uboot/drivers/mtd/nand/raw/davinci_nand.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * NAND driver for TI DaVinci based boards.
   4 *
   5 * Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net>
   6 *
   7 * Based on Linux DaVinci NAND driver by TI. Original copyright follows:
   8 */
   9
  10/*
  11 *
  12 * linux/drivers/mtd/nand/raw/nand_davinci.c
  13 *
  14 * NAND Flash Driver
  15 *
  16 * Copyright (C) 2006 Texas Instruments.
  17 *
  18 * ----------------------------------------------------------------------------
  19 *
  20 * ----------------------------------------------------------------------------
  21 *
  22 *  Overview:
  23 *   This is a device driver for the NAND flash device found on the
  24 *   DaVinci board which utilizes the Samsung k9k2g08 part.
  25 *
  26 Modifications:
  27 ver. 1.0: Feb 2005, Vinod/Sudhakar
  28 -
  29 */
  30
  31#include <common.h>
  32#include <log.h>
  33#include <linux/mtd/rawnand.h>
  34#include <asm/io.h>
  35#include <nand.h>
  36#include <dm/uclass.h>
  37#include <asm/ti-common/davinci_nand.h>
  38
  39/* Definitions for 4-bit hardware ECC */
  40#define NAND_TIMEOUT                    10240
  41#define NAND_ECC_BUSY                   0xC
  42#define NAND_4BITECC_MASK               0x03FF03FF
  43#define EMIF_NANDFSR_ECC_STATE_MASK     0x00000F00
  44#define ECC_STATE_NO_ERR                0x0
  45#define ECC_STATE_TOO_MANY_ERRS         0x1
  46#define ECC_STATE_ERR_CORR_COMP_P       0x2
  47#define ECC_STATE_ERR_CORR_COMP_N       0x3
  48
  49/*
  50 * Exploit the little endianness of the ARM to do multi-byte transfers
  51 * per device read. This can perform over twice as quickly as individual
  52 * byte transfers when buffer alignment is conducive.
  53 *
  54 * NOTE: This only works if the NAND is not connected to the 2 LSBs of
  55 * the address bus. On Davinci EVM platforms this has always been true.
  56 */
  57static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
  58{
  59        struct nand_chip *chip = mtd_to_nand(mtd);
  60        const u32 *nand = chip->IO_ADDR_R;
  61
  62        /* Make sure that buf is 32 bit aligned */
  63        if (((int)buf & 0x3) != 0) {
  64                if (((int)buf & 0x1) != 0) {
  65                        if (len) {
  66                                *buf = readb(nand);
  67                                buf += 1;
  68                                len--;
  69                        }
  70                }
  71
  72                if (((int)buf & 0x3) != 0) {
  73                        if (len >= 2) {
  74                                *(u16 *)buf = readw(nand);
  75                                buf += 2;
  76                                len -= 2;
  77                        }
  78                }
  79        }
  80
  81        /* copy aligned data */
  82        while (len >= 4) {
  83                *(u32 *)buf = __raw_readl(nand);
  84                buf += 4;
  85                len -= 4;
  86        }
  87
  88        /* mop up any remaining bytes */
  89        if (len) {
  90                if (len >= 2) {
  91                        *(u16 *)buf = readw(nand);
  92                        buf += 2;
  93                        len -= 2;
  94                }
  95
  96                if (len)
  97                        *buf = readb(nand);
  98        }
  99}
 100
 101static void nand_davinci_write_buf(struct mtd_info *mtd, const uint8_t *buf,
 102                                   int len)
 103{
 104        struct nand_chip *chip = mtd_to_nand(mtd);
 105        const u32 *nand = chip->IO_ADDR_W;
 106
 107        /* Make sure that buf is 32 bit aligned */
 108        if (((int)buf & 0x3) != 0) {
 109                if (((int)buf & 0x1) != 0) {
 110                        if (len) {
 111                                writeb(*buf, nand);
 112                                buf += 1;
 113                                len--;
 114                        }
 115                }
 116
 117                if (((int)buf & 0x3) != 0) {
 118                        if (len >= 2) {
 119                                writew(*(u16 *)buf, nand);
 120                                buf += 2;
 121                                len -= 2;
 122                        }
 123                }
 124        }
 125
 126        /* copy aligned data */
 127        while (len >= 4) {
 128                __raw_writel(*(u32 *)buf, nand);
 129                buf += 4;
 130                len -= 4;
 131        }
 132
 133        /* mop up any remaining bytes */
 134        if (len) {
 135                if (len >= 2) {
 136                        writew(*(u16 *)buf, nand);
 137                        buf += 2;
 138                        len -= 2;
 139                }
 140
 141                if (len)
 142                        writeb(*buf, nand);
 143        }
 144}
 145
 146static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
 147                unsigned int ctrl)
 148{
 149        struct          nand_chip *this = mtd_to_nand(mtd);
 150        u_int32_t       IO_ADDR_W = (u_int32_t)this->IO_ADDR_W;
 151
 152        if (ctrl & NAND_CTRL_CHANGE) {
 153                IO_ADDR_W &= ~(MASK_ALE|MASK_CLE);
 154
 155                if (ctrl & NAND_CLE)
 156                        IO_ADDR_W |= MASK_CLE;
 157                if (ctrl & NAND_ALE)
 158                        IO_ADDR_W |= MASK_ALE;
 159                this->IO_ADDR_W = (void __iomem *) IO_ADDR_W;
 160        }
 161
 162        if (cmd != NAND_CMD_NONE)
 163                writeb(cmd, IO_ADDR_W);
 164}
 165
 166#ifdef CONFIG_SYS_NAND_HW_ECC
 167
 168static u_int32_t nand_davinci_readecc(struct mtd_info *mtd)
 169{
 170        u_int32_t       ecc = 0;
 171
 172        ecc = __raw_readl(&(davinci_emif_regs->nandfecc[
 173                                CONFIG_SYS_NAND_CS - 2]));
 174
 175        return ecc;
 176}
 177
 178static void nand_davinci_enable_hwecc(struct mtd_info *mtd, int mode)
 179{
 180        u_int32_t       val;
 181
 182        /* reading the ECC result register resets the ECC calculation */
 183        nand_davinci_readecc(mtd);
 184
 185        val = __raw_readl(&davinci_emif_regs->nandfcr);
 186        val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
 187        val |= DAVINCI_NANDFCR_1BIT_ECC_START(CONFIG_SYS_NAND_CS);
 188        __raw_writel(val, &davinci_emif_regs->nandfcr);
 189}
 190
 191static int nand_davinci_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
 192                u_char *ecc_code)
 193{
 194        u_int32_t               tmp;
 195
 196        tmp = nand_davinci_readecc(mtd);
 197
 198        /* Squeeze 4 bytes ECC into 3 bytes by removing RESERVED bits
 199         * and shifting. RESERVED bits are 31 to 28 and 15 to 12. */
 200        tmp = (tmp & 0x00000fff) | ((tmp & 0x0fff0000) >> 4);
 201
 202        /* Invert so that erased block ECC is correct */
 203        tmp = ~tmp;
 204
 205        *ecc_code++ = tmp;
 206        *ecc_code++ = tmp >>  8;
 207        *ecc_code++ = tmp >> 16;
 208
 209        /* NOTE:  the above code matches mainline Linux:
 210         *      .PQR.stu ==> ~PQRstu
 211         *
 212         * MontaVista/TI kernels encode those bytes differently, use
 213         * complicated (and allegedly sometimes-wrong) correction code,
 214         * and usually shipped with U-Boot that uses software ECC:
 215         *      .PQR.stu ==> PsQRtu
 216         *
 217         * If you need MV/TI compatible NAND I/O in U-Boot, it should
 218         * be possible to (a) change the mangling above, (b) reverse
 219         * that mangling in nand_davinci_correct_data() below.
 220         */
 221
 222        return 0;
 223}
 224
 225static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat,
 226                u_char *read_ecc, u_char *calc_ecc)
 227{
 228        struct nand_chip *this = mtd_to_nand(mtd);
 229        u_int32_t ecc_nand = read_ecc[0] | (read_ecc[1] << 8) |
 230                                          (read_ecc[2] << 16);
 231        u_int32_t ecc_calc = calc_ecc[0] | (calc_ecc[1] << 8) |
 232                                          (calc_ecc[2] << 16);
 233        u_int32_t diff = ecc_calc ^ ecc_nand;
 234
 235        if (diff) {
 236                if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
 237                        /* Correctable error */
 238                        if ((diff >> (12 + 3)) < this->ecc.size) {
 239                                uint8_t find_bit = 1 << ((diff >> 12) & 7);
 240                                uint32_t find_byte = diff >> (12 + 3);
 241
 242                                dat[find_byte] ^= find_bit;
 243                                pr_debug("Correcting single "
 244                                         "bit ECC error at offset: %d, bit: "
 245                                         "%d\n", find_byte, find_bit);
 246                                return 1;
 247                        } else {
 248                                return -EBADMSG;
 249                        }
 250                } else if (!(diff & (diff - 1))) {
 251                        /* Single bit ECC error in the ECC itself,
 252                           nothing to fix */
 253                        pr_debug("Single bit ECC error in " "ECC.\n");
 254                        return 1;
 255                } else {
 256                        /* Uncorrectable error */
 257                        pr_debug("ECC UNCORRECTED_ERROR 1\n");
 258                        return -EBADMSG;
 259                }
 260        }
 261        return 0;
 262}
 263#endif /* CONFIG_SYS_NAND_HW_ECC */
 264
 265#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
 266static struct nand_ecclayout nand_davinci_4bit_layout_oobfirst = {
 267#if defined(CONFIG_SYS_NAND_PAGE_2K)
 268        .eccbytes = 40,
 269#ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC
 270        .eccpos = {
 271                6,   7,  8,  9, 10,     11, 12, 13, 14, 15,
 272                22, 23, 24, 25, 26,     27, 28, 29, 30, 31,
 273                38, 39, 40, 41, 42,     43, 44, 45, 46, 47,
 274                54, 55, 56, 57, 58,     59, 60, 61, 62, 63,
 275        },
 276        .oobfree = {
 277                {2, 4}, {16, 6}, {32, 6}, {48, 6},
 278        },
 279#else
 280        .eccpos = {
 281                24, 25, 26, 27, 28,
 282                29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
 283                39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
 284                49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
 285                59, 60, 61, 62, 63,
 286                },
 287        .oobfree = {
 288                {.offset = 2, .length = 22, },
 289        },
 290#endif  /* #ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC */
 291#elif defined(CONFIG_SYS_NAND_PAGE_4K)
 292        .eccbytes = 80,
 293        .eccpos = {
 294                48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
 295                58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
 296                68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
 297                78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
 298                88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
 299                98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
 300                108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
 301                118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
 302                },
 303        .oobfree = {
 304                {.offset = 2, .length = 46, },
 305        },
 306#endif
 307};
 308
 309#if defined CONFIG_KEYSTONE_RBL_NAND
 310static struct nand_ecclayout nand_keystone_rbl_4bit_layout_oobfirst = {
 311#if defined(CONFIG_SYS_NAND_PAGE_2K)
 312        .eccbytes = 40,
 313        .eccpos = {
 314                6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
 315                22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
 316                38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
 317                54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
 318        },
 319        .oobfree = {
 320                {.offset = 2, .length = 4, },
 321                {.offset = 16, .length = 6, },
 322                {.offset = 32, .length = 6, },
 323                {.offset = 48, .length = 6, },
 324        },
 325#elif defined(CONFIG_SYS_NAND_PAGE_4K)
 326        .eccbytes = 80,
 327        .eccpos = {
 328                6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
 329                22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
 330                38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
 331                54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
 332                70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
 333                86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
 334                102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
 335                118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
 336        },
 337        .oobfree = {
 338                {.offset = 2, .length = 4, },
 339                {.offset = 16, .length = 6, },
 340                {.offset = 32, .length = 6, },
 341                {.offset = 48, .length = 6, },
 342                {.offset = 64, .length = 6, },
 343                {.offset = 80, .length = 6, },
 344                {.offset = 96, .length = 6, },
 345                {.offset = 112, .length = 6, },
 346        },
 347#endif
 348};
 349
 350#ifdef CONFIG_SYS_NAND_PAGE_2K
 351#define KEYSTONE_NAND_MAX_RBL_PAGE      (0x100000 >> 11)
 352#elif defined(CONFIG_SYS_NAND_PAGE_4K)
 353#define KEYSTONE_NAND_MAX_RBL_PAGE      (0x100000 >> 12)
 354#endif
 355
 356/**
 357 * nand_davinci_write_page - write one page
 358 * @mtd: MTD device structure
 359 * @chip: NAND chip descriptor
 360 * @buf: the data to write
 361 * @oob_required: must write chip->oob_poi to OOB
 362 * @page: page number to write
 363 * @raw: use _raw version of write_page
 364 */
 365static int nand_davinci_write_page(struct mtd_info *mtd, struct nand_chip *chip,
 366                                   uint32_t offset, int data_len,
 367                                   const uint8_t *buf, int oob_required,
 368                                   int page, int raw)
 369{
 370        int status;
 371        int ret = 0;
 372        struct nand_ecclayout *saved_ecc_layout;
 373
 374        /* save current ECC layout and assign Keystone RBL ECC layout */
 375        if (page < KEYSTONE_NAND_MAX_RBL_PAGE) {
 376                saved_ecc_layout = chip->ecc.layout;
 377                chip->ecc.layout = &nand_keystone_rbl_4bit_layout_oobfirst;
 378                mtd->oobavail = chip->ecc.layout->oobavail;
 379        }
 380
 381        chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
 382
 383        if (unlikely(raw)) {
 384                status = chip->ecc.write_page_raw(mtd, chip, buf,
 385                                                  oob_required, page);
 386        } else {
 387                status = chip->ecc.write_page(mtd, chip, buf,
 388                                              oob_required, page);
 389        }
 390
 391        if (status < 0) {
 392                ret = status;
 393                goto err;
 394        }
 395
 396        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
 397        status = chip->waitfunc(mtd, chip);
 398
 399        if (status & NAND_STATUS_FAIL) {
 400                ret = -EIO;
 401                goto err;
 402        }
 403
 404err:
 405        /* restore ECC layout */
 406        if (page < KEYSTONE_NAND_MAX_RBL_PAGE) {
 407                chip->ecc.layout = saved_ecc_layout;
 408                mtd->oobavail = saved_ecc_layout->oobavail;
 409        }
 410
 411        return ret;
 412}
 413
 414/**
 415 * nand_davinci_read_page_hwecc - hardware ECC based page read function
 416 * @mtd: mtd info structure
 417 * @chip: nand chip info structure
 418 * @buf: buffer to store read data
 419 * @oob_required: caller requires OOB data read to chip->oob_poi
 420 * @page: page number to read
 421 *
 422 * Not for syndrome calculating ECC controllers which need a special oob layout.
 423 */
 424static int nand_davinci_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
 425                                uint8_t *buf, int oob_required, int page)
 426{
 427        int i, eccsize = chip->ecc.size;
 428        int eccbytes = chip->ecc.bytes;
 429        int eccsteps = chip->ecc.steps;
 430        uint32_t *eccpos;
 431        uint8_t *p = buf;
 432        uint8_t *ecc_code = chip->buffers->ecccode;
 433        uint8_t *ecc_calc = chip->buffers->ecccalc;
 434        struct nand_ecclayout *saved_ecc_layout = chip->ecc.layout;
 435
 436        /* save current ECC layout and assign Keystone RBL ECC layout */
 437        if (page < KEYSTONE_NAND_MAX_RBL_PAGE) {
 438                chip->ecc.layout = &nand_keystone_rbl_4bit_layout_oobfirst;
 439                mtd->oobavail = chip->ecc.layout->oobavail;
 440        }
 441
 442        eccpos = chip->ecc.layout->eccpos;
 443
 444        /* Read the OOB area first */
 445        chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
 446        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
 447        chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
 448
 449        for (i = 0; i < chip->ecc.total; i++)
 450                ecc_code[i] = chip->oob_poi[eccpos[i]];
 451
 452        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
 453                int stat;
 454
 455                chip->ecc.hwctl(mtd, NAND_ECC_READ);
 456                chip->read_buf(mtd, p, eccsize);
 457                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
 458
 459                stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
 460                if (stat < 0)
 461                        mtd->ecc_stats.failed++;
 462                else
 463                        mtd->ecc_stats.corrected += stat;
 464        }
 465
 466        /* restore ECC layout */
 467        if (page < KEYSTONE_NAND_MAX_RBL_PAGE) {
 468                chip->ecc.layout = saved_ecc_layout;
 469                mtd->oobavail = saved_ecc_layout->oobavail;
 470        }
 471
 472        return 0;
 473}
 474#endif /* CONFIG_KEYSTONE_RBL_NAND */
 475
 476static void nand_davinci_4bit_enable_hwecc(struct mtd_info *mtd, int mode)
 477{
 478        u32 val;
 479
 480        switch (mode) {
 481        case NAND_ECC_WRITE:
 482        case NAND_ECC_READ:
 483                /*
 484                 * Start a new ECC calculation for reading or writing 512 bytes
 485                 * of data.
 486                 */
 487                val = __raw_readl(&davinci_emif_regs->nandfcr);
 488                val &= ~DAVINCI_NANDFCR_4BIT_ECC_SEL_MASK;
 489                val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
 490                val |= DAVINCI_NANDFCR_4BIT_ECC_SEL(CONFIG_SYS_NAND_CS);
 491                val |= DAVINCI_NANDFCR_4BIT_ECC_START;
 492                __raw_writel(val, &davinci_emif_regs->nandfcr);
 493                break;
 494        case NAND_ECC_READSYN:
 495                val = __raw_readl(&davinci_emif_regs->nand4bitecc[0]);
 496                break;
 497        default:
 498                break;
 499        }
 500}
 501
 502static u32 nand_davinci_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4])
 503{
 504        int i;
 505
 506        for (i = 0; i < 4; i++) {
 507                ecc[i] = __raw_readl(&davinci_emif_regs->nand4bitecc[i]) &
 508                        NAND_4BITECC_MASK;
 509        }
 510
 511        return 0;
 512}
 513
 514static int nand_davinci_4bit_calculate_ecc(struct mtd_info *mtd,
 515                                           const uint8_t *dat,
 516                                           uint8_t *ecc_code)
 517{
 518        unsigned int hw_4ecc[4];
 519        unsigned int i;
 520
 521        nand_davinci_4bit_readecc(mtd, hw_4ecc);
 522
 523        /*Convert 10 bit ecc value to 8 bit */
 524        for (i = 0; i < 2; i++) {
 525                unsigned int hw_ecc_low = hw_4ecc[i * 2];
 526                unsigned int hw_ecc_hi = hw_4ecc[(i * 2) + 1];
 527
 528                /* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */
 529                *ecc_code++ = hw_ecc_low & 0xFF;
 530
 531                /*
 532                 * Take 2 bits as LSB bits from val1 (count1=0) or val5
 533                 * (count1=1) and 6 bits from val2 (count1=0) or
 534                 * val5 (count1=1)
 535                 */
 536                *ecc_code++ =
 537                    ((hw_ecc_low >> 8) & 0x3) | ((hw_ecc_low >> 14) & 0xFC);
 538
 539                /*
 540                 * Take 4 bits from val2 (count1=0) or val5 (count1=1) and
 541                 * 4 bits from val3 (count1=0) or val6 (count1=1)
 542                 */
 543                *ecc_code++ =
 544                    ((hw_ecc_low >> 22) & 0xF) | ((hw_ecc_hi << 4) & 0xF0);
 545
 546                /*
 547                 * Take 6 bits from val3(count1=0) or val6 (count1=1) and
 548                 * 2 bits from val4 (count1=0) or  val7 (count1=1)
 549                 */
 550                *ecc_code++ =
 551                    ((hw_ecc_hi >> 4) & 0x3F) | ((hw_ecc_hi >> 10) & 0xC0);
 552
 553                /* Take 8 bits from val4 (count1=0) or val7 (count1=1) */
 554                *ecc_code++ = (hw_ecc_hi >> 18) & 0xFF;
 555        }
 556
 557        return 0;
 558}
 559
 560static int nand_davinci_4bit_correct_data(struct mtd_info *mtd, uint8_t *dat,
 561                                          uint8_t *read_ecc, uint8_t *calc_ecc)
 562{
 563        int i;
 564        unsigned int hw_4ecc[4];
 565        unsigned int iserror;
 566        unsigned short *ecc16;
 567        unsigned int numerrors, erroraddress, errorvalue;
 568        u32 val;
 569
 570        /*
 571         * Check for an ECC where all bytes are 0xFF.  If this is the case, we
 572         * will assume we are looking at an erased page and we should ignore
 573         * the ECC.
 574         */
 575        for (i = 0; i < 10; i++) {
 576                if (read_ecc[i] != 0xFF)
 577                        break;
 578        }
 579        if (i == 10)
 580                return 0;
 581
 582        /* Convert 8 bit in to 10 bit */
 583        ecc16 = (unsigned short *)&read_ecc[0];
 584
 585        /*
 586         * Write the parity values in the NAND Flash 4-bit ECC Load register.
 587         * Write each parity value one at a time starting from 4bit_ecc_val8
 588         * to 4bit_ecc_val1.
 589         */
 590
 591        /*Take 2 bits from 8th byte and 8 bits from 9th byte */
 592        __raw_writel(((ecc16[4]) >> 6) & 0x3FF,
 593                        &davinci_emif_regs->nand4biteccload);
 594
 595        /* Take 4 bits from 7th byte and 6 bits from 8th byte */
 596        __raw_writel((((ecc16[3]) >> 12) & 0xF) | ((((ecc16[4])) << 4) & 0x3F0),
 597                        &davinci_emif_regs->nand4biteccload);
 598
 599        /* Take 6 bits from 6th byte and 4 bits from 7th byte */
 600        __raw_writel((ecc16[3] >> 2) & 0x3FF,
 601                        &davinci_emif_regs->nand4biteccload);
 602
 603        /* Take 8 bits from 5th byte and 2 bits from 6th byte */
 604        __raw_writel(((ecc16[2]) >> 8) | ((((ecc16[3])) << 8) & 0x300),
 605                        &davinci_emif_regs->nand4biteccload);
 606
 607        /*Take 2 bits from 3rd byte and 8 bits from 4th byte */
 608        __raw_writel((((ecc16[1]) >> 14) & 0x3) | ((((ecc16[2])) << 2) & 0x3FC),
 609                        &davinci_emif_regs->nand4biteccload);
 610
 611        /* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */
 612        __raw_writel(((ecc16[1]) >> 4) & 0x3FF,
 613                        &davinci_emif_regs->nand4biteccload);
 614
 615        /* Take 6 bits from 1st byte and 4 bits from 2nd byte */
 616        __raw_writel((((ecc16[0]) >> 10) & 0x3F) | (((ecc16[1]) << 6) & 0x3C0),
 617                        &davinci_emif_regs->nand4biteccload);
 618
 619        /* Take 10 bits from 0th and 1st bytes */
 620        __raw_writel((ecc16[0]) & 0x3FF,
 621                        &davinci_emif_regs->nand4biteccload);
 622
 623        /*
 624         * Perform a dummy read to the EMIF Revision Code and Status register.
 625         * This is required to ensure time for syndrome calculation after
 626         * writing the ECC values in previous step.
 627         */
 628
 629        val = __raw_readl(&davinci_emif_regs->nandfsr);
 630
 631        /*
 632         * Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers.
 633         * A syndrome value of 0 means no bit errors. If the syndrome is
 634         * non-zero then go further otherwise return.
 635         */
 636        nand_davinci_4bit_readecc(mtd, hw_4ecc);
 637
 638        if (!(hw_4ecc[0] | hw_4ecc[1] | hw_4ecc[2] | hw_4ecc[3]))
 639                return 0;
 640
 641        /*
 642         * Clear any previous address calculation by doing a dummy read of an
 643         * error address register.
 644         */
 645        val = __raw_readl(&davinci_emif_regs->nanderradd1);
 646
 647        /*
 648         * Set the addr_calc_st bit(bit no 13) in the NAND Flash Control
 649         * register to 1.
 650         */
 651        __raw_writel(DAVINCI_NANDFCR_4BIT_CALC_START,
 652                        &davinci_emif_regs->nandfcr);
 653
 654        /*
 655         * Wait for the corr_state field (bits 8 to 11) in the
 656         * NAND Flash Status register to be not equal to 0x0, 0x1, 0x2, or 0x3.
 657         * Otherwise ECC calculation has not even begun and the next loop might
 658         * fail because of a false positive!
 659         */
 660        i = NAND_TIMEOUT;
 661        do {
 662                val = __raw_readl(&davinci_emif_regs->nandfsr);
 663                val &= 0xc00;
 664                i--;
 665        } while ((i > 0) && !val);
 666
 667        /*
 668         * Wait for the corr_state field (bits 8 to 11) in the
 669         * NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3.
 670         */
 671        i = NAND_TIMEOUT;
 672        do {
 673                val = __raw_readl(&davinci_emif_regs->nandfsr);
 674                val &= 0xc00;
 675                i--;
 676        } while ((i > 0) && val);
 677
 678        iserror = __raw_readl(&davinci_emif_regs->nandfsr);
 679        iserror &= EMIF_NANDFSR_ECC_STATE_MASK;
 680        iserror = iserror >> 8;
 681
 682        /*
 683         * ECC_STATE_TOO_MANY_ERRS (0x1) means errors cannot be
 684         * corrected (five or more errors).  The number of errors
 685         * calculated (err_num field) differs from the number of errors
 686         * searched.  ECC_STATE_ERR_CORR_COMP_P (0x2) means error
 687         * correction complete (errors on bit 8 or 9).
 688         * ECC_STATE_ERR_CORR_COMP_N (0x3) means error correction
 689         * complete (error exists).
 690         */
 691
 692        if (iserror == ECC_STATE_NO_ERR) {
 693                val = __raw_readl(&davinci_emif_regs->nanderrval1);
 694                return 0;
 695        } else if (iserror == ECC_STATE_TOO_MANY_ERRS) {
 696                val = __raw_readl(&davinci_emif_regs->nanderrval1);
 697                return -EBADMSG;
 698        }
 699
 700        numerrors = ((__raw_readl(&davinci_emif_regs->nandfsr) >> 16)
 701                        & 0x3) + 1;
 702
 703        /* Read the error address, error value and correct */
 704        for (i = 0; i < numerrors; i++) {
 705                if (i > 1) {
 706                        erroraddress =
 707                            ((__raw_readl(&davinci_emif_regs->nanderradd2) >>
 708                              (16 * (i & 1))) & 0x3FF);
 709                        erroraddress = ((512 + 7) - erroraddress);
 710                        errorvalue =
 711                            ((__raw_readl(&davinci_emif_regs->nanderrval2) >>
 712                              (16 * (i & 1))) & 0xFF);
 713                } else {
 714                        erroraddress =
 715                            ((__raw_readl(&davinci_emif_regs->nanderradd1) >>
 716                              (16 * (i & 1))) & 0x3FF);
 717                        erroraddress = ((512 + 7) - erroraddress);
 718                        errorvalue =
 719                            ((__raw_readl(&davinci_emif_regs->nanderrval1) >>
 720                              (16 * (i & 1))) & 0xFF);
 721                }
 722                /* xor the corrupt data with error value */
 723                if (erroraddress < 512)
 724                        dat[erroraddress] ^= errorvalue;
 725        }
 726
 727        return numerrors;
 728}
 729#endif /* CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST */
 730
 731static int nand_davinci_dev_ready(struct mtd_info *mtd)
 732{
 733        return __raw_readl(&davinci_emif_regs->nandfsr) & 0x1;
 734}
 735
 736static void davinci_nand_init(struct nand_chip *nand)
 737{
 738#if defined CONFIG_KEYSTONE_RBL_NAND
 739        int i;
 740        struct nand_ecclayout *layout;
 741
 742        layout = &nand_keystone_rbl_4bit_layout_oobfirst;
 743        layout->oobavail = 0;
 744        for (i = 0; i < ARRAY_SIZE(layout->oobfree) &&
 745             layout->oobfree[i].length; i++)
 746                layout->oobavail += layout->oobfree[i].length;
 747
 748        nand->write_page = nand_davinci_write_page;
 749        nand->ecc.read_page = nand_davinci_read_page_hwecc;
 750#endif
 751        nand->chip_delay  = 0;
 752#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
 753        nand->bbt_options         |= NAND_BBT_USE_FLASH;
 754#endif
 755#ifdef CONFIG_SYS_NAND_NO_SUBPAGE_WRITE
 756        nand->options     |= NAND_NO_SUBPAGE_WRITE;
 757#endif
 758#ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT
 759        nand->options     |= NAND_BUSWIDTH_16;
 760#endif
 761#ifdef CONFIG_SYS_NAND_HW_ECC
 762        nand->ecc.mode = NAND_ECC_HW;
 763        nand->ecc.size = 512;
 764        nand->ecc.bytes = 3;
 765        nand->ecc.strength = 1;
 766        nand->ecc.calculate = nand_davinci_calculate_ecc;
 767        nand->ecc.correct  = nand_davinci_correct_data;
 768        nand->ecc.hwctl  = nand_davinci_enable_hwecc;
 769#else
 770        nand->ecc.mode = NAND_ECC_SOFT;
 771#endif /* CONFIG_SYS_NAND_HW_ECC */
 772#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
 773        nand->ecc.mode = NAND_ECC_HW_OOB_FIRST;
 774        nand->ecc.size = 512;
 775        nand->ecc.bytes = 10;
 776        nand->ecc.strength = 4;
 777        nand->ecc.calculate = nand_davinci_4bit_calculate_ecc;
 778        nand->ecc.correct = nand_davinci_4bit_correct_data;
 779        nand->ecc.hwctl = nand_davinci_4bit_enable_hwecc;
 780        nand->ecc.layout = &nand_davinci_4bit_layout_oobfirst;
 781#endif
 782        /* Set address of hardware control function */
 783        nand->cmd_ctrl = nand_davinci_hwcontrol;
 784
 785        nand->read_buf = nand_davinci_read_buf;
 786        nand->write_buf = nand_davinci_write_buf;
 787
 788        nand->dev_ready = nand_davinci_dev_ready;
 789}
 790
 791#if CONFIG_IS_ENABLED(SYS_NAND_SELF_INIT)
 792static int davinci_nand_probe(struct udevice *dev)
 793{
 794        struct nand_chip *nand = dev_get_priv(dev);
 795        struct mtd_info *mtd = nand_to_mtd(nand);
 796        int ret;
 797
 798        nand->IO_ADDR_R = (void __iomem *)CONFIG_SYS_NAND_BASE;
 799        nand->IO_ADDR_W = (void __iomem *)CONFIG_SYS_NAND_BASE;
 800
 801        davinci_nand_init(nand);
 802
 803        ret = nand_scan(mtd, CONFIG_SYS_NAND_MAX_CHIPS);
 804        if (ret)
 805                return ret;
 806
 807        return nand_register(0, mtd);
 808}
 809
 810static const struct udevice_id davinci_nand_ids[] = {
 811        { .compatible = "ti,davinci-nand" },
 812        { }
 813};
 814
 815U_BOOT_DRIVER(davinci_nand) = {
 816        .name           = "davinci-nand",
 817        .id             = UCLASS_MTD,
 818        .of_match       = davinci_nand_ids,
 819        .probe          = davinci_nand_probe,
 820        .priv_auto      = sizeof(struct nand_chip),
 821};
 822
 823void board_nand_init(void)
 824{
 825        struct udevice *dev;
 826        int ret;
 827
 828        ret = uclass_get_device_by_driver(UCLASS_MTD,
 829                                          DM_DRIVER_GET(davinci_nand), &dev);
 830        if (ret && ret != -ENODEV)
 831                pr_err("Failed to initialize %s: %d\n", dev->name, ret);
 832}
 833#else
 834int board_nand_init(struct nand_chip *chip) __attribute__((weak));
 835int board_nand_init(struct nand_chip *chip)
 836{
 837        davinci_nand_init(chip);
 838        return 0;
 839}
 840#endif /* CONFIG_SYS_NAND_SELF_INIT */
 841