uboot/arch/arm/mach-omap2/emif-common.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * EMIF programming
   4 *
   5 * (C) Copyright 2010
   6 * Texas Instruments, <www.ti.com>
   7 *
   8 * Aneesh V <aneesh@ti.com>
   9 */
  10
  11#include <common.h>
  12#include <hang.h>
  13#include <init.h>
  14#include <log.h>
  15#include <net.h>
  16#include <asm/emif.h>
  17#include <asm/arch/clock.h>
  18#include <asm/arch/sys_proto.h>
  19#include <asm/omap_common.h>
  20#include <asm/omap_sec_common.h>
  21#include <asm/utils.h>
  22#include <linux/compiler.h>
  23#include <asm/ti-common/ti-edma3.h>
  24#include <linux/delay.h>
  25
  26static int emif1_enabled = -1, emif2_enabled = -1;
  27
  28void set_lpmode_selfrefresh(u32 base)
  29{
  30        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
  31        u32 reg;
  32
  33        reg = readl(&emif->emif_pwr_mgmt_ctrl);
  34        reg &= ~EMIF_REG_LP_MODE_MASK;
  35        reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
  36        reg &= ~EMIF_REG_SR_TIM_MASK;
  37        writel(reg, &emif->emif_pwr_mgmt_ctrl);
  38
  39        /* dummy read for the new SR_TIM to be loaded */
  40        readl(&emif->emif_pwr_mgmt_ctrl);
  41}
  42
  43void force_emif_self_refresh()
  44{
  45        set_lpmode_selfrefresh(EMIF1_BASE);
  46        if (!is_dra72x())
  47                set_lpmode_selfrefresh(EMIF2_BASE);
  48}
  49
  50inline u32 emif_num(u32 base)
  51{
  52        if (base == EMIF1_BASE)
  53                return 1;
  54        else if (base == EMIF2_BASE)
  55                return 2;
  56        else
  57                return 0;
  58}
  59
  60static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
  61{
  62        u32 mr;
  63        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
  64
  65        mr_addr |= cs << EMIF_REG_CS_SHIFT;
  66        writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
  67        if (omap_revision() == OMAP4430_ES2_0)
  68                mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
  69        else
  70                mr = readl(&emif->emif_lpddr2_mode_reg_data);
  71        debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
  72              cs, mr_addr, mr);
  73        if (((mr & 0x0000ff00) >>  8) == (mr & 0xff) &&
  74            ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
  75            ((mr & 0xff000000) >> 24) == (mr & 0xff))
  76                return mr & 0xff;
  77        else
  78                return mr;
  79}
  80
  81static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
  82{
  83        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
  84
  85        mr_addr |= cs << EMIF_REG_CS_SHIFT;
  86        writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
  87        writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
  88}
  89
  90void emif_reset_phy(u32 base)
  91{
  92        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
  93        u32 iodft;
  94
  95        iodft = readl(&emif->emif_iodft_tlgc);
  96        iodft |= EMIF_REG_RESET_PHY_MASK;
  97        writel(iodft, &emif->emif_iodft_tlgc);
  98}
  99
 100static void do_lpddr2_init(u32 base, u32 cs)
 101{
 102        u32 mr_addr;
 103        const struct lpddr2_mr_regs *mr_regs;
 104
 105        get_lpddr2_mr_regs(&mr_regs);
 106        /* Wait till device auto initialization is complete */
 107        while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
 108                ;
 109        set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
 110        /*
 111         * tZQINIT = 1 us
 112         * Enough loops assuming a maximum of 2GHz
 113         */
 114
 115        sdelay(2000);
 116
 117        set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
 118        set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
 119
 120        /*
 121         * Enable refresh along with writing MR2
 122         * Encoding of RL in MR2 is (RL - 2)
 123         */
 124        mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
 125        set_mr(base, cs, mr_addr, mr_regs->mr2);
 126
 127        if (mr_regs->mr3 > 0)
 128                set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
 129}
 130
 131static void lpddr2_init(u32 base, const struct emif_regs *regs)
 132{
 133        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
 134
 135        /* Not NVM */
 136        clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
 137
 138        /*
 139         * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
 140         * when EMIF_SDRAM_CONFIG register is written
 141         */
 142        setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
 143
 144        /*
 145         * Set the SDRAM_CONFIG and PHY_CTRL for the
 146         * un-locked frequency & default RL
 147         */
 148        writel(regs->sdram_config_init, &emif->emif_sdram_config);
 149        writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
 150
 151        do_ext_phy_settings(base, regs);
 152
 153        do_lpddr2_init(base, CS0);
 154        if (regs->sdram_config & EMIF_REG_EBANK_MASK)
 155                do_lpddr2_init(base, CS1);
 156
 157        writel(regs->sdram_config, &emif->emif_sdram_config);
 158        writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
 159
 160        /* Enable refresh now */
 161        clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
 162
 163        }
 164
 165__weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
 166{
 167}
 168
 169void emif_update_timings(u32 base, const struct emif_regs *regs)
 170{
 171        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
 172
 173        if (!is_dra7xx())
 174                writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
 175        else
 176                writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl_shdw);
 177
 178        writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
 179        writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
 180        writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
 181        if (omap_revision() == OMAP4430_ES1_0) {
 182                /* ES1 bug EMIF should be in force idle during freq_update */
 183                writel(0, &emif->emif_pwr_mgmt_ctrl);
 184        } else {
 185                writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
 186                writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
 187        }
 188        writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
 189        writel(regs->zq_config, &emif->emif_zq_config);
 190        writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
 191        writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
 192
 193        if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) {
 194                writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
 195                        &emif->emif_l3_config);
 196        } else if (omap_revision() >= OMAP4460_ES1_0) {
 197                writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
 198                        &emif->emif_l3_config);
 199        } else {
 200                writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
 201                        &emif->emif_l3_config);
 202        }
 203}
 204
 205#ifndef CONFIG_OMAP44XX
 206static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
 207{
 208        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
 209
 210        /* keep sdram in self-refresh */
 211        writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
 212                & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
 213        __udelay(130);
 214
 215        /*
 216         * Set invert_clkout (if activated)--DDR_PHYCTRL_1
 217         * Invert clock adds an additional half cycle delay on the
 218         * command interface.  The additional half cycle, is usually
 219         * meant to enable leveling in the situation that DQS is later
 220         * than CK on the board.It also helps provide some additional
 221         * margin for leveling.
 222         */
 223        writel(regs->emif_ddr_phy_ctlr_1,
 224               &emif->emif_ddr_phy_ctrl_1);
 225
 226        writel(regs->emif_ddr_phy_ctlr_1,
 227               &emif->emif_ddr_phy_ctrl_1_shdw);
 228        __udelay(130);
 229
 230        writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
 231               & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
 232
 233        /* Launch Full leveling */
 234        writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
 235
 236        /* Wait till full leveling is complete */
 237        readl(&emif->emif_rd_wr_lvl_ctl);
 238              __udelay(130);
 239
 240        /* Read data eye leveling no of samples */
 241        config_data_eye_leveling_samples(base);
 242
 243        /*
 244         * Launch 8 incremental WR_LVL- to compensate for
 245         * PHY limitation.
 246         */
 247        writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
 248               &emif->emif_rd_wr_lvl_ctl);
 249
 250        __udelay(130);
 251
 252        /* Launch Incremental leveling */
 253        writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
 254               __udelay(130);
 255}
 256
 257static void update_hwleveling_output(u32 base, const struct emif_regs *regs)
 258{
 259        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
 260        u32 *emif_ext_phy_ctrl_reg, *emif_phy_status;
 261        u32 reg, i, phy;
 262
 263        emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[6];
 264        phy = readl(&emif->emif_ddr_phy_ctrl_1);
 265
 266        /* Update PHY_REG_RDDQS_RATIO */
 267        emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_7;
 268        if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVL_MASK_MASK))
 269                for (i = 0; i < PHY_RDDQS_RATIO_REGS; i++) {
 270                        reg = readl(emif_phy_status++);
 271                        writel(reg, emif_ext_phy_ctrl_reg++);
 272                        writel(reg, emif_ext_phy_ctrl_reg++);
 273                }
 274
 275        /* Update PHY_REG_FIFO_WE_SLAVE_RATIO */
 276        emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_2;
 277        emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[11];
 278        if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVLGATE_MASK_MASK))
 279                for (i = 0; i < PHY_FIFO_WE_SLAVE_RATIO_REGS; i++) {
 280                        reg = readl(emif_phy_status++);
 281                        writel(reg, emif_ext_phy_ctrl_reg++);
 282                        writel(reg, emif_ext_phy_ctrl_reg++);
 283                }
 284
 285        /* Update PHY_REG_WR_DQ/DQS_SLAVE_RATIO */
 286        emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_12;
 287        emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[16];
 288        if (!(phy & EMIF_DDR_PHY_CTRL_1_WRLVL_MASK_MASK))
 289                for (i = 0; i < PHY_REG_WR_DQ_SLAVE_RATIO_REGS; i++) {
 290                        reg = readl(emif_phy_status++);
 291                        writel(reg, emif_ext_phy_ctrl_reg++);
 292                        writel(reg, emif_ext_phy_ctrl_reg++);
 293                }
 294
 295        /* Disable Leveling */
 296        writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
 297        writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
 298        writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
 299}
 300
 301static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
 302{
 303        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
 304
 305        /* Clear Error Status */
 306        clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36,
 307                        EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
 308                        EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
 309
 310        clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36_shdw,
 311                        EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
 312                        EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
 313
 314        /* Disable refreshed before leveling */
 315        clrsetbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK,
 316                        EMIF_REG_INITREF_DIS_MASK);
 317
 318        /* Start Full leveling */
 319        writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
 320
 321        __udelay(300);
 322
 323        /* Check for leveling timeout */
 324        if (readl(&emif->emif_status) & EMIF_REG_LEVELING_TO_MASK) {
 325                printf("Leveling timeout on EMIF%d\n", emif_num(base));
 326                return;
 327        }
 328
 329        /* Enable refreshes after leveling */
 330        clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
 331
 332        debug("HW leveling success\n");
 333        /*
 334         * Update slave ratios in EXT_PHY_CTRLx registers
 335         * as per HW leveling output
 336         */
 337        update_hwleveling_output(base, regs);
 338}
 339
 340static void dra7_reset_ddr_data(u32 base, u32 size)
 341{
 342#if defined(CONFIG_TI_EDMA3) && !defined(CONFIG_DMA)
 343        enable_edma3_clocks();
 344
 345        edma3_fill(EDMA3_BASE, 1, (void *)base, 0, size);
 346
 347        disable_edma3_clocks();
 348#else
 349        memset((void *)base, 0, size);
 350#endif
 351}
 352
 353static void dra7_enable_ecc(u32 base, const struct emif_regs *regs)
 354{
 355        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
 356        u32 rgn, rgn_start, size, ctrl_reg;
 357
 358        /* ECC available only on dra76x EMIF1 */
 359        if ((base != EMIF1_BASE) || !is_dra76x())
 360                return;
 361
 362        if (regs->emif_ecc_ctrl_reg & EMIF_ECC_CTRL_REG_ECC_EN_MASK) {
 363                /* Disable high-order interleaving */
 364                clrbits_le32(MA_PRIORITY, MA_HIMEM_INTERLEAVE_UN_MASK);
 365
 366#ifdef CONFIG_DRA7XX
 367                /* Clear the status flags and other history */
 368                writel(readl(&emif->emif_1b_ecc_err_cnt),
 369                       &emif->emif_1b_ecc_err_cnt);
 370                writel(0xffffffff, &emif->emif_1b_ecc_err_dist_1);
 371                writel(0x2, &emif->emif_1b_ecc_err_addr_log);
 372                writel(0x1, &emif->emif_2b_ecc_err_addr_log);
 373                writel(EMIF_INT_WR_ECC_ERR_SYS_MASK |
 374                       EMIF_INT_TWOBIT_ECC_ERR_SYS_MASK |
 375                       EMIF_INT_ONEBIT_ECC_ERR_SYS_MASK,
 376                       &emif->emif_irqstatus_sys);
 377#endif
 378                writel(regs->emif_ecc_address_range_1,
 379                       &emif->emif_ecc_address_range_1);
 380                writel(regs->emif_ecc_address_range_2,
 381                       &emif->emif_ecc_address_range_2);
 382
 383                /* Disable RMW and ECC verification for read accesses */
 384                ctrl_reg = (regs->emif_ecc_ctrl_reg &
 385                            ~EMIF_ECC_REG_RMW_EN_MASK) |
 386                           EMIF_ECC_CTRL_REG_ECC_VERIFY_DIS_MASK;
 387                writel(ctrl_reg, &emif->emif_ecc_ctrl_reg);
 388
 389                /* Set region1 memory with 0 */
 390                rgn_start = (regs->emif_ecc_address_range_1 &
 391                             EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16;
 392                rgn = rgn_start + CFG_SYS_SDRAM_BASE;
 393                size = (regs->emif_ecc_address_range_1 &
 394                        EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0x10000 - rgn_start;
 395
 396                if (regs->emif_ecc_ctrl_reg &
 397                    EMIF_ECC_REG_ECC_ADDR_RGN_1_EN_MASK)
 398                        dra7_reset_ddr_data(rgn, size);
 399
 400                /* Set region2 memory with 0 */
 401                rgn_start = (regs->emif_ecc_address_range_2 &
 402                             EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16;
 403                rgn = rgn_start + CFG_SYS_SDRAM_BASE;
 404                size = (regs->emif_ecc_address_range_2 &
 405                        EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0x10000 - rgn_start;
 406
 407                if (regs->emif_ecc_ctrl_reg &
 408                    EMIF_ECC_REG_ECC_ADDR_RGN_2_EN_MASK)
 409                        dra7_reset_ddr_data(rgn, size);
 410
 411                /* Default value enables RMW and ECC verification */
 412                writel(regs->emif_ecc_ctrl_reg, &emif->emif_ecc_ctrl_reg);
 413        }
 414}
 415
 416static void dra7_ddr3_init(u32 base, const struct emif_regs *regs)
 417{
 418        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
 419
 420        if (warm_reset()) {
 421                emif_reset_phy(base);
 422                writel(0x0, &emif->emif_pwr_mgmt_ctrl);
 423        }
 424        do_ext_phy_settings(base, regs);
 425
 426        writel(regs->ref_ctrl | EMIF_REG_INITREF_DIS_MASK,
 427               &emif->emif_sdram_ref_ctrl);
 428        /* Update timing registers */
 429        writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
 430        writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
 431        writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
 432
 433        writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0, &emif->emif_l3_config);
 434        writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
 435        writel(regs->zq_config, &emif->emif_zq_config);
 436        writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
 437        writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
 438        writel(regs->emif_rd_wr_lvl_ctl, &emif->emif_rd_wr_lvl_ctl);
 439
 440        writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
 441        writel(regs->emif_rd_wr_exec_thresh, &emif->emif_rd_wr_exec_thresh);
 442
 443        writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
 444
 445        writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
 446        writel(regs->sdram_config_init, &emif->emif_sdram_config);
 447
 448        __udelay(1000);
 449
 450        writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl);
 451
 452        if (regs->emif_rd_wr_lvl_rmp_ctl & EMIF_REG_RDWRLVL_EN_MASK) {
 453                /*
 454                 * Perform Dummy ECC setup just to allow hardware
 455                 * leveling of ECC memories
 456                 */
 457                if (is_dra76x() && (base == EMIF1_BASE) &&
 458                    (regs->emif_ecc_ctrl_reg & EMIF_ECC_CTRL_REG_ECC_EN_MASK)) {
 459                        writel(0, &emif->emif_ecc_address_range_1);
 460                        writel(0, &emif->emif_ecc_address_range_2);
 461                        writel(EMIF_ECC_CTRL_REG_ECC_EN_MASK |
 462                               EMIF_ECC_CTRL_REG_ECC_ADDR_RGN_PROT_MASK,
 463                               &emif->emif_ecc_ctrl_reg);
 464                }
 465
 466                dra7_ddr3_leveling(base, regs);
 467
 468                /* Disable ECC */
 469                if (is_dra76x())
 470                        writel(0, &emif->emif_ecc_ctrl_reg);
 471        }
 472
 473        /* Enable ECC as necessary */
 474        dra7_enable_ecc(base, regs);
 475}
 476
 477static void omap5_ddr3_init(u32 base, const struct emif_regs *regs)
 478{
 479        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
 480
 481        writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
 482        writel(regs->sdram_config_init, &emif->emif_sdram_config);
 483        /*
 484         * Set SDRAM_CONFIG and PHY control registers to locked frequency
 485         * and RL =7. As the default values of the Mode Registers are not
 486         * defined, contents of mode Registers must be fully initialized.
 487         * H/W takes care of this initialization
 488         */
 489        writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
 490
 491        /* Update timing registers */
 492        writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
 493        writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
 494        writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
 495
 496        writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
 497
 498        writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
 499        writel(regs->sdram_config_init, &emif->emif_sdram_config);
 500        do_ext_phy_settings(base, regs);
 501
 502        writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
 503        omap5_ddr3_leveling(base, regs);
 504}
 505
 506static void ddr3_init(u32 base, const struct emif_regs *regs)
 507{
 508        if (is_omap54xx())
 509                omap5_ddr3_init(base, regs);
 510        else
 511                dra7_ddr3_init(base, regs);
 512}
 513#endif
 514
 515#ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
 516#define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
 517
 518/*
 519 * Organization and refresh requirements for LPDDR2 devices of different
 520 * types and densities. Derived from JESD209-2 section 2.4
 521 */
 522const struct lpddr2_addressing addressing_table[] = {
 523        /* Banks tREFIx10     rowx32,rowx16      colx32,colx16  density */
 524        {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
 525        {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
 526        {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
 527        {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
 528        {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
 529        {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
 530        {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
 531        {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
 532        {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
 533        {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
 534};
 535
 536static const u32 lpddr2_density_2_size_in_mbytes[] = {
 537        8,                      /* 64Mb */
 538        16,                     /* 128Mb */
 539        32,                     /* 256Mb */
 540        64,                     /* 512Mb */
 541        128,                    /* 1Gb   */
 542        256,                    /* 2Gb   */
 543        512,                    /* 4Gb   */
 544        1024,                   /* 8Gb   */
 545        2048,                   /* 16Gb  */
 546        4096                    /* 32Gb  */
 547};
 548
 549/*
 550 * Calculate the period of DDR clock from frequency value and set the
 551 * denominator and numerator in global variables for easy access later
 552 */
 553static void set_ddr_clk_period(u32 freq)
 554{
 555        /*
 556         * period = 1/freq
 557         * period_in_ns = 10^9/freq
 558         */
 559        *T_num = 1000000000;
 560        *T_den = freq;
 561        cancel_out(T_num, T_den, 200);
 562
 563}
 564
 565/*
 566 * Convert time in nano seconds to number of cycles of DDR clock
 567 */
 568static inline u32 ns_2_cycles(u32 ns)
 569{
 570        return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
 571}
 572
 573/*
 574 * ns_2_cycles with the difference that the time passed is 2 times the actual
 575 * value(to avoid fractions). The cycles returned is for the original value of
 576 * the timing parameter
 577 */
 578static inline u32 ns_x2_2_cycles(u32 ns)
 579{
 580        return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
 581}
 582
 583/*
 584 * Find addressing table index based on the device's type(S2 or S4) and
 585 * density
 586 */
 587s8 addressing_table_index(u8 type, u8 density, u8 width)
 588{
 589        u8 index;
 590        if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
 591                return -1;
 592
 593        /*
 594         * Look at the way ADDR_TABLE_INDEX* values have been defined
 595         * in emif.h compared to LPDDR2_DENSITY_* values
 596         * The table is layed out in the increasing order of density
 597         * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
 598         * at the end
 599         */
 600        if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
 601                index = ADDR_TABLE_INDEX1GS2;
 602        else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
 603                index = ADDR_TABLE_INDEX2GS2;
 604        else
 605                index = density;
 606
 607        debug("emif: addressing table index %d\n", index);
 608
 609        return index;
 610}
 611
 612/*
 613 * Find the the right timing table from the array of timing
 614 * tables of the device using DDR clock frequency
 615 */
 616static const struct lpddr2_ac_timings *get_timings_table(const struct
 617                        lpddr2_ac_timings *const *device_timings,
 618                        u32 freq)
 619{
 620        u32 i, temp, freq_nearest;
 621        const struct lpddr2_ac_timings *timings = 0;
 622
 623        emif_assert(freq <= MAX_LPDDR2_FREQ);
 624        emif_assert(device_timings);
 625
 626        /*
 627         * Start with the maximum allowed frequency - that is always safe
 628         */
 629        freq_nearest = MAX_LPDDR2_FREQ;
 630        /*
 631         * Find the timings table that has the max frequency value:
 632         *   i.  Above or equal to the DDR frequency - safe
 633         *   ii. The lowest that satisfies condition (i) - optimal
 634         */
 635        for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
 636                temp = device_timings[i]->max_freq;
 637                if ((temp >= freq) && (temp <= freq_nearest)) {
 638                        freq_nearest = temp;
 639                        timings = device_timings[i];
 640                }
 641        }
 642        debug("emif: timings table: %d\n", freq_nearest);
 643        return timings;
 644}
 645
 646/*
 647 * Finds the value of emif_sdram_config_reg
 648 * All parameters are programmed based on the device on CS0.
 649 * If there is a device on CS1, it will be same as that on CS0 or
 650 * it will be NVM. We don't support NVM yet.
 651 * If cs1_device pointer is NULL it is assumed that there is no device
 652 * on CS1
 653 */
 654static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
 655                                const struct lpddr2_device_details *cs1_device,
 656                                const struct lpddr2_addressing *addressing,
 657                                u8 RL)
 658{
 659        u32 config_reg = 0;
 660
 661        config_reg |=  (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
 662        config_reg |=  EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
 663                        EMIF_REG_IBANK_POS_SHIFT;
 664
 665        config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
 666
 667        config_reg |= RL << EMIF_REG_CL_SHIFT;
 668
 669        config_reg |= addressing->row_sz[cs0_device->io_width] <<
 670                        EMIF_REG_ROWSIZE_SHIFT;
 671
 672        config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
 673
 674        config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
 675                        EMIF_REG_EBANK_SHIFT;
 676
 677        config_reg |= addressing->col_sz[cs0_device->io_width] <<
 678                        EMIF_REG_PAGESIZE_SHIFT;
 679
 680        return config_reg;
 681}
 682
 683static u32 get_sdram_ref_ctrl(u32 freq,
 684                              const struct lpddr2_addressing *addressing)
 685{
 686        u32 ref_ctrl = 0, val = 0, freq_khz;
 687        freq_khz = freq / 1000;
 688        /*
 689         * refresh rate to be set is 'tREFI * freq in MHz
 690         * division by 10000 to account for khz and x10 in t_REFI_us_x10
 691         */
 692        val = addressing->t_REFI_us_x10 * freq_khz / 10000;
 693        ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
 694
 695        return ref_ctrl;
 696}
 697
 698static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
 699                               const struct lpddr2_min_tck *min_tck,
 700                               const struct lpddr2_addressing *addressing)
 701{
 702        u32 tim1 = 0, val = 0;
 703        val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
 704        tim1 |= val << EMIF_REG_T_WTR_SHIFT;
 705
 706        if (addressing->num_banks == BANKS8)
 707                val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
 708                                                        (4 * (*T_num)) - 1;
 709        else
 710                val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
 711
 712        tim1 |= val << EMIF_REG_T_RRD_SHIFT;
 713
 714        val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
 715        tim1 |= val << EMIF_REG_T_RC_SHIFT;
 716
 717        val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
 718        tim1 |= val << EMIF_REG_T_RAS_SHIFT;
 719
 720        val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
 721        tim1 |= val << EMIF_REG_T_WR_SHIFT;
 722
 723        val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
 724        tim1 |= val << EMIF_REG_T_RCD_SHIFT;
 725
 726        val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
 727        tim1 |= val << EMIF_REG_T_RP_SHIFT;
 728
 729        return tim1;
 730}
 731
 732static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
 733                               const struct lpddr2_min_tck *min_tck)
 734{
 735        u32 tim2 = 0, val = 0;
 736        val = max(min_tck->tCKE, timings->tCKE) - 1;
 737        tim2 |= val << EMIF_REG_T_CKE_SHIFT;
 738
 739        val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
 740        tim2 |= val << EMIF_REG_T_RTP_SHIFT;
 741
 742        /*
 743         * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
 744         * same value
 745         */
 746        val = ns_2_cycles(timings->tXSR) - 1;
 747        tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
 748        tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
 749
 750        val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
 751        tim2 |= val << EMIF_REG_T_XP_SHIFT;
 752
 753        return tim2;
 754}
 755
 756static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
 757                               const struct lpddr2_min_tck *min_tck,
 758                               const struct lpddr2_addressing *addressing)
 759{
 760        u32 tim3 = 0, val = 0;
 761        val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
 762        tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
 763
 764        val = ns_2_cycles(timings->tRFCab) - 1;
 765        tim3 |= val << EMIF_REG_T_RFC_SHIFT;
 766
 767        val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
 768        tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
 769
 770        val = ns_2_cycles(timings->tZQCS) - 1;
 771        tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
 772
 773        val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
 774        tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
 775
 776        return tim3;
 777}
 778
 779static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
 780                             const struct lpddr2_addressing *addressing,
 781                             u8 volt_ramp)
 782{
 783        u32 zq = 0, val = 0;
 784        if (volt_ramp)
 785                val =
 786                    EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
 787                    addressing->t_REFI_us_x10;
 788        else
 789                val =
 790                    EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
 791                    addressing->t_REFI_us_x10;
 792        zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
 793
 794        zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
 795
 796        zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
 797
 798        zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
 799
 800        /*
 801         * Assuming that two chipselects have a single calibration resistor
 802         * If there are indeed two calibration resistors, then this flag should
 803         * be enabled to take advantage of dual calibration feature.
 804         * This data should ideally come from board files. But considering
 805         * that none of the boards today have calibration resistors per CS,
 806         * it would be an unnecessary overhead.
 807         */
 808        zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
 809
 810        zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
 811
 812        zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
 813
 814        return zq;
 815}
 816
 817static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
 818                                 const struct lpddr2_addressing *addressing,
 819                                 u8 is_derated)
 820{
 821        u32 alert = 0, interval;
 822        interval =
 823            TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
 824        if (is_derated)
 825                interval *= 4;
 826        alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
 827
 828        alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
 829
 830        alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
 831
 832        alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
 833
 834        alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
 835
 836        alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
 837
 838        return alert;
 839}
 840
 841static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
 842{
 843        u32 idle = 0, val = 0;
 844        if (volt_ramp)
 845                val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
 846        else
 847                /*Maximum value in normal conditions - suggested by hw team */
 848                val = 0x1FF;
 849        idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
 850
 851        idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
 852
 853        return idle;
 854}
 855
 856static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
 857{
 858        u32 phy = 0, val = 0;
 859
 860        phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
 861
 862        if (freq <= 100000000)
 863                val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
 864        else if (freq <= 200000000)
 865                val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
 866        else
 867                val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
 868        phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
 869
 870        /* Other fields are constant magic values. Hardcode them together */
 871        phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
 872                EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
 873
 874        return phy;
 875}
 876
 877static u32 get_emif_mem_size(u32 base)
 878{
 879        u32 size_mbytes = 0, temp;
 880        struct emif_device_details dev_details;
 881        struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
 882        u32 emif_nr = emif_num(base);
 883
 884        emif_reset_phy(base);
 885        dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
 886                                                &cs0_dev_details);
 887        dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
 888                                                &cs1_dev_details);
 889        emif_reset_phy(base);
 890
 891        if (dev_details.cs0_device_details) {
 892                temp = dev_details.cs0_device_details->density;
 893                size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
 894        }
 895
 896        if (dev_details.cs1_device_details) {
 897                temp = dev_details.cs1_device_details->density;
 898                size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
 899        }
 900        /* convert to bytes */
 901        return size_mbytes << 20;
 902}
 903
 904/* Gets the encoding corresponding to a given DMM section size */
 905u32 get_dmm_section_size_map(u32 section_size)
 906{
 907        /*
 908         * Section size mapping:
 909         * 0x0: 16-MiB section
 910         * 0x1: 32-MiB section
 911         * 0x2: 64-MiB section
 912         * 0x3: 128-MiB section
 913         * 0x4: 256-MiB section
 914         * 0x5: 512-MiB section
 915         * 0x6: 1-GiB section
 916         * 0x7: 2-GiB section
 917         */
 918        section_size >>= 24; /* divide by 16 MB */
 919        return log_2_n_round_down(section_size);
 920}
 921
 922static void emif_calculate_regs(
 923                const struct emif_device_details *emif_dev_details,
 924                u32 freq, struct emif_regs *regs)
 925{
 926        u32 temp, sys_freq;
 927        const struct lpddr2_addressing *addressing;
 928        const struct lpddr2_ac_timings *timings;
 929        const struct lpddr2_min_tck *min_tck;
 930        const struct lpddr2_device_details *cs0_dev_details =
 931                                        emif_dev_details->cs0_device_details;
 932        const struct lpddr2_device_details *cs1_dev_details =
 933                                        emif_dev_details->cs1_device_details;
 934        const struct lpddr2_device_timings *cs0_dev_timings =
 935                                        emif_dev_details->cs0_device_timings;
 936
 937        emif_assert(emif_dev_details);
 938        emif_assert(regs);
 939        /*
 940         * You can not have a device on CS1 without one on CS0
 941         * So configuring EMIF without a device on CS0 doesn't
 942         * make sense
 943         */
 944        emif_assert(cs0_dev_details);
 945        emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
 946        /*
 947         * If there is a device on CS1 it should be same type as CS0
 948         * (or NVM. But NVM is not supported in this driver yet)
 949         */
 950        emif_assert((cs1_dev_details == NULL) ||
 951                    (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
 952                    (cs0_dev_details->type == cs1_dev_details->type));
 953        emif_assert(freq <= MAX_LPDDR2_FREQ);
 954
 955        set_ddr_clk_period(freq);
 956
 957        /*
 958         * The device on CS0 is used for all timing calculations
 959         * There is only one set of registers for timings per EMIF. So, if the
 960         * second CS(CS1) has a device, it should have the same timings as the
 961         * device on CS0
 962         */
 963        timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
 964        emif_assert(timings);
 965        min_tck = cs0_dev_timings->min_tck;
 966
 967        temp = addressing_table_index(cs0_dev_details->type,
 968                                      cs0_dev_details->density,
 969                                      cs0_dev_details->io_width);
 970
 971        emif_assert((temp >= 0));
 972        addressing = &(addressing_table[temp]);
 973        emif_assert(addressing);
 974
 975        sys_freq = get_sys_clk_freq();
 976
 977        regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
 978                                                        cs1_dev_details,
 979                                                        addressing, RL_BOOT);
 980
 981        regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
 982                                                cs1_dev_details,
 983                                                addressing, RL_FINAL);
 984
 985        regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
 986
 987        regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
 988
 989        regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
 990
 991        regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
 992
 993        regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
 994
 995        regs->temp_alert_config =
 996            get_temp_alert_config(cs1_dev_details, addressing, 0);
 997
 998        regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
 999                                            LPDDR2_VOLTAGE_STABLE);
1000
1001        regs->emif_ddr_phy_ctlr_1_init =
1002                        get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
1003
1004        regs->emif_ddr_phy_ctlr_1 =
1005                        get_ddr_phy_ctrl_1(freq, RL_FINAL);
1006
1007        regs->freq = freq;
1008
1009        print_timing_reg(regs->sdram_config_init);
1010        print_timing_reg(regs->sdram_config);
1011        print_timing_reg(regs->ref_ctrl);
1012        print_timing_reg(regs->sdram_tim1);
1013        print_timing_reg(regs->sdram_tim2);
1014        print_timing_reg(regs->sdram_tim3);
1015        print_timing_reg(regs->read_idle_ctrl);
1016        print_timing_reg(regs->temp_alert_config);
1017        print_timing_reg(regs->zq_config);
1018        print_timing_reg(regs->emif_ddr_phy_ctlr_1);
1019        print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
1020}
1021#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1022
1023#ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
1024const char *get_lpddr2_type(u8 type_id)
1025{
1026        switch (type_id) {
1027        case LPDDR2_TYPE_S4:
1028                return "LPDDR2-S4";
1029        case LPDDR2_TYPE_S2:
1030                return "LPDDR2-S2";
1031        default:
1032                return NULL;
1033        }
1034}
1035
1036const char *get_lpddr2_io_width(u8 width_id)
1037{
1038        switch (width_id) {
1039        case LPDDR2_IO_WIDTH_8:
1040                return "x8";
1041        case LPDDR2_IO_WIDTH_16:
1042                return "x16";
1043        case LPDDR2_IO_WIDTH_32:
1044                return "x32";
1045        default:
1046                return NULL;
1047        }
1048}
1049
1050const char *get_lpddr2_manufacturer(u32 manufacturer)
1051{
1052        switch (manufacturer) {
1053        case LPDDR2_MANUFACTURER_SAMSUNG:
1054                return "Samsung";
1055        case LPDDR2_MANUFACTURER_QIMONDA:
1056                return "Qimonda";
1057        case LPDDR2_MANUFACTURER_ELPIDA:
1058                return "Elpida";
1059        case LPDDR2_MANUFACTURER_ETRON:
1060                return "Etron";
1061        case LPDDR2_MANUFACTURER_NANYA:
1062                return "Nanya";
1063        case LPDDR2_MANUFACTURER_HYNIX:
1064                return "Hynix";
1065        case LPDDR2_MANUFACTURER_MOSEL:
1066                return "Mosel";
1067        case LPDDR2_MANUFACTURER_WINBOND:
1068                return "Winbond";
1069        case LPDDR2_MANUFACTURER_ESMT:
1070                return "ESMT";
1071        case LPDDR2_MANUFACTURER_SPANSION:
1072                return "Spansion";
1073        case LPDDR2_MANUFACTURER_SST:
1074                return "SST";
1075        case LPDDR2_MANUFACTURER_ZMOS:
1076                return "ZMOS";
1077        case LPDDR2_MANUFACTURER_INTEL:
1078                return "Intel";
1079        case LPDDR2_MANUFACTURER_NUMONYX:
1080                return "Numonyx";
1081        case LPDDR2_MANUFACTURER_MICRON:
1082                return "Micron";
1083        default:
1084                return NULL;
1085        }
1086}
1087
1088static void display_sdram_details(u32 emif_nr, u32 cs,
1089                                  struct lpddr2_device_details *device)
1090{
1091        const char *mfg_str;
1092        const char *type_str;
1093        char density_str[10];
1094        u32 density;
1095
1096        debug("EMIF%d CS%d\t", emif_nr, cs);
1097
1098        if (!device) {
1099                debug("None\n");
1100                return;
1101        }
1102
1103        mfg_str = get_lpddr2_manufacturer(device->manufacturer);
1104        type_str = get_lpddr2_type(device->type);
1105
1106        density = lpddr2_density_2_size_in_mbytes[device->density];
1107        if ((density / 1024 * 1024) == density) {
1108                density /= 1024;
1109                sprintf(density_str, "%d GB", density);
1110        } else
1111                sprintf(density_str, "%d MB", density);
1112        if (mfg_str && type_str)
1113                debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
1114}
1115
1116static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
1117                                  struct lpddr2_device_details *lpddr2_device)
1118{
1119        u32 mr = 0, temp;
1120
1121        mr = get_mr(base, cs, LPDDR2_MR0);
1122        if (mr > 0xFF) {
1123                /* Mode register value bigger than 8 bit */
1124                return 0;
1125        }
1126
1127        temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
1128        if (temp) {
1129                /* Not SDRAM */
1130                return 0;
1131        }
1132        temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
1133
1134        if (temp) {
1135                /* DNV supported - But DNV is only supported for NVM */
1136                return 0;
1137        }
1138
1139        mr = get_mr(base, cs, LPDDR2_MR4);
1140        if (mr > 0xFF) {
1141                /* Mode register value bigger than 8 bit */
1142                return 0;
1143        }
1144
1145        mr = get_mr(base, cs, LPDDR2_MR5);
1146        if (mr > 0xFF) {
1147                /* Mode register value bigger than 8 bit */
1148                return 0;
1149        }
1150
1151        if (!get_lpddr2_manufacturer(mr)) {
1152                /* Manufacturer not identified */
1153                return 0;
1154        }
1155        lpddr2_device->manufacturer = mr;
1156
1157        mr = get_mr(base, cs, LPDDR2_MR6);
1158        if (mr >= 0xFF) {
1159                /* Mode register value bigger than 8 bit */
1160                return 0;
1161        }
1162
1163        mr = get_mr(base, cs, LPDDR2_MR7);
1164        if (mr >= 0xFF) {
1165                /* Mode register value bigger than 8 bit */
1166                return 0;
1167        }
1168
1169        mr = get_mr(base, cs, LPDDR2_MR8);
1170        if (mr >= 0xFF) {
1171                /* Mode register value bigger than 8 bit */
1172                return 0;
1173        }
1174
1175        temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
1176        if (!get_lpddr2_type(temp)) {
1177                /* Not SDRAM */
1178                return 0;
1179        }
1180        lpddr2_device->type = temp;
1181
1182        temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
1183        if (temp > LPDDR2_DENSITY_32Gb) {
1184                /* Density not supported */
1185                return 0;
1186        }
1187        lpddr2_device->density = temp;
1188
1189        temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
1190        if (!get_lpddr2_io_width(temp)) {
1191                /* IO width unsupported value */
1192                return 0;
1193        }
1194        lpddr2_device->io_width = temp;
1195
1196        /*
1197         * If all the above tests pass we should
1198         * have a device on this chip-select
1199         */
1200        return 1;
1201}
1202
1203struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
1204                        struct lpddr2_device_details *lpddr2_dev_details)
1205{
1206        u32 phy;
1207        u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
1208
1209        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1210
1211        if (!lpddr2_dev_details)
1212                return NULL;
1213
1214        /* Do the minimum init for mode register accesses */
1215        if (!(running_from_sdram() || warm_reset())) {
1216                phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
1217                writel(phy, &emif->emif_ddr_phy_ctrl_1);
1218        }
1219
1220        if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1221                return NULL;
1222
1223        display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1224
1225        return lpddr2_dev_details;
1226}
1227#endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1228
1229static void do_sdram_init(u32 base)
1230{
1231        const struct emif_regs *regs;
1232        u32 in_sdram, emif_nr;
1233
1234        debug(">>do_sdram_init() %x\n", base);
1235
1236        in_sdram = running_from_sdram();
1237        emif_nr = (base == EMIF1_BASE) ? 1 : 2;
1238
1239#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1240        emif_get_reg_dump(emif_nr, &regs);
1241        if (!regs) {
1242                debug("EMIF: reg dump not provided\n");
1243                return;
1244        }
1245#else
1246        /*
1247         * The user has not provided the register values. We need to
1248         * calculate it based on the timings and the DDR frequency
1249         */
1250        struct emif_device_details dev_details;
1251        struct emif_regs calculated_regs;
1252
1253        /*
1254         * Get device details:
1255         * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1256         * - Obtained from user otherwise
1257         */
1258        struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
1259        emif_reset_phy(base);
1260        dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
1261                                                &cs0_dev_details);
1262        dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
1263                                                &cs1_dev_details);
1264        emif_reset_phy(base);
1265
1266        /* Return if no devices on this EMIF */
1267        if (!dev_details.cs0_device_details &&
1268            !dev_details.cs1_device_details) {
1269                return;
1270        }
1271
1272        /*
1273         * Get device timings:
1274         * - Default timings specified by JESD209-2 if
1275         *   CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1276         * - Obtained from user otherwise
1277         */
1278        emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1279                                &dev_details.cs1_device_timings);
1280
1281        /* Calculate the register values */
1282        emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
1283        regs = &calculated_regs;
1284#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1285
1286        /*
1287         * Initializing the DDR device can not happen from SDRAM.
1288         * Changing the timing registers in EMIF can happen(going from one
1289         * OPP to another)
1290         */
1291        if (!in_sdram && (!warm_reset() || is_dra7xx())) {
1292                if (emif_sdram_type(regs->sdram_config) ==
1293                    EMIF_SDRAM_TYPE_LPDDR2)
1294                        lpddr2_init(base, regs);
1295#ifndef CONFIG_OMAP44XX
1296                else
1297                        ddr3_init(base, regs);
1298#endif
1299        }
1300#ifdef CONFIG_OMAP54XX
1301        if (warm_reset() && (emif_sdram_type(regs->sdram_config) ==
1302            EMIF_SDRAM_TYPE_DDR3) && !is_dra7xx()) {
1303                set_lpmode_selfrefresh(base);
1304                emif_reset_phy(base);
1305                omap5_ddr3_leveling(base, regs);
1306        }
1307#endif
1308
1309        /* Write to the shadow registers */
1310        emif_update_timings(base, regs);
1311
1312        debug("<<do_sdram_init() %x\n", base);
1313}
1314
1315void emif_post_init_config(u32 base)
1316{
1317        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1318        u32 omap_rev = omap_revision();
1319
1320        /* reset phy on ES2.0 */
1321        if (omap_rev == OMAP4430_ES2_0)
1322                emif_reset_phy(base);
1323
1324        /* Put EMIF back in smart idle on ES1.0 */
1325        if (omap_rev == OMAP4430_ES1_0)
1326                writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1327}
1328
1329void dmm_init(u32 base)
1330{
1331        const struct dmm_lisa_map_regs *lisa_map_regs;
1332        u32 i, section, valid;
1333
1334#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1335        emif_get_dmm_regs(&lisa_map_regs);
1336#else
1337        u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1338        u32 section_cnt, sys_addr;
1339        struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1340
1341        mapped_size = 0;
1342        section_cnt = 3;
1343        sys_addr = CFG_SYS_SDRAM_BASE;
1344        emif1_size = get_emif_mem_size(EMIF1_BASE);
1345        emif2_size = get_emif_mem_size(EMIF2_BASE);
1346        debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1347
1348        if (!emif1_size && !emif2_size)
1349                return;
1350
1351        /* symmetric interleaved section */
1352        if (emif1_size && emif2_size) {
1353                mapped_size = min(emif1_size, emif2_size);
1354                section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
1355                section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
1356                /* only MSB */
1357                section_map |= (sys_addr >> 24) <<
1358                                EMIF_SYS_ADDR_SHIFT;
1359                section_map |= get_dmm_section_size_map(mapped_size * 2)
1360                                << EMIF_SYS_SIZE_SHIFT;
1361                lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1362                emif1_size -= mapped_size;
1363                emif2_size -= mapped_size;
1364                sys_addr += (mapped_size * 2);
1365                section_cnt--;
1366        }
1367
1368        /*
1369         * Single EMIF section(we can have a maximum of 1 single EMIF
1370         * section- either EMIF1 or EMIF2 or none, but not both)
1371         */
1372        if (emif1_size) {
1373                section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1374                section_map |= get_dmm_section_size_map(emif1_size)
1375                                << EMIF_SYS_SIZE_SHIFT;
1376                /* only MSB */
1377                section_map |= (mapped_size >> 24) <<
1378                                EMIF_SDRC_ADDR_SHIFT;
1379                /* only MSB */
1380                section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
1381                section_cnt--;
1382        }
1383        if (emif2_size) {
1384                section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1385                section_map |= get_dmm_section_size_map(emif2_size) <<
1386                                EMIF_SYS_SIZE_SHIFT;
1387                /* only MSB */
1388                section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
1389                /* only MSB */
1390                section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
1391                section_cnt--;
1392        }
1393
1394        if (section_cnt == 2) {
1395                /* Only 1 section - either symmetric or single EMIF */
1396                lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1397                lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1398                lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1399        } else {
1400                /* 2 sections - 1 symmetric, 1 single EMIF */
1401                lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1402                lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1403        }
1404
1405        /* TRAP for invalid TILER mappings in section 0 */
1406        lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1407
1408        if (omap_revision() >= OMAP4460_ES1_0)
1409                lis_map_regs_calculated.is_ma_present = 1;
1410
1411        lisa_map_regs = &lis_map_regs_calculated;
1412#endif
1413        struct dmm_lisa_map_regs *hw_lisa_map_regs =
1414            (struct dmm_lisa_map_regs *)base;
1415
1416        writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1417        writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1418        writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1419        writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1420
1421        writel(lisa_map_regs->dmm_lisa_map_3,
1422                &hw_lisa_map_regs->dmm_lisa_map_3);
1423        writel(lisa_map_regs->dmm_lisa_map_2,
1424                &hw_lisa_map_regs->dmm_lisa_map_2);
1425        writel(lisa_map_regs->dmm_lisa_map_1,
1426                &hw_lisa_map_regs->dmm_lisa_map_1);
1427        writel(lisa_map_regs->dmm_lisa_map_0,
1428                &hw_lisa_map_regs->dmm_lisa_map_0);
1429
1430        if (lisa_map_regs->is_ma_present) {
1431                hw_lisa_map_regs =
1432                    (struct dmm_lisa_map_regs *)MA_BASE;
1433
1434                writel(lisa_map_regs->dmm_lisa_map_3,
1435                        &hw_lisa_map_regs->dmm_lisa_map_3);
1436                writel(lisa_map_regs->dmm_lisa_map_2,
1437                        &hw_lisa_map_regs->dmm_lisa_map_2);
1438                writel(lisa_map_regs->dmm_lisa_map_1,
1439                        &hw_lisa_map_regs->dmm_lisa_map_1);
1440                writel(lisa_map_regs->dmm_lisa_map_0,
1441                        &hw_lisa_map_regs->dmm_lisa_map_0);
1442
1443                setbits_le32(MA_PRIORITY, MA_HIMEM_INTERLEAVE_UN_MASK);
1444        }
1445
1446        /*
1447         * EMIF should be configured only when
1448         * memory is mapped on it. Using emif1_enabled
1449         * and emif2_enabled variables for this.
1450         */
1451        emif1_enabled = 0;
1452        emif2_enabled = 0;
1453        for (i = 0; i < 4; i++) {
1454                section = __raw_readl(DMM_BASE + i*4);
1455                valid = (section & EMIF_SDRC_MAP_MASK) >>
1456                        (EMIF_SDRC_MAP_SHIFT);
1457                if (valid == 3) {
1458                        emif1_enabled = 1;
1459                        emif2_enabled = 1;
1460                        break;
1461                }
1462
1463                if (valid == 1)
1464                        emif1_enabled = 1;
1465
1466                if (valid == 2)
1467                        emif2_enabled = 1;
1468        }
1469}
1470
1471static void do_bug0039_workaround(u32 base)
1472{
1473        u32 val, i, clkctrl;
1474        struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
1475        const struct read_write_regs *bug_00339_regs;
1476        u32 iterations;
1477        u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
1478        u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;
1479
1480        if (is_dra7xx())
1481                phy_status_base++;
1482
1483        bug_00339_regs = get_bug_regs(&iterations);
1484
1485        /* Put EMIF in to idle */
1486        clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
1487        __raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);
1488
1489        /* Copy the phy status registers in to phy ctrl shadow registers */
1490        for (i = 0; i < iterations; i++) {
1491                val = __raw_readl(phy_status_base +
1492                                  bug_00339_regs[i].read_reg - 1);
1493
1494                __raw_writel(val, phy_ctrl_base +
1495                             ((bug_00339_regs[i].write_reg - 1) << 1));
1496
1497                __raw_writel(val, phy_ctrl_base +
1498                             (bug_00339_regs[i].write_reg << 1) - 1);
1499        }
1500
1501        /* Disable leveling */
1502        writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);
1503
1504        __raw_writel(clkctrl,  (*prcm)->cm_memif_clkstctrl);
1505}
1506
1507/*
1508 * SDRAM initialization:
1509 * SDRAM initialization has two parts:
1510 * 1. Configuring the SDRAM device
1511 * 2. Update the AC timings related parameters in the EMIF module
1512 * (1) should be done only once and should not be done while we are
1513 * running from SDRAM.
1514 * (2) can and should be done more than once if OPP changes.
1515 * Particularly, this may be needed when we boot without SPL and
1516 * and using Configuration Header(CH). ROM code supports only at 50% OPP
1517 * at boot (low power boot). So u-boot has to switch to OPP100 and update
1518 * the frequency. So,
1519 * Doing (1) and (2) makes sense - first time initialization
1520 * Doing (2) and not (1) makes sense - OPP change (when using CH)
1521 * Doing (1) and not (2) doen't make sense
1522 * See do_sdram_init() for the details
1523 */
1524void sdram_init(void)
1525{
1526        u32 in_sdram, size_prog, size_detect;
1527        struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
1528        u32 sdram_type = emif_sdram_type(emif->emif_sdram_config);
1529
1530        debug(">>sdram_init()\n");
1531
1532        if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
1533                return;
1534
1535        in_sdram = running_from_sdram();
1536        debug("in_sdram = %d\n", in_sdram);
1537
1538        if (!in_sdram) {
1539                if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
1540                        bypass_dpll((*prcm)->cm_clkmode_dpll_core);
1541                else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
1542                        writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
1543        }
1544
1545        if (!in_sdram)
1546                dmm_init(DMM_BASE);
1547
1548        if (emif1_enabled)
1549                do_sdram_init(EMIF1_BASE);
1550
1551        if (emif2_enabled)
1552                do_sdram_init(EMIF2_BASE);
1553
1554        if (!(in_sdram || warm_reset())) {
1555                if (emif1_enabled)
1556                        emif_post_init_config(EMIF1_BASE);
1557                if (emif2_enabled)
1558                        emif_post_init_config(EMIF2_BASE);
1559        }
1560
1561        /* for the shadow registers to take effect */
1562        if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
1563                freq_update_core();
1564
1565        /* Do some testing after the init */
1566        if (!in_sdram) {
1567                size_prog = omap_sdram_size();
1568                size_prog = log_2_n_round_down(size_prog);
1569                size_prog = (1 << size_prog);
1570
1571                size_detect = get_ram_size((long *)CFG_SYS_SDRAM_BASE,
1572                                                size_prog);
1573                /* Compare with the size programmed */
1574                if (size_detect != size_prog) {
1575                        printf("SDRAM: identified size not same as expected"
1576                                " size identified: %x expected: %x\n",
1577                                size_detect,
1578                                size_prog);
1579                } else
1580                        debug("get_ram_size() successful");
1581        }
1582
1583#if defined(CONFIG_TI_SECURE_DEVICE)
1584        /*
1585         * On HS devices, do static EMIF firewall configuration
1586         * but only do it if not already running in SDRAM
1587         */
1588        if (!in_sdram)
1589                if (0 != secure_emif_reserve())
1590                        hang();
1591
1592        /* On HS devices, ensure static EMIF firewall APIs are locked */
1593        if (0 != secure_emif_firewall_lock())
1594                hang();
1595#endif
1596
1597        if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
1598            (!in_sdram && !warm_reset()) && (!is_dra7xx())) {
1599                if (emif1_enabled)
1600                        do_bug0039_workaround(EMIF1_BASE);
1601                if (emif2_enabled)
1602                        do_bug0039_workaround(EMIF2_BASE);
1603        }
1604
1605        debug("<<sdram_init()\n");
1606}
1607