uboot/board/freescale/common/vid.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Copyright 2014 Freescale Semiconductor, Inc.
   4 * Copyright 2020-21 NXP
   5 * Copyright 2020 Stephen Carlson <stcarlso@linux.microsoft.com>
   6 */
   7
   8#include <common.h>
   9#include <command.h>
  10#include <env.h>
  11#include <i2c.h>
  12#include <irq_func.h>
  13#include <log.h>
  14#include <asm/io.h>
  15#ifdef CONFIG_FSL_LSCH2
  16#include <asm/arch/immap_lsch2.h>
  17#elif defined(CONFIG_FSL_LSCH3)
  18#include <asm/arch/immap_lsch3.h>
  19#else
  20#include <asm/immap_85xx.h>
  21#endif
  22#include <linux/delay.h>
  23#include "i2c_common.h"
  24#include "vid.h"
  25
  26#ifndef I2C_VOL_MONITOR_BUS
  27#define I2C_VOL_MONITOR_BUS                    0
  28#endif
  29
  30/* Voltages are generally handled in mV to keep them as integers */
  31#define MV_PER_V 1000
  32
  33/*
  34 * Select the channel on the I2C mux (on some NXP boards) that contains
  35 * the voltage regulator to use for VID. Return 0 for success or nonzero
  36 * for failure.
  37 */
  38int __weak i2c_multiplexer_select_vid_channel(u8 channel)
  39{
  40        return 0;
  41}
  42
  43/*
  44 * Compensate for a board specific voltage drop between regulator and SoC.
  45 * Returns the voltage offset in mV.
  46 */
  47int __weak board_vdd_drop_compensation(void)
  48{
  49        return 0;
  50}
  51
  52/*
  53 * Performs any board specific adjustments after the VID voltage has been
  54 * set. Return 0 for success or nonzero for failure.
  55 */
  56int __weak board_adjust_vdd(int vdd)
  57{
  58        return 0;
  59}
  60
  61/*
  62 * Processor specific method of converting the fuse value read from VID
  63 * registers into the core voltage to supply. Return the voltage in mV.
  64 */
  65u16 __weak soc_get_fuse_vid(int vid_index)
  66{
  67        /* Default VDD for Layerscape Chassis 1 devices */
  68        static const u16 vdd[32] = {
  69                0,      /* unused */
  70                9875,   /* 0.9875V */
  71                9750,
  72                9625,
  73                9500,
  74                9375,
  75                9250,
  76                9125,
  77                9000,
  78                8875,
  79                8750,
  80                8625,
  81                8500,
  82                8375,
  83                8250,
  84                8125,
  85                10000,  /* 1.0000V */
  86                10125,
  87                10250,
  88                10375,
  89                10500,
  90                10625,
  91                10750,
  92                10875,
  93                11000,
  94                0,      /* reserved */
  95        };
  96        return vdd[vid_index];
  97}
  98
  99#ifndef I2C_VOL_MONITOR_ADDR
 100#define I2C_VOL_MONITOR_ADDR                    0
 101#endif
 102
 103#if defined(CONFIG_VOL_MONITOR_IR36021_SET) || \
 104        defined(CONFIG_VOL_MONITOR_IR36021_READ)
 105/*
 106 * Get the i2c address configuration for the IR regulator chip
 107 *
 108 * There are some variance in the RDB HW regarding the I2C address configuration
 109 * for the IR regulator chip, which is likely a problem of external resistor
 110 * accuracy. So we just check each address in a hopefully non-intrusive mode
 111 * and use the first one that seems to work
 112 *
 113 * The IR chip can show up under the following addresses:
 114 * 0x08 (Verified on T1040RDB-PA,T4240RDB-PB,X-T4240RDB-16GPA)
 115 * 0x09 (Verified on T1040RDB-PA)
 116 * 0x38 (Verified on T2080QDS, T2081QDS, T4240RDB)
 117 */
 118static int find_ir_chip_on_i2c(void)
 119{
 120        int i2caddress, ret, i;
 121        u8 mfrID;
 122        const int ir_i2c_addr[] = {0x38, 0x08, 0x09};
 123        DEVICE_HANDLE_T dev;
 124
 125        /* Check all the address */
 126        for (i = 0; i < (sizeof(ir_i2c_addr)/sizeof(ir_i2c_addr[0])); i++) {
 127                i2caddress = ir_i2c_addr[i];
 128                ret = fsl_i2c_get_device(i2caddress, I2C_VOL_MONITOR_BUS, &dev);
 129                if (!ret) {
 130                        ret = I2C_READ(dev, IR36021_MFR_ID_OFFSET,
 131                                       (void *)&mfrID, sizeof(mfrID));
 132                        /* If manufacturer ID matches the IR36021 */
 133                        if (!ret && mfrID == IR36021_MFR_ID)
 134                                return i2caddress;
 135                }
 136        }
 137        return -1;
 138}
 139#endif
 140
 141/* Maximum loop count waiting for new voltage to take effect */
 142#define MAX_LOOP_WAIT_NEW_VOL           100
 143/* Maximum loop count waiting for the voltage to be stable */
 144#define MAX_LOOP_WAIT_VOL_STABLE        100
 145/*
 146 * read_voltage from sensor on I2C bus
 147 * We use average of 4 readings, waiting for WAIT_FOR_ADC before
 148 * another reading
 149 */
 150#define NUM_READINGS    4       /* prefer to be power of 2 for efficiency */
 151
 152/* If an INA220 chip is available, we can use it to read back the voltage
 153 * as it may have a higher accuracy than the IR chip for the same purpose
 154 */
 155#ifdef CONFIG_VOL_MONITOR_INA220
 156#define WAIT_FOR_ADC    532     /* wait for 532 microseconds for ADC */
 157#define ADC_MIN_ACCURACY        4
 158#else
 159#define WAIT_FOR_ADC    138     /* wait for 138 microseconds for ADC */
 160#define ADC_MIN_ACCURACY        4
 161#endif
 162
 163#ifdef CONFIG_VOL_MONITOR_INA220
 164static int read_voltage_from_INA220(int i2caddress)
 165{
 166        int i, ret, voltage_read = 0;
 167        u16 vol_mon;
 168        u8 buf[2];
 169        DEVICE_HANDLE_T dev;
 170
 171        /* Open device handle */
 172        ret = fsl_i2c_get_device(i2caddress, I2C_VOL_MONITOR_BUS, &dev);
 173        if (ret)
 174                return ret;
 175
 176        for (i = 0; i < NUM_READINGS; i++) {
 177                ret = I2C_READ(dev, I2C_VOL_MONITOR_BUS_V_OFFSET,
 178                               (void *)&buf[0], sizeof(buf));
 179                if (ret) {
 180                        printf("VID: failed to read core voltage\n");
 181                        return ret;
 182                }
 183
 184                vol_mon = (buf[0] << 8) | buf[1];
 185                if (vol_mon & I2C_VOL_MONITOR_BUS_V_OVF) {
 186                        printf("VID: Core voltage sensor error\n");
 187                        return -1;
 188                }
 189
 190                debug("VID: bus voltage reads 0x%04x\n", vol_mon);
 191                /* LSB = 4mv */
 192                voltage_read += (vol_mon >> I2C_VOL_MONITOR_BUS_V_SHIFT) * 4;
 193                udelay(WAIT_FOR_ADC);
 194        }
 195
 196        /* calculate the average */
 197        voltage_read /= NUM_READINGS;
 198
 199        return voltage_read;
 200}
 201#endif
 202
 203#ifdef CONFIG_VOL_MONITOR_IR36021_READ
 204/* read voltage from IR */
 205static int read_voltage_from_IR(int i2caddress)
 206{
 207        int i, ret, voltage_read = 0;
 208        u16 vol_mon;
 209        u8 buf;
 210        DEVICE_HANDLE_T dev;
 211
 212        /* Open device handle */
 213        ret = fsl_i2c_get_device(i2caddress, I2C_VOL_MONITOR_BUS, &dev);
 214        if (ret)
 215                return ret;
 216
 217        for (i = 0; i < NUM_READINGS; i++) {
 218                ret = I2C_READ(dev, IR36021_LOOP1_VOUT_OFFSET, (void *)&buf,
 219                               sizeof(buf));
 220                if (ret) {
 221                        printf("VID: failed to read core voltage\n");
 222                        return ret;
 223                }
 224                vol_mon = buf;
 225                if (!vol_mon) {
 226                        printf("VID: Core voltage sensor error\n");
 227                        return -1;
 228                }
 229                debug("VID: bus voltage reads 0x%02x\n", vol_mon);
 230                /* Resolution is 1/128V. We scale up here to get 1/128mV
 231                 * and divide at the end
 232                 */
 233                voltage_read += vol_mon * MV_PER_V;
 234                udelay(WAIT_FOR_ADC);
 235        }
 236        /* Scale down to the real mV as IR resolution is 1/128V, rounding up */
 237        voltage_read = DIV_ROUND_UP(voltage_read, 128);
 238
 239        /* calculate the average */
 240        voltage_read /= NUM_READINGS;
 241
 242        /* Compensate for a board specific voltage drop between regulator and
 243         * SoC before converting into an IR VID value
 244         */
 245        voltage_read -= board_vdd_drop_compensation();
 246
 247        return voltage_read;
 248}
 249#endif
 250
 251#if defined(CONFIG_VOL_MONITOR_ISL68233_READ) || \
 252        defined(CONFIG_VOL_MONITOR_LTC3882_READ) || \
 253        defined(CONFIG_VOL_MONITOR_ISL68233_SET) || \
 254        defined(CONFIG_VOL_MONITOR_LTC3882_SET)
 255
 256/*
 257 * The message displayed if the VOUT exponent causes a resolution
 258 * worse than 1.0 V (if exponent is >= 0).
 259 */
 260#define VOUT_WARNING "VID: VOUT_MODE exponent has resolution worse than 1 V!\n"
 261
 262/* Checks the PMBus voltage monitor for the format used for voltage values */
 263static int get_pmbus_multiplier(DEVICE_HANDLE_T dev)
 264{
 265        u8 mode;
 266        int exponent, multiplier, ret;
 267
 268        ret = I2C_READ(dev, PMBUS_CMD_VOUT_MODE, &mode, sizeof(mode));
 269        if (ret) {
 270                printf("VID: unable to determine voltage multiplier\n");
 271                return 1;
 272        }
 273
 274        /* Upper 3 bits is mode, lower 5 bits is exponent */
 275        exponent = (int)mode & 0x1F;
 276        mode >>= 5;
 277        switch (mode) {
 278        case 0:
 279                /* Linear, 5 bit twos component exponent */
 280                if (exponent & 0x10) {
 281                        multiplier = 1 << (16 - (exponent & 0xF));
 282                } else {
 283                        /* If exponent is >= 0, then resolution is 1 V! */
 284                        printf(VOUT_WARNING);
 285                        multiplier = 1;
 286                }
 287                break;
 288        case 1:
 289                /* VID code identifier */
 290                printf("VID: custom VID codes are not supported\n");
 291                multiplier = MV_PER_V;
 292                break;
 293        default:
 294                /* Direct, in mV */
 295                multiplier = MV_PER_V;
 296                break;
 297        }
 298
 299        debug("VID: calculated multiplier is %d\n", multiplier);
 300        return multiplier;
 301}
 302#endif
 303
 304#if defined(CONFIG_VOL_MONITOR_ISL68233_READ) || \
 305        defined(CONFIG_VOL_MONITOR_LTC3882_READ)
 306static int read_voltage_from_pmbus(int i2caddress)
 307{
 308        int ret, multiplier, vout;
 309        u8 channel = PWM_CHANNEL0;
 310        u16 vcode;
 311        DEVICE_HANDLE_T dev;
 312
 313        /* Open device handle */
 314        ret = fsl_i2c_get_device(i2caddress, I2C_VOL_MONITOR_BUS, &dev);
 315        if (ret)
 316                return ret;
 317
 318        /* Select the right page */
 319        ret = I2C_WRITE(dev, PMBUS_CMD_PAGE, &channel, sizeof(channel));
 320        if (ret) {
 321                printf("VID: failed to select VDD page %d\n", channel);
 322                return ret;
 323        }
 324
 325        /* VOUT is little endian */
 326        ret = I2C_READ(dev, PMBUS_CMD_READ_VOUT, (void *)&vcode, sizeof(vcode));
 327        if (ret) {
 328                printf("VID: failed to read core voltage\n");
 329                return ret;
 330        }
 331
 332        /* Scale down to the real mV */
 333        multiplier = get_pmbus_multiplier(dev);
 334        vout = (int)vcode;
 335        /* Multiplier 1000 (direct mode) requires no change to convert */
 336        if (multiplier != MV_PER_V)
 337                vout = DIV_ROUND_UP(vout * MV_PER_V, multiplier);
 338        return vout - board_vdd_drop_compensation();
 339}
 340#endif
 341
 342static int read_voltage(int i2caddress)
 343{
 344        int voltage_read;
 345#ifdef CONFIG_VOL_MONITOR_INA220
 346        voltage_read = read_voltage_from_INA220(I2C_VOL_MONITOR_ADDR);
 347#elif defined CONFIG_VOL_MONITOR_IR36021_READ
 348        voltage_read = read_voltage_from_IR(i2caddress);
 349#elif defined(CONFIG_VOL_MONITOR_ISL68233_READ) || \
 350          defined(CONFIG_VOL_MONITOR_LTC3882_READ)
 351        voltage_read = read_voltage_from_pmbus(i2caddress);
 352#else
 353        voltage_read = -1;
 354#endif
 355        return voltage_read;
 356}
 357
 358#ifdef CONFIG_VOL_MONITOR_IR36021_SET
 359/*
 360 * We need to calculate how long before the voltage stops to drop
 361 * or increase. It returns with the loop count. Each loop takes
 362 * several readings (WAIT_FOR_ADC)
 363 */
 364static int wait_for_new_voltage(int vdd, int i2caddress)
 365{
 366        int timeout, vdd_current;
 367
 368        vdd_current = read_voltage(i2caddress);
 369        /* wait until voltage starts to reach the target. Voltage slew
 370         * rates by typical regulators will always lead to stable readings
 371         * within each fairly long ADC interval in comparison to the
 372         * intended voltage delta change until the target voltage is
 373         * reached. The fairly small voltage delta change to any target
 374         * VID voltage also means that this function will always complete
 375         * within few iterations. If the timeout was ever reached, it would
 376         * point to a serious failure in the regulator system.
 377         */
 378        for (timeout = 0;
 379             abs(vdd - vdd_current) > (IR_VDD_STEP_UP + IR_VDD_STEP_DOWN) &&
 380             timeout < MAX_LOOP_WAIT_NEW_VOL; timeout++) {
 381                vdd_current = read_voltage(i2caddress);
 382        }
 383        if (timeout >= MAX_LOOP_WAIT_NEW_VOL) {
 384                printf("VID: Voltage adjustment timeout\n");
 385                return -1;
 386        }
 387        return timeout;
 388}
 389
 390/*
 391 * Blocks and reads the VID voltage until it stabilizes, or the
 392 * timeout expires
 393 */
 394static int wait_for_voltage_stable(int i2caddress)
 395{
 396        int timeout, vdd_current, vdd;
 397
 398        vdd = read_voltage(i2caddress);
 399        udelay(NUM_READINGS * WAIT_FOR_ADC);
 400
 401        vdd_current = read_voltage(i2caddress);
 402        /*
 403         * The maximum timeout is
 404         * MAX_LOOP_WAIT_VOL_STABLE * NUM_READINGS * WAIT_FOR_ADC
 405         */
 406        for (timeout = MAX_LOOP_WAIT_VOL_STABLE;
 407             abs(vdd - vdd_current) > ADC_MIN_ACCURACY &&
 408             timeout > 0; timeout--) {
 409                vdd = vdd_current;
 410                udelay(NUM_READINGS * WAIT_FOR_ADC);
 411                vdd_current = read_voltage(i2caddress);
 412        }
 413        if (timeout == 0)
 414                return -1;
 415        return vdd_current;
 416}
 417
 418/* Sets the VID voltage using the IR36021 */
 419static int set_voltage_to_IR(int i2caddress, int vdd)
 420{
 421        int wait, vdd_last;
 422        int ret;
 423        u8 vid;
 424        DEVICE_HANDLE_T dev;
 425
 426        /* Open device handle */
 427        ret = fsl_i2c_get_device(i2caddress, I2C_VOL_MONITOR_BUS, &dev);
 428        if (ret)
 429                return ret;
 430
 431        /* Compensate for a board specific voltage drop between regulator and
 432         * SoC before converting into an IR VID value
 433         */
 434        vdd += board_vdd_drop_compensation();
 435#ifdef CONFIG_FSL_LSCH2
 436        vid = DIV_ROUND_UP(vdd - 265, 5);
 437#else
 438        vid = DIV_ROUND_UP(vdd - 245, 5);
 439#endif
 440
 441        ret = I2C_WRITE(dev, IR36021_LOOP1_MANUAL_ID_OFFSET, (void *)&vid,
 442                        sizeof(vid));
 443        if (ret) {
 444                printf("VID: failed to write new voltage\n");
 445                return -1;
 446        }
 447        wait = wait_for_new_voltage(vdd, i2caddress);
 448        if (wait < 0)
 449                return -1;
 450        debug("VID: Waited %d us\n", wait * NUM_READINGS * WAIT_FOR_ADC);
 451
 452        vdd_last = wait_for_voltage_stable(i2caddress);
 453        if (vdd_last < 0)
 454                return -1;
 455        debug("VID: Current voltage is %d mV\n", vdd_last);
 456        return vdd_last;
 457}
 458#endif
 459
 460#if defined(CONFIG_VOL_MONITOR_ISL68233_SET) || \
 461        defined(CONFIG_VOL_MONITOR_LTC3882_SET)
 462static int set_voltage_to_pmbus(int i2caddress, int vdd)
 463{
 464        int ret, vdd_last, vdd_target = vdd;
 465        int count = MAX_LOOP_WAIT_NEW_VOL, temp = 0, multiplier;
 466        unsigned char value;
 467
 468        /* The data to be sent with the PMBus command PAGE_PLUS_WRITE */
 469        u8 buffer[5] = { 0x04, PWM_CHANNEL0, PMBUS_CMD_VOUT_COMMAND, 0, 0 };
 470        DEVICE_HANDLE_T dev;
 471
 472        /* Open device handle */
 473        ret = fsl_i2c_get_device(i2caddress, I2C_VOL_MONITOR_BUS, &dev);
 474        if (ret)
 475                return ret;
 476
 477        /* Scale up to the proper value for the VOUT command, little endian */
 478        multiplier = get_pmbus_multiplier(dev);
 479        vdd += board_vdd_drop_compensation();
 480        if (multiplier != MV_PER_V)
 481                vdd = DIV_ROUND_UP(vdd * multiplier, MV_PER_V);
 482        buffer[3] = vdd & 0xFF;
 483        buffer[4] = (vdd & 0xFF00) >> 8;
 484
 485        /* Check write protect state */
 486        ret = I2C_READ(dev, PMBUS_CMD_WRITE_PROTECT, (void *)&value,
 487                       sizeof(value));
 488        if (ret)
 489                goto exit;
 490
 491        if (value != EN_WRITE_ALL_CMD) {
 492                value = EN_WRITE_ALL_CMD;
 493                ret = I2C_WRITE(dev, PMBUS_CMD_WRITE_PROTECT,
 494                                (void *)&value, sizeof(value));
 495                if (ret)
 496                        goto exit;
 497        }
 498
 499        /* Write the desired voltage code to the regulator */
 500        ret = I2C_WRITE(dev, PMBUS_CMD_PAGE_PLUS_WRITE, (void *)&buffer[0],
 501                        sizeof(buffer));
 502        if (ret) {
 503                printf("VID: I2C failed to write to the voltage regulator\n");
 504                return -1;
 505        }
 506
 507exit:
 508        /* Wait for the voltage to get to the desired value */
 509        do {
 510                vdd_last = read_voltage_from_pmbus(i2caddress);
 511                if (vdd_last < 0) {
 512                        printf("VID: Couldn't read sensor abort VID adjust\n");
 513                        return -1;
 514                }
 515                count--;
 516                temp = vdd_last - vdd_target;
 517        } while ((abs(temp) > 2)  && (count > 0));
 518
 519        return vdd_last;
 520}
 521#endif
 522
 523static int set_voltage(int i2caddress, int vdd)
 524{
 525        int vdd_last = -1;
 526
 527#ifdef CONFIG_VOL_MONITOR_IR36021_SET
 528        vdd_last = set_voltage_to_IR(i2caddress, vdd);
 529#elif defined(CONFIG_VOL_MONITOR_ISL68233_SET) || \
 530          defined(CONFIG_VOL_MONITOR_LTC3882_SET)
 531        vdd_last = set_voltage_to_pmbus(i2caddress, vdd);
 532#else
 533        #error Specific voltage monitor must be defined
 534#endif
 535        return vdd_last;
 536}
 537
 538int adjust_vdd(ulong vdd_override)
 539{
 540        int re_enable = disable_interrupts();
 541#if defined(CONFIG_FSL_LSCH2) || defined(CONFIG_FSL_LSCH3)
 542        struct ccsr_gur *gur = (void *)(CFG_SYS_FSL_GUTS_ADDR);
 543#else
 544        ccsr_gur_t __iomem *gur =
 545                (void __iomem *)(CFG_SYS_MPC85xx_GUTS_ADDR);
 546#endif
 547        u8 vid;
 548        u32 fusesr;
 549        int vdd_current, vdd_last, vdd_target;
 550        int ret, i2caddress = I2C_VOL_MONITOR_ADDR;
 551        unsigned long vdd_string_override;
 552        char *vdd_string;
 553
 554#if defined(CONFIG_VOL_MONITOR_IR36021_SET) || \
 555        defined(CONFIG_VOL_MONITOR_IR36021_READ)
 556        u8 buf;
 557        DEVICE_HANDLE_T dev;
 558#endif
 559
 560        /*
 561         * VID is used according to the table below
 562         *                ---------------------------------------
 563         *                |                DA_V                 |
 564         *                |-------------------------------------|
 565         *                | 5b00000 | 5b00001-5b11110 | 5b11111 |
 566         * ---------------+---------+-----------------+---------|
 567         * | D | 5b00000  | NO VID  | VID = DA_V      | NO VID  |
 568         * | A |----------+---------+-----------------+---------|
 569         * | _ | 5b00001  |VID =    | VID =           |VID =    |
 570         * | V |   ~      | DA_V_ALT|   DA_V_ALT      | DA_A_VLT|
 571         * | _ | 5b11110  |         |                 |         |
 572         * | A |----------+---------+-----------------+---------|
 573         * | L | 5b11111  | No VID  | VID = DA_V      | NO VID  |
 574         * | T |          |         |                 |         |
 575         * ------------------------------------------------------
 576         */
 577#if defined(CONFIG_FSL_LSCH3)
 578        fusesr = in_le32(&gur->dcfg_fusesr);
 579        vid = (fusesr >> FSL_CHASSIS3_DCFG_FUSESR_ALTVID_SHIFT) &
 580               FSL_CHASSIS3_DCFG_FUSESR_ALTVID_MASK;
 581        if (vid == 0 || vid == FSL_CHASSIS3_DCFG_FUSESR_ALTVID_MASK) {
 582                vid = (fusesr >> FSL_CHASSIS3_DCFG_FUSESR_VID_SHIFT) &
 583                       FSL_CHASSIS3_DCFG_FUSESR_VID_MASK;
 584        }
 585#elif defined(CONFIG_FSL_LSCH2)
 586        fusesr = in_be32(&gur->dcfg_fusesr);
 587        vid = (fusesr >> FSL_CHASSIS2_DCFG_FUSESR_ALTVID_SHIFT) &
 588               FSL_CHASSIS2_DCFG_FUSESR_ALTVID_MASK;
 589        if (vid == 0 || vid == FSL_CHASSIS2_DCFG_FUSESR_ALTVID_MASK) {
 590                vid = (fusesr >> FSL_CHASSIS2_DCFG_FUSESR_VID_SHIFT) &
 591                       FSL_CHASSIS2_DCFG_FUSESR_VID_MASK;
 592        }
 593#else
 594        fusesr = in_be32(&gur->dcfg_fusesr);
 595        vid = (fusesr >> FSL_CORENET_DCFG_FUSESR_ALTVID_SHIFT) &
 596               FSL_CORENET_DCFG_FUSESR_ALTVID_MASK;
 597        if (vid == 0 || vid == FSL_CORENET_DCFG_FUSESR_ALTVID_MASK) {
 598                vid = (fusesr >> FSL_CORENET_DCFG_FUSESR_VID_SHIFT) &
 599                       FSL_CORENET_DCFG_FUSESR_VID_MASK;
 600        }
 601#endif
 602        vdd_target = soc_get_fuse_vid((int)vid);
 603
 604        ret = i2c_multiplexer_select_vid_channel(I2C_MUX_CH_VOL_MONITOR);
 605        if (ret) {
 606                debug("VID: I2C failed to switch channel\n");
 607                ret = -1;
 608                goto exit;
 609        }
 610
 611#if defined(CONFIG_VOL_MONITOR_IR36021_SET) || \
 612        defined(CONFIG_VOL_MONITOR_IR36021_READ)
 613        ret = find_ir_chip_on_i2c();
 614        if (ret < 0) {
 615                printf("VID: Could not find voltage regulator on I2C.\n");
 616                ret = -1;
 617                goto exit;
 618        } else {
 619                i2caddress = ret;
 620                debug("VID: IR Chip found on I2C address 0x%02x\n", i2caddress);
 621        }
 622
 623        ret = fsl_i2c_get_device(i2caddress, I2C_VOL_MONITOR_BUS, &dev);
 624        if (ret)
 625                return ret;
 626
 627        /* check IR chip work on Intel mode */
 628        ret = I2C_READ(dev, IR36021_INTEL_MODE_OFFSET, (void *)&buf,
 629                       sizeof(buf));
 630        if (ret) {
 631                printf("VID: failed to read IR chip mode.\n");
 632                ret = -1;
 633                goto exit;
 634        }
 635        if ((buf & IR36021_MODE_MASK) != IR36021_INTEL_MODE) {
 636                printf("VID: IR Chip is not used in Intel mode.\n");
 637                ret = -1;
 638                goto exit;
 639        }
 640#endif
 641
 642        /* check override variable for overriding VDD */
 643        vdd_string = env_get(CONFIG_VID_FLS_ENV);
 644        debug("VID: Initial VDD value is %d mV\n",
 645              DIV_ROUND_UP(vdd_target, 10));
 646        if (vdd_override == 0 && vdd_string &&
 647            !strict_strtoul(vdd_string, 10, &vdd_string_override))
 648                vdd_override = vdd_string_override;
 649        if (vdd_override >= VDD_MV_MIN && vdd_override <= VDD_MV_MAX) {
 650                vdd_target = vdd_override * 10; /* convert to 1/10 mV */
 651                debug("VID: VDD override is %lu\n", vdd_override);
 652        } else if (vdd_override != 0) {
 653                printf("VID: Invalid VDD value.\n");
 654        }
 655        if (vdd_target == 0) {
 656                debug("VID: VID not used\n");
 657                ret = 0;
 658                goto exit;
 659        } else {
 660                /* divide and round up by 10 to get a value in mV */
 661                vdd_target = DIV_ROUND_UP(vdd_target, 10);
 662                debug("VID: vid = %d mV\n", vdd_target);
 663        }
 664
 665        /*
 666         * Read voltage monitor to check real voltage.
 667         */
 668        vdd_last = read_voltage(i2caddress);
 669        if (vdd_last < 0) {
 670                printf("VID: Couldn't read sensor abort VID adjustment\n");
 671                ret = -1;
 672                goto exit;
 673        }
 674        vdd_current = vdd_last;
 675        debug("VID: Core voltage is currently at %d mV\n", vdd_last);
 676
 677#if defined(CONFIG_VOL_MONITOR_LTC3882_SET) || \
 678        defined(CONFIG_VOL_MONITOR_ISL68233_SET)
 679        /* Set the target voltage */
 680        vdd_current = set_voltage(i2caddress, vdd_target);
 681        vdd_last = vdd_current;
 682#else
 683        /*
 684          * Adjust voltage to at or one step above target.
 685          * As measurements are less precise than setting the values
 686          * we may run through dummy steps that cancel each other
 687          * when stepping up and then down.
 688          */
 689        while (vdd_last > 0 &&
 690               vdd_last < vdd_target) {
 691                vdd_current += IR_VDD_STEP_UP;
 692                vdd_last = set_voltage(i2caddress, vdd_current);
 693        }
 694        while (vdd_last > 0 &&
 695               vdd_last > vdd_target + (IR_VDD_STEP_DOWN - 1)) {
 696                vdd_current -= IR_VDD_STEP_DOWN;
 697                vdd_last = set_voltage(i2caddress, vdd_current);
 698        }
 699#endif
 700
 701        /* Board specific adjustments */
 702        if (board_adjust_vdd(vdd_target) < 0) {
 703                ret = -1;
 704                goto exit;
 705        }
 706
 707        if (vdd_last > 0)
 708                printf("VID: Core voltage after adjustment is at %d mV\n",
 709                       vdd_last);
 710        else
 711                ret = -1;
 712exit:
 713        if (re_enable)
 714                enable_interrupts();
 715
 716        i2c_multiplexer_select_vid_channel(I2C_MUX_CH_DEFAULT);
 717
 718        return ret;
 719}
 720
 721static int print_vdd(void)
 722{
 723        int vdd_last, ret, i2caddress = I2C_VOL_MONITOR_ADDR;
 724
 725        ret = i2c_multiplexer_select_vid_channel(I2C_MUX_CH_VOL_MONITOR);
 726        if (ret) {
 727                debug("VID : I2c failed to switch channel\n");
 728                return -1;
 729        }
 730#if defined(CONFIG_VOL_MONITOR_IR36021_SET) || \
 731        defined(CONFIG_VOL_MONITOR_IR36021_READ)
 732        ret = find_ir_chip_on_i2c();
 733        if (ret < 0) {
 734                printf("VID: Could not find voltage regulator on I2C.\n");
 735                goto exit;
 736        } else {
 737                i2caddress = ret;
 738                debug("VID: IR Chip found on I2C address 0x%02x\n", i2caddress);
 739        }
 740#endif
 741
 742        /*
 743         * Read voltage monitor to check real voltage.
 744         */
 745        vdd_last = read_voltage(i2caddress);
 746        if (vdd_last < 0) {
 747                printf("VID: Couldn't read sensor abort VID adjustment\n");
 748                goto exit;
 749        }
 750        printf("VID: Core voltage is at %d mV\n", vdd_last);
 751exit:
 752        i2c_multiplexer_select_vid_channel(I2C_MUX_CH_DEFAULT);
 753
 754        return ret < 0 ? -1 : 0;
 755}
 756
 757static int do_vdd_override(struct cmd_tbl *cmdtp,
 758                           int flag, int argc,
 759                           char *const argv[])
 760{
 761        ulong override;
 762        int ret = 0;
 763
 764        if (argc < 2)
 765                return CMD_RET_USAGE;
 766
 767        if (!strict_strtoul(argv[1], 10, &override)) {
 768                ret = adjust_vdd(override);
 769                if (ret < 0)
 770                        return CMD_RET_FAILURE;
 771        } else
 772                return CMD_RET_USAGE;
 773        return 0;
 774}
 775
 776static int do_vdd_read(struct cmd_tbl *cmdtp, int flag, int argc,
 777                       char *const argv[])
 778{
 779        if (argc < 1)
 780                return CMD_RET_USAGE;
 781        print_vdd();
 782
 783        return 0;
 784}
 785
 786U_BOOT_CMD(
 787        vdd_override, 2, 0, do_vdd_override,
 788        "override VDD",
 789        " - override with the voltage specified in mV, eg. 1050"
 790);
 791
 792U_BOOT_CMD(
 793        vdd_read, 1, 0, do_vdd_read,
 794        "read VDD",
 795        " - Read the voltage specified in mV"
 796)
 797