uboot/arch/arm/mach-tegra/tegra124/clock.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * (C) Copyright 2013-2015
   4 * NVIDIA Corporation <www.nvidia.com>
   5 */
   6
   7/* Tegra124 Clock control functions */
   8
   9#include <common.h>
  10#include <init.h>
  11#include <log.h>
  12#include <asm/io.h>
  13#include <asm/arch/clock.h>
  14#include <asm/arch/sysctr.h>
  15#include <asm/arch/tegra.h>
  16#include <asm/arch-tegra/clk_rst.h>
  17#include <asm/arch-tegra/timer.h>
  18#include <div64.h>
  19#include <fdtdec.h>
  20#include <linux/delay.h>
  21
  22#include <dt-bindings/clock/tegra124-car.h>
  23#include <dt-bindings/clock/tegra124-car-common.h>
  24
  25/*
  26 * Clock types that we can use as a source. The Tegra124 has muxes for the
  27 * peripheral clocks, and in most cases there are four options for the clock
  28 * source. This gives us a clock 'type' and exploits what commonality exists
  29 * in the device.
  30 *
  31 * Letters are obvious, except for T which means CLK_M, and S which means the
  32 * clock derived from 32KHz. Beware that CLK_M (also called OSC in the
  33 * datasheet) and PLL_M are different things. The former is the basic
  34 * clock supplied to the SOC from an external oscillator. The latter is the
  35 * memory clock PLL.
  36 *
  37 * See definitions in clock_id in the header file.
  38 */
  39enum clock_type_id {
  40        CLOCK_TYPE_AXPT,        /* PLL_A, PLL_X, PLL_P, CLK_M */
  41        CLOCK_TYPE_MCPA,        /* and so on */
  42        CLOCK_TYPE_MCPT,
  43        CLOCK_TYPE_PCM,
  44        CLOCK_TYPE_PCMT,
  45        CLOCK_TYPE_PDCT,
  46        CLOCK_TYPE_ACPT,
  47        CLOCK_TYPE_ASPTE,
  48        CLOCK_TYPE_PMDACD2T,
  49        CLOCK_TYPE_PCST,
  50        CLOCK_TYPE_DP,
  51
  52        CLOCK_TYPE_PC2CC3M,
  53        CLOCK_TYPE_PC2CC3S_T,
  54        CLOCK_TYPE_PC2CC3M_T,
  55        CLOCK_TYPE_PC2CC3M_T16, /* PC2CC3M_T, but w/16-bit divisor (I2C) */
  56        CLOCK_TYPE_MC2CC3P_A,
  57        CLOCK_TYPE_M,
  58        CLOCK_TYPE_MCPTM2C2C3,
  59        CLOCK_TYPE_PC2CC3T_S,
  60        CLOCK_TYPE_AC2CC3P_TS2,
  61
  62        CLOCK_TYPE_COUNT,
  63        CLOCK_TYPE_NONE = -1,   /* invalid clock type */
  64};
  65
  66enum {
  67        CLOCK_MAX_MUX   = 8     /* number of source options for each clock */
  68};
  69
  70/*
  71 * Clock source mux for each clock type. This just converts our enum into
  72 * a list of mux sources for use by the code.
  73 *
  74 * Note:
  75 *  The extra column in each clock source array is used to store the mask
  76 *  bits in its register for the source.
  77 */
  78#define CLK(x) CLOCK_ID_ ## x
  79static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX+1] = {
  80        { CLK(AUDIO),   CLK(XCPU),      CLK(PERIPH),    CLK(CLK_M),
  81                CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
  82                MASK_BITS_31_30},
  83        { CLK(MEMORY),  CLK(CGENERAL),  CLK(PERIPH),    CLK(AUDIO),
  84                CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
  85                MASK_BITS_31_30},
  86        { CLK(MEMORY),  CLK(CGENERAL),  CLK(PERIPH),    CLK(OSC),
  87                CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
  88                MASK_BITS_31_30},
  89        { CLK(PERIPH),  CLK(CGENERAL),  CLK(MEMORY),    CLK(NONE),
  90                CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
  91                MASK_BITS_31_30},
  92        { CLK(PERIPH),  CLK(CGENERAL),  CLK(MEMORY),    CLK(OSC),
  93                CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
  94                MASK_BITS_31_30},
  95        { CLK(PERIPH),  CLK(DISPLAY),   CLK(CGENERAL),  CLK(OSC),
  96                CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
  97                MASK_BITS_31_30},
  98        { CLK(AUDIO),   CLK(CGENERAL),  CLK(PERIPH),    CLK(OSC),
  99                CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
 100                MASK_BITS_31_30},
 101        { CLK(AUDIO),   CLK(SFROM32KHZ),        CLK(PERIPH),    CLK(OSC),
 102                CLK(EPCI),      CLK(NONE),      CLK(NONE),      CLK(NONE),
 103                MASK_BITS_31_29},
 104        { CLK(PERIPH),  CLK(MEMORY),    CLK(DISPLAY),   CLK(AUDIO),
 105                CLK(CGENERAL),  CLK(DISPLAY2),  CLK(OSC),       CLK(NONE),
 106                MASK_BITS_31_29},
 107        { CLK(PERIPH),  CLK(CGENERAL),  CLK(SFROM32KHZ),        CLK(OSC),
 108                CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
 109                MASK_BITS_31_28},
 110        /* CLOCK_TYPE_DP */
 111        { CLK(NONE),    CLK(NONE),      CLK(NONE),      CLK(NONE),
 112                CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
 113                MASK_BITS_31_28},
 114
 115        /* Additional clock types on Tegra114+ */
 116        /* CLOCK_TYPE_PC2CC3M */
 117        { CLK(PERIPH),  CLK(CGENERAL2), CLK(CGENERAL),  CLK(CGENERAL3),
 118                CLK(MEMORY),    CLK(NONE),      CLK(NONE),      CLK(NONE),
 119                MASK_BITS_31_29},
 120        /* CLOCK_TYPE_PC2CC3S_T */
 121        { CLK(PERIPH),  CLK(CGENERAL2), CLK(CGENERAL),  CLK(CGENERAL3),
 122                CLK(SFROM32KHZ), CLK(NONE),     CLK(OSC),       CLK(NONE),
 123                MASK_BITS_31_29},
 124        /* CLOCK_TYPE_PC2CC3M_T */
 125        { CLK(PERIPH),  CLK(CGENERAL2), CLK(CGENERAL),  CLK(CGENERAL3),
 126                CLK(MEMORY),    CLK(NONE),      CLK(OSC),       CLK(NONE),
 127                MASK_BITS_31_29},
 128        /* CLOCK_TYPE_PC2CC3M_T, w/16-bit divisor (I2C) */
 129        { CLK(PERIPH),  CLK(CGENERAL2), CLK(CGENERAL),  CLK(CGENERAL3),
 130                CLK(MEMORY),    CLK(NONE),      CLK(OSC),       CLK(NONE),
 131                MASK_BITS_31_29},
 132        /* CLOCK_TYPE_MC2CC3P_A */
 133        { CLK(MEMORY),  CLK(CGENERAL2), CLK(CGENERAL),  CLK(CGENERAL3),
 134                CLK(PERIPH),    CLK(NONE),      CLK(AUDIO),     CLK(NONE),
 135                MASK_BITS_31_29},
 136        /* CLOCK_TYPE_M */
 137        { CLK(MEMORY),          CLK(NONE),      CLK(NONE),      CLK(NONE),
 138                CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
 139                MASK_BITS_31_30},
 140        /* CLOCK_TYPE_MCPTM2C2C3 */
 141        { CLK(MEMORY),  CLK(CGENERAL),  CLK(PERIPH),    CLK(OSC),
 142                CLK(MEMORY2),   CLK(CGENERAL2), CLK(CGENERAL3), CLK(NONE),
 143                MASK_BITS_31_29},
 144        /* CLOCK_TYPE_PC2CC3T_S */
 145        { CLK(PERIPH),  CLK(CGENERAL2), CLK(CGENERAL),  CLK(CGENERAL3),
 146                CLK(OSC),       CLK(NONE),      CLK(SFROM32KHZ), CLK(NONE),
 147                MASK_BITS_31_29},
 148        /* CLOCK_TYPE_AC2CC3P_TS2 */
 149        { CLK(AUDIO),   CLK(CGENERAL2), CLK(CGENERAL),  CLK(CGENERAL3),
 150                CLK(PERIPH),    CLK(NONE),      CLK(OSC),       CLK(SRC2),
 151                MASK_BITS_31_29},
 152};
 153
 154/*
 155 * Clock type for each peripheral clock source. We put the name in each
 156 * record just so it is easy to match things up
 157 */
 158#define TYPE(name, type) type
 159static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
 160        /* 0x00 */
 161        TYPE(PERIPHC_I2S1,      CLOCK_TYPE_AXPT),
 162        TYPE(PERIPHC_I2S2,      CLOCK_TYPE_AXPT),
 163        TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT),
 164        TYPE(PERIPHC_SPDIF_IN,  CLOCK_TYPE_PC2CC3M),
 165        TYPE(PERIPHC_PWM,       CLOCK_TYPE_PC2CC3S_T),
 166        TYPE(PERIPHC_05h,       CLOCK_TYPE_NONE),
 167        TYPE(PERIPHC_SBC2,      CLOCK_TYPE_PC2CC3M_T),
 168        TYPE(PERIPHC_SBC3,      CLOCK_TYPE_PC2CC3M_T),
 169
 170        /* 0x08 */
 171        TYPE(PERIPHC_08h,       CLOCK_TYPE_NONE),
 172        TYPE(PERIPHC_I2C1,      CLOCK_TYPE_PC2CC3M_T16),
 173        TYPE(PERIPHC_I2C5,      CLOCK_TYPE_PC2CC3M_T16),
 174        TYPE(PERIPHC_0bh,       CLOCK_TYPE_NONE),
 175        TYPE(PERIPHC_0ch,       CLOCK_TYPE_NONE),
 176        TYPE(PERIPHC_SBC1,      CLOCK_TYPE_PC2CC3M_T),
 177        TYPE(PERIPHC_DISP1,     CLOCK_TYPE_PMDACD2T),
 178        TYPE(PERIPHC_DISP2,     CLOCK_TYPE_PMDACD2T),
 179
 180        /* 0x10 */
 181        TYPE(PERIPHC_10h,       CLOCK_TYPE_NONE),
 182        TYPE(PERIPHC_11h,       CLOCK_TYPE_NONE),
 183        TYPE(PERIPHC_VI,        CLOCK_TYPE_MC2CC3P_A),
 184        TYPE(PERIPHC_13h,       CLOCK_TYPE_NONE),
 185        TYPE(PERIPHC_SDMMC1,    CLOCK_TYPE_PC2CC3M_T),
 186        TYPE(PERIPHC_SDMMC2,    CLOCK_TYPE_PC2CC3M_T),
 187        TYPE(PERIPHC_16h,       CLOCK_TYPE_NONE),
 188        TYPE(PERIPHC_17h,       CLOCK_TYPE_NONE),
 189
 190        /* 0x18 */
 191        TYPE(PERIPHC_18h,       CLOCK_TYPE_NONE),
 192        TYPE(PERIPHC_SDMMC4,    CLOCK_TYPE_PC2CC3M_T),
 193        TYPE(PERIPHC_VFIR,      CLOCK_TYPE_PC2CC3M_T),
 194        TYPE(PERIPHC_1Bh,       CLOCK_TYPE_NONE),
 195        TYPE(PERIPHC_1Ch,       CLOCK_TYPE_NONE),
 196        TYPE(PERIPHC_HSI,       CLOCK_TYPE_PC2CC3M_T),
 197        TYPE(PERIPHC_UART1,     CLOCK_TYPE_PC2CC3M_T),
 198        TYPE(PERIPHC_UART2,     CLOCK_TYPE_PC2CC3M_T),
 199
 200        /* 0x20 */
 201        TYPE(PERIPHC_HOST1X,    CLOCK_TYPE_MC2CC3P_A),
 202        TYPE(PERIPHC_21h,       CLOCK_TYPE_NONE),
 203        TYPE(PERIPHC_22h,       CLOCK_TYPE_NONE),
 204        TYPE(PERIPHC_HDMI,      CLOCK_TYPE_PMDACD2T),
 205        TYPE(PERIPHC_24h,       CLOCK_TYPE_NONE),
 206        TYPE(PERIPHC_25h,       CLOCK_TYPE_NONE),
 207        TYPE(PERIPHC_I2C2,      CLOCK_TYPE_PC2CC3M_T16),
 208        TYPE(PERIPHC_EMC,       CLOCK_TYPE_MCPTM2C2C3),
 209
 210        /* 0x28 */
 211        TYPE(PERIPHC_UART3,     CLOCK_TYPE_PC2CC3M_T),
 212        TYPE(PERIPHC_29h,       CLOCK_TYPE_NONE),
 213        TYPE(PERIPHC_VI_SENSOR, CLOCK_TYPE_MC2CC3P_A),
 214        TYPE(PERIPHC_2bh,       CLOCK_TYPE_NONE),
 215        TYPE(PERIPHC_2ch,       CLOCK_TYPE_NONE),
 216        TYPE(PERIPHC_SBC4,      CLOCK_TYPE_PC2CC3M_T),
 217        TYPE(PERIPHC_I2C3,      CLOCK_TYPE_PC2CC3M_T16),
 218        TYPE(PERIPHC_SDMMC3,    CLOCK_TYPE_PC2CC3M_T),
 219
 220        /* 0x30 */
 221        TYPE(PERIPHC_UART4,     CLOCK_TYPE_PC2CC3M_T),
 222        TYPE(PERIPHC_UART5,     CLOCK_TYPE_PC2CC3M_T),
 223        TYPE(PERIPHC_VDE,       CLOCK_TYPE_PC2CC3M_T),
 224        TYPE(PERIPHC_OWR,       CLOCK_TYPE_PC2CC3M_T),
 225        TYPE(PERIPHC_NOR,       CLOCK_TYPE_PC2CC3M_T),
 226        TYPE(PERIPHC_CSITE,     CLOCK_TYPE_PC2CC3M_T),
 227        TYPE(PERIPHC_I2S0,      CLOCK_TYPE_AXPT),
 228        TYPE(PERIPHC_DTV,       CLOCK_TYPE_NONE),
 229
 230        /* 0x38 */
 231        TYPE(PERIPHC_38h,       CLOCK_TYPE_NONE),
 232        TYPE(PERIPHC_39h,       CLOCK_TYPE_NONE),
 233        TYPE(PERIPHC_3ah,       CLOCK_TYPE_NONE),
 234        TYPE(PERIPHC_3bh,       CLOCK_TYPE_NONE),
 235        TYPE(PERIPHC_MSENC,     CLOCK_TYPE_MC2CC3P_A),
 236        TYPE(PERIPHC_TSEC,      CLOCK_TYPE_PC2CC3M_T),
 237        TYPE(PERIPHC_3eh,       CLOCK_TYPE_NONE),
 238        TYPE(PERIPHC_OSC,       CLOCK_TYPE_NONE),
 239
 240        /* 0x40 */
 241        TYPE(PERIPHC_40h,       CLOCK_TYPE_NONE),       /* start with 0x3b0 */
 242        TYPE(PERIPHC_MSELECT,   CLOCK_TYPE_PC2CC3M_T),
 243        TYPE(PERIPHC_TSENSOR,   CLOCK_TYPE_PC2CC3T_S),
 244        TYPE(PERIPHC_I2S3,      CLOCK_TYPE_AXPT),
 245        TYPE(PERIPHC_I2S4,      CLOCK_TYPE_AXPT),
 246        TYPE(PERIPHC_I2C4,      CLOCK_TYPE_PC2CC3M_T16),
 247        TYPE(PERIPHC_SBC5,      CLOCK_TYPE_PC2CC3M_T),
 248        TYPE(PERIPHC_SBC6,      CLOCK_TYPE_PC2CC3M_T),
 249
 250        /* 0x48 */
 251        TYPE(PERIPHC_AUDIO,     CLOCK_TYPE_AC2CC3P_TS2),
 252        TYPE(PERIPHC_49h,       CLOCK_TYPE_NONE),
 253        TYPE(PERIPHC_DAM0,      CLOCK_TYPE_AC2CC3P_TS2),
 254        TYPE(PERIPHC_DAM1,      CLOCK_TYPE_AC2CC3P_TS2),
 255        TYPE(PERIPHC_DAM2,      CLOCK_TYPE_AC2CC3P_TS2),
 256        TYPE(PERIPHC_HDA2CODEC2X, CLOCK_TYPE_PC2CC3M_T),
 257        TYPE(PERIPHC_ACTMON,    CLOCK_TYPE_PC2CC3S_T),
 258        TYPE(PERIPHC_EXTPERIPH1, CLOCK_TYPE_ASPTE),
 259
 260        /* 0x50 */
 261        TYPE(PERIPHC_EXTPERIPH2, CLOCK_TYPE_ASPTE),
 262        TYPE(PERIPHC_EXTPERIPH3, CLOCK_TYPE_ASPTE),
 263        TYPE(PERIPHC_52h,       CLOCK_TYPE_NONE),
 264        TYPE(PERIPHC_I2CSLOW,   CLOCK_TYPE_PC2CC3S_T),
 265        TYPE(PERIPHC_SYS,       CLOCK_TYPE_NONE),
 266        TYPE(PERIPHC_55h,       CLOCK_TYPE_NONE),
 267        TYPE(PERIPHC_56h,       CLOCK_TYPE_NONE),
 268        TYPE(PERIPHC_57h,       CLOCK_TYPE_NONE),
 269
 270        /* 0x58 */
 271        TYPE(PERIPHC_58h,       CLOCK_TYPE_NONE),
 272        TYPE(PERIPHC_SOR,       CLOCK_TYPE_NONE),
 273        TYPE(PERIPHC_5ah,       CLOCK_TYPE_NONE),
 274        TYPE(PERIPHC_5bh,       CLOCK_TYPE_NONE),
 275        TYPE(PERIPHC_SATAOOB,   CLOCK_TYPE_PCMT),
 276        TYPE(PERIPHC_SATA,      CLOCK_TYPE_PCMT),
 277        TYPE(PERIPHC_HDA,       CLOCK_TYPE_PC2CC3M_T),
 278        TYPE(PERIPHC_5fh,       CLOCK_TYPE_NONE),
 279
 280        /* 0x60 */
 281        TYPE(PERIPHC_XUSB_CORE_HOST, CLOCK_TYPE_NONE),
 282        TYPE(PERIPHC_XUSB_FALCON, CLOCK_TYPE_NONE),
 283        TYPE(PERIPHC_XUSB_FS,   CLOCK_TYPE_NONE),
 284        TYPE(PERIPHC_XUSB_CORE_DEV, CLOCK_TYPE_NONE),
 285        TYPE(PERIPHC_XUSB_SS,   CLOCK_TYPE_NONE),
 286        TYPE(PERIPHC_CILAB,     CLOCK_TYPE_NONE),
 287        TYPE(PERIPHC_CILCD,     CLOCK_TYPE_NONE),
 288        TYPE(PERIPHC_CILE,      CLOCK_TYPE_NONE),
 289
 290        /* 0x68 */
 291        TYPE(PERIPHC_DSIA_LP,   CLOCK_TYPE_NONE),
 292        TYPE(PERIPHC_DSIB_LP,   CLOCK_TYPE_NONE),
 293        TYPE(PERIPHC_ENTROPY,   CLOCK_TYPE_NONE),
 294        TYPE(PERIPHC_DVFS_REF,  CLOCK_TYPE_NONE),
 295        TYPE(PERIPHC_DVFS_SOC,  CLOCK_TYPE_NONE),
 296        TYPE(PERIPHC_TRACECLKIN, CLOCK_TYPE_NONE),
 297        TYPE(PERIPHC_ADX0,      CLOCK_TYPE_NONE),
 298        TYPE(PERIPHC_AMX0,      CLOCK_TYPE_NONE),
 299
 300        /* 0x70 */
 301        TYPE(PERIPHC_EMC_LATENCY, CLOCK_TYPE_NONE),
 302        TYPE(PERIPHC_SOC_THERM, CLOCK_TYPE_NONE),
 303        TYPE(PERIPHC_72h,       CLOCK_TYPE_NONE),
 304        TYPE(PERIPHC_73h,       CLOCK_TYPE_NONE),
 305        TYPE(PERIPHC_74h,       CLOCK_TYPE_NONE),
 306        TYPE(PERIPHC_75h,       CLOCK_TYPE_NONE),
 307        TYPE(PERIPHC_VI_SENSOR2, CLOCK_TYPE_NONE),
 308        TYPE(PERIPHC_I2C6,      CLOCK_TYPE_PC2CC3M_T16),
 309
 310        /* 0x78 */
 311        TYPE(PERIPHC_78h,       CLOCK_TYPE_NONE),
 312        TYPE(PERIPHC_EMC_DLL,   CLOCK_TYPE_MCPTM2C2C3),
 313        TYPE(PERIPHC_HDMI_AUDIO, CLOCK_TYPE_NONE),
 314        TYPE(PERIPHC_CLK72MHZ,  CLOCK_TYPE_NONE),
 315        TYPE(PERIPHC_ADX1,      CLOCK_TYPE_AC2CC3P_TS2),
 316        TYPE(PERIPHC_AMX1,      CLOCK_TYPE_AC2CC3P_TS2),
 317        TYPE(PERIPHC_VIC,       CLOCK_TYPE_NONE),
 318        TYPE(PERIPHC_7Fh,       CLOCK_TYPE_NONE),
 319};
 320
 321/*
 322 * This array translates a periph_id to a periphc_internal_id
 323 *
 324 * Not present/matched up:
 325 *      uint vi_sensor;  _VI_SENSOR_0,          0x1A8
 326 *      SPDIF - which is both 0x08 and 0x0c
 327 *
 328 */
 329#define NONE(name) (-1)
 330#define OFFSET(name, value) PERIPHC_ ## name
 331static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
 332        /* Low word: 31:0 */
 333        NONE(CPU),
 334        NONE(COP),
 335        NONE(TRIGSYS),
 336        NONE(ISPB),
 337        NONE(RESERVED4),
 338        NONE(TMR),
 339        PERIPHC_UART1,
 340        PERIPHC_UART2,  /* and vfir 0x68 */
 341
 342        /* 8 */
 343        NONE(GPIO),
 344        PERIPHC_SDMMC2,
 345        PERIPHC_SPDIF_IN,
 346        PERIPHC_I2S1,
 347        PERIPHC_I2C1,
 348        NONE(RESERVED13),
 349        PERIPHC_SDMMC1,
 350        PERIPHC_SDMMC4,
 351
 352        /* 16 */
 353        NONE(TCW),
 354        PERIPHC_PWM,
 355        PERIPHC_I2S2,
 356        NONE(RESERVED19),
 357        PERIPHC_VI,
 358        NONE(RESERVED21),
 359        NONE(USBD),
 360        NONE(ISP),
 361
 362        /* 24 */
 363        NONE(RESERVED24),
 364        NONE(RESERVED25),
 365        PERIPHC_DISP2,
 366        PERIPHC_DISP1,
 367        PERIPHC_HOST1X,
 368        NONE(VCP),
 369        PERIPHC_I2S0,
 370        NONE(CACHE2),
 371
 372        /* Middle word: 63:32 */
 373        NONE(MEM),
 374        NONE(AHBDMA),
 375        NONE(APBDMA),
 376        NONE(RESERVED35),
 377        NONE(RESERVED36),
 378        NONE(STAT_MON),
 379        NONE(RESERVED38),
 380        NONE(FUSE),
 381
 382        /* 40 */
 383        NONE(KFUSE),
 384        PERIPHC_SBC1,           /* SBCx = SPIx */
 385        PERIPHC_NOR,
 386        NONE(RESERVED43),
 387        PERIPHC_SBC2,
 388        NONE(XIO),
 389        PERIPHC_SBC3,
 390        PERIPHC_I2C5,
 391
 392        /* 48 */
 393        NONE(DSI),
 394        NONE(RESERVED49),
 395        PERIPHC_HSI,
 396        PERIPHC_HDMI,
 397        NONE(CSI),
 398        NONE(RESERVED53),
 399        PERIPHC_I2C2,
 400        PERIPHC_UART3,
 401
 402        /* 56 */
 403        NONE(MIPI_CAL),
 404        PERIPHC_EMC,
 405        NONE(USB2),
 406        NONE(USB3),
 407        NONE(RESERVED60),
 408        PERIPHC_VDE,
 409        NONE(BSEA),
 410        NONE(BSEV),
 411
 412        /* Upper word 95:64 */
 413        NONE(RESERVED64),
 414        PERIPHC_UART4,
 415        PERIPHC_UART5,
 416        PERIPHC_I2C3,
 417        PERIPHC_SBC4,
 418        PERIPHC_SDMMC3,
 419        NONE(PCIE),
 420        PERIPHC_OWR,
 421
 422        /* 72 */
 423        NONE(AFI),
 424        PERIPHC_CSITE,
 425        NONE(PCIEXCLK),
 426        NONE(AVPUCQ),
 427        NONE(LA),
 428        NONE(TRACECLKIN),
 429        NONE(SOC_THERM),
 430        NONE(DTV),
 431
 432        /* 80 */
 433        NONE(RESERVED80),
 434        PERIPHC_I2CSLOW,
 435        NONE(DSIB),
 436        PERIPHC_TSEC,
 437        NONE(RESERVED84),
 438        NONE(RESERVED85),
 439        NONE(RESERVED86),
 440        NONE(EMUCIF),
 441
 442        /* 88 */
 443        NONE(RESERVED88),
 444        NONE(XUSB_HOST),
 445        NONE(RESERVED90),
 446        PERIPHC_MSENC,
 447        NONE(RESERVED92),
 448        NONE(RESERVED93),
 449        NONE(RESERVED94),
 450        NONE(XUSB_DEV),
 451
 452        /* V word: 31:0 */
 453        NONE(CPUG),
 454        NONE(CPULP),
 455        NONE(V_RESERVED2),
 456        PERIPHC_MSELECT,
 457        NONE(V_RESERVED4),
 458        PERIPHC_I2S3,
 459        PERIPHC_I2S4,
 460        PERIPHC_I2C4,
 461
 462        /* 104 */
 463        PERIPHC_SBC5,
 464        PERIPHC_SBC6,
 465        PERIPHC_AUDIO,
 466        NONE(APBIF),
 467        PERIPHC_DAM0,
 468        PERIPHC_DAM1,
 469        PERIPHC_DAM2,
 470        PERIPHC_HDA2CODEC2X,
 471
 472        /* 112 */
 473        NONE(ATOMICS),
 474        NONE(V_RESERVED17),
 475        NONE(V_RESERVED18),
 476        NONE(V_RESERVED19),
 477        NONE(V_RESERVED20),
 478        NONE(V_RESERVED21),
 479        NONE(V_RESERVED22),
 480        PERIPHC_ACTMON,
 481
 482        /* 120 */
 483        PERIPHC_EXTPERIPH1,
 484        NONE(EXTPERIPH2),
 485        NONE(EXTPERIPH3),
 486        NONE(OOB),
 487        PERIPHC_SATA,
 488        PERIPHC_HDA,
 489        NONE(TZRAM),
 490        NONE(SE),
 491
 492        /* W word: 31:0 */
 493        NONE(HDA2HDMICODEC),
 494        NONE(SATACOLD),
 495        NONE(W_RESERVED2),
 496        NONE(W_RESERVED3),
 497        NONE(W_RESERVED4),
 498        NONE(W_RESERVED5),
 499        NONE(W_RESERVED6),
 500        NONE(W_RESERVED7),
 501
 502        /* 136 */
 503        NONE(CEC),
 504        NONE(W_RESERVED9),
 505        NONE(W_RESERVED10),
 506        NONE(W_RESERVED11),
 507        NONE(W_RESERVED12),
 508        NONE(W_RESERVED13),
 509        NONE(XUSB_PADCTL),
 510        NONE(W_RESERVED15),
 511
 512        /* 144 */
 513        NONE(W_RESERVED16),
 514        NONE(W_RESERVED17),
 515        NONE(W_RESERVED18),
 516        NONE(W_RESERVED19),
 517        NONE(W_RESERVED20),
 518        NONE(ENTROPY),
 519        NONE(DDS),
 520        NONE(W_RESERVED23),
 521
 522        /* 152 */
 523        NONE(DP2),
 524        NONE(AMX0),
 525        NONE(ADX0),
 526        NONE(DVFS),
 527        NONE(XUSB_SS),
 528        NONE(W_RESERVED29),
 529        NONE(W_RESERVED30),
 530        NONE(W_RESERVED31),
 531
 532        /* X word: 31:0 */
 533        NONE(SPARE),
 534        NONE(X_RESERVED1),
 535        NONE(X_RESERVED2),
 536        NONE(X_RESERVED3),
 537        NONE(CAM_MCLK),
 538        NONE(CAM_MCLK2),
 539        PERIPHC_I2C6,
 540        NONE(X_RESERVED7),
 541
 542        /* 168 */
 543        NONE(X_RESERVED8),
 544        NONE(X_RESERVED9),
 545        NONE(X_RESERVED10),
 546        NONE(VIM2_CLK),
 547        NONE(X_RESERVED12),
 548        NONE(X_RESERVED13),
 549        NONE(EMC_DLL),
 550        NONE(X_RESERVED15),
 551
 552        /* 176 */
 553        NONE(HDMI_AUDIO),
 554        NONE(CLK72MHZ),
 555        NONE(VIC),
 556        NONE(X_RESERVED19),
 557        NONE(ADX1),
 558        NONE(DPAUX),
 559        PERIPHC_SOR,
 560        NONE(X_RESERVED23),
 561
 562        /* 184 */
 563        NONE(GPU),
 564        NONE(AMX1),
 565        NONE(X_RESERVED26),
 566        NONE(X_RESERVED27),
 567        NONE(X_RESERVED28),
 568        NONE(X_RESERVED29),
 569        NONE(X_RESERVED30),
 570        NONE(X_RESERVED31),
 571};
 572
 573/*
 574 * PLL divider shift/mask tables for all PLL IDs.
 575 */
 576struct clk_pll_info tegra_pll_info_table[CLOCK_ID_PLL_COUNT] = {
 577        /*
 578         * T124: same as T114, some deviations from T2x/T30. Adds PLLDP.
 579         * NOTE: If kcp_mask/kvco_mask == 0, they're not used in that PLL (PLLX, etc.)
 580         *       If lock_ena or lock_det are >31, they're not used in that PLL.
 581         */
 582
 583        { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 20, .p_mask = 0x0F,
 584          .lock_ena = 24, .lock_det = 27, .kcp_shift = 28, .kcp_mask = 3, .kvco_shift = 27, .kvco_mask = 1 },   /* PLLC */
 585        { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 0,  .p_mask = 0,
 586          .lock_ena = 0,  .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 },     /* PLLM */
 587        { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
 588          .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLP */
 589        { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
 590          .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLA */
 591        { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x01,
 592          .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLU */
 593        { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
 594          .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLD */
 595        { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 20, .p_mask = 0x0F,
 596          .lock_ena = 18, .lock_det = 27, .kcp_shift = 0, .kcp_mask = 0, .kvco_shift = 0, .kvco_mask = 0 },     /* PLLX */
 597        { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 0,  .p_mask = 0,
 598          .lock_ena = 9,  .lock_det = 11, .kcp_shift = 6, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 },     /* PLLE */
 599        { .m_shift = 0, .m_mask = 0x0F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
 600          .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLS (RESERVED) */
 601        { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 20,  .p_mask = 0xF,
 602          .lock_ena = 30, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 },   /* PLLDP */
 603};
 604
 605/*
 606 * Get the oscillator frequency, from the corresponding hardware configuration
 607 * field. Note that T30+ supports 3 new higher freqs.
 608 */
 609enum clock_osc_freq clock_get_osc_freq(void)
 610{
 611        struct clk_rst_ctlr *clkrst =
 612                        (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
 613        u32 reg;
 614
 615        reg = readl(&clkrst->crc_osc_ctrl);
 616        return (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
 617}
 618
 619/* Returns a pointer to the clock source register for a peripheral */
 620u32 *get_periph_source_reg(enum periph_id periph_id)
 621{
 622        struct clk_rst_ctlr *clkrst =
 623                (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
 624        enum periphc_internal_id internal_id;
 625
 626        /* Coresight is a special case */
 627        if (periph_id == PERIPH_ID_CSI)
 628                return &clkrst->crc_clk_src[PERIPH_ID_CSI+1];
 629
 630        assert(periph_id >= PERIPH_ID_FIRST && periph_id < PERIPH_ID_COUNT);
 631        internal_id = periph_id_to_internal_id[periph_id];
 632        assert(internal_id != -1);
 633        if (internal_id >= PERIPHC_X_FIRST) {
 634                internal_id -= PERIPHC_X_FIRST;
 635                return &clkrst->crc_clk_src_x[internal_id];
 636        } else if (internal_id >= PERIPHC_VW_FIRST) {
 637                internal_id -= PERIPHC_VW_FIRST;
 638                return &clkrst->crc_clk_src_vw[internal_id];
 639        } else {
 640                return &clkrst->crc_clk_src[internal_id];
 641        }
 642}
 643
 644int get_periph_clock_info(enum periph_id periph_id, int *mux_bits,
 645                          int *divider_bits, int *type)
 646{
 647        enum periphc_internal_id internal_id;
 648
 649        if (!clock_periph_id_isvalid(periph_id))
 650                return -1;
 651
 652        internal_id = periph_id_to_internal_id[periph_id];
 653        if (!periphc_internal_id_isvalid(internal_id))
 654                return -1;
 655
 656        *type = clock_periph_type[internal_id];
 657        if (!clock_type_id_isvalid(*type))
 658                return -1;
 659
 660        *mux_bits = clock_source[*type][CLOCK_MAX_MUX];
 661
 662        if (*type == CLOCK_TYPE_PC2CC3M_T16)
 663                *divider_bits = 16;
 664        else
 665                *divider_bits = 8;
 666
 667        return 0;
 668}
 669
 670enum clock_id get_periph_clock_id(enum periph_id periph_id, int source)
 671{
 672        enum periphc_internal_id internal_id;
 673        int type;
 674
 675        if (!clock_periph_id_isvalid(periph_id))
 676                return CLOCK_ID_NONE;
 677
 678        internal_id = periph_id_to_internal_id[periph_id];
 679        if (!periphc_internal_id_isvalid(internal_id))
 680                return CLOCK_ID_NONE;
 681
 682        type = clock_periph_type[internal_id];
 683        if (!clock_type_id_isvalid(type))
 684                return CLOCK_ID_NONE;
 685
 686        return clock_source[type][source];
 687}
 688
 689/**
 690 * Given a peripheral ID and the required source clock, this returns which
 691 * value should be programmed into the source mux for that peripheral.
 692 *
 693 * There is special code here to handle the one source type with 5 sources.
 694 *
 695 * @param periph_id     peripheral to start
 696 * @param source        PLL id of required parent clock
 697 * @param mux_bits      Set to number of bits in mux register: 2 or 4
 698 * @param divider_bits Set to number of divider bits (8 or 16)
 699 * Return: mux value (0-4, or -1 if not found)
 700 */
 701int get_periph_clock_source(enum periph_id periph_id,
 702        enum clock_id parent, int *mux_bits, int *divider_bits)
 703{
 704        enum clock_type_id type;
 705        int mux, err;
 706
 707        err = get_periph_clock_info(periph_id, mux_bits, divider_bits, &type);
 708        assert(!err);
 709
 710        for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
 711                if (clock_source[type][mux] == parent)
 712                        return mux;
 713
 714        /* if we get here, either us or the caller has made a mistake */
 715        printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
 716               parent);
 717        return -1;
 718}
 719
 720void clock_set_enable(enum periph_id periph_id, int enable)
 721{
 722        struct clk_rst_ctlr *clkrst =
 723                (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
 724        u32 *clk;
 725        u32 reg;
 726
 727        /* Enable/disable the clock to this peripheral */
 728        assert(clock_periph_id_isvalid(periph_id));
 729        if ((int)periph_id < (int)PERIPH_ID_VW_FIRST)
 730                clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
 731        else if ((int)periph_id < PERIPH_ID_X_FIRST)
 732                clk = &clkrst->crc_clk_out_enb_vw[PERIPH_REG(periph_id)];
 733        else
 734                clk = &clkrst->crc_clk_out_enb_x;
 735        reg = readl(clk);
 736        if (enable)
 737                reg |= PERIPH_MASK(periph_id);
 738        else
 739                reg &= ~PERIPH_MASK(periph_id);
 740        writel(reg, clk);
 741}
 742
 743void reset_set_enable(enum periph_id periph_id, int enable)
 744{
 745        struct clk_rst_ctlr *clkrst =
 746                (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
 747        u32 *reset;
 748        u32 reg;
 749
 750        /* Enable/disable reset to the peripheral */
 751        assert(clock_periph_id_isvalid(periph_id));
 752        if (periph_id < PERIPH_ID_VW_FIRST)
 753                reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
 754        else if ((int)periph_id < PERIPH_ID_X_FIRST)
 755                reset = &clkrst->crc_rst_dev_vw[PERIPH_REG(periph_id)];
 756        else
 757                reset = &clkrst->crc_rst_devices_x;
 758        reg = readl(reset);
 759        if (enable)
 760                reg |= PERIPH_MASK(periph_id);
 761        else
 762                reg &= ~PERIPH_MASK(periph_id);
 763        writel(reg, reset);
 764}
 765
 766#if CONFIG_IS_ENABLED(OF_CONTROL)
 767/*
 768 * Convert a device tree clock ID to our peripheral ID. They are mostly
 769 * the same but we are very cautious so we check that a valid clock ID is
 770 * provided.
 771 *
 772 * @param clk_id    Clock ID according to tegra124 device tree binding
 773 * Return: peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
 774 */
 775enum periph_id clk_id_to_periph_id(int clk_id)
 776{
 777        if (clk_id > PERIPH_ID_COUNT)
 778                return PERIPH_ID_NONE;
 779
 780        switch (clk_id) {
 781        case PERIPH_ID_RESERVED4:
 782        case PERIPH_ID_RESERVED25:
 783        case PERIPH_ID_RESERVED35:
 784        case PERIPH_ID_RESERVED36:
 785        case PERIPH_ID_RESERVED38:
 786        case PERIPH_ID_RESERVED43:
 787        case PERIPH_ID_RESERVED49:
 788        case PERIPH_ID_RESERVED53:
 789        case PERIPH_ID_RESERVED64:
 790        case PERIPH_ID_RESERVED84:
 791        case PERIPH_ID_RESERVED85:
 792        case PERIPH_ID_RESERVED86:
 793        case PERIPH_ID_RESERVED88:
 794        case PERIPH_ID_RESERVED90:
 795        case PERIPH_ID_RESERVED92:
 796        case PERIPH_ID_RESERVED93:
 797        case PERIPH_ID_RESERVED94:
 798        case PERIPH_ID_V_RESERVED2:
 799        case PERIPH_ID_V_RESERVED4:
 800        case PERIPH_ID_V_RESERVED17:
 801        case PERIPH_ID_V_RESERVED18:
 802        case PERIPH_ID_V_RESERVED19:
 803        case PERIPH_ID_V_RESERVED20:
 804        case PERIPH_ID_V_RESERVED21:
 805        case PERIPH_ID_V_RESERVED22:
 806        case PERIPH_ID_W_RESERVED2:
 807        case PERIPH_ID_W_RESERVED3:
 808        case PERIPH_ID_W_RESERVED4:
 809        case PERIPH_ID_W_RESERVED5:
 810        case PERIPH_ID_W_RESERVED6:
 811        case PERIPH_ID_W_RESERVED7:
 812        case PERIPH_ID_W_RESERVED9:
 813        case PERIPH_ID_W_RESERVED10:
 814        case PERIPH_ID_W_RESERVED11:
 815        case PERIPH_ID_W_RESERVED12:
 816        case PERIPH_ID_W_RESERVED13:
 817        case PERIPH_ID_W_RESERVED15:
 818        case PERIPH_ID_W_RESERVED16:
 819        case PERIPH_ID_W_RESERVED17:
 820        case PERIPH_ID_W_RESERVED18:
 821        case PERIPH_ID_W_RESERVED19:
 822        case PERIPH_ID_W_RESERVED20:
 823        case PERIPH_ID_W_RESERVED23:
 824        case PERIPH_ID_W_RESERVED29:
 825        case PERIPH_ID_W_RESERVED30:
 826        case PERIPH_ID_W_RESERVED31:
 827                return PERIPH_ID_NONE;
 828        default:
 829                return clk_id;
 830        }
 831}
 832
 833/*
 834 * Convert a device tree clock ID to our PLL ID.
 835 *
 836 * @param clk_id        Clock ID according to tegra124 device tree binding
 837 * Return: clock ID, or CLOCK_ID_NONE if the clock ID is invalid
 838 */
 839enum clock_id clk_id_to_pll_id(int clk_id)
 840{
 841        switch (clk_id) {
 842        case TEGRA124_CLK_PLL_C:
 843                return CLOCK_ID_CGENERAL;
 844        case TEGRA124_CLK_PLL_M:
 845                return CLOCK_ID_MEMORY;
 846        case TEGRA124_CLK_PLL_P:
 847                return CLOCK_ID_PERIPH;
 848        case TEGRA124_CLK_PLL_A:
 849                return CLOCK_ID_AUDIO;
 850        case TEGRA124_CLK_PLL_U:
 851                return CLOCK_ID_USB;
 852        case TEGRA124_CLK_PLL_D:
 853        case TEGRA124_CLK_PLL_D_OUT0:
 854                return CLOCK_ID_DISPLAY;
 855        case TEGRA124_CLK_PLL_X:
 856                return CLOCK_ID_XCPU;
 857        case TEGRA124_CLK_PLL_E:
 858                return CLOCK_ID_EPCI;
 859        case TEGRA124_CLK_CLK_32K:
 860                return CLOCK_ID_32KHZ;
 861        case TEGRA124_CLK_CLK_M:
 862                return CLOCK_ID_CLK_M;
 863        default:
 864                return CLOCK_ID_NONE;
 865        }
 866}
 867#endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
 868
 869void clock_early_init(void)
 870{
 871        struct clk_rst_ctlr *clkrst =
 872                (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
 873        struct clk_pll_info *pllinfo;
 874        u32 data;
 875
 876        tegra30_set_up_pllp();
 877
 878        /* clear IDDQ before accessing any other PLLC registers */
 879        pllinfo = &tegra_pll_info_table[CLOCK_ID_CGENERAL];
 880        clrbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_misc, PLLC_IDDQ);
 881        udelay(2);
 882
 883        /*
 884         * PLLC output frequency set to 600Mhz
 885         * PLLD output frequency set to 925Mhz
 886         */
 887        switch (clock_get_osc_freq()) {
 888        case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
 889        case CLOCK_OSC_FREQ_48_0: /* OSC is 48Mhz */
 890                clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8);
 891                clock_set_rate(CLOCK_ID_DISPLAY, 925, 12, 0, 12);
 892                break;
 893
 894        case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
 895                clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
 896                clock_set_rate(CLOCK_ID_DISPLAY, 925, 26, 0, 12);
 897                break;
 898
 899        case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
 900        case CLOCK_OSC_FREQ_16_8: /* OSC is 16.8Mhz */
 901                clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
 902                clock_set_rate(CLOCK_ID_DISPLAY, 925, 13, 0, 12);
 903                break;
 904        case CLOCK_OSC_FREQ_19_2:
 905        case CLOCK_OSC_FREQ_38_4:
 906        default:
 907                /*
 908                 * These are not supported. It is too early to print a
 909                 * message and the UART likely won't work anyway due to the
 910                 * oscillator being wrong.
 911                 */
 912                break;
 913        }
 914
 915        /* PLLC_MISC2: Set dynramp_stepA/B. MISC2 maps to pll_out[1] */
 916        writel(0x00561600, &clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_out[1]);
 917
 918        /* PLLC_MISC: Set LOCK_ENABLE */
 919        pllinfo = &tegra_pll_info_table[CLOCK_ID_CGENERAL];
 920        setbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_misc, (1 << pllinfo->lock_ena));
 921        udelay(2);
 922
 923        /* PLLD_MISC: Set CLKENABLE, CPCON 12, LFCON 1, and enable lock */
 924        pllinfo = &tegra_pll_info_table[CLOCK_ID_DISPLAY];
 925        data = (12 << pllinfo->kcp_shift) | (1 << pllinfo->kvco_shift);
 926        data |= (1 << PLLD_CLKENABLE) | (1 << pllinfo->lock_ena);
 927        writel(data, &clkrst->crc_pll[CLOCK_ID_DISPLAY].pll_misc);
 928        udelay(2);
 929}
 930
 931/*
 932 * clock_early_init_done - Check if clock_early_init() has been called
 933 *
 934 * Check a register that we set up to see if clock_early_init() has already
 935 * been called.
 936 *
 937 * Return: true if clock_early_init() was called, false if not
 938 */
 939bool clock_early_init_done(void)
 940{
 941        struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
 942        u32 val;
 943
 944        val = readl(&clkrst->crc_sclk_brst_pol);
 945
 946        return val == 0x20002222;
 947}
 948
 949void arch_timer_init(void)
 950{
 951        struct sysctr_ctlr *sysctr = (struct sysctr_ctlr *)NV_PA_TSC_BASE;
 952        u32 freq, val;
 953
 954        freq = clock_get_rate(CLOCK_ID_CLK_M);
 955        debug("%s: clk_m freq is %dHz [0x%08X]\n", __func__, freq, freq);
 956
 957        /* ARM CNTFRQ */
 958        asm("mcr p15, 0, %0, c14, c0, 0\n" : : "r" (freq));
 959
 960        /* Only Tegra114+ has the System Counter regs */
 961        debug("%s: setting CNTFID0 to 0x%08X\n", __func__, freq);
 962        writel(freq, &sysctr->cntfid0);
 963
 964        val = readl(&sysctr->cntcr);
 965        val |= TSC_CNTCR_ENABLE | TSC_CNTCR_HDBG;
 966        writel(val, &sysctr->cntcr);
 967        debug("%s: TSC CNTCR = 0x%08X\n", __func__, val);
 968}
 969
 970#define PLLE_SS_CNTL 0x68
 971#define  PLLE_SS_CNTL_SSCINCINTR(x) (((x) & 0x3f) << 24)
 972#define  PLLE_SS_CNTL_SSCINC(x) (((x) & 0xff) << 16)
 973#define  PLLE_SS_CNTL_SSCINVERT (1 << 15)
 974#define  PLLE_SS_CNTL_SSCCENTER (1 << 14)
 975#define  PLLE_SS_CNTL_SSCBYP (1 << 12)
 976#define  PLLE_SS_CNTL_INTERP_RESET (1 << 11)
 977#define  PLLE_SS_CNTL_BYPASS_SS (1 << 10)
 978#define  PLLE_SS_CNTL_SSCMAX(x) (((x) & 0x1ff) << 0)
 979
 980#define PLLE_BASE 0x0e8
 981#define  PLLE_BASE_ENABLE (1 << 30)
 982#define  PLLE_BASE_LOCK_OVERRIDE (1 << 29)
 983#define  PLLE_BASE_PLDIV_CML(x) (((x) & 0xf) << 24)
 984#define  PLLE_BASE_NDIV(x) (((x) & 0xff) << 8)
 985#define  PLLE_BASE_MDIV(x) (((x) & 0xff) << 0)
 986
 987#define PLLE_MISC 0x0ec
 988#define  PLLE_MISC_IDDQ_SWCTL (1 << 14)
 989#define  PLLE_MISC_IDDQ_OVERRIDE (1 << 13)
 990#define  PLLE_MISC_LOCK_ENABLE (1 << 9)
 991#define  PLLE_MISC_PTS (1 << 8)
 992#define  PLLE_MISC_VREG_BG_CTRL(x) (((x) & 0x3) << 4)
 993#define  PLLE_MISC_VREG_CTRL(x) (((x) & 0x3) << 2)
 994
 995#define PLLE_AUX 0x48c
 996#define  PLLE_AUX_SEQ_ENABLE (1 << 24)
 997#define  PLLE_AUX_ENABLE_SWCTL (1 << 4)
 998
 999int tegra_plle_enable(void)
1000{
1001        unsigned int m = 1, n = 200, cpcon = 13;
1002        u32 value;
1003
1004        value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
1005        value &= ~PLLE_BASE_LOCK_OVERRIDE;
1006        writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
1007
1008        value = readl(NV_PA_CLK_RST_BASE + PLLE_AUX);
1009        value |= PLLE_AUX_ENABLE_SWCTL;
1010        value &= ~PLLE_AUX_SEQ_ENABLE;
1011        writel(value, NV_PA_CLK_RST_BASE + PLLE_AUX);
1012
1013        udelay(1);
1014
1015        value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
1016        value |= PLLE_MISC_IDDQ_SWCTL;
1017        value &= ~PLLE_MISC_IDDQ_OVERRIDE;
1018        value |= PLLE_MISC_LOCK_ENABLE;
1019        value |= PLLE_MISC_PTS;
1020        value |= PLLE_MISC_VREG_BG_CTRL(3);
1021        value |= PLLE_MISC_VREG_CTRL(2);
1022        writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
1023
1024        udelay(5);
1025
1026        value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1027        value |= PLLE_SS_CNTL_SSCBYP | PLLE_SS_CNTL_INTERP_RESET |
1028                 PLLE_SS_CNTL_BYPASS_SS;
1029        writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1030
1031        value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
1032        value &= ~PLLE_BASE_PLDIV_CML(0xf);
1033        value &= ~PLLE_BASE_NDIV(0xff);
1034        value &= ~PLLE_BASE_MDIV(0xff);
1035        value |= PLLE_BASE_PLDIV_CML(cpcon);
1036        value |= PLLE_BASE_NDIV(n);
1037        value |= PLLE_BASE_MDIV(m);
1038        writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
1039
1040        udelay(1);
1041
1042        value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
1043        value |= PLLE_BASE_ENABLE;
1044        writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
1045
1046        /* wait for lock */
1047        udelay(300);
1048
1049        value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1050        value &= ~PLLE_SS_CNTL_SSCINVERT;
1051        value &= ~PLLE_SS_CNTL_SSCCENTER;
1052
1053        value &= ~PLLE_SS_CNTL_SSCINCINTR(0x3f);
1054        value &= ~PLLE_SS_CNTL_SSCINC(0xff);
1055        value &= ~PLLE_SS_CNTL_SSCMAX(0x1ff);
1056
1057        value |= PLLE_SS_CNTL_SSCINCINTR(0x20);
1058        value |= PLLE_SS_CNTL_SSCINC(0x01);
1059        value |= PLLE_SS_CNTL_SSCMAX(0x25);
1060
1061        writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1062
1063        value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1064        value &= ~PLLE_SS_CNTL_SSCBYP;
1065        value &= ~PLLE_SS_CNTL_BYPASS_SS;
1066        writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1067
1068        udelay(1);
1069
1070        value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1071        value &= ~PLLE_SS_CNTL_INTERP_RESET;
1072        writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1073
1074        udelay(1);
1075
1076        return 0;
1077}
1078
1079void clock_sor_enable_edp_clock(void)
1080{
1081        u32 *reg;
1082
1083        /* uses PLLP, has a non-standard bit layout. */
1084        reg = get_periph_source_reg(PERIPH_ID_SOR0);
1085        setbits_le32(reg, SOR0_CLK_SEL0);
1086}
1087
1088u32 clock_set_display_rate(u32 frequency)
1089{
1090        /**
1091         * plld (fo) = vco >> p, where 500MHz < vco < 1000MHz
1092         *           = (cf * n) >> p, where 1MHz < cf < 6MHz
1093         *           = ((ref / m) * n) >> p
1094         *
1095         * Iterate the possible values of p (3 bits, 2^7) to find out a minimum
1096         * safe vco, then find best (m, n). since m has only 5 bits, we can
1097         * iterate all possible values.  Note Tegra 124 supports 11 bits for n,
1098         * but our pll_fields has only 10 bits for n.
1099         *
1100         * Note values undershoot or overshoot target output frequency may not
1101         * work if the values are not in "safe" range by panel specification.
1102         */
1103        u32 ref = clock_get_rate(CLOCK_ID_OSC);
1104        u32 divm, divn, divp, cpcon;
1105        u32 cf, vco, rounded_rate = frequency;
1106        u32 diff, best_diff, best_m = 0, best_n = 0, best_p;
1107        const u32 max_m = 1 << 5, max_n = 1 << 10, max_p = 1 << 3,
1108                  mhz = 1000 * 1000, min_vco = 500 * mhz, max_vco = 1000 * mhz,
1109                  min_cf = 1 * mhz, max_cf = 6 * mhz;
1110        int mux_bits, divider_bits, source;
1111
1112        for (divp = 0, vco = frequency; vco < min_vco && divp < max_p; divp++)
1113                vco <<= 1;
1114
1115        if (vco < min_vco || vco > max_vco) {
1116                printf("%s: Cannot find out a supported VCO for Frequency (%u)\n",
1117                       __func__, frequency);
1118                return 0;
1119        }
1120
1121        best_p = divp;
1122        best_diff = vco;
1123
1124        for (divm = 1; divm < max_m && best_diff; divm++) {
1125                cf = ref / divm;
1126                if (cf < min_cf)
1127                        break;
1128                if (cf > max_cf)
1129                        continue;
1130
1131                divn = vco / cf;
1132                if (divn >= max_n)
1133                        continue;
1134
1135                diff = vco - divn * cf;
1136                if (divn + 1 < max_n && diff > cf / 2) {
1137                        divn++;
1138                        diff = cf - diff;
1139                }
1140
1141                if (diff >= best_diff)
1142                        continue;
1143
1144                best_diff = diff;
1145                best_m = divm;
1146                best_n = divn;
1147        }
1148
1149        if (best_n < 50)
1150                cpcon = 2;
1151        else if (best_n < 300)
1152                cpcon = 3;
1153        else if (best_n < 600)
1154                cpcon = 8;
1155        else
1156                cpcon = 12;
1157
1158        if (best_diff) {
1159                printf("%s: Failed to match output frequency %u, best difference is %u\n",
1160                       __func__, frequency, best_diff);
1161                rounded_rate = (ref / best_m * best_n) >> best_p;
1162        }
1163
1164        debug("%s: PLLD=%u ref=%u, m/n/p/cpcon=%u/%u/%u/%u\n",
1165              __func__, rounded_rate, ref, best_m, best_n, best_p, cpcon);
1166
1167        source = get_periph_clock_source(PERIPH_ID_DISP1, CLOCK_ID_DISPLAY,
1168                                         &mux_bits, &divider_bits);
1169        clock_ll_set_source_bits(PERIPH_ID_DISP1, mux_bits, source);
1170        clock_set_rate(CLOCK_ID_DISPLAY, best_n, best_m, best_p, cpcon);
1171
1172        return rounded_rate;
1173}
1174
1175void clock_set_up_plldp(void)
1176{
1177        struct clk_rst_ctlr *clkrst =
1178                        (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
1179        u32 value;
1180
1181        value = PLLDP_SS_CFG_UNDOCUMENTED | PLLDP_SS_CFG_DITHER;
1182        writel(value | PLLDP_SS_CFG_CLAMP, &clkrst->crc_plldp_ss_cfg);
1183        clock_start_pll(CLOCK_ID_DP, 1, 90, 3, 0, 0);
1184        writel(value, &clkrst->crc_plldp_ss_cfg);
1185}
1186
1187struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid)
1188{
1189        struct clk_rst_ctlr *clkrst =
1190                        (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
1191
1192        if (clkid == CLOCK_ID_DP)
1193                return &clkrst->plldp;
1194
1195        return NULL;
1196}
1197
1198struct periph_clk_init periph_clk_init_table[] = {
1199        { PERIPH_ID_SBC1, CLOCK_ID_PERIPH },
1200        { PERIPH_ID_SBC2, CLOCK_ID_PERIPH },
1201        { PERIPH_ID_SBC3, CLOCK_ID_PERIPH },
1202        { PERIPH_ID_SBC4, CLOCK_ID_PERIPH },
1203        { PERIPH_ID_SBC5, CLOCK_ID_PERIPH },
1204        { PERIPH_ID_SBC6, CLOCK_ID_PERIPH },
1205        { PERIPH_ID_HOST1X, CLOCK_ID_PERIPH },
1206        { PERIPH_ID_DISP1, CLOCK_ID_CGENERAL },
1207        { PERIPH_ID_SDMMC1, CLOCK_ID_PERIPH },
1208        { PERIPH_ID_SDMMC2, CLOCK_ID_PERIPH },
1209        { PERIPH_ID_SDMMC3, CLOCK_ID_PERIPH },
1210        { PERIPH_ID_SDMMC4, CLOCK_ID_PERIPH },
1211        { PERIPH_ID_PWM, CLOCK_ID_PERIPH },
1212        { PERIPH_ID_I2C1, CLOCK_ID_PERIPH },
1213        { PERIPH_ID_I2C2, CLOCK_ID_PERIPH },
1214        { PERIPH_ID_I2C3, CLOCK_ID_PERIPH },
1215        { PERIPH_ID_I2C4, CLOCK_ID_PERIPH },
1216        { PERIPH_ID_I2C5, CLOCK_ID_PERIPH },
1217        { PERIPH_ID_I2C6, CLOCK_ID_PERIPH },
1218        { -1, },
1219};
1220