uboot/fs/ubifs/budget.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Adrian Hunter
   8 *          Artem Bityutskiy (Битюцкий Артём)
   9 */
  10
  11/*
  12 * This file implements the budgeting sub-system which is responsible for UBIFS
  13 * space management.
  14 *
  15 * Factors such as compression, wasted space at the ends of LEBs, space in other
  16 * journal heads, the effect of updates on the index, and so on, make it
  17 * impossible to accurately predict the amount of space needed. Consequently
  18 * approximations are used.
  19 */
  20
  21#include "ubifs.h"
  22#ifndef __UBOOT__
  23#include <log.h>
  24#include <linux/writeback.h>
  25#else
  26#include <linux/err.h>
  27#endif
  28#include <linux/math64.h>
  29
  30/*
  31 * When pessimistic budget calculations say that there is no enough space,
  32 * UBIFS starts writing back dirty inodes and pages, doing garbage collection,
  33 * or committing. The below constant defines maximum number of times UBIFS
  34 * repeats the operations.
  35 */
  36#define MAX_MKSPC_RETRIES 3
  37
  38/*
  39 * The below constant defines amount of dirty pages which should be written
  40 * back at when trying to shrink the liability.
  41 */
  42#define NR_TO_WRITE 16
  43
  44#ifndef __UBOOT__
  45/**
  46 * shrink_liability - write-back some dirty pages/inodes.
  47 * @c: UBIFS file-system description object
  48 * @nr_to_write: how many dirty pages to write-back
  49 *
  50 * This function shrinks UBIFS liability by means of writing back some amount
  51 * of dirty inodes and their pages.
  52 *
  53 * Note, this function synchronizes even VFS inodes which are locked
  54 * (@i_mutex) by the caller of the budgeting function, because write-back does
  55 * not touch @i_mutex.
  56 */
  57static void shrink_liability(struct ubifs_info *c, int nr_to_write)
  58{
  59        down_read(&c->vfs_sb->s_umount);
  60        writeback_inodes_sb(c->vfs_sb, WB_REASON_FS_FREE_SPACE);
  61        up_read(&c->vfs_sb->s_umount);
  62}
  63
  64/**
  65 * run_gc - run garbage collector.
  66 * @c: UBIFS file-system description object
  67 *
  68 * This function runs garbage collector to make some more free space. Returns
  69 * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a
  70 * negative error code in case of failure.
  71 */
  72static int run_gc(struct ubifs_info *c)
  73{
  74        int err, lnum;
  75
  76        /* Make some free space by garbage-collecting dirty space */
  77        down_read(&c->commit_sem);
  78        lnum = ubifs_garbage_collect(c, 1);
  79        up_read(&c->commit_sem);
  80        if (lnum < 0)
  81                return lnum;
  82
  83        /* GC freed one LEB, return it to lprops */
  84        dbg_budg("GC freed LEB %d", lnum);
  85        err = ubifs_return_leb(c, lnum);
  86        if (err)
  87                return err;
  88        return 0;
  89}
  90
  91/**
  92 * get_liability - calculate current liability.
  93 * @c: UBIFS file-system description object
  94 *
  95 * This function calculates and returns current UBIFS liability, i.e. the
  96 * amount of bytes UBIFS has "promised" to write to the media.
  97 */
  98static long long get_liability(struct ubifs_info *c)
  99{
 100        long long liab;
 101
 102        spin_lock(&c->space_lock);
 103        liab = c->bi.idx_growth + c->bi.data_growth + c->bi.dd_growth;
 104        spin_unlock(&c->space_lock);
 105        return liab;
 106}
 107
 108/**
 109 * make_free_space - make more free space on the file-system.
 110 * @c: UBIFS file-system description object
 111 *
 112 * This function is called when an operation cannot be budgeted because there
 113 * is supposedly no free space. But in most cases there is some free space:
 114 *   o budgeting is pessimistic, so it always budgets more than it is actually
 115 *     needed, so shrinking the liability is one way to make free space - the
 116 *     cached data will take less space then it was budgeted for;
 117 *   o GC may turn some dark space into free space (budgeting treats dark space
 118 *     as not available);
 119 *   o commit may free some LEB, i.e., turn freeable LEBs into free LEBs.
 120 *
 121 * So this function tries to do the above. Returns %-EAGAIN if some free space
 122 * was presumably made and the caller has to re-try budgeting the operation.
 123 * Returns %-ENOSPC if it couldn't do more free space, and other negative error
 124 * codes on failures.
 125 */
 126static int make_free_space(struct ubifs_info *c)
 127{
 128        int err, retries = 0;
 129        long long liab1, liab2;
 130
 131        do {
 132                liab1 = get_liability(c);
 133                /*
 134                 * We probably have some dirty pages or inodes (liability), try
 135                 * to write them back.
 136                 */
 137                dbg_budg("liability %lld, run write-back", liab1);
 138                shrink_liability(c, NR_TO_WRITE);
 139
 140                liab2 = get_liability(c);
 141                if (liab2 < liab1)
 142                        return -EAGAIN;
 143
 144                dbg_budg("new liability %lld (not shrunk)", liab2);
 145
 146                /* Liability did not shrink again, try GC */
 147                dbg_budg("Run GC");
 148                err = run_gc(c);
 149                if (!err)
 150                        return -EAGAIN;
 151
 152                if (err != -EAGAIN && err != -ENOSPC)
 153                        /* Some real error happened */
 154                        return err;
 155
 156                dbg_budg("Run commit (retries %d)", retries);
 157                err = ubifs_run_commit(c);
 158                if (err)
 159                        return err;
 160        } while (retries++ < MAX_MKSPC_RETRIES);
 161
 162        return -ENOSPC;
 163}
 164#endif
 165
 166/**
 167 * ubifs_calc_min_idx_lebs - calculate amount of LEBs for the index.
 168 * @c: UBIFS file-system description object
 169 *
 170 * This function calculates and returns the number of LEBs which should be kept
 171 * for index usage.
 172 */
 173int ubifs_calc_min_idx_lebs(struct ubifs_info *c)
 174{
 175        int idx_lebs;
 176        long long idx_size;
 177
 178        idx_size = c->bi.old_idx_sz + c->bi.idx_growth + c->bi.uncommitted_idx;
 179        /* And make sure we have thrice the index size of space reserved */
 180        idx_size += idx_size << 1;
 181        /*
 182         * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes'
 183         * pair, nor similarly the two variables for the new index size, so we
 184         * have to do this costly 64-bit division on fast-path.
 185         */
 186        idx_lebs = div_u64(idx_size + c->idx_leb_size - 1, c->idx_leb_size);
 187        /*
 188         * The index head is not available for the in-the-gaps method, so add an
 189         * extra LEB to compensate.
 190         */
 191        idx_lebs += 1;
 192        if (idx_lebs < MIN_INDEX_LEBS)
 193                idx_lebs = MIN_INDEX_LEBS;
 194        return idx_lebs;
 195}
 196
 197#ifndef __UBOOT__
 198/**
 199 * ubifs_calc_available - calculate available FS space.
 200 * @c: UBIFS file-system description object
 201 * @min_idx_lebs: minimum number of LEBs reserved for the index
 202 *
 203 * This function calculates and returns amount of FS space available for use.
 204 */
 205long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs)
 206{
 207        int subtract_lebs;
 208        long long available;
 209
 210        available = c->main_bytes - c->lst.total_used;
 211
 212        /*
 213         * Now 'available' contains theoretically available flash space
 214         * assuming there is no index, so we have to subtract the space which
 215         * is reserved for the index.
 216         */
 217        subtract_lebs = min_idx_lebs;
 218
 219        /* Take into account that GC reserves one LEB for its own needs */
 220        subtract_lebs += 1;
 221
 222        /*
 223         * The GC journal head LEB is not really accessible. And since
 224         * different write types go to different heads, we may count only on
 225         * one head's space.
 226         */
 227        subtract_lebs += c->jhead_cnt - 1;
 228
 229        /* We also reserve one LEB for deletions, which bypass budgeting */
 230        subtract_lebs += 1;
 231
 232        available -= (long long)subtract_lebs * c->leb_size;
 233
 234        /* Subtract the dead space which is not available for use */
 235        available -= c->lst.total_dead;
 236
 237        /*
 238         * Subtract dark space, which might or might not be usable - it depends
 239         * on the data which we have on the media and which will be written. If
 240         * this is a lot of uncompressed or not-compressible data, the dark
 241         * space cannot be used.
 242         */
 243        available -= c->lst.total_dark;
 244
 245        /*
 246         * However, there is more dark space. The index may be bigger than
 247         * @min_idx_lebs. Those extra LEBs are assumed to be available, but
 248         * their dark space is not included in total_dark, so it is subtracted
 249         * here.
 250         */
 251        if (c->lst.idx_lebs > min_idx_lebs) {
 252                subtract_lebs = c->lst.idx_lebs - min_idx_lebs;
 253                available -= subtract_lebs * c->dark_wm;
 254        }
 255
 256        /* The calculations are rough and may end up with a negative number */
 257        return available > 0 ? available : 0;
 258}
 259
 260/**
 261 * can_use_rp - check whether the user is allowed to use reserved pool.
 262 * @c: UBIFS file-system description object
 263 *
 264 * UBIFS has so-called "reserved pool" which is flash space reserved
 265 * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock.
 266 * This function checks whether current user is allowed to use reserved pool.
 267 * Returns %1  current user is allowed to use reserved pool and %0 otherwise.
 268 */
 269static int can_use_rp(struct ubifs_info *c)
 270{
 271        if (uid_eq(current_fsuid(), c->rp_uid) || capable(CAP_SYS_RESOURCE) ||
 272            (!gid_eq(c->rp_gid, GLOBAL_ROOT_GID) && in_group_p(c->rp_gid)))
 273                return 1;
 274        return 0;
 275}
 276
 277/**
 278 * do_budget_space - reserve flash space for index and data growth.
 279 * @c: UBIFS file-system description object
 280 *
 281 * This function makes sure UBIFS has enough free LEBs for index growth and
 282 * data.
 283 *
 284 * When budgeting index space, UBIFS reserves thrice as many LEBs as the index
 285 * would take if it was consolidated and written to the flash. This guarantees
 286 * that the "in-the-gaps" commit method always succeeds and UBIFS will always
 287 * be able to commit dirty index. So this function basically adds amount of
 288 * budgeted index space to the size of the current index, multiplies this by 3,
 289 * and makes sure this does not exceed the amount of free LEBs.
 290 *
 291 * Notes about @c->bi.min_idx_lebs and @c->lst.idx_lebs variables:
 292 * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might
 293 *    be large, because UBIFS does not do any index consolidation as long as
 294 *    there is free space. IOW, the index may take a lot of LEBs, but the LEBs
 295 *    will contain a lot of dirt.
 296 * o @c->bi.min_idx_lebs is the number of LEBS the index presumably takes. IOW,
 297 *    the index may be consolidated to take up to @c->bi.min_idx_lebs LEBs.
 298 *
 299 * This function returns zero in case of success, and %-ENOSPC in case of
 300 * failure.
 301 */
 302static int do_budget_space(struct ubifs_info *c)
 303{
 304        long long outstanding, available;
 305        int lebs, rsvd_idx_lebs, min_idx_lebs;
 306
 307        /* First budget index space */
 308        min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 309
 310        /* Now 'min_idx_lebs' contains number of LEBs to reserve */
 311        if (min_idx_lebs > c->lst.idx_lebs)
 312                rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs;
 313        else
 314                rsvd_idx_lebs = 0;
 315
 316        /*
 317         * The number of LEBs that are available to be used by the index is:
 318         *
 319         *    @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt -
 320         *    @c->lst.taken_empty_lebs
 321         *
 322         * @c->lst.empty_lebs are available because they are empty.
 323         * @c->freeable_cnt are available because they contain only free and
 324         * dirty space, @c->idx_gc_cnt are available because they are index
 325         * LEBs that have been garbage collected and are awaiting the commit
 326         * before they can be used. And the in-the-gaps method will grab these
 327         * if it needs them. @c->lst.taken_empty_lebs are empty LEBs that have
 328         * already been allocated for some purpose.
 329         *
 330         * Note, @c->idx_gc_cnt is included to both @c->lst.empty_lebs (because
 331         * these LEBs are empty) and to @c->lst.taken_empty_lebs (because they
 332         * are taken until after the commit).
 333         *
 334         * Note, @c->lst.taken_empty_lebs may temporarily be higher by one
 335         * because of the way we serialize LEB allocations and budgeting. See a
 336         * comment in 'ubifs_find_free_space()'.
 337         */
 338        lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
 339               c->lst.taken_empty_lebs;
 340        if (unlikely(rsvd_idx_lebs > lebs)) {
 341                dbg_budg("out of indexing space: min_idx_lebs %d (old %d), rsvd_idx_lebs %d",
 342                         min_idx_lebs, c->bi.min_idx_lebs, rsvd_idx_lebs);
 343                return -ENOSPC;
 344        }
 345
 346        available = ubifs_calc_available(c, min_idx_lebs);
 347        outstanding = c->bi.data_growth + c->bi.dd_growth;
 348
 349        if (unlikely(available < outstanding)) {
 350                dbg_budg("out of data space: available %lld, outstanding %lld",
 351                         available, outstanding);
 352                return -ENOSPC;
 353        }
 354
 355        if (available - outstanding <= c->rp_size && !can_use_rp(c))
 356                return -ENOSPC;
 357
 358        c->bi.min_idx_lebs = min_idx_lebs;
 359        return 0;
 360}
 361
 362/**
 363 * calc_idx_growth - calculate approximate index growth from budgeting request.
 364 * @c: UBIFS file-system description object
 365 * @req: budgeting request
 366 *
 367 * For now we assume each new node adds one znode. But this is rather poor
 368 * approximation, though.
 369 */
 370static int calc_idx_growth(const struct ubifs_info *c,
 371                           const struct ubifs_budget_req *req)
 372{
 373        int znodes;
 374
 375        znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) +
 376                 req->new_dent;
 377        return znodes * c->max_idx_node_sz;
 378}
 379
 380/**
 381 * calc_data_growth - calculate approximate amount of new data from budgeting
 382 * request.
 383 * @c: UBIFS file-system description object
 384 * @req: budgeting request
 385 */
 386static int calc_data_growth(const struct ubifs_info *c,
 387                            const struct ubifs_budget_req *req)
 388{
 389        int data_growth;
 390
 391        data_growth = req->new_ino  ? c->bi.inode_budget : 0;
 392        if (req->new_page)
 393                data_growth += c->bi.page_budget;
 394        if (req->new_dent)
 395                data_growth += c->bi.dent_budget;
 396        data_growth += req->new_ino_d;
 397        return data_growth;
 398}
 399
 400/**
 401 * calc_dd_growth - calculate approximate amount of data which makes other data
 402 * dirty from budgeting request.
 403 * @c: UBIFS file-system description object
 404 * @req: budgeting request
 405 */
 406static int calc_dd_growth(const struct ubifs_info *c,
 407                          const struct ubifs_budget_req *req)
 408{
 409        int dd_growth;
 410
 411        dd_growth = req->dirtied_page ? c->bi.page_budget : 0;
 412
 413        if (req->dirtied_ino)
 414                dd_growth += c->bi.inode_budget << (req->dirtied_ino - 1);
 415        if (req->mod_dent)
 416                dd_growth += c->bi.dent_budget;
 417        dd_growth += req->dirtied_ino_d;
 418        return dd_growth;
 419}
 420
 421/**
 422 * ubifs_budget_space - ensure there is enough space to complete an operation.
 423 * @c: UBIFS file-system description object
 424 * @req: budget request
 425 *
 426 * This function allocates budget for an operation. It uses pessimistic
 427 * approximation of how much flash space the operation needs. The goal of this
 428 * function is to make sure UBIFS always has flash space to flush all dirty
 429 * pages, dirty inodes, and dirty znodes (liability). This function may force
 430 * commit, garbage-collection or write-back. Returns zero in case of success,
 431 * %-ENOSPC if there is no free space and other negative error codes in case of
 432 * failures.
 433 */
 434int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req)
 435{
 436        int err, idx_growth, data_growth, dd_growth, retried = 0;
 437
 438        ubifs_assert(req->new_page <= 1);
 439        ubifs_assert(req->dirtied_page <= 1);
 440        ubifs_assert(req->new_dent <= 1);
 441        ubifs_assert(req->mod_dent <= 1);
 442        ubifs_assert(req->new_ino <= 1);
 443        ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA);
 444        ubifs_assert(req->dirtied_ino <= 4);
 445        ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
 446        ubifs_assert(!(req->new_ino_d & 7));
 447        ubifs_assert(!(req->dirtied_ino_d & 7));
 448
 449        data_growth = calc_data_growth(c, req);
 450        dd_growth = calc_dd_growth(c, req);
 451        if (!data_growth && !dd_growth)
 452                return 0;
 453        idx_growth = calc_idx_growth(c, req);
 454
 455again:
 456        spin_lock(&c->space_lock);
 457        ubifs_assert(c->bi.idx_growth >= 0);
 458        ubifs_assert(c->bi.data_growth >= 0);
 459        ubifs_assert(c->bi.dd_growth >= 0);
 460
 461        if (unlikely(c->bi.nospace) && (c->bi.nospace_rp || !can_use_rp(c))) {
 462                dbg_budg("no space");
 463                spin_unlock(&c->space_lock);
 464                return -ENOSPC;
 465        }
 466
 467        c->bi.idx_growth += idx_growth;
 468        c->bi.data_growth += data_growth;
 469        c->bi.dd_growth += dd_growth;
 470
 471        err = do_budget_space(c);
 472        if (likely(!err)) {
 473                req->idx_growth = idx_growth;
 474                req->data_growth = data_growth;
 475                req->dd_growth = dd_growth;
 476                spin_unlock(&c->space_lock);
 477                return 0;
 478        }
 479
 480        /* Restore the old values */
 481        c->bi.idx_growth -= idx_growth;
 482        c->bi.data_growth -= data_growth;
 483        c->bi.dd_growth -= dd_growth;
 484        spin_unlock(&c->space_lock);
 485
 486        if (req->fast) {
 487                dbg_budg("no space for fast budgeting");
 488                return err;
 489        }
 490
 491        err = make_free_space(c);
 492        cond_resched();
 493        if (err == -EAGAIN) {
 494                dbg_budg("try again");
 495                goto again;
 496        } else if (err == -ENOSPC) {
 497                if (!retried) {
 498                        retried = 1;
 499                        dbg_budg("-ENOSPC, but anyway try once again");
 500                        goto again;
 501                }
 502                dbg_budg("FS is full, -ENOSPC");
 503                c->bi.nospace = 1;
 504                if (can_use_rp(c) || c->rp_size == 0)
 505                        c->bi.nospace_rp = 1;
 506                smp_wmb();
 507        } else
 508                ubifs_err(c, "cannot budget space, error %d", err);
 509        return err;
 510}
 511
 512/**
 513 * ubifs_release_budget - release budgeted free space.
 514 * @c: UBIFS file-system description object
 515 * @req: budget request
 516 *
 517 * This function releases the space budgeted by 'ubifs_budget_space()'. Note,
 518 * since the index changes (which were budgeted for in @req->idx_growth) will
 519 * only be written to the media on commit, this function moves the index budget
 520 * from @c->bi.idx_growth to @c->bi.uncommitted_idx. The latter will be zeroed
 521 * by the commit operation.
 522 */
 523void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req)
 524{
 525        ubifs_assert(req->new_page <= 1);
 526        ubifs_assert(req->dirtied_page <= 1);
 527        ubifs_assert(req->new_dent <= 1);
 528        ubifs_assert(req->mod_dent <= 1);
 529        ubifs_assert(req->new_ino <= 1);
 530        ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA);
 531        ubifs_assert(req->dirtied_ino <= 4);
 532        ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
 533        ubifs_assert(!(req->new_ino_d & 7));
 534        ubifs_assert(!(req->dirtied_ino_d & 7));
 535        if (!req->recalculate) {
 536                ubifs_assert(req->idx_growth >= 0);
 537                ubifs_assert(req->data_growth >= 0);
 538                ubifs_assert(req->dd_growth >= 0);
 539        }
 540
 541        if (req->recalculate) {
 542                req->data_growth = calc_data_growth(c, req);
 543                req->dd_growth = calc_dd_growth(c, req);
 544                req->idx_growth = calc_idx_growth(c, req);
 545        }
 546
 547        if (!req->data_growth && !req->dd_growth)
 548                return;
 549
 550        c->bi.nospace = c->bi.nospace_rp = 0;
 551        smp_wmb();
 552
 553        spin_lock(&c->space_lock);
 554        c->bi.idx_growth -= req->idx_growth;
 555        c->bi.uncommitted_idx += req->idx_growth;
 556        c->bi.data_growth -= req->data_growth;
 557        c->bi.dd_growth -= req->dd_growth;
 558        c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 559
 560        ubifs_assert(c->bi.idx_growth >= 0);
 561        ubifs_assert(c->bi.data_growth >= 0);
 562        ubifs_assert(c->bi.dd_growth >= 0);
 563        ubifs_assert(c->bi.min_idx_lebs < c->main_lebs);
 564        ubifs_assert(!(c->bi.idx_growth & 7));
 565        ubifs_assert(!(c->bi.data_growth & 7));
 566        ubifs_assert(!(c->bi.dd_growth & 7));
 567        spin_unlock(&c->space_lock);
 568}
 569
 570/**
 571 * ubifs_convert_page_budget - convert budget of a new page.
 572 * @c: UBIFS file-system description object
 573 *
 574 * This function converts budget which was allocated for a new page of data to
 575 * the budget of changing an existing page of data. The latter is smaller than
 576 * the former, so this function only does simple re-calculation and does not
 577 * involve any write-back.
 578 */
 579void ubifs_convert_page_budget(struct ubifs_info *c)
 580{
 581        spin_lock(&c->space_lock);
 582        /* Release the index growth reservation */
 583        c->bi.idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 584        /* Release the data growth reservation */
 585        c->bi.data_growth -= c->bi.page_budget;
 586        /* Increase the dirty data growth reservation instead */
 587        c->bi.dd_growth += c->bi.page_budget;
 588        /* And re-calculate the indexing space reservation */
 589        c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 590        spin_unlock(&c->space_lock);
 591}
 592
 593/**
 594 * ubifs_release_dirty_inode_budget - release dirty inode budget.
 595 * @c: UBIFS file-system description object
 596 * @ui: UBIFS inode to release the budget for
 597 *
 598 * This function releases budget corresponding to a dirty inode. It is usually
 599 * called when after the inode has been written to the media and marked as
 600 * clean. It also causes the "no space" flags to be cleared.
 601 */
 602void ubifs_release_dirty_inode_budget(struct ubifs_info *c,
 603                                      struct ubifs_inode *ui)
 604{
 605        struct ubifs_budget_req req;
 606
 607        memset(&req, 0, sizeof(struct ubifs_budget_req));
 608        /* The "no space" flags will be cleared because dd_growth is > 0 */
 609        req.dd_growth = c->bi.inode_budget + ALIGN(ui->data_len, 8);
 610        ubifs_release_budget(c, &req);
 611}
 612#endif
 613
 614/**
 615 * ubifs_reported_space - calculate reported free space.
 616 * @c: the UBIFS file-system description object
 617 * @free: amount of free space
 618 *
 619 * This function calculates amount of free space which will be reported to
 620 * user-space. User-space application tend to expect that if the file-system
 621 * (e.g., via the 'statfs()' call) reports that it has N bytes available, they
 622 * are able to write a file of size N. UBIFS attaches node headers to each data
 623 * node and it has to write indexing nodes as well. This introduces additional
 624 * overhead, and UBIFS has to report slightly less free space to meet the above
 625 * expectations.
 626 *
 627 * This function assumes free space is made up of uncompressed data nodes and
 628 * full index nodes (one per data node, tripled because we always allow enough
 629 * space to write the index thrice).
 630 *
 631 * Note, the calculation is pessimistic, which means that most of the time
 632 * UBIFS reports less space than it actually has.
 633 */
 634long long ubifs_reported_space(const struct ubifs_info *c, long long free)
 635{
 636        int divisor, factor, f;
 637
 638        /*
 639         * Reported space size is @free * X, where X is UBIFS block size
 640         * divided by UBIFS block size + all overhead one data block
 641         * introduces. The overhead is the node header + indexing overhead.
 642         *
 643         * Indexing overhead calculations are based on the following formula:
 644         * I = N/(f - 1) + 1, where I - number of indexing nodes, N - number
 645         * of data nodes, f - fanout. Because effective UBIFS fanout is twice
 646         * as less than maximum fanout, we assume that each data node
 647         * introduces 3 * @c->max_idx_node_sz / (@c->fanout/2 - 1) bytes.
 648         * Note, the multiplier 3 is because UBIFS reserves thrice as more space
 649         * for the index.
 650         */
 651        f = c->fanout > 3 ? c->fanout >> 1 : 2;
 652        factor = UBIFS_BLOCK_SIZE;
 653        divisor = UBIFS_MAX_DATA_NODE_SZ;
 654        divisor += (c->max_idx_node_sz * 3) / (f - 1);
 655        free *= factor;
 656        return div_u64(free, divisor);
 657}
 658
 659#ifndef __UBOOT__
 660/**
 661 * ubifs_get_free_space_nolock - return amount of free space.
 662 * @c: UBIFS file-system description object
 663 *
 664 * This function calculates amount of free space to report to user-space.
 665 *
 666 * Because UBIFS may introduce substantial overhead (the index, node headers,
 667 * alignment, wastage at the end of LEBs, etc), it cannot report real amount of
 668 * free flash space it has (well, because not all dirty space is reclaimable,
 669 * UBIFS does not actually know the real amount). If UBIFS did so, it would
 670 * bread user expectations about what free space is. Users seem to accustomed
 671 * to assume that if the file-system reports N bytes of free space, they would
 672 * be able to fit a file of N bytes to the FS. This almost works for
 673 * traditional file-systems, because they have way less overhead than UBIFS.
 674 * So, to keep users happy, UBIFS tries to take the overhead into account.
 675 */
 676long long ubifs_get_free_space_nolock(struct ubifs_info *c)
 677{
 678        int rsvd_idx_lebs, lebs;
 679        long long available, outstanding, free;
 680
 681        ubifs_assert(c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
 682        outstanding = c->bi.data_growth + c->bi.dd_growth;
 683        available = ubifs_calc_available(c, c->bi.min_idx_lebs);
 684
 685        /*
 686         * When reporting free space to user-space, UBIFS guarantees that it is
 687         * possible to write a file of free space size. This means that for
 688         * empty LEBs we may use more precise calculations than
 689         * 'ubifs_calc_available()' is using. Namely, we know that in empty
 690         * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm.
 691         * Thus, amend the available space.
 692         *
 693         * Note, the calculations below are similar to what we have in
 694         * 'do_budget_space()', so refer there for comments.
 695         */
 696        if (c->bi.min_idx_lebs > c->lst.idx_lebs)
 697                rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs;
 698        else
 699                rsvd_idx_lebs = 0;
 700        lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
 701               c->lst.taken_empty_lebs;
 702        lebs -= rsvd_idx_lebs;
 703        available += lebs * (c->dark_wm - c->leb_overhead);
 704
 705        if (available > outstanding)
 706                free = ubifs_reported_space(c, available - outstanding);
 707        else
 708                free = 0;
 709        return free;
 710}
 711
 712/**
 713 * ubifs_get_free_space - return amount of free space.
 714 * @c: UBIFS file-system description object
 715 *
 716 * This function calculates and returns amount of free space to report to
 717 * user-space.
 718 */
 719long long ubifs_get_free_space(struct ubifs_info *c)
 720{
 721        long long free;
 722
 723        spin_lock(&c->space_lock);
 724        free = ubifs_get_free_space_nolock(c);
 725        spin_unlock(&c->space_lock);
 726
 727        return free;
 728}
 729#endif
 730