uboot/fs/ubifs/lprops.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Adrian Hunter
   8 *          Artem Bityutskiy (Битюцкий Артём)
   9 */
  10
  11/*
  12 * This file implements the functions that access LEB properties and their
  13 * categories. LEBs are categorized based on the needs of UBIFS, and the
  14 * categories are stored as either heaps or lists to provide a fast way of
  15 * finding a LEB in a particular category. For example, UBIFS may need to find
  16 * an empty LEB for the journal, or a very dirty LEB for garbage collection.
  17 */
  18
  19#ifdef __UBOOT__
  20#include <log.h>
  21#include <malloc.h>
  22#include <linux/err.h>
  23#endif
  24#include "ubifs.h"
  25
  26/**
  27 * get_heap_comp_val - get the LEB properties value for heap comparisons.
  28 * @lprops: LEB properties
  29 * @cat: LEB category
  30 */
  31static int get_heap_comp_val(struct ubifs_lprops *lprops, int cat)
  32{
  33        switch (cat) {
  34        case LPROPS_FREE:
  35                return lprops->free;
  36        case LPROPS_DIRTY_IDX:
  37                return lprops->free + lprops->dirty;
  38        default:
  39                return lprops->dirty;
  40        }
  41}
  42
  43/**
  44 * move_up_lpt_heap - move a new heap entry up as far as possible.
  45 * @c: UBIFS file-system description object
  46 * @heap: LEB category heap
  47 * @lprops: LEB properties to move
  48 * @cat: LEB category
  49 *
  50 * New entries to a heap are added at the bottom and then moved up until the
  51 * parent's value is greater.  In the case of LPT's category heaps, the value
  52 * is either the amount of free space or the amount of dirty space, depending
  53 * on the category.
  54 */
  55static void move_up_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
  56                             struct ubifs_lprops *lprops, int cat)
  57{
  58        int val1, val2, hpos;
  59
  60        hpos = lprops->hpos;
  61        if (!hpos)
  62                return; /* Already top of the heap */
  63        val1 = get_heap_comp_val(lprops, cat);
  64        /* Compare to parent and, if greater, move up the heap */
  65        do {
  66                int ppos = (hpos - 1) / 2;
  67
  68                val2 = get_heap_comp_val(heap->arr[ppos], cat);
  69                if (val2 >= val1)
  70                        return;
  71                /* Greater than parent so move up */
  72                heap->arr[ppos]->hpos = hpos;
  73                heap->arr[hpos] = heap->arr[ppos];
  74                heap->arr[ppos] = lprops;
  75                lprops->hpos = ppos;
  76                hpos = ppos;
  77        } while (hpos);
  78}
  79
  80/**
  81 * adjust_lpt_heap - move a changed heap entry up or down the heap.
  82 * @c: UBIFS file-system description object
  83 * @heap: LEB category heap
  84 * @lprops: LEB properties to move
  85 * @hpos: heap position of @lprops
  86 * @cat: LEB category
  87 *
  88 * Changed entries in a heap are moved up or down until the parent's value is
  89 * greater.  In the case of LPT's category heaps, the value is either the amount
  90 * of free space or the amount of dirty space, depending on the category.
  91 */
  92static void adjust_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
  93                            struct ubifs_lprops *lprops, int hpos, int cat)
  94{
  95        int val1, val2, val3, cpos;
  96
  97        val1 = get_heap_comp_val(lprops, cat);
  98        /* Compare to parent and, if greater than parent, move up the heap */
  99        if (hpos) {
 100                int ppos = (hpos - 1) / 2;
 101
 102                val2 = get_heap_comp_val(heap->arr[ppos], cat);
 103                if (val1 > val2) {
 104                        /* Greater than parent so move up */
 105                        while (1) {
 106                                heap->arr[ppos]->hpos = hpos;
 107                                heap->arr[hpos] = heap->arr[ppos];
 108                                heap->arr[ppos] = lprops;
 109                                lprops->hpos = ppos;
 110                                hpos = ppos;
 111                                if (!hpos)
 112                                        return;
 113                                ppos = (hpos - 1) / 2;
 114                                val2 = get_heap_comp_val(heap->arr[ppos], cat);
 115                                if (val1 <= val2)
 116                                        return;
 117                                /* Still greater than parent so keep going */
 118                        }
 119                }
 120        }
 121
 122        /* Not greater than parent, so compare to children */
 123        while (1) {
 124                /* Compare to left child */
 125                cpos = hpos * 2 + 1;
 126                if (cpos >= heap->cnt)
 127                        return;
 128                val2 = get_heap_comp_val(heap->arr[cpos], cat);
 129                if (val1 < val2) {
 130                        /* Less than left child, so promote biggest child */
 131                        if (cpos + 1 < heap->cnt) {
 132                                val3 = get_heap_comp_val(heap->arr[cpos + 1],
 133                                                         cat);
 134                                if (val3 > val2)
 135                                        cpos += 1; /* Right child is bigger */
 136                        }
 137                        heap->arr[cpos]->hpos = hpos;
 138                        heap->arr[hpos] = heap->arr[cpos];
 139                        heap->arr[cpos] = lprops;
 140                        lprops->hpos = cpos;
 141                        hpos = cpos;
 142                        continue;
 143                }
 144                /* Compare to right child */
 145                cpos += 1;
 146                if (cpos >= heap->cnt)
 147                        return;
 148                val3 = get_heap_comp_val(heap->arr[cpos], cat);
 149                if (val1 < val3) {
 150                        /* Less than right child, so promote right child */
 151                        heap->arr[cpos]->hpos = hpos;
 152                        heap->arr[hpos] = heap->arr[cpos];
 153                        heap->arr[cpos] = lprops;
 154                        lprops->hpos = cpos;
 155                        hpos = cpos;
 156                        continue;
 157                }
 158                return;
 159        }
 160}
 161
 162/**
 163 * add_to_lpt_heap - add LEB properties to a LEB category heap.
 164 * @c: UBIFS file-system description object
 165 * @lprops: LEB properties to add
 166 * @cat: LEB category
 167 *
 168 * This function returns %1 if @lprops is added to the heap for LEB category
 169 * @cat, otherwise %0 is returned because the heap is full.
 170 */
 171static int add_to_lpt_heap(struct ubifs_info *c, struct ubifs_lprops *lprops,
 172                           int cat)
 173{
 174        struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
 175
 176        if (heap->cnt >= heap->max_cnt) {
 177                const int b = LPT_HEAP_SZ / 2 - 1;
 178                int cpos, val1, val2;
 179
 180                /* Compare to some other LEB on the bottom of heap */
 181                /* Pick a position kind of randomly */
 182                cpos = (((size_t)lprops >> 4) & b) + b;
 183                ubifs_assert(cpos >= b);
 184                ubifs_assert(cpos < LPT_HEAP_SZ);
 185                ubifs_assert(cpos < heap->cnt);
 186
 187                val1 = get_heap_comp_val(lprops, cat);
 188                val2 = get_heap_comp_val(heap->arr[cpos], cat);
 189                if (val1 > val2) {
 190                        struct ubifs_lprops *lp;
 191
 192                        lp = heap->arr[cpos];
 193                        lp->flags &= ~LPROPS_CAT_MASK;
 194                        lp->flags |= LPROPS_UNCAT;
 195                        list_add(&lp->list, &c->uncat_list);
 196                        lprops->hpos = cpos;
 197                        heap->arr[cpos] = lprops;
 198                        move_up_lpt_heap(c, heap, lprops, cat);
 199                        dbg_check_heap(c, heap, cat, lprops->hpos);
 200                        return 1; /* Added to heap */
 201                }
 202                dbg_check_heap(c, heap, cat, -1);
 203                return 0; /* Not added to heap */
 204        } else {
 205                lprops->hpos = heap->cnt++;
 206                heap->arr[lprops->hpos] = lprops;
 207                move_up_lpt_heap(c, heap, lprops, cat);
 208                dbg_check_heap(c, heap, cat, lprops->hpos);
 209                return 1; /* Added to heap */
 210        }
 211}
 212
 213/**
 214 * remove_from_lpt_heap - remove LEB properties from a LEB category heap.
 215 * @c: UBIFS file-system description object
 216 * @lprops: LEB properties to remove
 217 * @cat: LEB category
 218 */
 219static void remove_from_lpt_heap(struct ubifs_info *c,
 220                                 struct ubifs_lprops *lprops, int cat)
 221{
 222        struct ubifs_lpt_heap *heap;
 223        int hpos = lprops->hpos;
 224
 225        heap = &c->lpt_heap[cat - 1];
 226        ubifs_assert(hpos >= 0 && hpos < heap->cnt);
 227        ubifs_assert(heap->arr[hpos] == lprops);
 228        heap->cnt -= 1;
 229        if (hpos < heap->cnt) {
 230                heap->arr[hpos] = heap->arr[heap->cnt];
 231                heap->arr[hpos]->hpos = hpos;
 232                adjust_lpt_heap(c, heap, heap->arr[hpos], hpos, cat);
 233        }
 234        dbg_check_heap(c, heap, cat, -1);
 235}
 236
 237/**
 238 * lpt_heap_replace - replace lprops in a category heap.
 239 * @c: UBIFS file-system description object
 240 * @old_lprops: LEB properties to replace
 241 * @new_lprops: LEB properties with which to replace
 242 * @cat: LEB category
 243 *
 244 * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
 245 * and the lprops that the pnode contains.  When that happens, references in
 246 * the category heaps to those lprops must be updated to point to the new
 247 * lprops.  This function does that.
 248 */
 249static void lpt_heap_replace(struct ubifs_info *c,
 250                             struct ubifs_lprops *old_lprops,
 251                             struct ubifs_lprops *new_lprops, int cat)
 252{
 253        struct ubifs_lpt_heap *heap;
 254        int hpos = new_lprops->hpos;
 255
 256        heap = &c->lpt_heap[cat - 1];
 257        heap->arr[hpos] = new_lprops;
 258}
 259
 260/**
 261 * ubifs_add_to_cat - add LEB properties to a category list or heap.
 262 * @c: UBIFS file-system description object
 263 * @lprops: LEB properties to add
 264 * @cat: LEB category to which to add
 265 *
 266 * LEB properties are categorized to enable fast find operations.
 267 */
 268void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops,
 269                      int cat)
 270{
 271        switch (cat) {
 272        case LPROPS_DIRTY:
 273        case LPROPS_DIRTY_IDX:
 274        case LPROPS_FREE:
 275                if (add_to_lpt_heap(c, lprops, cat))
 276                        break;
 277                /* No more room on heap so make it un-categorized */
 278                cat = LPROPS_UNCAT;
 279                /* Fall through */
 280        case LPROPS_UNCAT:
 281                list_add(&lprops->list, &c->uncat_list);
 282                break;
 283        case LPROPS_EMPTY:
 284                list_add(&lprops->list, &c->empty_list);
 285                break;
 286        case LPROPS_FREEABLE:
 287                list_add(&lprops->list, &c->freeable_list);
 288                c->freeable_cnt += 1;
 289                break;
 290        case LPROPS_FRDI_IDX:
 291                list_add(&lprops->list, &c->frdi_idx_list);
 292                break;
 293        default:
 294                ubifs_assert(0);
 295        }
 296
 297        lprops->flags &= ~LPROPS_CAT_MASK;
 298        lprops->flags |= cat;
 299        c->in_a_category_cnt += 1;
 300        ubifs_assert(c->in_a_category_cnt <= c->main_lebs);
 301}
 302
 303/**
 304 * ubifs_remove_from_cat - remove LEB properties from a category list or heap.
 305 * @c: UBIFS file-system description object
 306 * @lprops: LEB properties to remove
 307 * @cat: LEB category from which to remove
 308 *
 309 * LEB properties are categorized to enable fast find operations.
 310 */
 311static void ubifs_remove_from_cat(struct ubifs_info *c,
 312                                  struct ubifs_lprops *lprops, int cat)
 313{
 314        switch (cat) {
 315        case LPROPS_DIRTY:
 316        case LPROPS_DIRTY_IDX:
 317        case LPROPS_FREE:
 318                remove_from_lpt_heap(c, lprops, cat);
 319                break;
 320        case LPROPS_FREEABLE:
 321                c->freeable_cnt -= 1;
 322                ubifs_assert(c->freeable_cnt >= 0);
 323                /* Fall through */
 324        case LPROPS_UNCAT:
 325        case LPROPS_EMPTY:
 326        case LPROPS_FRDI_IDX:
 327                ubifs_assert(!list_empty(&lprops->list));
 328                list_del(&lprops->list);
 329                break;
 330        default:
 331                ubifs_assert(0);
 332        }
 333
 334        c->in_a_category_cnt -= 1;
 335        ubifs_assert(c->in_a_category_cnt >= 0);
 336}
 337
 338/**
 339 * ubifs_replace_cat - replace lprops in a category list or heap.
 340 * @c: UBIFS file-system description object
 341 * @old_lprops: LEB properties to replace
 342 * @new_lprops: LEB properties with which to replace
 343 *
 344 * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
 345 * and the lprops that the pnode contains. When that happens, references in
 346 * category lists and heaps must be replaced. This function does that.
 347 */
 348void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops,
 349                       struct ubifs_lprops *new_lprops)
 350{
 351        int cat;
 352
 353        cat = new_lprops->flags & LPROPS_CAT_MASK;
 354        switch (cat) {
 355        case LPROPS_DIRTY:
 356        case LPROPS_DIRTY_IDX:
 357        case LPROPS_FREE:
 358                lpt_heap_replace(c, old_lprops, new_lprops, cat);
 359                break;
 360        case LPROPS_UNCAT:
 361        case LPROPS_EMPTY:
 362        case LPROPS_FREEABLE:
 363        case LPROPS_FRDI_IDX:
 364                list_replace(&old_lprops->list, &new_lprops->list);
 365                break;
 366        default:
 367                ubifs_assert(0);
 368        }
 369}
 370
 371/**
 372 * ubifs_ensure_cat - ensure LEB properties are categorized.
 373 * @c: UBIFS file-system description object
 374 * @lprops: LEB properties
 375 *
 376 * A LEB may have fallen off of the bottom of a heap, and ended up as
 377 * un-categorized even though it has enough space for us now. If that is the
 378 * case this function will put the LEB back onto a heap.
 379 */
 380void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops)
 381{
 382        int cat = lprops->flags & LPROPS_CAT_MASK;
 383
 384        if (cat != LPROPS_UNCAT)
 385                return;
 386        cat = ubifs_categorize_lprops(c, lprops);
 387        if (cat == LPROPS_UNCAT)
 388                return;
 389        ubifs_remove_from_cat(c, lprops, LPROPS_UNCAT);
 390        ubifs_add_to_cat(c, lprops, cat);
 391}
 392
 393/**
 394 * ubifs_categorize_lprops - categorize LEB properties.
 395 * @c: UBIFS file-system description object
 396 * @lprops: LEB properties to categorize
 397 *
 398 * LEB properties are categorized to enable fast find operations. This function
 399 * returns the LEB category to which the LEB properties belong. Note however
 400 * that if the LEB category is stored as a heap and the heap is full, the
 401 * LEB properties may have their category changed to %LPROPS_UNCAT.
 402 */
 403int ubifs_categorize_lprops(const struct ubifs_info *c,
 404                            const struct ubifs_lprops *lprops)
 405{
 406        if (lprops->flags & LPROPS_TAKEN)
 407                return LPROPS_UNCAT;
 408
 409        if (lprops->free == c->leb_size) {
 410                ubifs_assert(!(lprops->flags & LPROPS_INDEX));
 411                return LPROPS_EMPTY;
 412        }
 413
 414        if (lprops->free + lprops->dirty == c->leb_size) {
 415                if (lprops->flags & LPROPS_INDEX)
 416                        return LPROPS_FRDI_IDX;
 417                else
 418                        return LPROPS_FREEABLE;
 419        }
 420
 421        if (lprops->flags & LPROPS_INDEX) {
 422                if (lprops->dirty + lprops->free >= c->min_idx_node_sz)
 423                        return LPROPS_DIRTY_IDX;
 424        } else {
 425                if (lprops->dirty >= c->dead_wm &&
 426                    lprops->dirty > lprops->free)
 427                        return LPROPS_DIRTY;
 428                if (lprops->free > 0)
 429                        return LPROPS_FREE;
 430        }
 431
 432        return LPROPS_UNCAT;
 433}
 434
 435/**
 436 * change_category - change LEB properties category.
 437 * @c: UBIFS file-system description object
 438 * @lprops: LEB properties to re-categorize
 439 *
 440 * LEB properties are categorized to enable fast find operations. When the LEB
 441 * properties change they must be re-categorized.
 442 */
 443static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops)
 444{
 445        int old_cat = lprops->flags & LPROPS_CAT_MASK;
 446        int new_cat = ubifs_categorize_lprops(c, lprops);
 447
 448        if (old_cat == new_cat) {
 449                struct ubifs_lpt_heap *heap;
 450
 451                /* lprops on a heap now must be moved up or down */
 452                if (new_cat < 1 || new_cat > LPROPS_HEAP_CNT)
 453                        return; /* Not on a heap */
 454                heap = &c->lpt_heap[new_cat - 1];
 455                adjust_lpt_heap(c, heap, lprops, lprops->hpos, new_cat);
 456        } else {
 457                ubifs_remove_from_cat(c, lprops, old_cat);
 458                ubifs_add_to_cat(c, lprops, new_cat);
 459        }
 460}
 461
 462/**
 463 * ubifs_calc_dark - calculate LEB dark space size.
 464 * @c: the UBIFS file-system description object
 465 * @spc: amount of free and dirty space in the LEB
 466 *
 467 * This function calculates and returns amount of dark space in an LEB which
 468 * has @spc bytes of free and dirty space.
 469 *
 470 * UBIFS is trying to account the space which might not be usable, and this
 471 * space is called "dark space". For example, if an LEB has only %512 free
 472 * bytes, it is dark space, because it cannot fit a large data node.
 473 */
 474int ubifs_calc_dark(const struct ubifs_info *c, int spc)
 475{
 476        ubifs_assert(!(spc & 7));
 477
 478        if (spc < c->dark_wm)
 479                return spc;
 480
 481        /*
 482         * If we have slightly more space then the dark space watermark, we can
 483         * anyway safely assume it we'll be able to write a node of the
 484         * smallest size there.
 485         */
 486        if (spc - c->dark_wm < MIN_WRITE_SZ)
 487                return spc - MIN_WRITE_SZ;
 488
 489        return c->dark_wm;
 490}
 491
 492/**
 493 * is_lprops_dirty - determine if LEB properties are dirty.
 494 * @c: the UBIFS file-system description object
 495 * @lprops: LEB properties to test
 496 */
 497static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops)
 498{
 499        struct ubifs_pnode *pnode;
 500        int pos;
 501
 502        pos = (lprops->lnum - c->main_first) & (UBIFS_LPT_FANOUT - 1);
 503        pnode = (struct ubifs_pnode *)container_of(lprops - pos,
 504                                                   struct ubifs_pnode,
 505                                                   lprops[0]);
 506        return !test_bit(COW_CNODE, &pnode->flags) &&
 507               test_bit(DIRTY_CNODE, &pnode->flags);
 508}
 509
 510/**
 511 * ubifs_change_lp - change LEB properties.
 512 * @c: the UBIFS file-system description object
 513 * @lp: LEB properties to change
 514 * @free: new free space amount
 515 * @dirty: new dirty space amount
 516 * @flags: new flags
 517 * @idx_gc_cnt: change to the count of @idx_gc list
 518 *
 519 * This function changes LEB properties (@free, @dirty or @flag). However, the
 520 * property which has the %LPROPS_NC value is not changed. Returns a pointer to
 521 * the updated LEB properties on success and a negative error code on failure.
 522 *
 523 * Note, the LEB properties may have had to be copied (due to COW) and
 524 * consequently the pointer returned may not be the same as the pointer
 525 * passed.
 526 */
 527const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c,
 528                                           const struct ubifs_lprops *lp,
 529                                           int free, int dirty, int flags,
 530                                           int idx_gc_cnt)
 531{
 532        /*
 533         * This is the only function that is allowed to change lprops, so we
 534         * discard the "const" qualifier.
 535         */
 536        struct ubifs_lprops *lprops = (struct ubifs_lprops *)lp;
 537
 538        dbg_lp("LEB %d, free %d, dirty %d, flags %d",
 539               lprops->lnum, free, dirty, flags);
 540
 541        ubifs_assert(mutex_is_locked(&c->lp_mutex));
 542        ubifs_assert(c->lst.empty_lebs >= 0 &&
 543                     c->lst.empty_lebs <= c->main_lebs);
 544        ubifs_assert(c->freeable_cnt >= 0);
 545        ubifs_assert(c->freeable_cnt <= c->main_lebs);
 546        ubifs_assert(c->lst.taken_empty_lebs >= 0);
 547        ubifs_assert(c->lst.taken_empty_lebs <= c->lst.empty_lebs);
 548        ubifs_assert(!(c->lst.total_free & 7) && !(c->lst.total_dirty & 7));
 549        ubifs_assert(!(c->lst.total_dead & 7) && !(c->lst.total_dark & 7));
 550        ubifs_assert(!(c->lst.total_used & 7));
 551        ubifs_assert(free == LPROPS_NC || free >= 0);
 552        ubifs_assert(dirty == LPROPS_NC || dirty >= 0);
 553
 554        if (!is_lprops_dirty(c, lprops)) {
 555                lprops = ubifs_lpt_lookup_dirty(c, lprops->lnum);
 556                if (IS_ERR(lprops))
 557                        return lprops;
 558        } else
 559                ubifs_assert(lprops == ubifs_lpt_lookup_dirty(c, lprops->lnum));
 560
 561        ubifs_assert(!(lprops->free & 7) && !(lprops->dirty & 7));
 562
 563        spin_lock(&c->space_lock);
 564        if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
 565                c->lst.taken_empty_lebs -= 1;
 566
 567        if (!(lprops->flags & LPROPS_INDEX)) {
 568                int old_spc;
 569
 570                old_spc = lprops->free + lprops->dirty;
 571                if (old_spc < c->dead_wm)
 572                        c->lst.total_dead -= old_spc;
 573                else
 574                        c->lst.total_dark -= ubifs_calc_dark(c, old_spc);
 575
 576                c->lst.total_used -= c->leb_size - old_spc;
 577        }
 578
 579        if (free != LPROPS_NC) {
 580                free = ALIGN(free, 8);
 581                c->lst.total_free += free - lprops->free;
 582
 583                /* Increase or decrease empty LEBs counter if needed */
 584                if (free == c->leb_size) {
 585                        if (lprops->free != c->leb_size)
 586                                c->lst.empty_lebs += 1;
 587                } else if (lprops->free == c->leb_size)
 588                        c->lst.empty_lebs -= 1;
 589                lprops->free = free;
 590        }
 591
 592        if (dirty != LPROPS_NC) {
 593                dirty = ALIGN(dirty, 8);
 594                c->lst.total_dirty += dirty - lprops->dirty;
 595                lprops->dirty = dirty;
 596        }
 597
 598        if (flags != LPROPS_NC) {
 599                /* Take care about indexing LEBs counter if needed */
 600                if ((lprops->flags & LPROPS_INDEX)) {
 601                        if (!(flags & LPROPS_INDEX))
 602                                c->lst.idx_lebs -= 1;
 603                } else if (flags & LPROPS_INDEX)
 604                        c->lst.idx_lebs += 1;
 605                lprops->flags = flags;
 606        }
 607
 608        if (!(lprops->flags & LPROPS_INDEX)) {
 609                int new_spc;
 610
 611                new_spc = lprops->free + lprops->dirty;
 612                if (new_spc < c->dead_wm)
 613                        c->lst.total_dead += new_spc;
 614                else
 615                        c->lst.total_dark += ubifs_calc_dark(c, new_spc);
 616
 617                c->lst.total_used += c->leb_size - new_spc;
 618        }
 619
 620        if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
 621                c->lst.taken_empty_lebs += 1;
 622
 623        change_category(c, lprops);
 624        c->idx_gc_cnt += idx_gc_cnt;
 625        spin_unlock(&c->space_lock);
 626        return lprops;
 627}
 628
 629/**
 630 * ubifs_get_lp_stats - get lprops statistics.
 631 * @c: UBIFS file-system description object
 632 * @st: return statistics
 633 */
 634void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *lst)
 635{
 636        spin_lock(&c->space_lock);
 637        memcpy(lst, &c->lst, sizeof(struct ubifs_lp_stats));
 638        spin_unlock(&c->space_lock);
 639}
 640
 641/**
 642 * ubifs_change_one_lp - change LEB properties.
 643 * @c: the UBIFS file-system description object
 644 * @lnum: LEB to change properties for
 645 * @free: amount of free space
 646 * @dirty: amount of dirty space
 647 * @flags_set: flags to set
 648 * @flags_clean: flags to clean
 649 * @idx_gc_cnt: change to the count of idx_gc list
 650 *
 651 * This function changes properties of LEB @lnum. It is a helper wrapper over
 652 * 'ubifs_change_lp()' which hides lprops get/release. The arguments are the
 653 * same as in case of 'ubifs_change_lp()'. Returns zero in case of success and
 654 * a negative error code in case of failure.
 655 */
 656int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
 657                        int flags_set, int flags_clean, int idx_gc_cnt)
 658{
 659        int err = 0, flags;
 660        const struct ubifs_lprops *lp;
 661
 662        ubifs_get_lprops(c);
 663
 664        lp = ubifs_lpt_lookup_dirty(c, lnum);
 665        if (IS_ERR(lp)) {
 666                err = PTR_ERR(lp);
 667                goto out;
 668        }
 669
 670        flags = (lp->flags | flags_set) & ~flags_clean;
 671        lp = ubifs_change_lp(c, lp, free, dirty, flags, idx_gc_cnt);
 672        if (IS_ERR(lp))
 673                err = PTR_ERR(lp);
 674
 675out:
 676        ubifs_release_lprops(c);
 677        if (err)
 678                ubifs_err(c, "cannot change properties of LEB %d, error %d",
 679                          lnum, err);
 680        return err;
 681}
 682
 683/**
 684 * ubifs_update_one_lp - update LEB properties.
 685 * @c: the UBIFS file-system description object
 686 * @lnum: LEB to change properties for
 687 * @free: amount of free space
 688 * @dirty: amount of dirty space to add
 689 * @flags_set: flags to set
 690 * @flags_clean: flags to clean
 691 *
 692 * This function is the same as 'ubifs_change_one_lp()' but @dirty is added to
 693 * current dirty space, not substitutes it.
 694 */
 695int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
 696                        int flags_set, int flags_clean)
 697{
 698        int err = 0, flags;
 699        const struct ubifs_lprops *lp;
 700
 701        ubifs_get_lprops(c);
 702
 703        lp = ubifs_lpt_lookup_dirty(c, lnum);
 704        if (IS_ERR(lp)) {
 705                err = PTR_ERR(lp);
 706                goto out;
 707        }
 708
 709        flags = (lp->flags | flags_set) & ~flags_clean;
 710        lp = ubifs_change_lp(c, lp, free, lp->dirty + dirty, flags, 0);
 711        if (IS_ERR(lp))
 712                err = PTR_ERR(lp);
 713
 714out:
 715        ubifs_release_lprops(c);
 716        if (err)
 717                ubifs_err(c, "cannot update properties of LEB %d, error %d",
 718                          lnum, err);
 719        return err;
 720}
 721
 722/**
 723 * ubifs_read_one_lp - read LEB properties.
 724 * @c: the UBIFS file-system description object
 725 * @lnum: LEB to read properties for
 726 * @lp: where to store read properties
 727 *
 728 * This helper function reads properties of a LEB @lnum and stores them in @lp.
 729 * Returns zero in case of success and a negative error code in case of
 730 * failure.
 731 */
 732int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp)
 733{
 734        int err = 0;
 735        const struct ubifs_lprops *lpp;
 736
 737        ubifs_get_lprops(c);
 738
 739        lpp = ubifs_lpt_lookup(c, lnum);
 740        if (IS_ERR(lpp)) {
 741                err = PTR_ERR(lpp);
 742                ubifs_err(c, "cannot read properties of LEB %d, error %d",
 743                          lnum, err);
 744                goto out;
 745        }
 746
 747        memcpy(lp, lpp, sizeof(struct ubifs_lprops));
 748
 749out:
 750        ubifs_release_lprops(c);
 751        return err;
 752}
 753
 754/**
 755 * ubifs_fast_find_free - try to find a LEB with free space quickly.
 756 * @c: the UBIFS file-system description object
 757 *
 758 * This function returns LEB properties for a LEB with free space or %NULL if
 759 * the function is unable to find a LEB quickly.
 760 */
 761const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c)
 762{
 763        struct ubifs_lprops *lprops;
 764        struct ubifs_lpt_heap *heap;
 765
 766        ubifs_assert(mutex_is_locked(&c->lp_mutex));
 767
 768        heap = &c->lpt_heap[LPROPS_FREE - 1];
 769        if (heap->cnt == 0)
 770                return NULL;
 771
 772        lprops = heap->arr[0];
 773        ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
 774        ubifs_assert(!(lprops->flags & LPROPS_INDEX));
 775        return lprops;
 776}
 777
 778/**
 779 * ubifs_fast_find_empty - try to find an empty LEB quickly.
 780 * @c: the UBIFS file-system description object
 781 *
 782 * This function returns LEB properties for an empty LEB or %NULL if the
 783 * function is unable to find an empty LEB quickly.
 784 */
 785const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c)
 786{
 787        struct ubifs_lprops *lprops;
 788
 789        ubifs_assert(mutex_is_locked(&c->lp_mutex));
 790
 791        if (list_empty(&c->empty_list))
 792                return NULL;
 793
 794        lprops = list_entry(c->empty_list.next, struct ubifs_lprops, list);
 795        ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
 796        ubifs_assert(!(lprops->flags & LPROPS_INDEX));
 797        ubifs_assert(lprops->free == c->leb_size);
 798        return lprops;
 799}
 800
 801/**
 802 * ubifs_fast_find_freeable - try to find a freeable LEB quickly.
 803 * @c: the UBIFS file-system description object
 804 *
 805 * This function returns LEB properties for a freeable LEB or %NULL if the
 806 * function is unable to find a freeable LEB quickly.
 807 */
 808const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c)
 809{
 810        struct ubifs_lprops *lprops;
 811
 812        ubifs_assert(mutex_is_locked(&c->lp_mutex));
 813
 814        if (list_empty(&c->freeable_list))
 815                return NULL;
 816
 817        lprops = list_entry(c->freeable_list.next, struct ubifs_lprops, list);
 818        ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
 819        ubifs_assert(!(lprops->flags & LPROPS_INDEX));
 820        ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
 821        ubifs_assert(c->freeable_cnt > 0);
 822        return lprops;
 823}
 824
 825/**
 826 * ubifs_fast_find_frdi_idx - try to find a freeable index LEB quickly.
 827 * @c: the UBIFS file-system description object
 828 *
 829 * This function returns LEB properties for a freeable index LEB or %NULL if the
 830 * function is unable to find a freeable index LEB quickly.
 831 */
 832const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c)
 833{
 834        struct ubifs_lprops *lprops;
 835
 836        ubifs_assert(mutex_is_locked(&c->lp_mutex));
 837
 838        if (list_empty(&c->frdi_idx_list))
 839                return NULL;
 840
 841        lprops = list_entry(c->frdi_idx_list.next, struct ubifs_lprops, list);
 842        ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
 843        ubifs_assert((lprops->flags & LPROPS_INDEX));
 844        ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
 845        return lprops;
 846}
 847
 848/*
 849 * Everything below is related to debugging.
 850 */
 851
 852/**
 853 * dbg_check_cats - check category heaps and lists.
 854 * @c: UBIFS file-system description object
 855 *
 856 * This function returns %0 on success and a negative error code on failure.
 857 */
 858int dbg_check_cats(struct ubifs_info *c)
 859{
 860        struct ubifs_lprops *lprops;
 861        struct list_head *pos;
 862        int i, cat;
 863
 864        if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
 865                return 0;
 866
 867        list_for_each_entry(lprops, &c->empty_list, list) {
 868                if (lprops->free != c->leb_size) {
 869                        ubifs_err(c, "non-empty LEB %d on empty list (free %d dirty %d flags %d)",
 870                                  lprops->lnum, lprops->free, lprops->dirty,
 871                                  lprops->flags);
 872                        return -EINVAL;
 873                }
 874                if (lprops->flags & LPROPS_TAKEN) {
 875                        ubifs_err(c, "taken LEB %d on empty list (free %d dirty %d flags %d)",
 876                                  lprops->lnum, lprops->free, lprops->dirty,
 877                                  lprops->flags);
 878                        return -EINVAL;
 879                }
 880        }
 881
 882        i = 0;
 883        list_for_each_entry(lprops, &c->freeable_list, list) {
 884                if (lprops->free + lprops->dirty != c->leb_size) {
 885                        ubifs_err(c, "non-freeable LEB %d on freeable list (free %d dirty %d flags %d)",
 886                                  lprops->lnum, lprops->free, lprops->dirty,
 887                                  lprops->flags);
 888                        return -EINVAL;
 889                }
 890                if (lprops->flags & LPROPS_TAKEN) {
 891                        ubifs_err(c, "taken LEB %d on freeable list (free %d dirty %d flags %d)",
 892                                  lprops->lnum, lprops->free, lprops->dirty,
 893                                  lprops->flags);
 894                        return -EINVAL;
 895                }
 896                i += 1;
 897        }
 898        if (i != c->freeable_cnt) {
 899                ubifs_err(c, "freeable list count %d expected %d", i,
 900                          c->freeable_cnt);
 901                return -EINVAL;
 902        }
 903
 904        i = 0;
 905        list_for_each(pos, &c->idx_gc)
 906                i += 1;
 907        if (i != c->idx_gc_cnt) {
 908                ubifs_err(c, "idx_gc list count %d expected %d", i,
 909                          c->idx_gc_cnt);
 910                return -EINVAL;
 911        }
 912
 913        list_for_each_entry(lprops, &c->frdi_idx_list, list) {
 914                if (lprops->free + lprops->dirty != c->leb_size) {
 915                        ubifs_err(c, "non-freeable LEB %d on frdi_idx list (free %d dirty %d flags %d)",
 916                                  lprops->lnum, lprops->free, lprops->dirty,
 917                                  lprops->flags);
 918                        return -EINVAL;
 919                }
 920                if (lprops->flags & LPROPS_TAKEN) {
 921                        ubifs_err(c, "taken LEB %d on frdi_idx list (free %d dirty %d flags %d)",
 922                                  lprops->lnum, lprops->free, lprops->dirty,
 923                                  lprops->flags);
 924                        return -EINVAL;
 925                }
 926                if (!(lprops->flags & LPROPS_INDEX)) {
 927                        ubifs_err(c, "non-index LEB %d on frdi_idx list (free %d dirty %d flags %d)",
 928                                  lprops->lnum, lprops->free, lprops->dirty,
 929                                  lprops->flags);
 930                        return -EINVAL;
 931                }
 932        }
 933
 934        for (cat = 1; cat <= LPROPS_HEAP_CNT; cat++) {
 935                struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
 936
 937                for (i = 0; i < heap->cnt; i++) {
 938                        lprops = heap->arr[i];
 939                        if (!lprops) {
 940                                ubifs_err(c, "null ptr in LPT heap cat %d", cat);
 941                                return -EINVAL;
 942                        }
 943                        if (lprops->hpos != i) {
 944                                ubifs_err(c, "bad ptr in LPT heap cat %d", cat);
 945                                return -EINVAL;
 946                        }
 947                        if (lprops->flags & LPROPS_TAKEN) {
 948                                ubifs_err(c, "taken LEB in LPT heap cat %d", cat);
 949                                return -EINVAL;
 950                        }
 951                }
 952        }
 953
 954        return 0;
 955}
 956
 957void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat,
 958                    int add_pos)
 959{
 960        int i = 0, j, err = 0;
 961
 962        if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
 963                return;
 964
 965        for (i = 0; i < heap->cnt; i++) {
 966                struct ubifs_lprops *lprops = heap->arr[i];
 967                struct ubifs_lprops *lp;
 968
 969                if (i != add_pos)
 970                        if ((lprops->flags & LPROPS_CAT_MASK) != cat) {
 971                                err = 1;
 972                                goto out;
 973                        }
 974                if (lprops->hpos != i) {
 975                        err = 2;
 976                        goto out;
 977                }
 978                lp = ubifs_lpt_lookup(c, lprops->lnum);
 979                if (IS_ERR(lp)) {
 980                        err = 3;
 981                        goto out;
 982                }
 983                if (lprops != lp) {
 984                        ubifs_err(c, "lprops %zx lp %zx lprops->lnum %d lp->lnum %d",
 985                                  (size_t)lprops, (size_t)lp, lprops->lnum,
 986                                  lp->lnum);
 987                        err = 4;
 988                        goto out;
 989                }
 990                for (j = 0; j < i; j++) {
 991                        lp = heap->arr[j];
 992                        if (lp == lprops) {
 993                                err = 5;
 994                                goto out;
 995                        }
 996                        if (lp->lnum == lprops->lnum) {
 997                                err = 6;
 998                                goto out;
 999                        }
1000                }
1001        }
1002out:
1003        if (err) {
1004                ubifs_err(c, "failed cat %d hpos %d err %d", cat, i, err);
1005                dump_stack();
1006                ubifs_dump_heap(c, heap, cat);
1007        }
1008}
1009
1010/**
1011 * scan_check_cb - scan callback.
1012 * @c: the UBIFS file-system description object
1013 * @lp: LEB properties to scan
1014 * @in_tree: whether the LEB properties are in main memory
1015 * @lst: lprops statistics to update
1016 *
1017 * This function returns a code that indicates whether the scan should continue
1018 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
1019 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
1020 * (%LPT_SCAN_STOP).
1021 */
1022static int scan_check_cb(struct ubifs_info *c,
1023                         const struct ubifs_lprops *lp, int in_tree,
1024                         struct ubifs_lp_stats *lst)
1025{
1026        struct ubifs_scan_leb *sleb;
1027        struct ubifs_scan_node *snod;
1028        int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty, ret;
1029        void *buf = NULL;
1030
1031        cat = lp->flags & LPROPS_CAT_MASK;
1032        if (cat != LPROPS_UNCAT) {
1033                cat = ubifs_categorize_lprops(c, lp);
1034                if (cat != (lp->flags & LPROPS_CAT_MASK)) {
1035                        ubifs_err(c, "bad LEB category %d expected %d",
1036                                  (lp->flags & LPROPS_CAT_MASK), cat);
1037                        return -EINVAL;
1038                }
1039        }
1040
1041        /* Check lp is on its category list (if it has one) */
1042        if (in_tree) {
1043                struct list_head *list = NULL;
1044
1045                switch (cat) {
1046                case LPROPS_EMPTY:
1047                        list = &c->empty_list;
1048                        break;
1049                case LPROPS_FREEABLE:
1050                        list = &c->freeable_list;
1051                        break;
1052                case LPROPS_FRDI_IDX:
1053                        list = &c->frdi_idx_list;
1054                        break;
1055                case LPROPS_UNCAT:
1056                        list = &c->uncat_list;
1057                        break;
1058                }
1059                if (list) {
1060                        struct ubifs_lprops *lprops;
1061                        int found = 0;
1062
1063                        list_for_each_entry(lprops, list, list) {
1064                                if (lprops == lp) {
1065                                        found = 1;
1066                                        break;
1067                                }
1068                        }
1069                        if (!found) {
1070                                ubifs_err(c, "bad LPT list (category %d)", cat);
1071                                return -EINVAL;
1072                        }
1073                }
1074        }
1075
1076        /* Check lp is on its category heap (if it has one) */
1077        if (in_tree && cat > 0 && cat <= LPROPS_HEAP_CNT) {
1078                struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
1079
1080                if ((lp->hpos != -1 && heap->arr[lp->hpos]->lnum != lnum) ||
1081                    lp != heap->arr[lp->hpos]) {
1082                        ubifs_err(c, "bad LPT heap (category %d)", cat);
1083                        return -EINVAL;
1084                }
1085        }
1086
1087        buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1088        if (!buf)
1089                return -ENOMEM;
1090
1091        /*
1092         * After an unclean unmount, empty and freeable LEBs
1093         * may contain garbage - do not scan them.
1094         */
1095        if (lp->free == c->leb_size) {
1096                lst->empty_lebs += 1;
1097                lst->total_free += c->leb_size;
1098                lst->total_dark += ubifs_calc_dark(c, c->leb_size);
1099                return LPT_SCAN_CONTINUE;
1100        }
1101        if (lp->free + lp->dirty == c->leb_size &&
1102            !(lp->flags & LPROPS_INDEX)) {
1103                lst->total_free  += lp->free;
1104                lst->total_dirty += lp->dirty;
1105                lst->total_dark  +=  ubifs_calc_dark(c, c->leb_size);
1106                return LPT_SCAN_CONTINUE;
1107        }
1108
1109        sleb = ubifs_scan(c, lnum, 0, buf, 0);
1110        if (IS_ERR(sleb)) {
1111                ret = PTR_ERR(sleb);
1112                if (ret == -EUCLEAN) {
1113                        ubifs_dump_lprops(c);
1114                        ubifs_dump_budg(c, &c->bi);
1115                }
1116                goto out;
1117        }
1118
1119        is_idx = -1;
1120        list_for_each_entry(snod, &sleb->nodes, list) {
1121                int found, level = 0;
1122
1123                cond_resched();
1124
1125                if (is_idx == -1)
1126                        is_idx = (snod->type == UBIFS_IDX_NODE) ? 1 : 0;
1127
1128                if (is_idx && snod->type != UBIFS_IDX_NODE) {
1129                        ubifs_err(c, "indexing node in data LEB %d:%d",
1130                                  lnum, snod->offs);
1131                        goto out_destroy;
1132                }
1133
1134                if (snod->type == UBIFS_IDX_NODE) {
1135                        struct ubifs_idx_node *idx = snod->node;
1136
1137                        key_read(c, ubifs_idx_key(c, idx), &snod->key);
1138                        level = le16_to_cpu(idx->level);
1139                }
1140
1141                found = ubifs_tnc_has_node(c, &snod->key, level, lnum,
1142                                           snod->offs, is_idx);
1143                if (found) {
1144                        if (found < 0)
1145                                goto out_destroy;
1146                        used += ALIGN(snod->len, 8);
1147                }
1148        }
1149
1150        free = c->leb_size - sleb->endpt;
1151        dirty = sleb->endpt - used;
1152
1153        if (free > c->leb_size || free < 0 || dirty > c->leb_size ||
1154            dirty < 0) {
1155                ubifs_err(c, "bad calculated accounting for LEB %d: free %d, dirty %d",
1156                          lnum, free, dirty);
1157                goto out_destroy;
1158        }
1159
1160        if (lp->free + lp->dirty == c->leb_size &&
1161            free + dirty == c->leb_size)
1162                if ((is_idx && !(lp->flags & LPROPS_INDEX)) ||
1163                    (!is_idx && free == c->leb_size) ||
1164                    lp->free == c->leb_size) {
1165                        /*
1166                         * Empty or freeable LEBs could contain index
1167                         * nodes from an uncompleted commit due to an
1168                         * unclean unmount. Or they could be empty for
1169                         * the same reason. Or it may simply not have been
1170                         * unmapped.
1171                         */
1172                        free = lp->free;
1173                        dirty = lp->dirty;
1174                        is_idx = 0;
1175                    }
1176
1177        if (is_idx && lp->free + lp->dirty == free + dirty &&
1178            lnum != c->ihead_lnum) {
1179                /*
1180                 * After an unclean unmount, an index LEB could have a different
1181                 * amount of free space than the value recorded by lprops. That
1182                 * is because the in-the-gaps method may use free space or
1183                 * create free space (as a side-effect of using ubi_leb_change
1184                 * and not writing the whole LEB). The incorrect free space
1185                 * value is not a problem because the index is only ever
1186                 * allocated empty LEBs, so there will never be an attempt to
1187                 * write to the free space at the end of an index LEB - except
1188                 * by the in-the-gaps method for which it is not a problem.
1189                 */
1190                free = lp->free;
1191                dirty = lp->dirty;
1192        }
1193
1194        if (lp->free != free || lp->dirty != dirty)
1195                goto out_print;
1196
1197        if (is_idx && !(lp->flags & LPROPS_INDEX)) {
1198                if (free == c->leb_size)
1199                        /* Free but not unmapped LEB, it's fine */
1200                        is_idx = 0;
1201                else {
1202                        ubifs_err(c, "indexing node without indexing flag");
1203                        goto out_print;
1204                }
1205        }
1206
1207        if (!is_idx && (lp->flags & LPROPS_INDEX)) {
1208                ubifs_err(c, "data node with indexing flag");
1209                goto out_print;
1210        }
1211
1212        if (free == c->leb_size)
1213                lst->empty_lebs += 1;
1214
1215        if (is_idx)
1216                lst->idx_lebs += 1;
1217
1218        if (!(lp->flags & LPROPS_INDEX))
1219                lst->total_used += c->leb_size - free - dirty;
1220        lst->total_free += free;
1221        lst->total_dirty += dirty;
1222
1223        if (!(lp->flags & LPROPS_INDEX)) {
1224                int spc = free + dirty;
1225
1226                if (spc < c->dead_wm)
1227                        lst->total_dead += spc;
1228                else
1229                        lst->total_dark += ubifs_calc_dark(c, spc);
1230        }
1231
1232        ubifs_scan_destroy(sleb);
1233        vfree(buf);
1234        return LPT_SCAN_CONTINUE;
1235
1236out_print:
1237        ubifs_err(c, "bad accounting of LEB %d: free %d, dirty %d flags %#x, should be free %d, dirty %d",
1238                  lnum, lp->free, lp->dirty, lp->flags, free, dirty);
1239        ubifs_dump_leb(c, lnum);
1240out_destroy:
1241        ubifs_scan_destroy(sleb);
1242        ret = -EINVAL;
1243out:
1244        vfree(buf);
1245        return ret;
1246}
1247
1248/**
1249 * dbg_check_lprops - check all LEB properties.
1250 * @c: UBIFS file-system description object
1251 *
1252 * This function checks all LEB properties and makes sure they are all correct.
1253 * It returns zero if everything is fine, %-EINVAL if there is an inconsistency
1254 * and other negative error codes in case of other errors. This function is
1255 * called while the file system is locked (because of commit start), so no
1256 * additional locking is required. Note that locking the LPT mutex would cause
1257 * a circular lock dependency with the TNC mutex.
1258 */
1259int dbg_check_lprops(struct ubifs_info *c)
1260{
1261        int i, err;
1262        struct ubifs_lp_stats lst;
1263
1264        if (!dbg_is_chk_lprops(c))
1265                return 0;
1266
1267        /*
1268         * As we are going to scan the media, the write buffers have to be
1269         * synchronized.
1270         */
1271        for (i = 0; i < c->jhead_cnt; i++) {
1272                err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1273                if (err)
1274                        return err;
1275        }
1276
1277        memset(&lst, 0, sizeof(struct ubifs_lp_stats));
1278        err = ubifs_lpt_scan_nolock(c, c->main_first, c->leb_cnt - 1,
1279                                    (ubifs_lpt_scan_callback)scan_check_cb,
1280                                    &lst);
1281        if (err && err != -ENOSPC)
1282                goto out;
1283
1284        if (lst.empty_lebs != c->lst.empty_lebs ||
1285            lst.idx_lebs != c->lst.idx_lebs ||
1286            lst.total_free != c->lst.total_free ||
1287            lst.total_dirty != c->lst.total_dirty ||
1288            lst.total_used != c->lst.total_used) {
1289                ubifs_err(c, "bad overall accounting");
1290                ubifs_err(c, "calculated: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld",
1291                          lst.empty_lebs, lst.idx_lebs, lst.total_free,
1292                          lst.total_dirty, lst.total_used);
1293                ubifs_err(c, "read from lprops: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld",
1294                          c->lst.empty_lebs, c->lst.idx_lebs, c->lst.total_free,
1295                          c->lst.total_dirty, c->lst.total_used);
1296                err = -EINVAL;
1297                goto out;
1298        }
1299
1300        if (lst.total_dead != c->lst.total_dead ||
1301            lst.total_dark != c->lst.total_dark) {
1302                ubifs_err(c, "bad dead/dark space accounting");
1303                ubifs_err(c, "calculated: total_dead %lld, total_dark %lld",
1304                          lst.total_dead, lst.total_dark);
1305                ubifs_err(c, "read from lprops: total_dead %lld, total_dark %lld",
1306                          c->lst.total_dead, c->lst.total_dark);
1307                err = -EINVAL;
1308                goto out;
1309        }
1310
1311        err = dbg_check_cats(c);
1312out:
1313        return err;
1314}
1315