: UBIFS file-system description object
 455 * @lp: describes the LEB to garbage collect
 456 *
 457 * This function garbage-collects an LEB and returns one of the @LEB_FREED,
 458 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
 459 * required, and other negative error codes in case of failures.
 460 */
 461int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp)
 462{
 463        struct ubifs_scan_leb *sleb;
 464        struct ubifs_scan_node *snod;
 465        struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
 466        int err = 0, lnum = lp->lnum;
 467
 468        ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 ||
 469                     c->need_recovery);
 470        ubifs_assert(c->gc_lnum != lnum);
 471        ubifs_assert(wbuf->lnum != lnum);
 472
 473        if (lp->free + lp->dirty == c->leb_size) {
 474                /* Special case - a free LEB  */
 475                dbg_gc("LEB %d is free, return it", lp->lnum);
 476                ubifs_assert(!(lp->flags & LPROPS_INDEX));
 477
 478                if (lp->free != c->leb_size) {
 479                        /*
 480                         * Write buffers must be sync'd before unmapping
 481                         * freeable LEBs, because one of them may contain data
 482                         * which obsoletes something in 'lp->pnum'.
 483                         */
 484                        err = gc_sync_wbufs(c);
 485                        if (err)
 486                                return err;
 487                        err = ubifs_change_one_lp(c, lp->lnum, c->leb_size,
 488                                                  0, 0, 0, 0);
 489                        if (err)
 490                                return err;
 491                }
 492                err = ubifs_leb_unmap(c, lp->lnum);
 493                if (err)
 494                        return err;
 495
 496                if (c->gc_lnum == -1) {
 497                        c->gc_lnum = lnum;
 498                        return LEB_RETAINED;
 499                }
 500
 501                return LEB_FREED;
 502        }
 503
 504        /*
 505         * We scan the entire LEB even though we only really need to scan up to
 506         * (c->leb_size - lp->free).
 507         */
 508        sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0);
 509        if (IS_ERR(sleb))
 510                return PTR_ERR(sleb);
 511
 512        ubifs_assert(!list_empty(&sleb->nodes));
 513        snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
 514
 515        if (snod->type == UBIFS_IDX_NODE) {
 516                struct ubifs_gced_idx_leb *idx_gc;
 517
 518                dbg_gc("indexing LEB %d (free %d, dirty %d)",
 519                       lnum, lp->free, lp->dirty);
 520                list_for_each_entry(snod, &sleb->nodes, list) {
 521                        struct ubifs_idx_node *idx = snod->node;
 522                        int level = le16_to_cpu(idx->level);
 523
 524                        ubifs_assert(snod->type == UBIFS_IDX_NODE);
 525                        key_read(c, ubifs_idx_key(c, idx), &snod->key);
 526                        err = ubifs_dirty_idx_node(c, &snod->key, level, lnum,
 527                                                   snod->offs);
 528                        if (err)
 529                                goto out;
 530                }
 531
 532                idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
 533                if (!idx_gc) {
 534                        err = -ENOMEM;
 535                        goto out;
 536                }
 537
 538                idx_gc->lnum = lnum;
 539                idx_gc->unmap = 0;
 540                list_add(&idx_gc->list, &c->idx_gc);
 541
 542                /*
 543                 * Don't release the LEB until after the next commit, because
 544                 * it may contain data which is needed for recovery. So
 545                 * although we freed this LEB, it will become usable only after
 546                 * the commit.
 547                 */
 548                err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0,
 549                                          LPROPS_INDEX, 1);
 550                if (err)
 551                        goto out;
 552                err = LEB_FREED_IDX;
 553        } else {
 554                dbg_gc("data LEB %d (free %d, dirty %d)",
 555                       lnum, lp->free, lp->dirty);
 556
 557                err = move_nodes(c, sleb);
 558                if (err)
 559                        goto out_inc_seq;
 560
 561                err = gc_sync_wbufs(c);
 562                if (err)
 563                        goto out_inc_seq;
 564
 565                err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0);
 566                if (err)
 567                        goto out_inc_seq;
 568
 569                /* Allow for races with TNC */
 570                c->gced_lnum = lnum;
 571                smp_wmb();
 572                c->gc_seq += 1;
 573                smp_wmb();
 574
 575                if (c->gc_lnum == -1) {
 576                        c->gc_lnum = lnum;
 577                        err = LEB_RETAINED;
 578                } else {
 579                        err = ubifs_wbuf_sync_nolock(wbuf);
 580                        if (err)
 581                                goto out;
 582
 583                        err = ubifs_leb_unmap(c, lnum);
 584                        if (err)
 585                                goto out;
 586
 587                        err = LEB_FREED;
 588                }
 589        }
 590
 591out:
 592        ubifs_scan_destroy(sleb);
 593        return err;
 594
 595out_inc_seq:
 596        /* We may have moved at least some nodes so allow for races with TNC */
 597        c->gced_lnum = lnum;
 598        smp_wmb();
 599        c->gc_seq += 1;
 600        smp_wmb();
 601        goto out;
 602}
 603
 604/**
 605 * ubifs_garbage_collect - UBIFS garbage collector.
 606 * @c: UBIFS file-system description object
 607 * @anyway: do GC even if there are free LEBs
 608 *
 609 * This function does out-of-place garbage collection. The return codes are:
 610 *   o positive LEB number if the LEB has been freed and may be used;
 611 *   o %-EAGAIN if the caller has to run commit;
 612 *   o %-ENOSPC if GC failed to make any progress;
 613 *   o other negative error codes in case of other errors.
 614 *
 615 * Garbage collector writes data to the journal when GC'ing data LEBs, and just
 616 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
 617 * commit may be required. But commit cannot be run from inside GC, because the
 618 * caller might be holding the commit lock, so %-EAGAIN is returned instead;
 619 * And this error code means that the caller has to run commit, and re-run GC
 620 * if there is still no free space.
 621 *
 622 * There are many reasons why this function may return %-EAGAIN:
 623 * o the log is full and there is no space to write an LEB reference for
 624 *   @c->gc_lnum;
 625 * o the journal is too large and exceeds size limitations;
 626 * o GC moved indexing LEBs, but they can be used only after the commit;
 627 * o the shrinker fails to find clean znodes to free and requests the commit;
 628 * o etc.
 629 *
 630 * Note, if the file-system is close to be full, this function may return
 631 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
 632 * the function. E.g., this happens if the limits on the journal size are too
 633 * tough and GC writes too much to the journal before an LEB is freed. This
 634 * might also mean that the journal is too large, and the TNC becomes to big,
 635 * so that the shrinker is constantly called, finds not clean znodes to free,
 636 * and requests commit. Well, this may also happen if the journal is all right,
 637 * but another kernel process consumes too much memory. Anyway, infinite
 638 * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
 639 */
 640int ubifs_garbage_collect(struct ubifs_info *c, int anyway)
 641{
 642        int i, err, ret, min_space = c->dead_wm;
 643        struct ubifs_lprops lp;
 644        struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
 645
 646        ubifs_assert_cmt_locked(c);
 647        ubifs_assert(!c->ro_media && !c->ro_mount);
 648
 649        if (ubifs_gc_should_commit(c))
 650                return -EAGAIN;
 651
 652        mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 653
 654        if (c->ro_error) {
 655                ret = -EROFS;
 656                goto out_unlock;
 657        }
 658
 659        /* We expect the write-buffer to be empty on entry */
 660        ubifs_assert(!wbuf->used);
 661
 662        for (i = 0; ; i++) {
 663                int space_before, space_after;
 664
 665                cond_resched();
 666
 667                /* Give the commit an opportunity to run */
 668                if (ubifs_gc_should_commit(c)) {
 669                        ret = -EAGAIN;
 670                        break;
 671                }
 672
 673                if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) {
 674                        /*
 675                         * We've done enough iterations. Indexing LEBs were
 676                         * moved and will be available after the commit.
 677                         */
 678                        dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
 679                        ubifs_commit_required(c);
 680                        ret = -EAGAIN;
 681                        break;
 682                }
 683
 684                if (i > HARD_LEBS_LIMIT) {
 685                        /*
 686                         * We've moved too many LEBs and have not made
 687                         * progress, give up.
 688                         */
 689                        dbg_gc("hard limit, -ENOSPC");
 690                        ret = -ENOSPC;
 691                        break;
 692                }
 693
 694                /*
 695                 * Empty and freeable LEBs can turn up while we waited for
 696                 * the wbuf lock, or while we have been running GC. In that
 697                 * case, we should just return one of those instead of
 698                 * continuing to GC dirty LEBs. Hence we request
 699                 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
 700                 */
 701                ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1);
 702                if (ret) {
 703                        if (ret == -ENOSPC)
 704                                dbg_gc("no more dirty LEBs");
 705                        break;
 706                }
 707
 708                dbg_gc("found LEB %d: free %d, dirty %d, sum %d (min. space %d)",
 709                       lp.lnum, lp.free, lp.dirty, lp.free + lp.dirty,
 710                       min_space);
 711
 712                space_before = c->leb_size - wbuf->offs - wbuf->used;
 713                if (wbuf->lnum == -1)
 714                        space_before = 0;
 715
 716                ret = ubifs_garbage_collect_leb(c, &lp);
 717                if (ret < 0) {
 718                        if (ret == -EAGAIN) {
 719                                /*
 720                                 * This is not error, so we have to return the
 721                                 * LEB to lprops. But if 'ubifs_return_leb()'
 722                                 * fails, its failure code is propagated to the
 723                                 * caller instead of the original '-EAGAIN'.
 724                                 */
 725                                err = ubifs_return_leb(c, lp.lnum);
 726                                if (err)
 727                                        ret = err;
 728                                break;
 729                        }
 730                        goto out;
 731                }
 732
 733                if (ret == LEB_FREED) {
 734                        /* An LEB has been freed and is ready for use */
 735                        dbg_gc("LEB %d freed, return", lp.lnum);
 736                        ret = lp.lnum;
 737                        break;
 738                }
 739
 740                if (ret == LEB_FREED_IDX) {
 741                        /*
 742                         * This was an indexing LEB and it cannot be
 743                         * immediately used. And instead of requesting the
 744                         * commit straight away, we try to garbage collect some
 745                         * more.
 746                         */
 747                        dbg_gc("indexing LEB %d freed, continue", lp.lnum);
 748                        continue;
 749                }
 750
 751                ubifs_assert(ret == LEB_RETAINED);
 752                space_after = c->leb_size - wbuf->offs - wbuf->used;
 753                dbg_gc("LEB %d retained, freed %d bytes", lp.lnum,
 754                       space_after - space_before);
 755
 756                if (space_after > space_before) {
 757                        /* GC makes progress, keep working */
 758                        min_space >>= 1;
 759                        if (min_space < c->dead_wm)
 760                                min_space = c->dead_wm;
 761                        continue;
 762                }
 763
 764                dbg_gc("did not make progress");
 765
 766                /*
 767                 * GC moved an LEB bud have not done any progress. This means
 768                 * that the previous GC head LEB contained too few free space
 769                 * and the LEB which was GC'ed contained only large nodes which
 770                 * did not fit that space.
 771                 *
 772                 * We can do 2 things:
 773                 * 1. pick another LEB in a hope it'll contain a small node
 774                 *    which will fit the space we have at the end of current GC
 775                 *    head LEB, but there is no guarantee, so we try this out
 776                 *    unless we have already been working for too long;
 777                 * 2. request an LEB with more dirty space, which will force
 778                 *    'ubifs_find_dirty_leb()' to start scanning the lprops
 779                 *    table, instead of just picking one from the heap
 780                 *    (previously it already picked the dirtiest LEB).
 781                 */
 782                if (i < SOFT_LEBS_LIMIT) {
 783                        dbg_gc("try again");
 784                        continue;
 785                }
 786
 787                min_space <<= 1;
 788                if (min_space > c->dark_wm)
 789                        min_space = c->dark_wm;
 790                dbg_gc("set min. space to %d", min_space);
 791        }
 792
 793        if (ret == -ENOSPC && !list_empty(&c->idx_gc)) {
 794                dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
 795                ubifs_commit_required(c);
 796                ret = -EAGAIN;
 797        }
 798
 799        err = ubifs_wbuf_sync_nolock(wbuf);
 800        if (!err)
 801                err = ubifs_leb_unmap(c, c->gc_lnum);
 802        if (err) {
 803                ret = err;
 804                goto out;
 805        }
 806out_unlock:
 807        mutex_unlock(&wbuf->io_mutex);
 808        return ret;
 809
 810out:
 811        ubifs_assert(ret < 0);
 812        ubifs_assert(ret != -ENOSPC && ret != -EAGAIN);
 813        ubifs_wbuf_sync_nolock(wbuf);
 814        ubifs_ro_mode(c, ret);
 815        mutex_unlock(&wbuf->io_mutex);
 816        ubifs_return_leb(c, lp.lnum);
 817        return ret;
 818}
 819
 820/**
 821 * ubifs_gc_start_commit - garbage collection at start of commit.
 822 * @c: UBIFS file-system description object
 823 *
 824 * If a LEB has only dirty and free space, then we may safely unmap it and make
 825 * it free.  Note, we cannot do this with indexing LEBs because dirty space may
 826 * correspond index nodes that are required for recovery.  In that case, the
 827 * LEB cannot be unmapped until after the next commit.
 828 *
 829 * This function returns %0 upon success and a negative error code upon failure.
 830 */
 831int ubifs_gc_start_commit(struct ubifs_info *c)
 832{
 833        struct ubifs_gced_idx_leb *idx_gc;
 834        const struct ubifs_lprops *lp;
 835        int err = 0, flags;
 836
 837        ubifs_get_lprops(c);
 838
 839        /*
 840         * Unmap (non-index) freeable LEBs. Note that recovery requires that all
 841         * wbufs are sync'd before this, which is done in 'do_commit()'.
 842         */
 843        while (1) {
 844                lp = ubifs_fast_find_freeable(c);
 845                if (IS_ERR(lp)) {
 846                        err = PTR_ERR(lp);
 847                        goto out;
 848                }
 849                if (!lp)
 850                        break;
 851                ubifs_assert(!(lp->flags & LPROPS_TAKEN));
 852                ubifs_assert(!(lp->flags & LPROPS_INDEX));
 853                err = ubifs_leb_unmap(c, lp->lnum);
 854                if (err)
 855                        goto out;
 856                lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0);
 857                if (IS_ERR(lp)) {
 858                        err = PTR_ERR(lp);
 859                        goto out;
 860                }
 861                ubifs_assert(!(lp->flags & LPROPS_TAKEN));
 862                ubifs_assert(!(lp->flags & LPROPS_INDEX));
 863        }
 864
 865        /* Mark GC'd index LEBs OK to unmap after this commit finishes */
 866        list_for_each_entry(idx_gc, &c->idx_gc, list)
 867                idx_gc->unmap = 1;
 868
 869        /* Record index freeable LEBs for unmapping after commit */
 870        while (1) {
 871                lp = ubifs_fast_find_frdi_idx(c);
 872                if (IS_ERR(lp)) {
 873                        err = PTR_ERR(lp);
 874                        goto out;
 875                }
 876                if (!lp)
 877                        break;
 878                idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
 879                if (!idx_gc) {
 880                        err = -ENOMEM;
 881                        goto out;
 882                }
 883                ubifs_assert(!(lp->flags & LPROPS_TAKEN));
 884                ubifs_assert(lp->flags & LPROPS_INDEX);
 885                /* Don't release the LEB until after the next commit */
 886                flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX;
 887                lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1);
 888                if (IS_ERR(lp)) {
 889                        err = PTR_ERR(lp);
 890                        kfree(idx_gc);
 891                        goto out;
 892                }
 893                ubifs_assert(lp->flags & LPROPS_TAKEN);
 894                ubifs_assert(!(lp->flags & LPROPS_INDEX));
 895                idx_gc->lnum = lp->lnum;
 896                idx_gc->unmap = 1;
 897                list_add(&idx_gc->list, &c->idx_gc);
 898        }
 899out:
 900        ubifs_release_lprops(c);
 901        return err;
 902}
 903
 904/**
 905 * ubifs_gc_end_commit - garbage collection at end of commit.
 906 * @c: UBIFS file-system description object
 907 *
 908 * This function completes out-of-place garbage collection of index LEBs.
 909 */
 910int ubifs_gc_end_commit(struct ubifs_info *c)
 911{
 912        struct ubifs_gced_idx_leb *idx_gc, *tmp;
 913        struct ubifs_wbuf *wbuf;
 914        int err = 0;
 915
 916        wbuf = &c->jheads[GCHD].wbuf;
 917        mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 918        list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list)
 919                if (idx_gc->unmap) {
 920                        dbg_gc("LEB %d", idx_gc->lnum);
 921                        err = ubifs_leb_unmap(c, idx_gc->lnum);
 922                        if (err)
 923                                goto out;
 924                        err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC,
 925                                          LPROPS_NC, 0, LPROPS_TAKEN, -1);
 926                        if (err)
 927                                goto out;
 928                        list_del(&idx_gc->list);
 929                        kfree(idx_gc);
 930                }
 931out:
 932        mutex_unlock(&wbuf->io_mutex);
 933        return err;
 934}
 935#endif
 936/**
 937 * ubifs_destroy_idx_gc - destroy idx_gc list.
 938 * @c: UBIFS file-system description object
 939 *
 940 * This function destroys the @c->idx_gc list. It is called when unmounting
 941 * so locks are not needed. Returns zero in case of success and a negative
 942 * error code in case of failure.
 943 */
 944void ubifs_destroy_idx_gc(struct ubifs_info *c)
 945{
 946        while (!list_empty(&c->idx_gc)) {
 947                struct ubifs_gced_idx_leb *idx_gc;
 948
 949                idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb,
 950                                    list);
 951                c->idx_gc_cnt -= 1;
 952                list_del(&idx_gc->list);
 953                kfree(idx_gc);
 954        }
 955}
 956#ifndef __UBOOT__
 957/**
 958 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
 959 * @c: UBIFS file-system description object
 960 *
 961 * Called during start commit so locks are not needed.
 962 */
 963int ubifs_get_idx_gc_leb(struct ubifs_info *c)
 964{
 965        struct ubifs_gced_idx_leb *idx_gc;
 966        int lnum;
 967
 968        if (list_empty(&c->idx_gc))
 969                return -ENOSPC;
 970        idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list);
 971        lnum = idx_gc->lnum;
 972        /* c->idx_gc_cnt is updated by the caller when lprops are updated */
 973        list_del(&idx_gc->list);
 974        kfree(idx_gc);
 975        return lnum;
 976}
 977#endif
 978