uboot/fs/ubifs/tnc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Adrian Hunter
   8 *          Artem Bityutskiy (Битюцкий Артём)
   9 */
  10
  11/*
  12 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
  13 * the UBIFS B-tree.
  14 *
  15 * At the moment the locking rules of the TNC tree are quite simple and
  16 * straightforward. We just have a mutex and lock it when we traverse the
  17 * tree. If a znode is not in memory, we read it from flash while still having
  18 * the mutex locked.
  19 */
  20
  21#ifndef __UBOOT__
  22#include <log.h>
  23#include <dm/devres.h>
  24#include <linux/crc32.h>
  25#include <linux/slab.h>
  26#include <u-boot/crc.h>
  27#else
  28#include <linux/bitops.h>
  29#include <linux/bug.h>
  30#include <linux/compat.h>
  31#include <linux/err.h>
  32#include <linux/stat.h>
  33#endif
  34#include "ubifs.h"
  35
  36/*
  37 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
  38 * @NAME_LESS: name corresponding to the first argument is less than second
  39 * @NAME_MATCHES: names match
  40 * @NAME_GREATER: name corresponding to the second argument is greater than
  41 *                first
  42 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
  43 *
  44 * These constants were introduce to improve readability.
  45 */
  46enum {
  47        NAME_LESS    = 0,
  48        NAME_MATCHES = 1,
  49        NAME_GREATER = 2,
  50        NOT_ON_MEDIA = 3,
  51};
  52
  53static int try_read_node(const struct ubifs_info *c, void *buf, int type,
  54                         int len, int lnum, int offs);
  55static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
  56                              struct ubifs_zbranch *zbr, void *node);
  57
  58/**
  59 * insert_old_idx - record an index node obsoleted since the last commit start.
  60 * @c: UBIFS file-system description object
  61 * @lnum: LEB number of obsoleted index node
  62 * @offs: offset of obsoleted index node
  63 *
  64 * Returns %0 on success, and a negative error code on failure.
  65 *
  66 * For recovery, there must always be a complete intact version of the index on
  67 * flash at all times. That is called the "old index". It is the index as at the
  68 * time of the last successful commit. Many of the index nodes in the old index
  69 * may be dirty, but they must not be erased until the next successful commit
  70 * (at which point that index becomes the old index).
  71 *
  72 * That means that the garbage collection and the in-the-gaps method of
  73 * committing must be able to determine if an index node is in the old index.
  74 * Most of the old index nodes can be found by looking up the TNC using the
  75 * 'lookup_znode()' function. However, some of the old index nodes may have
  76 * been deleted from the current index or may have been changed so much that
  77 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
  78 * That is what this function does. The RB-tree is ordered by LEB number and
  79 * offset because they uniquely identify the old index node.
  80 */
  81static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
  82{
  83        struct ubifs_old_idx *old_idx, *o;
  84        struct rb_node **p, *parent = NULL;
  85
  86        old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
  87        if (unlikely(!old_idx))
  88                return -ENOMEM;
  89        old_idx->lnum = lnum;
  90        old_idx->offs = offs;
  91
  92        p = &c->old_idx.rb_node;
  93        while (*p) {
  94                parent = *p;
  95                o = rb_entry(parent, struct ubifs_old_idx, rb);
  96                if (lnum < o->lnum)
  97                        p = &(*p)->rb_left;
  98                else if (lnum > o->lnum)
  99                        p = &(*p)->rb_right;
 100                else if (offs < o->offs)
 101                        p = &(*p)->rb_left;
 102                else if (offs > o->offs)
 103                        p = &(*p)->rb_right;
 104                else {
 105                        ubifs_err(c, "old idx added twice!");
 106                        kfree(old_idx);
 107                        return 0;
 108                }
 109        }
 110        rb_link_node(&old_idx->rb, parent, p);
 111        rb_insert_color(&old_idx->rb, &c->old_idx);
 112        return 0;
 113}
 114
 115/**
 116 * insert_old_idx_znode - record a znode obsoleted since last commit start.
 117 * @c: UBIFS file-system description object
 118 * @znode: znode of obsoleted index node
 119 *
 120 * Returns %0 on success, and a negative error code on failure.
 121 */
 122int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
 123{
 124        if (znode->parent) {
 125                struct ubifs_zbranch *zbr;
 126
 127                zbr = &znode->parent->zbranch[znode->iip];
 128                if (zbr->len)
 129                        return insert_old_idx(c, zbr->lnum, zbr->offs);
 130        } else
 131                if (c->zroot.len)
 132                        return insert_old_idx(c, c->zroot.lnum,
 133                                              c->zroot.offs);
 134        return 0;
 135}
 136
 137/**
 138 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
 139 * @c: UBIFS file-system description object
 140 * @znode: znode of obsoleted index node
 141 *
 142 * Returns %0 on success, and a negative error code on failure.
 143 */
 144static int ins_clr_old_idx_znode(struct ubifs_info *c,
 145                                 struct ubifs_znode *znode)
 146{
 147        int err;
 148
 149        if (znode->parent) {
 150                struct ubifs_zbranch *zbr;
 151
 152                zbr = &znode->parent->zbranch[znode->iip];
 153                if (zbr->len) {
 154                        err = insert_old_idx(c, zbr->lnum, zbr->offs);
 155                        if (err)
 156                                return err;
 157                        zbr->lnum = 0;
 158                        zbr->offs = 0;
 159                        zbr->len = 0;
 160                }
 161        } else
 162                if (c->zroot.len) {
 163                        err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
 164                        if (err)
 165                                return err;
 166                        c->zroot.lnum = 0;
 167                        c->zroot.offs = 0;
 168                        c->zroot.len = 0;
 169                }
 170        return 0;
 171}
 172
 173/**
 174 * destroy_old_idx - destroy the old_idx RB-tree.
 175 * @c: UBIFS file-system description object
 176 *
 177 * During start commit, the old_idx RB-tree is used to avoid overwriting index
 178 * nodes that were in the index last commit but have since been deleted.  This
 179 * is necessary for recovery i.e. the old index must be kept intact until the
 180 * new index is successfully written.  The old-idx RB-tree is used for the
 181 * in-the-gaps method of writing index nodes and is destroyed every commit.
 182 */
 183void destroy_old_idx(struct ubifs_info *c)
 184{
 185        struct ubifs_old_idx *old_idx, *n;
 186
 187        rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
 188                kfree(old_idx);
 189
 190        c->old_idx = RB_ROOT;
 191}
 192
 193/**
 194 * copy_znode - copy a dirty znode.
 195 * @c: UBIFS file-system description object
 196 * @znode: znode to copy
 197 *
 198 * A dirty znode being committed may not be changed, so it is copied.
 199 */
 200static struct ubifs_znode *copy_znode(struct ubifs_info *c,
 201                                      struct ubifs_znode *znode)
 202{
 203        struct ubifs_znode *zn;
 204
 205        zn = kmalloc(c->max_znode_sz, GFP_NOFS);
 206        if (unlikely(!zn))
 207                return ERR_PTR(-ENOMEM);
 208
 209        memcpy(zn, znode, c->max_znode_sz);
 210        zn->cnext = NULL;
 211        __set_bit(DIRTY_ZNODE, &zn->flags);
 212        __clear_bit(COW_ZNODE, &zn->flags);
 213
 214        ubifs_assert(!ubifs_zn_obsolete(znode));
 215        __set_bit(OBSOLETE_ZNODE, &znode->flags);
 216
 217        if (znode->level != 0) {
 218                int i;
 219                const int n = zn->child_cnt;
 220
 221                /* The children now have new parent */
 222                for (i = 0; i < n; i++) {
 223                        struct ubifs_zbranch *zbr = &zn->zbranch[i];
 224
 225                        if (zbr->znode)
 226                                zbr->znode->parent = zn;
 227                }
 228        }
 229
 230        atomic_long_inc(&c->dirty_zn_cnt);
 231        return zn;
 232}
 233
 234/**
 235 * add_idx_dirt - add dirt due to a dirty znode.
 236 * @c: UBIFS file-system description object
 237 * @lnum: LEB number of index node
 238 * @dirt: size of index node
 239 *
 240 * This function updates lprops dirty space and the new size of the index.
 241 */
 242static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
 243{
 244        c->calc_idx_sz -= ALIGN(dirt, 8);
 245        return ubifs_add_dirt(c, lnum, dirt);
 246}
 247
 248/**
 249 * dirty_cow_znode - ensure a znode is not being committed.
 250 * @c: UBIFS file-system description object
 251 * @zbr: branch of znode to check
 252 *
 253 * Returns dirtied znode on success or negative error code on failure.
 254 */
 255static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
 256                                           struct ubifs_zbranch *zbr)
 257{
 258        struct ubifs_znode *znode = zbr->znode;
 259        struct ubifs_znode *zn;
 260        int err;
 261
 262        if (!ubifs_zn_cow(znode)) {
 263                /* znode is not being committed */
 264                if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
 265                        atomic_long_inc(&c->dirty_zn_cnt);
 266                        atomic_long_dec(&c->clean_zn_cnt);
 267                        atomic_long_dec(&ubifs_clean_zn_cnt);
 268                        err = add_idx_dirt(c, zbr->lnum, zbr->len);
 269                        if (unlikely(err))
 270                                return ERR_PTR(err);
 271                }
 272                return znode;
 273        }
 274
 275        zn = copy_znode(c, znode);
 276        if (IS_ERR(zn))
 277                return zn;
 278
 279        if (zbr->len) {
 280                err = insert_old_idx(c, zbr->lnum, zbr->offs);
 281                if (unlikely(err))
 282                        return ERR_PTR(err);
 283                err = add_idx_dirt(c, zbr->lnum, zbr->len);
 284        } else
 285                err = 0;
 286
 287        zbr->znode = zn;
 288        zbr->lnum = 0;
 289        zbr->offs = 0;
 290        zbr->len = 0;
 291
 292        if (unlikely(err))
 293                return ERR_PTR(err);
 294        return zn;
 295}
 296
 297/**
 298 * lnc_add - add a leaf node to the leaf node cache.
 299 * @c: UBIFS file-system description object
 300 * @zbr: zbranch of leaf node
 301 * @node: leaf node
 302 *
 303 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
 304 * purpose of the leaf node cache is to save re-reading the same leaf node over
 305 * and over again. Most things are cached by VFS, however the file system must
 306 * cache directory entries for readdir and for resolving hash collisions. The
 307 * present implementation of the leaf node cache is extremely simple, and
 308 * allows for error returns that are not used but that may be needed if a more
 309 * complex implementation is created.
 310 *
 311 * Note, this function does not add the @node object to LNC directly, but
 312 * allocates a copy of the object and adds the copy to LNC. The reason for this
 313 * is that @node has been allocated outside of the TNC subsystem and will be
 314 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
 315 * may be changed at any time, e.g. freed by the shrinker.
 316 */
 317static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 318                   const void *node)
 319{
 320        int err;
 321        void *lnc_node;
 322        const struct ubifs_dent_node *dent = node;
 323
 324        ubifs_assert(!zbr->leaf);
 325        ubifs_assert(zbr->len != 0);
 326        ubifs_assert(is_hash_key(c, &zbr->key));
 327
 328        err = ubifs_validate_entry(c, dent);
 329        if (err) {
 330                dump_stack();
 331                ubifs_dump_node(c, dent);
 332                return err;
 333        }
 334
 335        lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
 336        if (!lnc_node)
 337                /* We don't have to have the cache, so no error */
 338                return 0;
 339
 340        zbr->leaf = lnc_node;
 341        return 0;
 342}
 343
 344 /**
 345 * lnc_add_directly - add a leaf node to the leaf-node-cache.
 346 * @c: UBIFS file-system description object
 347 * @zbr: zbranch of leaf node
 348 * @node: leaf node
 349 *
 350 * This function is similar to 'lnc_add()', but it does not create a copy of
 351 * @node but inserts @node to TNC directly.
 352 */
 353static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 354                            void *node)
 355{
 356        int err;
 357
 358        ubifs_assert(!zbr->leaf);
 359        ubifs_assert(zbr->len != 0);
 360
 361        err = ubifs_validate_entry(c, node);
 362        if (err) {
 363                dump_stack();
 364                ubifs_dump_node(c, node);
 365                return err;
 366        }
 367
 368        zbr->leaf = node;
 369        return 0;
 370}
 371
 372/**
 373 * lnc_free - remove a leaf node from the leaf node cache.
 374 * @zbr: zbranch of leaf node
 375 * @node: leaf node
 376 */
 377static void lnc_free(struct ubifs_zbranch *zbr)
 378{
 379        if (!zbr->leaf)
 380                return;
 381        kfree(zbr->leaf);
 382        zbr->leaf = NULL;
 383}
 384
 385/**
 386 * tnc_read_node_nm - read a "hashed" leaf node.
 387 * @c: UBIFS file-system description object
 388 * @zbr: key and position of the node
 389 * @node: node is returned here
 390 *
 391 * This function reads a "hashed" node defined by @zbr from the leaf node cache
 392 * (in it is there) or from the hash media, in which case the node is also
 393 * added to LNC. Returns zero in case of success or a negative negative error
 394 * code in case of failure.
 395 */
 396static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 397                            void *node)
 398{
 399        int err;
 400
 401        ubifs_assert(is_hash_key(c, &zbr->key));
 402
 403        if (zbr->leaf) {
 404                /* Read from the leaf node cache */
 405                ubifs_assert(zbr->len != 0);
 406                memcpy(node, zbr->leaf, zbr->len);
 407                return 0;
 408        }
 409
 410        if (c->replaying) {
 411                err = fallible_read_node(c, &zbr->key, zbr, node);
 412                /*
 413                 * When the node was not found, return -ENOENT, 0 otherwise.
 414                 * Negative return codes stay as-is.
 415                 */
 416                if (err == 0)
 417                        err = -ENOENT;
 418                else if (err == 1)
 419                        err = 0;
 420        } else {
 421                err = ubifs_tnc_read_node(c, zbr, node);
 422        }
 423        if (err)
 424                return err;
 425
 426        /* Add the node to the leaf node cache */
 427        err = lnc_add(c, zbr, node);
 428        return err;
 429}
 430
 431/**
 432 * try_read_node - read a node if it is a node.
 433 * @c: UBIFS file-system description object
 434 * @buf: buffer to read to
 435 * @type: node type
 436 * @len: node length (not aligned)
 437 * @lnum: LEB number of node to read
 438 * @offs: offset of node to read
 439 *
 440 * This function tries to read a node of known type and length, checks it and
 441 * stores it in @buf. This function returns %1 if a node is present and %0 if
 442 * a node is not present. A negative error code is returned for I/O errors.
 443 * This function performs that same function as ubifs_read_node except that
 444 * it does not require that there is actually a node present and instead
 445 * the return code indicates if a node was read.
 446 *
 447 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
 448 * is true (it is controlled by corresponding mount option). However, if
 449 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
 450 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
 451 * because during mounting or re-mounting from R/O mode to R/W mode we may read
 452 * journal nodes (when replying the journal or doing the recovery) and the
 453 * journal nodes may potentially be corrupted, so checking is required.
 454 */
 455static int try_read_node(const struct ubifs_info *c, void *buf, int type,
 456                         int len, int lnum, int offs)
 457{
 458        int err, node_len;
 459        struct ubifs_ch *ch = buf;
 460        uint32_t crc, node_crc;
 461
 462        dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
 463
 464        err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
 465        if (err) {
 466                ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
 467                          type, lnum, offs, err);
 468                return err;
 469        }
 470
 471        if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
 472                return 0;
 473
 474        if (ch->node_type != type)
 475                return 0;
 476
 477        node_len = le32_to_cpu(ch->len);
 478        if (node_len != len)
 479                return 0;
 480
 481        if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
 482            !c->remounting_rw)
 483                return 1;
 484
 485        crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
 486        node_crc = le32_to_cpu(ch->crc);
 487        if (crc != node_crc)
 488                return 0;
 489
 490        return 1;
 491}
 492
 493/**
 494 * fallible_read_node - try to read a leaf node.
 495 * @c: UBIFS file-system description object
 496 * @key:  key of node to read
 497 * @zbr:  position of node
 498 * @node: node returned
 499 *
 500 * This function tries to read a node and returns %1 if the node is read, %0
 501 * if the node is not present, and a negative error code in the case of error.
 502 */
 503static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
 504                              struct ubifs_zbranch *zbr, void *node)
 505{
 506        int ret;
 507
 508        dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
 509
 510        ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
 511                            zbr->offs);
 512        if (ret == 1) {
 513                union ubifs_key node_key;
 514                struct ubifs_dent_node *dent = node;
 515
 516                /* All nodes have key in the same place */
 517                key_read(c, &dent->key, &node_key);
 518                if (keys_cmp(c, key, &node_key) != 0)
 519                        ret = 0;
 520        }
 521        if (ret == 0 && c->replaying)
 522                dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
 523                        zbr->lnum, zbr->offs, zbr->len);
 524        return ret;
 525}
 526
 527/**
 528 * matches_name - determine if a direntry or xattr entry matches a given name.
 529 * @c: UBIFS file-system description object
 530 * @zbr: zbranch of dent
 531 * @nm: name to match
 532 *
 533 * This function checks if xentry/direntry referred by zbranch @zbr matches name
 534 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
 535 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
 536 * of failure, a negative error code is returned.
 537 */
 538static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 539                        const struct qstr *nm)
 540{
 541        struct ubifs_dent_node *dent;
 542        int nlen, err;
 543
 544        /* If possible, match against the dent in the leaf node cache */
 545        if (!zbr->leaf) {
 546                dent = kmalloc(zbr->len, GFP_NOFS);
 547                if (!dent)
 548                        return -ENOMEM;
 549
 550                err = ubifs_tnc_read_node(c, zbr, dent);
 551                if (err)
 552                        goto out_free;
 553
 554                /* Add the node to the leaf node cache */
 555                err = lnc_add_directly(c, zbr, dent);
 556                if (err)
 557                        goto out_free;
 558        } else
 559                dent = zbr->leaf;
 560
 561        nlen = le16_to_cpu(dent->nlen);
 562        err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
 563        if (err == 0) {
 564                if (nlen == nm->len)
 565                        return NAME_MATCHES;
 566                else if (nlen < nm->len)
 567                        return NAME_LESS;
 568                else
 569                        return NAME_GREATER;
 570        } else if (err < 0)
 571                return NAME_LESS;
 572        else
 573                return NAME_GREATER;
 574
 575out_free:
 576        kfree(dent);
 577        return err;
 578}
 579
 580/**
 581 * get_znode - get a TNC znode that may not be loaded yet.
 582 * @c: UBIFS file-system description object
 583 * @znode: parent znode
 584 * @n: znode branch slot number
 585 *
 586 * This function returns the znode or a negative error code.
 587 */
 588static struct ubifs_znode *get_znode(struct ubifs_info *c,
 589                                     struct ubifs_znode *znode, int n)
 590{
 591        struct ubifs_zbranch *zbr;
 592
 593        zbr = &znode->zbranch[n];
 594        if (zbr->znode)
 595                znode = zbr->znode;
 596        else
 597                znode = ubifs_load_znode(c, zbr, znode, n);
 598        return znode;
 599}
 600
 601/**
 602 * tnc_next - find next TNC entry.
 603 * @c: UBIFS file-system description object
 604 * @zn: znode is passed and returned here
 605 * @n: znode branch slot number is passed and returned here
 606 *
 607 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
 608 * no next entry, or a negative error code otherwise.
 609 */
 610static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
 611{
 612        struct ubifs_znode *znode = *zn;
 613        int nn = *n;
 614
 615        nn += 1;
 616        if (nn < znode->child_cnt) {
 617                *n = nn;
 618                return 0;
 619        }
 620        while (1) {
 621                struct ubifs_znode *zp;
 622
 623                zp = znode->parent;
 624                if (!zp)
 625                        return -ENOENT;
 626                nn = znode->iip + 1;
 627                znode = zp;
 628                if (nn < znode->child_cnt) {
 629                        znode = get_znode(c, znode, nn);
 630                        if (IS_ERR(znode))
 631                                return PTR_ERR(znode);
 632                        while (znode->level != 0) {
 633                                znode = get_znode(c, znode, 0);
 634                                if (IS_ERR(znode))
 635                                        return PTR_ERR(znode);
 636                        }
 637                        nn = 0;
 638                        break;
 639                }
 640        }
 641        *zn = znode;
 642        *n = nn;
 643        return 0;
 644}
 645
 646/**
 647 * tnc_prev - find previous TNC entry.
 648 * @c: UBIFS file-system description object
 649 * @zn: znode is returned here
 650 * @n: znode branch slot number is passed and returned here
 651 *
 652 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
 653 * there is no next entry, or a negative error code otherwise.
 654 */
 655static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
 656{
 657        struct ubifs_znode *znode = *zn;
 658        int nn = *n;
 659
 660        if (nn > 0) {
 661                *n = nn - 1;
 662                return 0;
 663        }
 664        while (1) {
 665                struct ubifs_znode *zp;
 666
 667                zp = znode->parent;
 668                if (!zp)
 669                        return -ENOENT;
 670                nn = znode->iip - 1;
 671                znode = zp;
 672                if (nn >= 0) {
 673                        znode = get_znode(c, znode, nn);
 674                        if (IS_ERR(znode))
 675                                return PTR_ERR(znode);
 676                        while (znode->level != 0) {
 677                                nn = znode->child_cnt - 1;
 678                                znode = get_znode(c, znode, nn);
 679                                if (IS_ERR(znode))
 680                                        return PTR_ERR(znode);
 681                        }
 682                        nn = znode->child_cnt - 1;
 683                        break;
 684                }
 685        }
 686        *zn = znode;
 687        *n = nn;
 688        return 0;
 689}
 690
 691/**
 692 * resolve_collision - resolve a collision.
 693 * @c: UBIFS file-system description object
 694 * @key: key of a directory or extended attribute entry
 695 * @zn: znode is returned here
 696 * @n: zbranch number is passed and returned here
 697 * @nm: name of the entry
 698 *
 699 * This function is called for "hashed" keys to make sure that the found key
 700 * really corresponds to the looked up node (directory or extended attribute
 701 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
 702 * %0 is returned if @nm is not found and @zn and @n are set to the previous
 703 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
 704 * This means that @n may be set to %-1 if the leftmost key in @zn is the
 705 * previous one. A negative error code is returned on failures.
 706 */
 707static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
 708                             struct ubifs_znode **zn, int *n,
 709                             const struct qstr *nm)
 710{
 711        int err;
 712
 713        err = matches_name(c, &(*zn)->zbranch[*n], nm);
 714        if (unlikely(err < 0))
 715                return err;
 716        if (err == NAME_MATCHES)
 717                return 1;
 718
 719        if (err == NAME_GREATER) {
 720                /* Look left */
 721                while (1) {
 722                        err = tnc_prev(c, zn, n);
 723                        if (err == -ENOENT) {
 724                                ubifs_assert(*n == 0);
 725                                *n = -1;
 726                                return 0;
 727                        }
 728                        if (err < 0)
 729                                return err;
 730                        if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
 731                                /*
 732                                 * We have found the branch after which we would
 733                                 * like to insert, but inserting in this znode
 734                                 * may still be wrong. Consider the following 3
 735                                 * znodes, in the case where we are resolving a
 736                                 * collision with Key2.
 737                                 *
 738                                 *                  znode zp
 739                                 *            ----------------------
 740                                 * level 1     |  Key0  |  Key1  |
 741                                 *            -----------------------
 742                                 *                 |            |
 743                                 *       znode za  |            |  znode zb
 744                                 *          ------------      ------------
 745                                 * level 0  |  Key0  |        |  Key2  |
 746                                 *          ------------      ------------
 747                                 *
 748                                 * The lookup finds Key2 in znode zb. Lets say
 749                                 * there is no match and the name is greater so
 750                                 * we look left. When we find Key0, we end up
 751                                 * here. If we return now, we will insert into
 752                                 * znode za at slot n = 1.  But that is invalid
 753                                 * according to the parent's keys.  Key2 must
 754                                 * be inserted into znode zb.
 755                                 *
 756                                 * Note, this problem is not relevant for the
 757                                 * case when we go right, because
 758                                 * 'tnc_insert()' would correct the parent key.
 759                                 */
 760                                if (*n == (*zn)->child_cnt - 1) {
 761                                        err = tnc_next(c, zn, n);
 762                                        if (err) {
 763                                                /* Should be impossible */
 764                                                ubifs_assert(0);
 765                                                if (err == -ENOENT)
 766                                                        err = -EINVAL;
 767                                                return err;
 768                                        }
 769                                        ubifs_assert(*n == 0);
 770                                        *n = -1;
 771                                }
 772                                return 0;
 773                        }
 774                        err = matches_name(c, &(*zn)->zbranch[*n], nm);
 775                        if (err < 0)
 776                                return err;
 777                        if (err == NAME_LESS)
 778                                return 0;
 779                        if (err == NAME_MATCHES)
 780                                return 1;
 781                        ubifs_assert(err == NAME_GREATER);
 782                }
 783        } else {
 784                int nn = *n;
 785                struct ubifs_znode *znode = *zn;
 786
 787                /* Look right */
 788                while (1) {
 789                        err = tnc_next(c, &znode, &nn);
 790                        if (err == -ENOENT)
 791                                return 0;
 792                        if (err < 0)
 793                                return err;
 794                        if (keys_cmp(c, &znode->zbranch[nn].key, key))
 795                                return 0;
 796                        err = matches_name(c, &znode->zbranch[nn], nm);
 797                        if (err < 0)
 798                                return err;
 799                        if (err == NAME_GREATER)
 800                                return 0;
 801                        *zn = znode;
 802                        *n = nn;
 803                        if (err == NAME_MATCHES)
 804                                return 1;
 805                        ubifs_assert(err == NAME_LESS);
 806                }
 807        }
 808}
 809
 810/**
 811 * fallible_matches_name - determine if a dent matches a given name.
 812 * @c: UBIFS file-system description object
 813 * @zbr: zbranch of dent
 814 * @nm: name to match
 815 *
 816 * This is a "fallible" version of 'matches_name()' function which does not
 817 * panic if the direntry/xentry referred by @zbr does not exist on the media.
 818 *
 819 * This function checks if xentry/direntry referred by zbranch @zbr matches name
 820 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
 821 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
 822 * if xentry/direntry referred by @zbr does not exist on the media. A negative
 823 * error code is returned in case of failure.
 824 */
 825static int fallible_matches_name(struct ubifs_info *c,
 826                                 struct ubifs_zbranch *zbr,
 827                                 const struct qstr *nm)
 828{
 829        struct ubifs_dent_node *dent;
 830        int nlen, err;
 831
 832        /* If possible, match against the dent in the leaf node cache */
 833        if (!zbr->leaf) {
 834                dent = kmalloc(zbr->len, GFP_NOFS);
 835                if (!dent)
 836                        return -ENOMEM;
 837
 838                err = fallible_read_node(c, &zbr->key, zbr, dent);
 839                if (err < 0)
 840                        goto out_free;
 841                if (err == 0) {
 842                        /* The node was not present */
 843                        err = NOT_ON_MEDIA;
 844                        goto out_free;
 845                }
 846                ubifs_assert(err == 1);
 847
 848                err = lnc_add_directly(c, zbr, dent);
 849                if (err)
 850                        goto out_free;
 851        } else
 852                dent = zbr->leaf;
 853
 854        nlen = le16_to_cpu(dent->nlen);
 855        err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
 856        if (err == 0) {
 857                if (nlen == nm->len)
 858                        return NAME_MATCHES;
 859                else if (nlen < nm->len)
 860                        return NAME_LESS;
 861                else
 862                        return NAME_GREATER;
 863        } else if (err < 0)
 864                return NAME_LESS;
 865        else
 866                return NAME_GREATER;
 867
 868out_free:
 869        kfree(dent);
 870        return err;
 871}
 872
 873/**
 874 * fallible_resolve_collision - resolve a collision even if nodes are missing.
 875 * @c: UBIFS file-system description object
 876 * @key: key
 877 * @zn: znode is returned here
 878 * @n: branch number is passed and returned here
 879 * @nm: name of directory entry
 880 * @adding: indicates caller is adding a key to the TNC
 881 *
 882 * This is a "fallible" version of the 'resolve_collision()' function which
 883 * does not panic if one of the nodes referred to by TNC does not exist on the
 884 * media. This may happen when replaying the journal if a deleted node was
 885 * Garbage-collected and the commit was not done. A branch that refers to a node
 886 * that is not present is called a dangling branch. The following are the return
 887 * codes for this function:
 888 *  o if @nm was found, %1 is returned and @zn and @n are set to the found
 889 *    branch;
 890 *  o if we are @adding and @nm was not found, %0 is returned;
 891 *  o if we are not @adding and @nm was not found, but a dangling branch was
 892 *    found, then %1 is returned and @zn and @n are set to the dangling branch;
 893 *  o a negative error code is returned in case of failure.
 894 */
 895static int fallible_resolve_collision(struct ubifs_info *c,
 896                                      const union ubifs_key *key,
 897                                      struct ubifs_znode **zn, int *n,
 898                                      const struct qstr *nm, int adding)
 899{
 900        struct ubifs_znode *o_znode = NULL, *znode = *zn;
 901        int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
 902
 903        cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
 904        if (unlikely(cmp < 0))
 905                return cmp;
 906        if (cmp == NAME_MATCHES)
 907                return 1;
 908        if (cmp == NOT_ON_MEDIA) {
 909                o_znode = znode;
 910                o_n = nn;
 911                /*
 912                 * We are unlucky and hit a dangling branch straight away.
 913                 * Now we do not really know where to go to find the needed
 914                 * branch - to the left or to the right. Well, let's try left.
 915                 */
 916                unsure = 1;
 917        } else if (!adding)
 918                unsure = 1; /* Remove a dangling branch wherever it is */
 919
 920        if (cmp == NAME_GREATER || unsure) {
 921                /* Look left */
 922                while (1) {
 923                        err = tnc_prev(c, zn, n);
 924                        if (err == -ENOENT) {
 925                                ubifs_assert(*n == 0);
 926                                *n = -1;
 927                                break;
 928                        }
 929                        if (err < 0)
 930                                return err;
 931                        if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
 932                                /* See comments in 'resolve_collision()' */
 933                                if (*n == (*zn)->child_cnt - 1) {
 934                                        err = tnc_next(c, zn, n);
 935                                        if (err) {
 936                                                /* Should be impossible */
 937                                                ubifs_assert(0);
 938                                                if (err == -ENOENT)
 939                                                        err = -EINVAL;
 940                                                return err;
 941                                        }
 942                                        ubifs_assert(*n == 0);
 943                                        *n = -1;
 944                                }
 945                                break;
 946                        }
 947                        err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
 948                        if (err < 0)
 949                                return err;
 950                        if (err == NAME_MATCHES)
 951                                return 1;
 952                        if (err == NOT_ON_MEDIA) {
 953                                o_znode = *zn;
 954                                o_n = *n;
 955                                continue;
 956                        }
 957                        if (!adding)
 958                                continue;
 959                        if (err == NAME_LESS)
 960                                break;
 961                        else
 962                                unsure = 0;
 963                }
 964        }
 965
 966        if (cmp == NAME_LESS || unsure) {
 967                /* Look right */
 968                *zn = znode;
 969                *n = nn;
 970                while (1) {
 971                        err = tnc_next(c, &znode, &nn);
 972                        if (err == -ENOENT)
 973                                break;
 974                        if (err < 0)
 975                                return err;
 976                        if (keys_cmp(c, &znode->zbranch[nn].key, key))
 977                                break;
 978                        err = fallible_matches_name(c, &znode->zbranch[nn], nm);
 979                        if (err < 0)
 980                                return err;
 981                        if (err == NAME_GREATER)
 982                                break;
 983                        *zn = znode;
 984                        *n = nn;
 985                        if (err == NAME_MATCHES)
 986                                return 1;
 987                        if (err == NOT_ON_MEDIA) {
 988                                o_znode = znode;
 989                                o_n = nn;
 990                        }
 991                }
 992        }
 993
 994        /* Never match a dangling branch when adding */
 995        if (adding || !o_znode)
 996                return 0;
 997
 998        dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
 999                o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
1000                o_znode->zbranch[o_n].len);
1001        *zn = o_znode;
1002        *n = o_n;
1003        return 1;
1004}
1005
1006/**
1007 * matches_position - determine if a zbranch matches a given position.
1008 * @zbr: zbranch of dent
1009 * @lnum: LEB number of dent to match
1010 * @offs: offset of dent to match
1011 *
1012 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1013 */
1014static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1015{
1016        if (zbr->lnum == lnum && zbr->offs == offs)
1017                return 1;
1018        else
1019                return 0;
1020}
1021
1022/**
1023 * resolve_collision_directly - resolve a collision directly.
1024 * @c: UBIFS file-system description object
1025 * @key: key of directory entry
1026 * @zn: znode is passed and returned here
1027 * @n: zbranch number is passed and returned here
1028 * @lnum: LEB number of dent node to match
1029 * @offs: offset of dent node to match
1030 *
1031 * This function is used for "hashed" keys to make sure the found directory or
1032 * extended attribute entry node is what was looked for. It is used when the
1033 * flash address of the right node is known (@lnum:@offs) which makes it much
1034 * easier to resolve collisions (no need to read entries and match full
1035 * names). This function returns %1 and sets @zn and @n if the collision is
1036 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1037 * previous directory entry. Otherwise a negative error code is returned.
1038 */
1039static int resolve_collision_directly(struct ubifs_info *c,
1040                                      const union ubifs_key *key,
1041                                      struct ubifs_znode **zn, int *n,
1042                                      int lnum, int offs)
1043{
1044        struct ubifs_znode *znode;
1045        int nn, err;
1046
1047        znode = *zn;
1048        nn = *n;
1049        if (matches_position(&znode->zbranch[nn], lnum, offs))
1050                return 1;
1051
1052        /* Look left */
1053        while (1) {
1054                err = tnc_prev(c, &znode, &nn);
1055                if (err == -ENOENT)
1056                        break;
1057                if (err < 0)
1058                        return err;
1059                if (keys_cmp(c, &znode->zbranch[nn].key, key))
1060                        break;
1061                if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1062                        *zn = znode;
1063                        *n = nn;
1064                        return 1;
1065                }
1066        }
1067
1068        /* Look right */
1069        znode = *zn;
1070        nn = *n;
1071        while (1) {
1072                err = tnc_next(c, &znode, &nn);
1073                if (err == -ENOENT)
1074                        return 0;
1075                if (err < 0)
1076                        return err;
1077                if (keys_cmp(c, &znode->zbranch[nn].key, key))
1078                        return 0;
1079                *zn = znode;
1080                *n = nn;
1081                if (matches_position(&znode->zbranch[nn], lnum, offs))
1082                        return 1;
1083        }
1084}
1085
1086/**
1087 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1088 * @c: UBIFS file-system description object
1089 * @znode: znode to dirty
1090 *
1091 * If we do not have a unique key that resides in a znode, then we cannot
1092 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1093 * This function records the path back to the last dirty ancestor, and then
1094 * dirties the znodes on that path.
1095 */
1096static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1097                                               struct ubifs_znode *znode)
1098{
1099        struct ubifs_znode *zp;
1100        int *path = c->bottom_up_buf, p = 0;
1101
1102        ubifs_assert(c->zroot.znode);
1103        ubifs_assert(znode);
1104        if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1105                kfree(c->bottom_up_buf);
1106                c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1107                                           GFP_NOFS);
1108                if (!c->bottom_up_buf)
1109                        return ERR_PTR(-ENOMEM);
1110                path = c->bottom_up_buf;
1111        }
1112        if (c->zroot.znode->level) {
1113                /* Go up until parent is dirty */
1114                while (1) {
1115                        int n;
1116
1117                        zp = znode->parent;
1118                        if (!zp)
1119                                break;
1120                        n = znode->iip;
1121                        ubifs_assert(p < c->zroot.znode->level);
1122                        path[p++] = n;
1123                        if (!zp->cnext && ubifs_zn_dirty(znode))
1124                                break;
1125                        znode = zp;
1126                }
1127        }
1128
1129        /* Come back down, dirtying as we go */
1130        while (1) {
1131                struct ubifs_zbranch *zbr;
1132
1133                zp = znode->parent;
1134                if (zp) {
1135                        ubifs_assert(path[p - 1] >= 0);
1136                        ubifs_assert(path[p - 1] < zp->child_cnt);
1137                        zbr = &zp->zbranch[path[--p]];
1138                        znode = dirty_cow_znode(c, zbr);
1139                } else {
1140                        ubifs_assert(znode == c->zroot.znode);
1141                        znode = dirty_cow_znode(c, &c->zroot);
1142                }
1143                if (IS_ERR(znode) || !p)
1144                        break;
1145                ubifs_assert(path[p - 1] >= 0);
1146                ubifs_assert(path[p - 1] < znode->child_cnt);
1147                znode = znode->zbranch[path[p - 1]].znode;
1148        }
1149
1150        return znode;
1151}
1152
1153/**
1154 * ubifs_lookup_level0 - search for zero-level znode.
1155 * @c: UBIFS file-system description object
1156 * @key:  key to lookup
1157 * @zn: znode is returned here
1158 * @n: znode branch slot number is returned here
1159 *
1160 * This function looks up the TNC tree and search for zero-level znode which
1161 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1162 * cases:
1163 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1164 *     is returned and slot number of the matched branch is stored in @n;
1165 *   o not exact match, which means that zero-level znode does not contain
1166 *     @key, then %0 is returned and slot number of the closest branch is stored
1167 *     in @n;
1168 *   o @key is so small that it is even less than the lowest key of the
1169 *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1170 *
1171 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1172 * function reads corresponding indexing nodes and inserts them to TNC. In
1173 * case of failure, a negative error code is returned.
1174 */
1175int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1176                        struct ubifs_znode **zn, int *n)
1177{
1178        int err, exact;
1179        struct ubifs_znode *znode;
1180        unsigned long time = get_seconds();
1181
1182        dbg_tnck(key, "search key ");
1183        ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
1184
1185        znode = c->zroot.znode;
1186        if (unlikely(!znode)) {
1187                znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1188                if (IS_ERR(znode))
1189                        return PTR_ERR(znode);
1190        }
1191
1192        znode->time = time;
1193
1194        while (1) {
1195                struct ubifs_zbranch *zbr;
1196
1197                exact = ubifs_search_zbranch(c, znode, key, n);
1198
1199                if (znode->level == 0)
1200                        break;
1201
1202                if (*n < 0)
1203                        *n = 0;
1204                zbr = &znode->zbranch[*n];
1205
1206                if (zbr->znode) {
1207                        znode->time = time;
1208                        znode = zbr->znode;
1209                        continue;
1210                }
1211
1212                /* znode is not in TNC cache, load it from the media */
1213                znode = ubifs_load_znode(c, zbr, znode, *n);
1214                if (IS_ERR(znode))
1215                        return PTR_ERR(znode);
1216        }
1217
1218        *zn = znode;
1219        if (exact || !is_hash_key(c, key) || *n != -1) {
1220                dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1221                return exact;
1222        }
1223
1224        /*
1225         * Here is a tricky place. We have not found the key and this is a
1226         * "hashed" key, which may collide. The rest of the code deals with
1227         * situations like this:
1228         *
1229         *                  | 3 | 5 |
1230         *                  /       \
1231         *          | 3 | 5 |      | 6 | 7 | (x)
1232         *
1233         * Or more a complex example:
1234         *
1235         *                | 1 | 5 |
1236         *                /       \
1237         *       | 1 | 3 |         | 5 | 8 |
1238         *              \           /
1239         *          | 5 | 5 |   | 6 | 7 | (x)
1240         *
1241         * In the examples, if we are looking for key "5", we may reach nodes
1242         * marked with "(x)". In this case what we have do is to look at the
1243         * left and see if there is "5" key there. If there is, we have to
1244         * return it.
1245         *
1246         * Note, this whole situation is possible because we allow to have
1247         * elements which are equivalent to the next key in the parent in the
1248         * children of current znode. For example, this happens if we split a
1249         * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1250         * like this:
1251         *                      | 3 | 5 |
1252         *                       /     \
1253         *                | 3 | 5 |   | 5 | 6 | 7 |
1254         *                              ^
1255         * And this becomes what is at the first "picture" after key "5" marked
1256         * with "^" is removed. What could be done is we could prohibit
1257         * splitting in the middle of the colliding sequence. Also, when
1258         * removing the leftmost key, we would have to correct the key of the
1259         * parent node, which would introduce additional complications. Namely,
1260         * if we changed the leftmost key of the parent znode, the garbage
1261         * collector would be unable to find it (GC is doing this when GC'ing
1262         * indexing LEBs). Although we already have an additional RB-tree where
1263         * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1264         * after the commit. But anyway, this does not look easy to implement
1265         * so we did not try this.
1266         */
1267        err = tnc_prev(c, &znode, n);
1268        if (err == -ENOENT) {
1269                dbg_tnc("found 0, lvl %d, n -1", znode->level);
1270                *n = -1;
1271                return 0;
1272        }
1273        if (unlikely(err < 0))
1274                return err;
1275        if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1276                dbg_tnc("found 0, lvl %d, n -1", znode->level);
1277                *n = -1;
1278                return 0;
1279        }
1280
1281        dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1282        *zn = znode;
1283        return 1;
1284}
1285
1286/**
1287 * lookup_level0_dirty - search for zero-level znode dirtying.
1288 * @c: UBIFS file-system description object
1289 * @key:  key to lookup
1290 * @zn: znode is returned here
1291 * @n: znode branch slot number is returned here
1292 *
1293 * This function looks up the TNC tree and search for zero-level znode which
1294 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1295 * cases:
1296 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1297 *     is returned and slot number of the matched branch is stored in @n;
1298 *   o not exact match, which means that zero-level znode does not contain @key
1299 *     then %0 is returned and slot number of the closed branch is stored in
1300 *     @n;
1301 *   o @key is so small that it is even less than the lowest key of the
1302 *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1303 *
1304 * Additionally all znodes in the path from the root to the located zero-level
1305 * znode are marked as dirty.
1306 *
1307 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1308 * function reads corresponding indexing nodes and inserts them to TNC. In
1309 * case of failure, a negative error code is returned.
1310 */
1311static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1312                               struct ubifs_znode **zn, int *n)
1313{
1314        int err, exact;
1315        struct ubifs_znode *znode;
1316        unsigned long time = get_seconds();
1317
1318        dbg_tnck(key, "search and dirty key ");
1319
1320        znode = c->zroot.znode;
1321        if (unlikely(!znode)) {
1322                znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1323                if (IS_ERR(znode))
1324                        return PTR_ERR(znode);
1325        }
1326
1327        znode = dirty_cow_znode(c, &c->zroot);
1328        if (IS_ERR(znode))
1329                return PTR_ERR(znode);
1330
1331        znode->time = time;
1332
1333        while (1) {
1334                struct ubifs_zbranch *zbr;
1335
1336                exact = ubifs_search_zbranch(c, znode, key, n);
1337
1338                if (znode->level == 0)
1339                        break;
1340
1341                if (*n < 0)
1342                        *n = 0;
1343                zbr = &znode->zbranch[*n];
1344
1345                if (zbr->znode) {
1346                        znode->time = time;
1347                        znode = dirty_cow_znode(c, zbr);
1348                        if (IS_ERR(znode))
1349                                return PTR_ERR(znode);
1350                        continue;
1351                }
1352
1353                /* znode is not in TNC cache, load it from the media */
1354                znode = ubifs_load_znode(c, zbr, znode, *n);
1355                if (IS_ERR(znode))
1356                        return PTR_ERR(znode);
1357                znode = dirty_cow_znode(c, zbr);
1358                if (IS_ERR(znode))
1359                        return PTR_ERR(znode);
1360        }
1361
1362        *zn = znode;
1363        if (exact || !is_hash_key(c, key) || *n != -1) {
1364                dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1365                return exact;
1366        }
1367
1368        /*
1369         * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1370         * code.
1371         */
1372        err = tnc_prev(c, &znode, n);
1373        if (err == -ENOENT) {
1374                *n = -1;
1375                dbg_tnc("found 0, lvl %d, n -1", znode->level);
1376                return 0;
1377        }
1378        if (unlikely(err < 0))
1379                return err;
1380        if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1381                *n = -1;
1382                dbg_tnc("found 0, lvl %d, n -1", znode->level);
1383                return 0;
1384        }
1385
1386        if (znode->cnext || !ubifs_zn_dirty(znode)) {
1387                znode = dirty_cow_bottom_up(c, znode);
1388                if (IS_ERR(znode))
1389                        return PTR_ERR(znode);
1390        }
1391
1392        dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1393        *zn = znode;
1394        return 1;
1395}
1396
1397/**
1398 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1399 * @c: UBIFS file-system description object
1400 * @lnum: LEB number
1401 * @gc_seq1: garbage collection sequence number
1402 *
1403 * This function determines if @lnum may have been garbage collected since
1404 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1405 * %0 is returned.
1406 */
1407static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1408{
1409#ifndef __UBOOT__
1410        int gc_seq2, gced_lnum;
1411
1412        gced_lnum = c->gced_lnum;
1413        smp_rmb();
1414        gc_seq2 = c->gc_seq;
1415        /* Same seq means no GC */
1416        if (gc_seq1 == gc_seq2)
1417                return 0;
1418        /* Different by more than 1 means we don't know */
1419        if (gc_seq1 + 1 != gc_seq2)
1420                return 1;
1421        /*
1422         * We have seen the sequence number has increased by 1. Now we need to
1423         * be sure we read the right LEB number, so read it again.
1424         */
1425        smp_rmb();
1426        if (gced_lnum != c->gced_lnum)
1427                return 1;
1428        /* Finally we can check lnum */
1429        if (gced_lnum == lnum)
1430                return 1;
1431#else
1432        /* No garbage collection in the read-only U-Boot implementation */
1433#endif
1434        return 0;
1435}
1436
1437/**
1438 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1439 * @c: UBIFS file-system description object
1440 * @key: node key to lookup
1441 * @node: the node is returned here
1442 * @lnum: LEB number is returned here
1443 * @offs: offset is returned here
1444 *
1445 * This function looks up and reads node with key @key. The caller has to make
1446 * sure the @node buffer is large enough to fit the node. Returns zero in case
1447 * of success, %-ENOENT if the node was not found, and a negative error code in
1448 * case of failure. The node location can be returned in @lnum and @offs.
1449 */
1450int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1451                     void *node, int *lnum, int *offs)
1452{
1453        int found, n, err, safely = 0, gc_seq1;
1454        struct ubifs_znode *znode;
1455        struct ubifs_zbranch zbr, *zt;
1456
1457again:
1458        mutex_lock(&c->tnc_mutex);
1459        found = ubifs_lookup_level0(c, key, &znode, &n);
1460        if (!found) {
1461                err = -ENOENT;
1462                goto out;
1463        } else if (found < 0) {
1464                err = found;
1465                goto out;
1466        }
1467        zt = &znode->zbranch[n];
1468        if (lnum) {
1469                *lnum = zt->lnum;
1470                *offs = zt->offs;
1471        }
1472        if (is_hash_key(c, key)) {
1473                /*
1474                 * In this case the leaf node cache gets used, so we pass the
1475                 * address of the zbranch and keep the mutex locked
1476                 */
1477                err = tnc_read_node_nm(c, zt, node);
1478                goto out;
1479        }
1480        if (safely) {
1481                err = ubifs_tnc_read_node(c, zt, node);
1482                goto out;
1483        }
1484        /* Drop the TNC mutex prematurely and race with garbage collection */
1485        zbr = znode->zbranch[n];
1486        gc_seq1 = c->gc_seq;
1487        mutex_unlock(&c->tnc_mutex);
1488
1489        if (ubifs_get_wbuf(c, zbr.lnum)) {
1490                /* We do not GC journal heads */
1491                err = ubifs_tnc_read_node(c, &zbr, node);
1492                return err;
1493        }
1494
1495        err = fallible_read_node(c, key, &zbr, node);
1496        if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1497                /*
1498                 * The node may have been GC'ed out from under us so try again
1499                 * while keeping the TNC mutex locked.
1500                 */
1501                safely = 1;
1502                goto again;
1503        }
1504        return 0;
1505
1506out:
1507        mutex_unlock(&c->tnc_mutex);
1508        return err;
1509}
1510
1511/**
1512 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1513 * @c: UBIFS file-system description object
1514 * @bu: bulk-read parameters and results
1515 *
1516 * Lookup consecutive data node keys for the same inode that reside
1517 * consecutively in the same LEB. This function returns zero in case of success
1518 * and a negative error code in case of failure.
1519 *
1520 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1521 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1522 * maximum possible amount of nodes for bulk-read.
1523 */
1524int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1525{
1526        int n, err = 0, lnum = -1, uninitialized_var(offs);
1527        int uninitialized_var(len);
1528        unsigned int block = key_block(c, &bu->key);
1529        struct ubifs_znode *znode;
1530
1531        bu->cnt = 0;
1532        bu->blk_cnt = 0;
1533        bu->eof = 0;
1534
1535        mutex_lock(&c->tnc_mutex);
1536        /* Find first key */
1537        err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1538        if (err < 0)
1539                goto out;
1540        if (err) {
1541                /* Key found */
1542                len = znode->zbranch[n].len;
1543                /* The buffer must be big enough for at least 1 node */
1544                if (len > bu->buf_len) {
1545                        err = -EINVAL;
1546                        goto out;
1547                }
1548                /* Add this key */
1549                bu->zbranch[bu->cnt++] = znode->zbranch[n];
1550                bu->blk_cnt += 1;
1551                lnum = znode->zbranch[n].lnum;
1552                offs = ALIGN(znode->zbranch[n].offs + len, 8);
1553        }
1554        while (1) {
1555                struct ubifs_zbranch *zbr;
1556                union ubifs_key *key;
1557                unsigned int next_block;
1558
1559                /* Find next key */
1560                err = tnc_next(c, &znode, &n);
1561                if (err)
1562                        goto out;
1563                zbr = &znode->zbranch[n];
1564                key = &zbr->key;
1565                /* See if there is another data key for this file */
1566                if (key_inum(c, key) != key_inum(c, &bu->key) ||
1567                    key_type(c, key) != UBIFS_DATA_KEY) {
1568                        err = -ENOENT;
1569                        goto out;
1570                }
1571                if (lnum < 0) {
1572                        /* First key found */
1573                        lnum = zbr->lnum;
1574                        offs = ALIGN(zbr->offs + zbr->len, 8);
1575                        len = zbr->len;
1576                        if (len > bu->buf_len) {
1577                                err = -EINVAL;
1578                                goto out;
1579                        }
1580                } else {
1581                        /*
1582                         * The data nodes must be in consecutive positions in
1583                         * the same LEB.
1584                         */
1585                        if (zbr->lnum != lnum || zbr->offs != offs)
1586                                goto out;
1587                        offs += ALIGN(zbr->len, 8);
1588                        len = ALIGN(len, 8) + zbr->len;
1589                        /* Must not exceed buffer length */
1590                        if (len > bu->buf_len)
1591                                goto out;
1592                }
1593                /* Allow for holes */
1594                next_block = key_block(c, key);
1595                bu->blk_cnt += (next_block - block - 1);
1596                if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1597                        goto out;
1598                block = next_block;
1599                /* Add this key */
1600                bu->zbranch[bu->cnt++] = *zbr;
1601                bu->blk_cnt += 1;
1602                /* See if we have room for more */
1603                if (bu->cnt >= UBIFS_MAX_BULK_READ)
1604                        goto out;
1605                if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1606                        goto out;
1607        }
1608out:
1609        if (err == -ENOENT) {
1610                bu->eof = 1;
1611                err = 0;
1612        }
1613        bu->gc_seq = c->gc_seq;
1614        mutex_unlock(&c->tnc_mutex);
1615        if (err)
1616                return err;
1617        /*
1618         * An enormous hole could cause bulk-read to encompass too many
1619         * page cache pages, so limit the number here.
1620         */
1621        if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1622                bu->blk_cnt = UBIFS_MAX_BULK_READ;
1623        /*
1624         * Ensure that bulk-read covers a whole number of page cache
1625         * pages.
1626         */
1627        if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1628            !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1629                return 0;
1630        if (bu->eof) {
1631                /* At the end of file we can round up */
1632                bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1633                return 0;
1634        }
1635        /* Exclude data nodes that do not make up a whole page cache page */
1636        block = key_block(c, &bu->key) + bu->blk_cnt;
1637        block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1638        while (bu->cnt) {
1639                if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1640                        break;
1641                bu->cnt -= 1;
1642        }
1643        return 0;
1644}
1645
1646/**
1647 * read_wbuf - bulk-read from a LEB with a wbuf.
1648 * @wbuf: wbuf that may overlap the read
1649 * @buf: buffer into which to read
1650 * @len: read length
1651 * @lnum: LEB number from which to read
1652 * @offs: offset from which to read
1653 *
1654 * This functions returns %0 on success or a negative error code on failure.
1655 */
1656static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1657                     int offs)
1658{
1659        const struct ubifs_info *c = wbuf->c;
1660        int rlen, overlap;
1661
1662        dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1663        ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1664        ubifs_assert(!(offs & 7) && offs < c->leb_size);
1665        ubifs_assert(offs + len <= c->leb_size);
1666
1667        spin_lock(&wbuf->lock);
1668        overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1669        if (!overlap) {
1670                /* We may safely unlock the write-buffer and read the data */
1671                spin_unlock(&wbuf->lock);
1672                return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1673        }
1674
1675        /* Don't read under wbuf */
1676        rlen = wbuf->offs - offs;
1677        if (rlen < 0)
1678                rlen = 0;
1679
1680        /* Copy the rest from the write-buffer */
1681        memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1682        spin_unlock(&wbuf->lock);
1683
1684        if (rlen > 0)
1685                /* Read everything that goes before write-buffer */
1686                return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1687
1688        return 0;
1689}
1690
1691/**
1692 * validate_data_node - validate data nodes for bulk-read.
1693 * @c: UBIFS file-system description object
1694 * @buf: buffer containing data node to validate
1695 * @zbr: zbranch of data node to validate
1696 *
1697 * This functions returns %0 on success or a negative error code on failure.
1698 */
1699static int validate_data_node(struct ubifs_info *c, void *buf,
1700                              struct ubifs_zbranch *zbr)
1701{
1702        union ubifs_key key1;
1703        struct ubifs_ch *ch = buf;
1704        int err, len;
1705
1706        if (ch->node_type != UBIFS_DATA_NODE) {
1707                ubifs_err(c, "bad node type (%d but expected %d)",
1708                          ch->node_type, UBIFS_DATA_NODE);
1709                goto out_err;
1710        }
1711
1712        err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1713        if (err) {
1714                ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
1715                goto out;
1716        }
1717
1718        len = le32_to_cpu(ch->len);
1719        if (len != zbr->len) {
1720                ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
1721                goto out_err;
1722        }
1723
1724        /* Make sure the key of the read node is correct */
1725        key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1726        if (!keys_eq(c, &zbr->key, &key1)) {
1727                ubifs_err(c, "bad key in node at LEB %d:%d",
1728                          zbr->lnum, zbr->offs);
1729                dbg_tnck(&zbr->key, "looked for key ");
1730                dbg_tnck(&key1, "found node's key ");
1731                goto out_err;
1732        }
1733
1734        return 0;
1735
1736out_err:
1737        err = -EINVAL;
1738out:
1739        ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1740        ubifs_dump_node(c, buf);
1741        dump_stack();
1742        return err;
1743}
1744
1745/**
1746 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1747 * @c: UBIFS file-system description object
1748 * @bu: bulk-read parameters and results
1749 *
1750 * This functions reads and validates the data nodes that were identified by the
1751 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1752 * -EAGAIN to indicate a race with GC, or another negative error code on
1753 * failure.
1754 */
1755int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1756{
1757        int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1758        struct ubifs_wbuf *wbuf;
1759        void *buf;
1760
1761        len = bu->zbranch[bu->cnt - 1].offs;
1762        len += bu->zbranch[bu->cnt - 1].len - offs;
1763        if (len > bu->buf_len) {
1764                ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
1765                return -EINVAL;
1766        }
1767
1768        /* Do the read */
1769        wbuf = ubifs_get_wbuf(c, lnum);
1770        if (wbuf)
1771                err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1772        else
1773                err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1774
1775        /* Check for a race with GC */
1776        if (maybe_leb_gced(c, lnum, bu->gc_seq))
1777                return -EAGAIN;
1778
1779        if (err && err != -EBADMSG) {
1780                ubifs_err(c, "failed to read from LEB %d:%d, error %d",
1781                          lnum, offs, err);
1782                dump_stack();
1783                dbg_tnck(&bu->key, "key ");
1784                return err;
1785        }
1786
1787        /* Validate the nodes read */
1788        buf = bu->buf;
1789        for (i = 0; i < bu->cnt; i++) {
1790                err = validate_data_node(c, buf, &bu->zbranch[i]);
1791                if (err)
1792                        return err;
1793                buf = buf + ALIGN(bu->zbranch[i].len, 8);
1794        }
1795
1796        return 0;
1797}
1798
1799/**
1800 * do_lookup_nm- look up a "hashed" node.
1801 * @c: UBIFS file-system description object
1802 * @key: node key to lookup
1803 * @node: the node is returned here
1804 * @nm: node name
1805 *
1806 * This function look up and reads a node which contains name hash in the key.
1807 * Since the hash may have collisions, there may be many nodes with the same
1808 * key, so we have to sequentially look to all of them until the needed one is
1809 * found. This function returns zero in case of success, %-ENOENT if the node
1810 * was not found, and a negative error code in case of failure.
1811 */
1812static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1813                        void *node, const struct qstr *nm)
1814{
1815        int found, n, err;
1816        struct ubifs_znode *znode;
1817
1818        dbg_tnck(key, "name '%.*s' key ", nm->len, nm->name);
1819        mutex_lock(&c->tnc_mutex);
1820        found = ubifs_lookup_level0(c, key, &znode, &n);
1821        if (!found) {
1822                err = -ENOENT;
1823                goto out_unlock;
1824        } else if (found < 0) {
1825                err = found;
1826                goto out_unlock;
1827        }
1828
1829        ubifs_assert(n >= 0);
1830
1831        err = resolve_collision(c, key, &znode, &n, nm);
1832        dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1833        if (unlikely(err < 0))
1834                goto out_unlock;
1835        if (err == 0) {
1836                err = -ENOENT;
1837                goto out_unlock;
1838        }
1839
1840        err = tnc_read_node_nm(c, &znode->zbranch[n], node);
1841
1842out_unlock:
1843        mutex_unlock(&c->tnc_mutex);
1844        return err;
1845}
1846
1847/**
1848 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1849 * @c: UBIFS file-system description object
1850 * @key: node key to lookup
1851 * @node: the node is returned here
1852 * @nm: node name
1853 *
1854 * This function look up and reads a node which contains name hash in the key.
1855 * Since the hash may have collisions, there may be many nodes with the same
1856 * key, so we have to sequentially look to all of them until the needed one is
1857 * found. This function returns zero in case of success, %-ENOENT if the node
1858 * was not found, and a negative error code in case of failure.
1859 */
1860int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1861                        void *node, const struct qstr *nm)
1862{
1863        int err, len;
1864        const struct ubifs_dent_node *dent = node;
1865
1866        /*
1867         * We assume that in most of the cases there are no name collisions and
1868         * 'ubifs_tnc_lookup()' returns us the right direntry.
1869         */
1870        err = ubifs_tnc_lookup(c, key, node);
1871        if (err)
1872                return err;
1873
1874        len = le16_to_cpu(dent->nlen);
1875        if (nm->len == len && !memcmp(dent->name, nm->name, len))
1876                return 0;
1877
1878        /*
1879         * Unluckily, there are hash collisions and we have to iterate over
1880         * them look at each direntry with colliding name hash sequentially.
1881         */
1882        return do_lookup_nm(c, key, node, nm);
1883}
1884
1885/**
1886 * correct_parent_keys - correct parent znodes' keys.
1887 * @c: UBIFS file-system description object
1888 * @znode: znode to correct parent znodes for
1889 *
1890 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1891 * zbranch changes, keys of parent znodes have to be corrected. This helper
1892 * function is called in such situations and corrects the keys if needed.
1893 */
1894static void correct_parent_keys(const struct ubifs_info *c,
1895                                struct ubifs_znode *znode)
1896{
1897        union ubifs_key *key, *key1;
1898
1899        ubifs_assert(znode->parent);
1900        ubifs_assert(znode->iip == 0);
1901
1902        key = &znode->zbranch[0].key;
1903        key1 = &znode->parent->zbranch[0].key;
1904
1905        while (keys_cmp(c, key, key1) < 0) {
1906                key_copy(c, key, key1);
1907                znode = znode->parent;
1908                znode->alt = 1;
1909                if (!znode->parent || znode->iip)
1910                        break;
1911                key1 = &znode->parent->zbranch[0].key;
1912        }
1913}
1914
1915/**
1916 * insert_zbranch - insert a zbranch into a znode.
1917 * @znode: znode into which to insert
1918 * @zbr: zbranch to insert
1919 * @n: slot number to insert to
1920 *
1921 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
1922 * znode's array of zbranches and keeps zbranches consolidated, so when a new
1923 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
1924 * slot, zbranches starting from @n have to be moved right.
1925 */
1926static void insert_zbranch(struct ubifs_znode *znode,
1927                           const struct ubifs_zbranch *zbr, int n)
1928{
1929        int i;
1930
1931        ubifs_assert(ubifs_zn_dirty(znode));
1932
1933        if (znode->level) {
1934                for (i = znode->child_cnt; i > n; i--) {
1935                        znode->zbranch[i] = znode->zbranch[i - 1];
1936                        if (znode->zbranch[i].znode)
1937                                znode->zbranch[i].znode->iip = i;
1938                }
1939                if (zbr->znode)
1940                        zbr->znode->iip = n;
1941        } else
1942                for (i = znode->child_cnt; i > n; i--)
1943                        znode->zbranch[i] = znode->zbranch[i - 1];
1944
1945        znode->zbranch[n] = *zbr;
1946        znode->child_cnt += 1;
1947
1948        /*
1949         * After inserting at slot zero, the lower bound of the key range of
1950         * this znode may have changed. If this znode is subsequently split
1951         * then the upper bound of the key range may change, and furthermore
1952         * it could change to be lower than the original lower bound. If that
1953         * happens, then it will no longer be possible to find this znode in the
1954         * TNC using the key from the index node on flash. That is bad because
1955         * if it is not found, we will assume it is obsolete and may overwrite
1956         * it. Then if there is an unclean unmount, we will start using the
1957         * old index which will be broken.
1958         *
1959         * So we first mark znodes that have insertions at slot zero, and then
1960         * if they are split we add their lnum/offs to the old_idx tree.
1961         */
1962        if (n == 0)
1963                znode->alt = 1;
1964}
1965
1966/**
1967 * tnc_insert - insert a node into TNC.
1968 * @c: UBIFS file-system description object
1969 * @znode: znode to insert into
1970 * @zbr: branch to insert
1971 * @n: slot number to insert new zbranch to
1972 *
1973 * This function inserts a new node described by @zbr into znode @znode. If
1974 * znode does not have a free slot for new zbranch, it is split. Parent znodes
1975 * are splat as well if needed. Returns zero in case of success or a negative
1976 * error code in case of failure.
1977 */
1978static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
1979                      struct ubifs_zbranch *zbr, int n)
1980{
1981        struct ubifs_znode *zn, *zi, *zp;
1982        int i, keep, move, appending = 0;
1983        union ubifs_key *key = &zbr->key, *key1;
1984
1985        ubifs_assert(n >= 0 && n <= c->fanout);
1986
1987        /* Implement naive insert for now */
1988again:
1989        zp = znode->parent;
1990        if (znode->child_cnt < c->fanout) {
1991                ubifs_assert(n != c->fanout);
1992                dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
1993
1994                insert_zbranch(znode, zbr, n);
1995
1996                /* Ensure parent's key is correct */
1997                if (n == 0 && zp && znode->iip == 0)
1998                        correct_parent_keys(c, znode);
1999
2000                return 0;
2001        }
2002
2003        /*
2004         * Unfortunately, @znode does not have more empty slots and we have to
2005         * split it.
2006         */
2007        dbg_tnck(key, "splitting level %d, key ", znode->level);
2008
2009        if (znode->alt)
2010                /*
2011                 * We can no longer be sure of finding this znode by key, so we
2012                 * record it in the old_idx tree.
2013                 */
2014                ins_clr_old_idx_znode(c, znode);
2015
2016        zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2017        if (!zn)
2018                return -ENOMEM;
2019        zn->parent = zp;
2020        zn->level = znode->level;
2021
2022        /* Decide where to split */
2023        if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2024                /* Try not to split consecutive data keys */
2025                if (n == c->fanout) {
2026                        key1 = &znode->zbranch[n - 1].key;
2027                        if (key_inum(c, key1) == key_inum(c, key) &&
2028                            key_type(c, key1) == UBIFS_DATA_KEY)
2029                                appending = 1;
2030                } else
2031                        goto check_split;
2032        } else if (appending && n != c->fanout) {
2033                /* Try not to split consecutive data keys */
2034                appending = 0;
2035check_split:
2036                if (n >= (c->fanout + 1) / 2) {
2037                        key1 = &znode->zbranch[0].key;
2038                        if (key_inum(c, key1) == key_inum(c, key) &&
2039                            key_type(c, key1) == UBIFS_DATA_KEY) {
2040                                key1 = &znode->zbranch[n].key;
2041                                if (key_inum(c, key1) != key_inum(c, key) ||
2042                                    key_type(c, key1) != UBIFS_DATA_KEY) {
2043                                        keep = n;
2044                                        move = c->fanout - keep;
2045                                        zi = znode;
2046                                        goto do_split;
2047                                }
2048                        }
2049                }
2050        }
2051
2052        if (appending) {
2053                keep = c->fanout;
2054                move = 0;
2055        } else {
2056                keep = (c->fanout + 1) / 2;
2057                move = c->fanout - keep;
2058        }
2059
2060        /*
2061         * Although we don't at present, we could look at the neighbors and see
2062         * if we can move some zbranches there.
2063         */
2064
2065        if (n < keep) {
2066                /* Insert into existing znode */
2067                zi = znode;
2068                move += 1;
2069                keep -= 1;
2070        } else {
2071                /* Insert into new znode */
2072                zi = zn;
2073                n -= keep;
2074                /* Re-parent */
2075                if (zn->level != 0)
2076                        zbr->znode->parent = zn;
2077        }
2078
2079do_split:
2080
2081        __set_bit(DIRTY_ZNODE, &zn->flags);
2082        atomic_long_inc(&c->dirty_zn_cnt);
2083
2084        zn->child_cnt = move;
2085        znode->child_cnt = keep;
2086
2087        dbg_tnc("moving %d, keeping %d", move, keep);
2088
2089        /* Move zbranch */
2090        for (i = 0; i < move; i++) {
2091                zn->zbranch[i] = znode->zbranch[keep + i];
2092                /* Re-parent */
2093                if (zn->level != 0)
2094                        if (zn->zbranch[i].znode) {
2095                                zn->zbranch[i].znode->parent = zn;
2096                                zn->zbranch[i].znode->iip = i;
2097                        }
2098        }
2099
2100        /* Insert new key and branch */
2101        dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2102
2103        insert_zbranch(zi, zbr, n);
2104
2105        /* Insert new znode (produced by spitting) into the parent */
2106        if (zp) {
2107                if (n == 0 && zi == znode && znode->iip == 0)
2108                        correct_parent_keys(c, znode);
2109
2110                /* Locate insertion point */
2111                n = znode->iip + 1;
2112
2113                /* Tail recursion */
2114                zbr->key = zn->zbranch[0].key;
2115                zbr->znode = zn;
2116                zbr->lnum = 0;
2117                zbr->offs = 0;
2118                zbr->len = 0;
2119                znode = zp;
2120
2121                goto again;
2122        }
2123
2124        /* We have to split root znode */
2125        dbg_tnc("creating new zroot at level %d", znode->level + 1);
2126
2127        zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2128        if (!zi)
2129                return -ENOMEM;
2130
2131        zi->child_cnt = 2;
2132        zi->level = znode->level + 1;
2133
2134        __set_bit(DIRTY_ZNODE, &zi->flags);
2135        atomic_long_inc(&c->dirty_zn_cnt);
2136
2137        zi->zbranch[0].key = znode->zbranch[0].key;
2138        zi->zbranch[0].znode = znode;
2139        zi->zbranch[0].lnum = c->zroot.lnum;
2140        zi->zbranch[0].offs = c->zroot.offs;
2141        zi->zbranch[0].len = c->zroot.len;
2142        zi->zbranch[1].key = zn->zbranch[0].key;
2143        zi->zbranch[1].znode = zn;
2144
2145        c->zroot.lnum = 0;
2146        c->zroot.offs = 0;
2147        c->zroot.len = 0;
2148        c->zroot.znode = zi;
2149
2150        zn->parent = zi;
2151        zn->iip = 1;
2152        znode->parent = zi;
2153        znode->iip = 0;
2154
2155        return 0;
2156}
2157
2158/**
2159 * ubifs_tnc_add - add a node to TNC.
2160 * @c: UBIFS file-system description object
2161 * @key: key to add
2162 * @lnum: LEB number of node
2163 * @offs: node offset
2164 * @len: node length
2165 *
2166 * This function adds a node with key @key to TNC. The node may be new or it may
2167 * obsolete some existing one. Returns %0 on success or negative error code on
2168 * failure.
2169 */
2170int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2171                  int offs, int len)
2172{
2173        int found, n, err = 0;
2174        struct ubifs_znode *znode;
2175
2176        mutex_lock(&c->tnc_mutex);
2177        dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2178        found = lookup_level0_dirty(c, key, &znode, &n);
2179        if (!found) {
2180                struct ubifs_zbranch zbr;
2181
2182                zbr.znode = NULL;
2183                zbr.lnum = lnum;
2184                zbr.offs = offs;
2185                zbr.len = len;
2186                key_copy(c, key, &zbr.key);
2187                err = tnc_insert(c, znode, &zbr, n + 1);
2188        } else if (found == 1) {
2189                struct ubifs_zbranch *zbr = &znode->zbranch[n];
2190
2191                lnc_free(zbr);
2192                err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2193                zbr->lnum = lnum;
2194                zbr->offs = offs;
2195                zbr->len = len;
2196        } else
2197                err = found;
2198        if (!err)
2199                err = dbg_check_tnc(c, 0);
2200        mutex_unlock(&c->tnc_mutex);
2201
2202        return err;
2203}
2204
2205/**
2206 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2207 * @c: UBIFS file-system description object
2208 * @key: key to add
2209 * @old_lnum: LEB number of old node
2210 * @old_offs: old node offset
2211 * @lnum: LEB number of node
2212 * @offs: node offset
2213 * @len: node length
2214 *
2215 * This function replaces a node with key @key in the TNC only if the old node
2216 * is found.  This function is called by garbage collection when node are moved.
2217 * Returns %0 on success or negative error code on failure.
2218 */
2219int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2220                      int old_lnum, int old_offs, int lnum, int offs, int len)
2221{
2222        int found, n, err = 0;
2223        struct ubifs_znode *znode;
2224
2225        mutex_lock(&c->tnc_mutex);
2226        dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2227                 old_offs, lnum, offs, len);
2228        found = lookup_level0_dirty(c, key, &znode, &n);
2229        if (found < 0) {
2230                err = found;
2231                goto out_unlock;
2232        }
2233
2234        if (found == 1) {
2235                struct ubifs_zbranch *zbr = &znode->zbranch[n];
2236
2237                found = 0;
2238                if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2239                        lnc_free(zbr);
2240                        err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2241                        if (err)
2242                                goto out_unlock;
2243                        zbr->lnum = lnum;
2244                        zbr->offs = offs;
2245                        zbr->len = len;
2246                        found = 1;
2247                } else if (is_hash_key(c, key)) {
2248                        found = resolve_collision_directly(c, key, &znode, &n,
2249                                                           old_lnum, old_offs);
2250                        dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2251                                found, znode, n, old_lnum, old_offs);
2252                        if (found < 0) {
2253                                err = found;
2254                                goto out_unlock;
2255                        }
2256
2257                        if (found) {
2258                                /* Ensure the znode is dirtied */
2259                                if (znode->cnext || !ubifs_zn_dirty(znode)) {
2260                                        znode = dirty_cow_bottom_up(c, znode);
2261                                        if (IS_ERR(znode)) {
2262                                                err = PTR_ERR(znode);
2263                                                goto out_unlock;
2264                                        }
2265                                }
2266                                zbr = &znode->zbranch[n];
2267                                lnc_free(zbr);
2268                                err = ubifs_add_dirt(c, zbr->lnum,
2269                                                     zbr->len);
2270                                if (err)
2271                                        goto out_unlock;
2272                                zbr->lnum = lnum;
2273                                zbr->offs = offs;
2274                                zbr->len = len;
2275                        }
2276                }
2277        }
2278
2279        if (!found)
2280                err = ubifs_add_dirt(c, lnum, len);
2281
2282        if (!err)
2283                err = dbg_check_tnc(c, 0);
2284
2285out_unlock:
2286        mutex_unlock(&c->tnc_mutex);
2287        return err;
2288}
2289
2290/**
2291 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2292 * @c: UBIFS file-system description object
2293 * @key: key to add
2294 * @lnum: LEB number of node
2295 * @offs: node offset
2296 * @len: node length
2297 * @nm: node name
2298 *
2299 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2300 * may have collisions, like directory entry keys.
2301 */
2302int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2303                     int lnum, int offs, int len, const struct qstr *nm)
2304{
2305        int found, n, err = 0;
2306        struct ubifs_znode *znode;
2307
2308        mutex_lock(&c->tnc_mutex);
2309        dbg_tnck(key, "LEB %d:%d, name '%.*s', key ",
2310                 lnum, offs, nm->len, nm->name);
2311        found = lookup_level0_dirty(c, key, &znode, &n);
2312        if (found < 0) {
2313                err = found;
2314                goto out_unlock;
2315        }
2316
2317        if (found == 1) {
2318                if (c->replaying)
2319                        found = fallible_resolve_collision(c, key, &znode, &n,
2320                                                           nm, 1);
2321                else
2322                        found = resolve_collision(c, key, &znode, &n, nm);
2323                dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2324                if (found < 0) {
2325                        err = found;
2326                        goto out_unlock;
2327                }
2328
2329                /* Ensure the znode is dirtied */
2330                if (znode->cnext || !ubifs_zn_dirty(znode)) {
2331                        znode = dirty_cow_bottom_up(c, znode);
2332                        if (IS_ERR(znode)) {
2333                                err = PTR_ERR(znode);
2334                                goto out_unlock;
2335                        }
2336                }
2337
2338                if (found == 1) {
2339                        struct ubifs_zbranch *zbr = &znode->zbranch[n];
2340
2341                        lnc_free(zbr);
2342                        err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2343                        zbr->lnum = lnum;
2344                        zbr->offs = offs;
2345                        zbr->len = len;
2346                        goto out_unlock;
2347                }
2348        }
2349
2350        if (!found) {
2351                struct ubifs_zbranch zbr;
2352
2353                zbr.znode = NULL;
2354                zbr.lnum = lnum;
2355                zbr.offs = offs;
2356                zbr.len = len;
2357                key_copy(c, key, &zbr.key);
2358                err = tnc_insert(c, znode, &zbr, n + 1);
2359                if (err)
2360                        goto out_unlock;
2361                if (c->replaying) {
2362                        /*
2363                         * We did not find it in the index so there may be a
2364                         * dangling branch still in the index. So we remove it
2365                         * by passing 'ubifs_tnc_remove_nm()' the same key but
2366                         * an unmatchable name.
2367                         */
2368                        struct qstr noname = { .name = "" };
2369
2370                        err = dbg_check_tnc(c, 0);
2371                        mutex_unlock(&c->tnc_mutex);
2372                        if (err)
2373                                return err;
2374                        return ubifs_tnc_remove_nm(c, key, &noname);
2375                }
2376        }
2377
2378out_unlock:
2379        if (!err)
2380                err = dbg_check_tnc(c, 0);
2381        mutex_unlock(&c->tnc_mutex);
2382        return err;
2383}
2384
2385/**
2386 * tnc_delete - delete a znode form TNC.
2387 * @c: UBIFS file-system description object
2388 * @znode: znode to delete from
2389 * @n: zbranch slot number to delete
2390 *
2391 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2392 * case of success and a negative error code in case of failure.
2393 */
2394static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2395{
2396        struct ubifs_zbranch *zbr;
2397        struct ubifs_znode *zp;
2398        int i, err;
2399
2400        /* Delete without merge for now */
2401        ubifs_assert(znode->level == 0);
2402        ubifs_assert(n >= 0 && n < c->fanout);
2403        dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2404
2405        zbr = &znode->zbranch[n];
2406        lnc_free(zbr);
2407
2408        err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2409        if (err) {
2410                ubifs_dump_znode(c, znode);
2411                return err;
2412        }
2413
2414        /* We do not "gap" zbranch slots */
2415        for (i = n; i < znode->child_cnt - 1; i++)
2416                znode->zbranch[i] = znode->zbranch[i + 1];
2417        znode->child_cnt -= 1;
2418
2419        if (znode->child_cnt > 0)
2420                return 0;
2421
2422        /*
2423         * This was the last zbranch, we have to delete this znode from the
2424         * parent.
2425         */
2426
2427        do {
2428                ubifs_assert(!ubifs_zn_obsolete(znode));
2429                ubifs_assert(ubifs_zn_dirty(znode));
2430
2431                zp = znode->parent;
2432                n = znode->iip;
2433
2434                atomic_long_dec(&c->dirty_zn_cnt);
2435
2436                err = insert_old_idx_znode(c, znode);
2437                if (err)
2438                        return err;
2439
2440                if (znode->cnext) {
2441                        __set_bit(OBSOLETE_ZNODE, &znode->flags);
2442                        atomic_long_inc(&c->clean_zn_cnt);
2443                        atomic_long_inc(&ubifs_clean_zn_cnt);
2444                } else
2445                        kfree(znode);
2446                znode = zp;
2447        } while (znode->child_cnt == 1); /* while removing last child */
2448
2449        /* Remove from znode, entry n - 1 */
2450        znode->child_cnt -= 1;
2451        ubifs_assert(znode->level != 0);
2452        for (i = n; i < znode->child_cnt; i++) {
2453                znode->zbranch[i] = znode->zbranch[i + 1];
2454                if (znode->zbranch[i].znode)
2455                        znode->zbranch[i].znode->iip = i;
2456        }
2457
2458        /*
2459         * If this is the root and it has only 1 child then
2460         * collapse the tree.
2461         */
2462        if (!znode->parent) {
2463                while (znode->child_cnt == 1 && znode->level != 0) {
2464                        zp = znode;
2465                        zbr = &znode->zbranch[0];
2466                        znode = get_znode(c, znode, 0);
2467                        if (IS_ERR(znode))
2468                                return PTR_ERR(znode);
2469                        znode = dirty_cow_znode(c, zbr);
2470                        if (IS_ERR(znode))
2471                                return PTR_ERR(znode);
2472                        znode->parent = NULL;
2473                        znode->iip = 0;
2474                        if (c->zroot.len) {
2475                                err = insert_old_idx(c, c->zroot.lnum,
2476                                                     c->zroot.offs);
2477                                if (err)
2478                                        return err;
2479                        }
2480                        c->zroot.lnum = zbr->lnum;
2481                        c->zroot.offs = zbr->offs;
2482                        c->zroot.len = zbr->len;
2483                        c->zroot.znode = znode;
2484                        ubifs_assert(!ubifs_zn_obsolete(zp));
2485                        ubifs_assert(ubifs_zn_dirty(zp));
2486                        atomic_long_dec(&c->dirty_zn_cnt);
2487
2488                        if (zp->cnext) {
2489                                __set_bit(OBSOLETE_ZNODE, &zp->flags);
2490                                atomic_long_inc(&c->clean_zn_cnt);
2491                                atomic_long_inc(&ubifs_clean_zn_cnt);
2492                        } else
2493                                kfree(zp);
2494                }
2495        }
2496
2497        return 0;
2498}
2499
2500/**
2501 * ubifs_tnc_remove - remove an index entry of a node.
2502 * @c: UBIFS file-system description object
2503 * @key: key of node
2504 *
2505 * Returns %0 on success or negative error code on failure.
2506 */
2507int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2508{
2509        int found, n, err = 0;
2510        struct ubifs_znode *znode;
2511
2512        mutex_lock(&c->tnc_mutex);
2513        dbg_tnck(key, "key ");
2514        found = lookup_level0_dirty(c, key, &znode, &n);
2515        if (found < 0) {
2516                err = found;
2517                goto out_unlock;
2518        }
2519        if (found == 1)
2520                err = tnc_delete(c, znode, n);
2521        if (!err)
2522                err = dbg_check_tnc(c, 0);
2523
2524out_unlock:
2525        mutex_unlock(&c->tnc_mutex);
2526        return err;
2527}
2528
2529/**
2530 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2531 * @c: UBIFS file-system description object
2532 * @key: key of node
2533 * @nm: directory entry name
2534 *
2535 * Returns %0 on success or negative error code on failure.
2536 */
2537int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2538                        const struct qstr *nm)
2539{
2540        int n, err;
2541        struct ubifs_znode *znode;
2542
2543        mutex_lock(&c->tnc_mutex);
2544        dbg_tnck(key, "%.*s, key ", nm->len, nm->name);
2545        err = lookup_level0_dirty(c, key, &znode, &n);
2546        if (err < 0)
2547                goto out_unlock;
2548
2549        if (err) {
2550                if (c->replaying)
2551                        err = fallible_resolve_collision(c, key, &znode, &n,
2552                                                         nm, 0);
2553                else
2554                        err = resolve_collision(c, key, &znode, &n, nm);
2555                dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2556                if (err < 0)
2557                        goto out_unlock;
2558                if (err) {
2559                        /* Ensure the znode is dirtied */
2560                        if (znode->cnext || !ubifs_zn_dirty(znode)) {
2561                                znode = dirty_cow_bottom_up(c, znode);
2562                                if (IS_ERR(znode)) {
2563                                        err = PTR_ERR(znode);
2564                                        goto out_unlock;
2565                                }
2566                        }
2567                        err = tnc_delete(c, znode, n);
2568                }
2569        }
2570
2571out_unlock:
2572        if (!err)
2573                err = dbg_check_tnc(c, 0);
2574        mutex_unlock(&c->tnc_mutex);
2575        return err;
2576}
2577
2578/**
2579 * key_in_range - determine if a key falls within a range of keys.
2580 * @c: UBIFS file-system description object
2581 * @key: key to check
2582 * @from_key: lowest key in range
2583 * @to_key: highest key in range
2584 *
2585 * This function returns %1 if the key is in range and %0 otherwise.
2586 */
2587static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2588                        union ubifs_key *from_key, union ubifs_key *to_key)
2589{
2590        if (keys_cmp(c, key, from_key) < 0)
2591                return 0;
2592        if (keys_cmp(c, key, to_key) > 0)
2593                return 0;
2594        return 1;
2595}
2596
2597/**
2598 * ubifs_tnc_remove_range - remove index entries in range.
2599 * @c: UBIFS file-system description object
2600 * @from_key: lowest key to remove
2601 * @to_key: highest key to remove
2602 *
2603 * This function removes index entries starting at @from_key and ending at
2604 * @to_key.  This function returns zero in case of success and a negative error
2605 * code in case of failure.
2606 */
2607int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2608                           union ubifs_key *to_key)
2609{
2610        int i, n, k, err = 0;
2611        struct ubifs_znode *znode;
2612        union ubifs_key *key;
2613
2614        mutex_lock(&c->tnc_mutex);
2615        while (1) {
2616                /* Find first level 0 znode that contains keys to remove */
2617                err = ubifs_lookup_level0(c, from_key, &znode, &n);
2618                if (err < 0)
2619                        goto out_unlock;
2620
2621                if (err)
2622                        key = from_key;
2623                else {
2624                        err = tnc_next(c, &znode, &n);
2625                        if (err == -ENOENT) {
2626                                err = 0;
2627                                goto out_unlock;
2628                        }
2629                        if (err < 0)
2630                                goto out_unlock;
2631                        key = &znode->zbranch[n].key;
2632                        if (!key_in_range(c, key, from_key, to_key)) {
2633                                err = 0;
2634                                goto out_unlock;
2635                        }
2636                }
2637
2638                /* Ensure the znode is dirtied */
2639                if (znode->cnext || !ubifs_zn_dirty(znode)) {
2640                        znode = dirty_cow_bottom_up(c, znode);
2641                        if (IS_ERR(znode)) {
2642                                err = PTR_ERR(znode);
2643                                goto out_unlock;
2644                        }
2645                }
2646
2647                /* Remove all keys in range except the first */
2648                for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2649                        key = &znode->zbranch[i].key;
2650                        if (!key_in_range(c, key, from_key, to_key))
2651                                break;
2652                        lnc_free(&znode->zbranch[i]);
2653                        err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2654                                             znode->zbranch[i].len);
2655                        if (err) {
2656                                ubifs_dump_znode(c, znode);
2657                                goto out_unlock;
2658                        }
2659                        dbg_tnck(key, "removing key ");
2660                }
2661                if (k) {
2662                        for (i = n + 1 + k; i < znode->child_cnt; i++)
2663                                znode->zbranch[i - k] = znode->zbranch[i];
2664                        znode->child_cnt -= k;
2665                }
2666
2667                /* Now delete the first */
2668                err = tnc_delete(c, znode, n);
2669                if (err)
2670                        goto out_unlock;
2671        }
2672
2673out_unlock:
2674        if (!err)
2675                err = dbg_check_tnc(c, 0);
2676        mutex_unlock(&c->tnc_mutex);
2677        return err;
2678}
2679
2680/**
2681 * ubifs_tnc_remove_ino - remove an inode from TNC.
2682 * @c: UBIFS file-system description object
2683 * @inum: inode number to remove
2684 *
2685 * This function remove inode @inum and all the extended attributes associated
2686 * with the anode from TNC and returns zero in case of success or a negative
2687 * error code in case of failure.
2688 */
2689int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2690{
2691        union ubifs_key key1, key2;
2692        struct ubifs_dent_node *xent, *pxent = NULL;
2693        struct qstr nm = { .name = NULL };
2694
2695        dbg_tnc("ino %lu", (unsigned long)inum);
2696
2697        /*
2698         * Walk all extended attribute entries and remove them together with
2699         * corresponding extended attribute inodes.
2700         */
2701        lowest_xent_key(c, &key1, inum);
2702        while (1) {
2703                ino_t xattr_inum;
2704                int err;
2705
2706                xent = ubifs_tnc_next_ent(c, &key1, &nm);
2707                if (IS_ERR(xent)) {
2708                        err = PTR_ERR(xent);
2709                        if (err == -ENOENT)
2710                                break;
2711                        return err;
2712                }
2713
2714                xattr_inum = le64_to_cpu(xent->inum);
2715                dbg_tnc("xent '%s', ino %lu", xent->name,
2716                        (unsigned long)xattr_inum);
2717
2718                nm.name = xent->name;
2719                nm.len = le16_to_cpu(xent->nlen);
2720                err = ubifs_tnc_remove_nm(c, &key1, &nm);
2721                if (err) {
2722                        kfree(xent);
2723                        return err;
2724                }
2725
2726                lowest_ino_key(c, &key1, xattr_inum);
2727                highest_ino_key(c, &key2, xattr_inum);
2728                err = ubifs_tnc_remove_range(c, &key1, &key2);
2729                if (err) {
2730                        kfree(xent);
2731                        return err;
2732                }
2733
2734                kfree(pxent);
2735                pxent = xent;
2736                key_read(c, &xent->key, &key1);
2737        }
2738
2739        kfree(pxent);
2740        lowest_ino_key(c, &key1, inum);
2741        highest_ino_key(c, &key2, inum);
2742
2743        return ubifs_tnc_remove_range(c, &key1, &key2);
2744}
2745
2746/**
2747 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2748 * @c: UBIFS file-system description object
2749 * @key: key of last entry
2750 * @nm: name of last entry found or %NULL
2751 *
2752 * This function finds and reads the next directory or extended attribute entry
2753 * after the given key (@key) if there is one. @nm is used to resolve
2754 * collisions.
2755 *
2756 * If the name of the current entry is not known and only the key is known,
2757 * @nm->name has to be %NULL. In this case the semantics of this function is a
2758 * little bit different and it returns the entry corresponding to this key, not
2759 * the next one. If the key was not found, the closest "right" entry is
2760 * returned.
2761 *
2762 * If the fist entry has to be found, @key has to contain the lowest possible
2763 * key value for this inode and @name has to be %NULL.
2764 *
2765 * This function returns the found directory or extended attribute entry node
2766 * in case of success, %-ENOENT is returned if no entry was found, and a
2767 * negative error code is returned in case of failure.
2768 */
2769struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2770                                           union ubifs_key *key,
2771                                           const struct qstr *nm)
2772{
2773        int n, err, type = key_type(c, key);
2774        struct ubifs_znode *znode;
2775        struct ubifs_dent_node *dent;
2776        struct ubifs_zbranch *zbr;
2777        union ubifs_key *dkey;
2778
2779        dbg_tnck(key, "%s ", nm->name ? (char *)nm->name : "(lowest)");
2780        ubifs_assert(is_hash_key(c, key));
2781
2782        mutex_lock(&c->tnc_mutex);
2783        err = ubifs_lookup_level0(c, key, &znode, &n);
2784        if (unlikely(err < 0))
2785                goto out_unlock;
2786
2787        if (nm->name) {
2788                if (err) {
2789                        /* Handle collisions */
2790                        if (c->replaying)
2791                                err = fallible_resolve_collision(c, key, &znode, &n,
2792                                                                 nm, 0);
2793                        else
2794                                err = resolve_collision(c, key, &znode, &n, nm);
2795                        dbg_tnc("rc returned %d, znode %p, n %d",
2796                                err, znode, n);
2797                        if (unlikely(err < 0))
2798                                goto out_unlock;
2799                }
2800
2801                /* Now find next entry */
2802                err = tnc_next(c, &znode, &n);
2803                if (unlikely(err))
2804                        goto out_unlock;
2805        } else {
2806                /*
2807                 * The full name of the entry was not given, in which case the
2808                 * behavior of this function is a little different and it
2809                 * returns current entry, not the next one.
2810                 */
2811                if (!err) {
2812                        /*
2813                         * However, the given key does not exist in the TNC
2814                         * tree and @znode/@n variables contain the closest
2815                         * "preceding" element. Switch to the next one.
2816                         */
2817                        err = tnc_next(c, &znode, &n);
2818                        if (err)
2819                                goto out_unlock;
2820                }
2821        }
2822
2823        zbr = &znode->zbranch[n];
2824        dent = kmalloc(zbr->len, GFP_NOFS);
2825        if (unlikely(!dent)) {
2826                err = -ENOMEM;
2827                goto out_unlock;
2828        }
2829
2830        /*
2831         * The above 'tnc_next()' call could lead us to the next inode, check
2832         * this.
2833         */
2834        dkey = &zbr->key;
2835        if (key_inum(c, dkey) != key_inum(c, key) ||
2836            key_type(c, dkey) != type) {
2837                err = -ENOENT;
2838                goto out_free;
2839        }
2840
2841        err = tnc_read_node_nm(c, zbr, dent);
2842        if (unlikely(err))
2843                goto out_free;
2844
2845        mutex_unlock(&c->tnc_mutex);
2846        return dent;
2847
2848out_free:
2849        kfree(dent);
2850out_unlock:
2851        mutex_unlock(&c->tnc_mutex);
2852        return ERR_PTR(err);
2853}
2854
2855/**
2856 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2857 * @c: UBIFS file-system description object
2858 *
2859 * Destroy left-over obsolete znodes from a failed commit.
2860 */
2861static void tnc_destroy_cnext(struct ubifs_info *c)
2862{
2863        struct ubifs_znode *cnext;
2864
2865        if (!c->cnext)
2866                return;
2867        ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2868        cnext = c->cnext;
2869        do {
2870                struct ubifs_znode *znode = cnext;
2871
2872                cnext = cnext->cnext;
2873                if (ubifs_zn_obsolete(znode))
2874                        kfree(znode);
2875        } while (cnext && cnext != c->cnext);
2876}
2877
2878/**
2879 * ubifs_tnc_close - close TNC subsystem and free all related resources.
2880 * @c: UBIFS file-system description object
2881 */
2882void ubifs_tnc_close(struct ubifs_info *c)
2883{
2884        tnc_destroy_cnext(c);
2885        if (c->zroot.znode) {
2886                long n, freed;
2887
2888                n = atomic_long_read(&c->clean_zn_cnt);
2889                freed = ubifs_destroy_tnc_subtree(c->zroot.znode);
2890                ubifs_assert(freed == n);
2891                atomic_long_sub(n, &ubifs_clean_zn_cnt);
2892        }
2893        kfree(c->gap_lebs);
2894        kfree(c->ilebs);
2895        destroy_old_idx(c);
2896}
2897
2898/**
2899 * left_znode - get the znode to the left.
2900 * @c: UBIFS file-system description object
2901 * @znode: znode
2902 *
2903 * This function returns a pointer to the znode to the left of @znode or NULL if
2904 * there is not one. A negative error code is returned on failure.
2905 */
2906static struct ubifs_znode *left_znode(struct ubifs_info *c,
2907                                      struct ubifs_znode *znode)
2908{
2909        int level = znode->level;
2910
2911        while (1) {
2912                int n = znode->iip - 1;
2913
2914                /* Go up until we can go left */
2915                znode = znode->parent;
2916                if (!znode)
2917                        return NULL;
2918                if (n >= 0) {
2919                        /* Now go down the rightmost branch to 'level' */
2920                        znode = get_znode(c, znode, n);
2921                        if (IS_ERR(znode))
2922                                return znode;
2923                        while (znode->level != level) {
2924                                n = znode->child_cnt - 1;
2925                                znode = get_znode(c, znode, n);
2926                                if (IS_ERR(znode))
2927                                        return znode;
2928                        }
2929                        break;
2930                }
2931        }
2932        return znode;
2933}
2934
2935/**
2936 * right_znode - get the znode to the right.
2937 * @c: UBIFS file-system description object
2938 * @znode: znode
2939 *
2940 * This function returns a pointer to the znode to the right of @znode or NULL
2941 * if there is not one. A negative error code is returned on failure.
2942 */
2943static struct ubifs_znode *right_znode(struct ubifs_info *c,
2944                                       struct ubifs_znode *znode)
2945{
2946        int level = znode->level;
2947
2948        while (1) {
2949                int n = znode->iip + 1;
2950
2951                /* Go up until we can go right */
2952                znode = znode->parent;
2953                if (!znode)
2954                        return NULL;
2955                if (n < znode->child_cnt) {
2956                        /* Now go down the leftmost branch to 'level' */
2957                        znode = get_znode(c, znode, n);
2958                        if (IS_ERR(znode))
2959                                return znode;
2960                        while (znode->level != level) {
2961                                znode = get_znode(c, znode, 0);
2962                                if (IS_ERR(znode))
2963                                        return znode;
2964                        }
2965                        break;
2966                }
2967        }
2968        return znode;
2969}
2970
2971/**
2972 * lookup_znode - find a particular indexing node from TNC.
2973 * @c: UBIFS file-system description object
2974 * @key: index node key to lookup
2975 * @level: index node level
2976 * @lnum: index node LEB number
2977 * @offs: index node offset
2978 *
2979 * This function searches an indexing node by its first key @key and its
2980 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
2981 * nodes it traverses to TNC. This function is called for indexing nodes which
2982 * were found on the media by scanning, for example when garbage-collecting or
2983 * when doing in-the-gaps commit. This means that the indexing node which is
2984 * looked for does not have to have exactly the same leftmost key @key, because
2985 * the leftmost key may have been changed, in which case TNC will contain a
2986 * dirty znode which still refers the same @lnum:@offs. This function is clever
2987 * enough to recognize such indexing nodes.
2988 *
2989 * Note, if a znode was deleted or changed too much, then this function will
2990 * not find it. For situations like this UBIFS has the old index RB-tree
2991 * (indexed by @lnum:@offs).
2992 *
2993 * This function returns a pointer to the znode found or %NULL if it is not
2994 * found. A negative error code is returned on failure.
2995 */
2996static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
2997                                        union ubifs_key *key, int level,
2998                                        int lnum, int offs)
2999{
3000        struct ubifs_znode *znode, *zn;
3001        int n, nn;
3002
3003        ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
3004
3005        /*
3006         * The arguments have probably been read off flash, so don't assume
3007         * they are valid.
3008         */
3009        if (level < 0)
3010                return ERR_PTR(-EINVAL);
3011
3012        /* Get the root znode */
3013        znode = c->zroot.znode;
3014        if (!znode) {
3015                znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3016                if (IS_ERR(znode))
3017                        return znode;
3018        }
3019        /* Check if it is the one we are looking for */
3020        if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3021                return znode;
3022        /* Descend to the parent level i.e. (level + 1) */
3023        if (level >= znode->level)
3024                return NULL;
3025        while (1) {
3026                ubifs_search_zbranch(c, znode, key, &n);
3027                if (n < 0) {
3028                        /*
3029                         * We reached a znode where the leftmost key is greater
3030                         * than the key we are searching for. This is the same
3031                         * situation as the one described in a huge comment at
3032                         * the end of the 'ubifs_lookup_level0()' function. And
3033                         * for exactly the same reasons we have to try to look
3034                         * left before giving up.
3035                         */
3036                        znode = left_znode(c, znode);
3037                        if (!znode)
3038                                return NULL;
3039                        if (IS_ERR(znode))
3040                                return znode;
3041                        ubifs_search_zbranch(c, znode, key, &n);
3042                        ubifs_assert(n >= 0);
3043                }
3044                if (znode->level == level + 1)
3045                        break;
3046                znode = get_znode(c, znode, n);
3047                if (IS_ERR(znode))
3048                        return znode;
3049        }
3050        /* Check if the child is the one we are looking for */
3051        if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3052                return get_znode(c, znode, n);
3053        /* If the key is unique, there is nowhere else to look */
3054        if (!is_hash_key(c, key))
3055                return NULL;
3056        /*
3057         * The key is not unique and so may be also in the znodes to either
3058         * side.
3059         */
3060        zn = znode;
3061        nn = n;
3062        /* Look left */
3063        while (1) {
3064                /* Move one branch to the left */
3065                if (n)
3066                        n -= 1;
3067                else {
3068                        znode = left_znode(c, znode);
3069                        if (!znode)
3070                                break;
3071                        if (IS_ERR(znode))
3072                                return znode;
3073                        n = znode->child_cnt - 1;
3074                }
3075                /* Check it */
3076                if (znode->zbranch[n].lnum == lnum &&
3077                    znode->zbranch[n].offs == offs)
3078                        return get_znode(c, znode, n);
3079                /* Stop if the key is less than the one we are looking for */
3080                if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3081                        break;
3082        }
3083        /* Back to the middle */
3084        znode = zn;
3085        n = nn;
3086        /* Look right */
3087        while (1) {
3088                /* Move one branch to the right */
3089                if (++n >= znode->child_cnt) {
3090                        znode = right_znode(c, znode);
3091                        if (!znode)
3092                                break;
3093                        if (IS_ERR(znode))
3094                                return znode;
3095                        n = 0;
3096                }
3097                /* Check it */
3098                if (znode->zbranch[n].lnum == lnum &&
3099                    znode->zbranch[n].offs == offs)
3100                        return get_znode(c, znode, n);
3101                /* Stop if the key is greater than the one we are looking for */
3102                if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3103                        break;
3104        }
3105        return NULL;
3106}
3107
3108/**
3109 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3110 * @c: UBIFS file-system description object
3111 * @key: key of index node
3112 * @level: index node level
3113 * @lnum: LEB number of index node
3114 * @offs: offset of index node
3115 *
3116 * This function returns %0 if the index node is not referred to in the TNC, %1
3117 * if the index node is referred to in the TNC and the corresponding znode is
3118 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3119 * znode is clean, and a negative error code in case of failure.
3120 *
3121 * Note, the @key argument has to be the key of the first child. Also note,
3122 * this function relies on the fact that 0:0 is never a valid LEB number and
3123 * offset for a main-area node.
3124 */
3125int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3126                       int lnum, int offs)
3127{
3128        struct ubifs_znode *znode;
3129
3130        znode = lookup_znode(c, key, level, lnum, offs);
3131        if (!znode)
3132                return 0;
3133        if (IS_ERR(znode))
3134                return PTR_ERR(znode);
3135
3136        return ubifs_zn_dirty(znode) ? 1 : 2;
3137}
3138
3139/**
3140 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3141 * @c: UBIFS file-system description object
3142 * @key: node key
3143 * @lnum: node LEB number
3144 * @offs: node offset
3145 *
3146 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3147 * not, and a negative error code in case of failure.
3148 *
3149 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3150 * and offset for a main-area node.
3151 */
3152static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3153                               int lnum, int offs)
3154{
3155        struct ubifs_zbranch *zbr;
3156        struct ubifs_znode *znode, *zn;
3157        int n, found, err, nn;
3158        const int unique = !is_hash_key(c, key);
3159
3160        found = ubifs_lookup_level0(c, key, &znode, &n);
3161        if (found < 0)
3162                return found; /* Error code */
3163        if (!found)
3164                return 0;
3165        zbr = &znode->zbranch[n];
3166        if (lnum == zbr->lnum && offs == zbr->offs)
3167                return 1; /* Found it */
3168        if (unique)
3169                return 0;
3170        /*
3171         * Because the key is not unique, we have to look left
3172         * and right as well
3173         */
3174        zn = znode;
3175        nn = n;
3176        /* Look left */
3177        while (1) {
3178                err = tnc_prev(c, &znode, &n);
3179                if (err == -ENOENT)
3180                        break;
3181                if (err)
3182                        return err;
3183                if (keys_cmp(c, key, &znode->zbranch[n].key))
3184                        break;
3185                zbr = &znode->zbranch[n];
3186                if (lnum == zbr->lnum && offs == zbr->offs)
3187                        return 1; /* Found it */
3188        }
3189        /* Look right */
3190        znode = zn;
3191        n = nn;
3192        while (1) {
3193                err = tnc_next(c, &znode, &n);
3194                if (err) {
3195                        if (err == -ENOENT)
3196                                return 0;
3197                        return err;
3198                }
3199                if (keys_cmp(c, key, &znode->zbranch[n].key))
3200                        break;
3201                zbr = &znode->zbranch[n];
3202                if (lnum == zbr->lnum && offs == zbr->offs)
3203                        return 1; /* Found it */
3204        }
3205        return 0;
3206}
3207
3208/**
3209 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3210 * @c: UBIFS file-system description object
3211 * @key: node key
3212 * @level: index node level (if it is an index node)
3213 * @lnum: node LEB number
3214 * @offs: node offset
3215 * @is_idx: non-zero if the node is an index node
3216 *
3217 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3218 * negative error code in case of failure. For index nodes, @key has to be the
3219 * key of the first child. An index node is considered to be in the TNC only if
3220 * the corresponding znode is clean or has not been loaded.
3221 */
3222int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3223                       int lnum, int offs, int is_idx)
3224{
3225        int err;
3226
3227        mutex_lock(&c->tnc_mutex);
3228        if (is_idx) {
3229                err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3230                if (err < 0)
3231                        goto out_unlock;
3232                if (err == 1)
3233                        /* The index node was found but it was dirty */
3234                        err = 0;
3235                else if (err == 2)
3236                        /* The index node was found and it was clean */
3237                        err = 1;
3238                else
3239                        BUG_ON(err != 0);
3240        } else
3241                err = is_leaf_node_in_tnc(c, key, lnum, offs);
3242
3243out_unlock:
3244        mutex_unlock(&c->tnc_mutex);
3245        return err;
3246}
3247
3248/**
3249 * ubifs_dirty_idx_node - dirty an index node.
3250 * @c: UBIFS file-system description object
3251 * @key: index node key
3252 * @level: index node level
3253 * @lnum: index node LEB number
3254 * @offs: index node offset
3255 *
3256 * This function loads and dirties an index node so that it can be garbage
3257 * collected. The @key argument has to be the key of the first child. This
3258 * function relies on the fact that 0:0 is never a valid LEB number and offset
3259 * for a main-area node. Returns %0 on success and a negative error code on
3260 * failure.
3261 */
3262int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3263                         int lnum, int offs)
3264{
3265        struct ubifs_znode *znode;
3266        int err = 0;
3267
3268        mutex_lock(&c->tnc_mutex);
3269        znode = lookup_znode(c, key, level, lnum, offs);
3270        if (!znode)
3271                goto out_unlock;
3272        if (IS_ERR(znode)) {
3273                err = PTR_ERR(znode);
3274                goto out_unlock;
3275        }
3276        znode = dirty_cow_bottom_up(c, znode);
3277        if (IS_ERR(znode)) {
3278                err = PTR_ERR(znode);
3279                goto out_unlock;
3280        }
3281
3282out_unlock:
3283        mutex_unlock(&c->tnc_mutex);
3284        return err;
3285}
3286
3287/**
3288 * dbg_check_inode_size - check if inode size is correct.
3289 * @c: UBIFS file-system description object
3290 * @inum: inode number
3291 * @size: inode size
3292 *
3293 * This function makes sure that the inode size (@size) is correct and it does
3294 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3295 * if it has a data page beyond @size, and other negative error code in case of
3296 * other errors.
3297 */
3298int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3299                         loff_t size)
3300{
3301        int err, n;
3302        union ubifs_key from_key, to_key, *key;
3303        struct ubifs_znode *znode;
3304        unsigned int block;
3305
3306        if (!S_ISREG(inode->i_mode))
3307                return 0;
3308        if (!dbg_is_chk_gen(c))
3309                return 0;
3310
3311        block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3312        data_key_init(c, &from_key, inode->i_ino, block);
3313        highest_data_key(c, &to_key, inode->i_ino);
3314
3315        mutex_lock(&c->tnc_mutex);
3316        err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3317        if (err < 0)
3318                goto out_unlock;
3319
3320        if (err) {
3321                key = &from_key;
3322                goto out_dump;
3323        }
3324
3325        err = tnc_next(c, &znode, &n);
3326        if (err == -ENOENT) {
3327                err = 0;
3328                goto out_unlock;
3329        }
3330        if (err < 0)
3331                goto out_unlock;
3332
3333        ubifs_assert(err == 0);
3334        key = &znode->zbranch[n].key;
3335        if (!key_in_range(c, key, &from_key, &to_key))
3336                goto out_unlock;
3337
3338out_dump:
3339        block = key_block(c, key);
3340        ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
3341                  (unsigned long)inode->i_ino, size,
3342                  ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3343        mutex_unlock(&c->tnc_mutex);
3344        ubifs_dump_inode(c, inode);
3345        dump_stack();
3346        return -EINVAL;
3347
3348out_unlock:
3349        mutex_unlock(&c->tnc_mutex);
3350        return err;
3351}
3352