uboot/drivers/net/fsl_enetc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * ENETC ethernet controller driver
   4 * Copyright 2017-2021 NXP
   5 */
   6
   7#include <common.h>
   8#include <dm.h>
   9#include <errno.h>
  10#include <fdt_support.h>
  11#include <malloc.h>
  12#include <memalign.h>
  13#include <net.h>
  14#include <asm/cache.h>
  15#include <asm/io.h>
  16#include <pci.h>
  17#include <miiphy.h>
  18#include <linux/bug.h>
  19#include <linux/delay.h>
  20
  21#include "fsl_enetc.h"
  22
  23#define ENETC_DRIVER_NAME       "enetc_eth"
  24
  25static int enetc_remove(struct udevice *dev);
  26
  27/*
  28 * sets the MAC address in IERB registers, this setting is persistent and
  29 * carried over to Linux.
  30 */
  31static void enetc_set_ierb_primary_mac(struct udevice *dev, int devfn,
  32                                       const u8 *enetaddr)
  33{
  34#ifdef CONFIG_ARCH_LS1028A
  35/*
  36 * LS1028A is the only part with IERB at this time and there are plans to change
  37 * its structure, keep this LS1028A specific for now
  38 */
  39#define IERB_BASE               0x1f0800000ULL
  40#define IERB_PFMAC(pf, vf, n)   (IERB_BASE + 0x8000 + (pf) * 0x100 + (vf) * 8 \
  41                                 + (n) * 4)
  42
  43static int ierb_fn_to_pf[] = {0, 1, 2, -1, -1, -1, 3};
  44
  45        u16 lower = *(const u16 *)(enetaddr + 4);
  46        u32 upper = *(const u32 *)enetaddr;
  47
  48        if (ierb_fn_to_pf[devfn] < 0)
  49                return;
  50
  51        out_le32(IERB_PFMAC(ierb_fn_to_pf[devfn], 0, 0), upper);
  52        out_le32(IERB_PFMAC(ierb_fn_to_pf[devfn], 0, 1), (u32)lower);
  53#endif
  54}
  55
  56/* sets up primary MAC addresses in DT/IERB */
  57void fdt_fixup_enetc_mac(void *blob)
  58{
  59        struct pci_child_plat *ppdata;
  60        struct eth_pdata *pdata;
  61        struct udevice *dev;
  62        struct uclass *uc;
  63        char path[256];
  64        int offset;
  65        int devfn;
  66
  67        uclass_get(UCLASS_ETH, &uc);
  68        uclass_foreach_dev(dev, uc) {
  69                if (!dev->driver || !dev->driver->name ||
  70                    strcmp(dev->driver->name, ENETC_DRIVER_NAME))
  71                        continue;
  72
  73                pdata = dev_get_plat(dev);
  74                ppdata = dev_get_parent_plat(dev);
  75                devfn = PCI_FUNC(ppdata->devfn);
  76
  77                enetc_set_ierb_primary_mac(dev, devfn, pdata->enetaddr);
  78
  79                snprintf(path, 256, "/soc/pcie@1f0000000/ethernet@%x,%x",
  80                         PCI_DEV(ppdata->devfn), PCI_FUNC(ppdata->devfn));
  81                offset = fdt_path_offset(blob, path);
  82                if (offset < 0)
  83                        continue;
  84                fdt_setprop(blob, offset, "mac-address", pdata->enetaddr, 6);
  85        }
  86}
  87
  88/*
  89 * Bind the device:
  90 * - set a more explicit name on the interface
  91 */
  92static int enetc_bind(struct udevice *dev)
  93{
  94        char name[16];
  95        static int eth_num_devices;
  96
  97        /*
  98         * prefer using PCI function numbers to number interfaces, but these
  99         * are only available if dts nodes are present.  For PCI they are
 100         * optional, handle that case too.  Just in case some nodes are present
 101         * and some are not, use different naming scheme - enetc-N based on
 102         * PCI function # and enetc#N based on interface count
 103         */
 104        if (ofnode_valid(dev_ofnode(dev)))
 105                sprintf(name, "enetc-%u", PCI_FUNC(pci_get_devfn(dev)));
 106        else
 107                sprintf(name, "enetc#%u", eth_num_devices++);
 108        device_set_name(dev, name);
 109
 110        return 0;
 111}
 112
 113/* MDIO wrappers, we're using these to drive internal MDIO to get to serdes */
 114static int enetc_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
 115{
 116        struct enetc_mdio_priv priv;
 117
 118        priv.regs_base = bus->priv;
 119        return enetc_mdio_read_priv(&priv, addr, devad, reg);
 120}
 121
 122static int enetc_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
 123                            u16 val)
 124{
 125        struct enetc_mdio_priv priv;
 126
 127        priv.regs_base = bus->priv;
 128        return enetc_mdio_write_priv(&priv, addr, devad, reg, val);
 129}
 130
 131/* only interfaces that can pin out through serdes have internal MDIO */
 132static bool enetc_has_imdio(struct udevice *dev)
 133{
 134        struct enetc_priv *priv = dev_get_priv(dev);
 135
 136        return !!(priv->imdio.priv);
 137}
 138
 139/* set up serdes for SGMII */
 140static int enetc_init_sgmii(struct udevice *dev)
 141{
 142        struct enetc_priv *priv = dev_get_priv(dev);
 143        bool is2500 = false;
 144        u16 reg;
 145
 146        if (!enetc_has_imdio(dev))
 147                return 0;
 148
 149        if (priv->uclass_id == PHY_INTERFACE_MODE_2500BASEX)
 150                is2500 = true;
 151
 152        /*
 153         * Set to SGMII mode, for 1Gbps enable AN, for 2.5Gbps set fixed speed.
 154         * Although fixed speed is 1Gbps, we could be running at 2.5Gbps based
 155         * on PLL configuration.  Setting 1G for 2.5G here is counter intuitive
 156         * but intentional.
 157         */
 158        reg = ENETC_PCS_IF_MODE_SGMII;
 159        reg |= is2500 ? ENETC_PCS_IF_MODE_SPEED_1G : ENETC_PCS_IF_MODE_SGMII_AN;
 160        enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
 161                         ENETC_PCS_IF_MODE, reg);
 162
 163        /* Dev ability - SGMII */
 164        enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
 165                         ENETC_PCS_DEV_ABILITY, ENETC_PCS_DEV_ABILITY_SGMII);
 166
 167        /* Adjust link timer for SGMII */
 168        enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
 169                         ENETC_PCS_LINK_TIMER1, ENETC_PCS_LINK_TIMER1_VAL);
 170        enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
 171                         ENETC_PCS_LINK_TIMER2, ENETC_PCS_LINK_TIMER2_VAL);
 172
 173        reg = ENETC_PCS_CR_DEF_VAL;
 174        reg |= is2500 ? ENETC_PCS_CR_RST : ENETC_PCS_CR_RESET_AN;
 175        /* restart PCS AN */
 176        enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
 177                         ENETC_PCS_CR, reg);
 178
 179        return 0;
 180}
 181
 182/* set up MAC for RGMII */
 183static void enetc_init_rgmii(struct udevice *dev, struct phy_device *phydev)
 184{
 185        struct enetc_priv *priv = dev_get_priv(dev);
 186        u32 old_val, val;
 187
 188        old_val = val = enetc_read_port(priv, ENETC_PM_IF_MODE);
 189
 190        /* disable unreliable RGMII in-band signaling and force the MAC into
 191         * the speed negotiated by the PHY.
 192         */
 193        val &= ~ENETC_PM_IF_MODE_AN_ENA;
 194
 195        if (phydev->speed == SPEED_1000) {
 196                val &= ~ENETC_PM_IFM_SSP_MASK;
 197                val |= ENETC_PM_IFM_SSP_1000;
 198        } else if (phydev->speed == SPEED_100) {
 199                val &= ~ENETC_PM_IFM_SSP_MASK;
 200                val |= ENETC_PM_IFM_SSP_100;
 201        } else if (phydev->speed == SPEED_10) {
 202                val &= ~ENETC_PM_IFM_SSP_MASK;
 203                val |= ENETC_PM_IFM_SSP_10;
 204        }
 205
 206        if (phydev->duplex == DUPLEX_FULL)
 207                val |= ENETC_PM_IFM_FULL_DPX;
 208        else
 209                val &= ~ENETC_PM_IFM_FULL_DPX;
 210
 211        if (val == old_val)
 212                return;
 213
 214        enetc_write_port(priv, ENETC_PM_IF_MODE, val);
 215}
 216
 217/* set up MAC configuration for the given interface type */
 218static void enetc_setup_mac_iface(struct udevice *dev,
 219                                  struct phy_device *phydev)
 220{
 221        struct enetc_priv *priv = dev_get_priv(dev);
 222        u32 if_mode;
 223
 224        switch (priv->uclass_id) {
 225        case PHY_INTERFACE_MODE_RGMII:
 226        case PHY_INTERFACE_MODE_RGMII_ID:
 227        case PHY_INTERFACE_MODE_RGMII_RXID:
 228        case PHY_INTERFACE_MODE_RGMII_TXID:
 229                enetc_init_rgmii(dev, phydev);
 230                break;
 231        case PHY_INTERFACE_MODE_USXGMII:
 232        case PHY_INTERFACE_MODE_10GBASER:
 233                /* set ifmode to (US)XGMII */
 234                if_mode = enetc_read_port(priv, ENETC_PM_IF_MODE);
 235                if_mode &= ~ENETC_PM_IF_IFMODE_MASK;
 236                enetc_write_port(priv, ENETC_PM_IF_MODE, if_mode);
 237                break;
 238        };
 239}
 240
 241/* set up serdes for SXGMII */
 242static int enetc_init_sxgmii(struct udevice *dev)
 243{
 244        struct enetc_priv *priv = dev_get_priv(dev);
 245
 246        if (!enetc_has_imdio(dev))
 247                return 0;
 248
 249        /* Dev ability - SXGMII */
 250        enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, ENETC_PCS_DEVAD_REPL,
 251                         ENETC_PCS_DEV_ABILITY, ENETC_PCS_DEV_ABILITY_SXGMII);
 252
 253        /* Restart PCS AN */
 254        enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, ENETC_PCS_DEVAD_REPL,
 255                         ENETC_PCS_CR,
 256                         ENETC_PCS_CR_RST | ENETC_PCS_CR_RESET_AN);
 257
 258        return 0;
 259}
 260
 261/* Apply protocol specific configuration to MAC, serdes as needed */
 262static void enetc_start_pcs(struct udevice *dev)
 263{
 264        struct enetc_priv *priv = dev_get_priv(dev);
 265
 266        /* register internal MDIO for debug purposes */
 267        if (enetc_read_port(priv, ENETC_PCAPR0) & ENETC_PCAPRO_MDIO) {
 268                priv->imdio.read = enetc_mdio_read;
 269                priv->imdio.write = enetc_mdio_write;
 270                priv->imdio.priv = priv->port_regs + ENETC_PM_IMDIO_BASE;
 271                strlcpy(priv->imdio.name, dev->name, MDIO_NAME_LEN);
 272                if (!miiphy_get_dev_by_name(priv->imdio.name))
 273                        mdio_register(&priv->imdio);
 274        }
 275
 276        if (!ofnode_valid(dev_ofnode(dev))) {
 277                enetc_dbg(dev, "no enetc ofnode found, skipping PCS set-up\n");
 278                return;
 279        }
 280
 281        priv->uclass_id = dev_read_phy_mode(dev);
 282        if (priv->uclass_id == PHY_INTERFACE_MODE_NA) {
 283                enetc_dbg(dev,
 284                          "phy-mode property not found, defaulting to SGMII\n");
 285                priv->uclass_id = PHY_INTERFACE_MODE_SGMII;
 286        }
 287
 288        switch (priv->uclass_id) {
 289        case PHY_INTERFACE_MODE_SGMII:
 290        case PHY_INTERFACE_MODE_2500BASEX:
 291                enetc_init_sgmii(dev);
 292                break;
 293        case PHY_INTERFACE_MODE_USXGMII:
 294        case PHY_INTERFACE_MODE_10GBASER:
 295                enetc_init_sxgmii(dev);
 296                break;
 297        };
 298}
 299
 300/* Configure the actual/external ethernet PHY, if one is found */
 301static int enetc_config_phy(struct udevice *dev)
 302{
 303        struct enetc_priv *priv = dev_get_priv(dev);
 304        int supported;
 305
 306        priv->phy = dm_eth_phy_connect(dev);
 307        if (!priv->phy)
 308                return -ENODEV;
 309
 310        supported = PHY_GBIT_FEATURES | SUPPORTED_2500baseX_Full;
 311        priv->phy->supported &= supported;
 312        priv->phy->advertising &= supported;
 313
 314        return phy_config(priv->phy);
 315}
 316
 317/*
 318 * Probe ENETC driver:
 319 * - initialize port and station interface BARs
 320 */
 321static int enetc_probe(struct udevice *dev)
 322{
 323        struct enetc_priv *priv = dev_get_priv(dev);
 324        int res;
 325
 326        if (ofnode_valid(dev_ofnode(dev)) && !ofnode_is_enabled(dev_ofnode(dev))) {
 327                enetc_dbg(dev, "interface disabled\n");
 328                return -ENODEV;
 329        }
 330
 331        priv->enetc_txbd = memalign(ENETC_BD_ALIGN,
 332                                    sizeof(struct enetc_tx_bd) * ENETC_BD_CNT);
 333        priv->enetc_rxbd = memalign(ENETC_BD_ALIGN,
 334                                    sizeof(union enetc_rx_bd) * ENETC_BD_CNT);
 335
 336        if (!priv->enetc_txbd || !priv->enetc_rxbd) {
 337                /* free should be able to handle NULL, just free all pointers */
 338                free(priv->enetc_txbd);
 339                free(priv->enetc_rxbd);
 340
 341                return -ENOMEM;
 342        }
 343
 344        /* initialize register */
 345        priv->regs_base = dm_pci_map_bar(dev, PCI_BASE_ADDRESS_0, 0, 0, PCI_REGION_TYPE, 0);
 346        if (!priv->regs_base) {
 347                enetc_dbg(dev, "failed to map BAR0\n");
 348                return -EINVAL;
 349        }
 350        priv->port_regs = priv->regs_base + ENETC_PORT_REGS_OFF;
 351
 352        dm_pci_clrset_config16(dev, PCI_COMMAND, 0, PCI_COMMAND_MEMORY);
 353
 354        enetc_start_pcs(dev);
 355
 356        res = enetc_config_phy(dev);
 357        if(res)
 358                enetc_remove(dev);
 359        return res;
 360}
 361
 362/*
 363 * Remove the driver from an interface:
 364 * - free up allocated memory
 365 */
 366static int enetc_remove(struct udevice *dev)
 367{
 368        struct enetc_priv *priv = dev_get_priv(dev);
 369
 370        if (miiphy_get_dev_by_name(priv->imdio.name))
 371                mdio_unregister(&priv->imdio);
 372
 373        free(priv->enetc_txbd);
 374        free(priv->enetc_rxbd);
 375
 376        return 0;
 377}
 378
 379/*
 380 * LS1028A is the only part with IERB at this time and there are plans to
 381 * change its structure, keep this LS1028A specific for now.
 382 */
 383#define LS1028A_IERB_BASE               0x1f0800000ULL
 384#define LS1028A_IERB_PSIPMAR0(pf, vf)   (LS1028A_IERB_BASE + 0x8000 \
 385                                         + (pf) * 0x100 + (vf) * 8)
 386#define LS1028A_IERB_PSIPMAR1(pf, vf)   (LS1028A_IERB_PSIPMAR0(pf, vf) + 4)
 387
 388static int enetc_ls1028a_write_hwaddr(struct udevice *dev)
 389{
 390        struct pci_child_plat *ppdata = dev_get_parent_plat(dev);
 391        const int devfn_to_pf[] = {0, 1, 2, -1, -1, -1, 3};
 392        struct eth_pdata *plat = dev_get_plat(dev);
 393        int devfn = PCI_FUNC(ppdata->devfn);
 394        u8 *addr = plat->enetaddr;
 395        u32 lower, upper;
 396        int pf;
 397
 398        if (devfn >= ARRAY_SIZE(devfn_to_pf))
 399                return 0;
 400
 401        pf = devfn_to_pf[devfn];
 402        if (pf < 0)
 403                return 0;
 404
 405        lower = *(const u16 *)(addr + 4);
 406        upper = *(const u32 *)addr;
 407
 408        out_le32(LS1028A_IERB_PSIPMAR0(pf, 0), upper);
 409        out_le32(LS1028A_IERB_PSIPMAR1(pf, 0), lower);
 410
 411        return 0;
 412}
 413
 414static int enetc_write_hwaddr(struct udevice *dev)
 415{
 416        struct eth_pdata *plat = dev_get_plat(dev);
 417        struct enetc_priv *priv = dev_get_priv(dev);
 418        u8 *addr = plat->enetaddr;
 419
 420        if (IS_ENABLED(CONFIG_ARCH_LS1028A))
 421                return enetc_ls1028a_write_hwaddr(dev);
 422
 423        u16 lower = *(const u16 *)(addr + 4);
 424        u32 upper = *(const u32 *)addr;
 425
 426        enetc_write_port(priv, ENETC_PSIPMAR0, upper);
 427        enetc_write_port(priv, ENETC_PSIPMAR1, lower);
 428
 429        return 0;
 430}
 431
 432/* Configure port parameters (# of rings, frame size, enable port) */
 433static void enetc_enable_si_port(struct enetc_priv *priv)
 434{
 435        u32 val;
 436
 437        /* set Rx/Tx BDR count */
 438        val = ENETC_PSICFGR_SET_TXBDR(ENETC_TX_BDR_CNT);
 439        val |= ENETC_PSICFGR_SET_RXBDR(ENETC_RX_BDR_CNT);
 440        enetc_write_port(priv, ENETC_PSICFGR(0), val);
 441        /* set Rx max frame size */
 442        enetc_write_port(priv, ENETC_PM_MAXFRM, ENETC_RX_MAXFRM_SIZE);
 443        /* enable MAC port */
 444        enetc_write_port(priv, ENETC_PM_CC, ENETC_PM_CC_RX_TX_EN);
 445        /* enable port */
 446        enetc_write_port(priv, ENETC_PMR, ENETC_PMR_SI0_EN);
 447        /* set SI cache policy */
 448        enetc_write(priv, ENETC_SICAR0,
 449                    ENETC_SICAR_RD_CFG | ENETC_SICAR_WR_CFG);
 450        /* enable SI */
 451        enetc_write(priv, ENETC_SIMR, ENETC_SIMR_EN);
 452}
 453
 454/* returns DMA address for a given buffer index */
 455static inline u64 enetc_rxb_address(struct udevice *dev, int i)
 456{
 457        return cpu_to_le64(dm_pci_virt_to_mem(dev, net_rx_packets[i]));
 458}
 459
 460/*
 461 * Setup a single Tx BD Ring (ID = 0):
 462 * - set Tx buffer descriptor address
 463 * - set the BD count
 464 * - initialize the producer and consumer index
 465 */
 466static void enetc_setup_tx_bdr(struct udevice *dev)
 467{
 468        struct enetc_priv *priv = dev_get_priv(dev);
 469        struct bd_ring *tx_bdr = &priv->tx_bdr;
 470        u64 tx_bd_add = (u64)priv->enetc_txbd;
 471
 472        /* used later to advance to the next Tx BD */
 473        tx_bdr->bd_count = ENETC_BD_CNT;
 474        tx_bdr->next_prod_idx = 0;
 475        tx_bdr->next_cons_idx = 0;
 476        tx_bdr->cons_idx = priv->regs_base +
 477                                ENETC_BDR(TX, ENETC_TX_BDR_ID, ENETC_TBCIR);
 478        tx_bdr->prod_idx = priv->regs_base +
 479                                ENETC_BDR(TX, ENETC_TX_BDR_ID, ENETC_TBPIR);
 480
 481        /* set Tx BD address */
 482        enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBBAR0,
 483                        lower_32_bits(tx_bd_add));
 484        enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBBAR1,
 485                        upper_32_bits(tx_bd_add));
 486        /* set Tx 8 BD count */
 487        enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBLENR,
 488                        tx_bdr->bd_count);
 489
 490        /* reset both producer/consumer indexes */
 491        enetc_write_reg(tx_bdr->cons_idx, tx_bdr->next_cons_idx);
 492        enetc_write_reg(tx_bdr->prod_idx, tx_bdr->next_prod_idx);
 493
 494        /* enable TX ring */
 495        enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBMR, ENETC_TBMR_EN);
 496}
 497
 498/*
 499 * Setup a single Rx BD Ring (ID = 0):
 500 * - set Rx buffer descriptors address (one descriptor per buffer)
 501 * - set buffer size as max frame size
 502 * - enable Rx ring
 503 * - reset consumer and producer indexes
 504 * - set buffer for each descriptor
 505 */
 506static void enetc_setup_rx_bdr(struct udevice *dev)
 507{
 508        struct enetc_priv *priv = dev_get_priv(dev);
 509        struct bd_ring *rx_bdr = &priv->rx_bdr;
 510        u64 rx_bd_add = (u64)priv->enetc_rxbd;
 511        int i;
 512
 513        /* used later to advance to the next BD produced by ENETC HW */
 514        rx_bdr->bd_count = ENETC_BD_CNT;
 515        rx_bdr->next_prod_idx = 0;
 516        rx_bdr->next_cons_idx = 0;
 517        rx_bdr->cons_idx = priv->regs_base +
 518                                ENETC_BDR(RX, ENETC_RX_BDR_ID, ENETC_RBCIR);
 519        rx_bdr->prod_idx = priv->regs_base +
 520                                ENETC_BDR(RX, ENETC_RX_BDR_ID, ENETC_RBPIR);
 521
 522        /* set Rx BD address */
 523        enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBBAR0,
 524                        lower_32_bits(rx_bd_add));
 525        enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBBAR1,
 526                        upper_32_bits(rx_bd_add));
 527        /* set Rx BD count (multiple of 8) */
 528        enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBLENR,
 529                        rx_bdr->bd_count);
 530        /* set Rx buffer  size */
 531        enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBBSR, PKTSIZE_ALIGN);
 532
 533        /* fill Rx BD */
 534        memset(priv->enetc_rxbd, 0,
 535               rx_bdr->bd_count * sizeof(union enetc_rx_bd));
 536        for (i = 0; i < rx_bdr->bd_count; i++) {
 537                priv->enetc_rxbd[i].w.addr = enetc_rxb_address(dev, i);
 538                /* each RX buffer must be aligned to 64B */
 539                WARN_ON(priv->enetc_rxbd[i].w.addr & (ARCH_DMA_MINALIGN - 1));
 540        }
 541
 542        /* reset producer (ENETC owned) and consumer (SW owned) index */
 543        enetc_write_reg(rx_bdr->cons_idx, rx_bdr->next_cons_idx);
 544        enetc_write_reg(rx_bdr->prod_idx, rx_bdr->next_prod_idx);
 545
 546        /* enable Rx ring */
 547        enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBMR, ENETC_RBMR_EN);
 548}
 549
 550/*
 551 * Start ENETC interface:
 552 * - perform FLR
 553 * - enable access to port and SI registers
 554 * - set mac address
 555 * - setup TX/RX buffer descriptors
 556 * - enable Tx/Rx rings
 557 */
 558static int enetc_start(struct udevice *dev)
 559{
 560        struct enetc_priv *priv = dev_get_priv(dev);
 561
 562        /* reset and enable the PCI device */
 563        dm_pci_flr(dev);
 564        dm_pci_clrset_config16(dev, PCI_COMMAND, 0,
 565                               PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
 566
 567        enetc_enable_si_port(priv);
 568
 569        /* setup Tx/Rx buffer descriptors */
 570        enetc_setup_tx_bdr(dev);
 571        enetc_setup_rx_bdr(dev);
 572
 573        enetc_setup_mac_iface(dev, priv->phy);
 574
 575        return phy_startup(priv->phy);
 576}
 577
 578/*
 579 * Stop the network interface:
 580 * - just quiesce it, we can wipe all configuration as _start starts from
 581 * scratch each time
 582 */
 583static void enetc_stop(struct udevice *dev)
 584{
 585        /* FLR is sufficient to quiesce the device */
 586        dm_pci_flr(dev);
 587        /* leave the BARs accessible after we stop, this is needed to use
 588         * internal MDIO in command line.
 589         */
 590        dm_pci_clrset_config16(dev, PCI_COMMAND, 0, PCI_COMMAND_MEMORY);
 591}
 592
 593/*
 594 * ENETC transmit packet:
 595 * - check if Tx BD ring is full
 596 * - set buffer/packet address (dma address)
 597 * - set final fragment flag
 598 * - try while producer index equals consumer index or timeout
 599 */
 600static int enetc_send(struct udevice *dev, void *packet, int length)
 601{
 602        struct enetc_priv *priv = dev_get_priv(dev);
 603        struct bd_ring *txr = &priv->tx_bdr;
 604        void *nv_packet = (void *)packet;
 605        int tries = ENETC_POLL_TRIES;
 606        u32 pi, ci;
 607
 608        pi = txr->next_prod_idx;
 609        ci = enetc_read_reg(txr->cons_idx) & ENETC_BDR_IDX_MASK;
 610        /* Tx ring is full when */
 611        if (((pi + 1) % txr->bd_count) == ci) {
 612                enetc_dbg(dev, "Tx BDR full\n");
 613                return -ETIMEDOUT;
 614        }
 615        enetc_dbg(dev, "TxBD[%d]send: pkt_len=%d, buff @0x%x%08x\n", pi, length,
 616                  upper_32_bits((u64)nv_packet), lower_32_bits((u64)nv_packet));
 617
 618        /* prepare Tx BD */
 619        memset(&priv->enetc_txbd[pi], 0x0, sizeof(struct enetc_tx_bd));
 620        priv->enetc_txbd[pi].addr =
 621                cpu_to_le64(dm_pci_virt_to_mem(dev, nv_packet));
 622        priv->enetc_txbd[pi].buf_len = cpu_to_le16(length);
 623        priv->enetc_txbd[pi].frm_len = cpu_to_le16(length);
 624        priv->enetc_txbd[pi].flags = cpu_to_le16(ENETC_TXBD_FLAGS_F);
 625        dmb();
 626        /* send frame: increment producer index */
 627        pi = (pi + 1) % txr->bd_count;
 628        txr->next_prod_idx = pi;
 629        enetc_write_reg(txr->prod_idx, pi);
 630        while ((--tries >= 0) &&
 631               (pi != (enetc_read_reg(txr->cons_idx) & ENETC_BDR_IDX_MASK)))
 632                udelay(10);
 633
 634        return tries > 0 ? 0 : -ETIMEDOUT;
 635}
 636
 637/*
 638 * Receive frame:
 639 * - wait for the next BD to get ready bit set
 640 * - clean up the descriptor
 641 * - move on and indicate to HW that the cleaned BD is available for Rx
 642 */
 643static int enetc_recv(struct udevice *dev, int flags, uchar **packetp)
 644{
 645        struct enetc_priv *priv = dev_get_priv(dev);
 646        struct bd_ring *rxr = &priv->rx_bdr;
 647        int tries = ENETC_POLL_TRIES;
 648        int pi = rxr->next_prod_idx;
 649        int ci = rxr->next_cons_idx;
 650        u32 status;
 651        int len;
 652        u8 rdy;
 653
 654        do {
 655                dmb();
 656                status = le32_to_cpu(priv->enetc_rxbd[pi].r.lstatus);
 657                /* check if current BD is ready to be consumed */
 658                rdy = ENETC_RXBD_STATUS_R(status);
 659        } while (--tries >= 0 && !rdy);
 660
 661        if (!rdy)
 662                return -EAGAIN;
 663
 664        dmb();
 665        len = le16_to_cpu(priv->enetc_rxbd[pi].r.buf_len);
 666        *packetp = (uchar *)enetc_rxb_address(dev, pi);
 667        enetc_dbg(dev, "RxBD[%d]: len=%d err=%d pkt=0x%x%08x\n", pi, len,
 668                  ENETC_RXBD_STATUS_ERRORS(status),
 669                  upper_32_bits((u64)*packetp), lower_32_bits((u64)*packetp));
 670
 671        /* BD clean up and advance to next in ring */
 672        memset(&priv->enetc_rxbd[pi], 0, sizeof(union enetc_rx_bd));
 673        priv->enetc_rxbd[pi].w.addr = enetc_rxb_address(dev, pi);
 674        rxr->next_prod_idx = (pi + 1) % rxr->bd_count;
 675        ci = (ci + 1) % rxr->bd_count;
 676        rxr->next_cons_idx = ci;
 677        dmb();
 678        /* free up the slot in the ring for HW */
 679        enetc_write_reg(rxr->cons_idx, ci);
 680
 681        return len;
 682}
 683
 684static const struct eth_ops enetc_ops = {
 685        .start  = enetc_start,
 686        .send   = enetc_send,
 687        .recv   = enetc_recv,
 688        .stop   = enetc_stop,
 689        .write_hwaddr = enetc_write_hwaddr,
 690};
 691
 692U_BOOT_DRIVER(eth_enetc) = {
 693        .name   = ENETC_DRIVER_NAME,
 694        .id     = UCLASS_ETH,
 695        .bind   = enetc_bind,
 696        .probe  = enetc_probe,
 697        .remove = enetc_remove,
 698        .ops    = &enetc_ops,
 699        .priv_auto      = sizeof(struct enetc_priv),
 700        .plat_auto      = sizeof(struct eth_pdata),
 701};
 702
 703static struct pci_device_id enetc_ids[] = {
 704        { PCI_DEVICE(PCI_VENDOR_ID_FREESCALE, PCI_DEVICE_ID_ENETC_ETH) },
 705        {}
 706};
 707
 708U_BOOT_PCI_DEVICE(eth_enetc, enetc_ids);
 709