uboot/fs/ubifs/orphan.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Author: Adrian Hunter
   8 */
   9
  10#include <log.h>
  11#include <dm/devres.h>
  12#include <linux/err.h>
  13#include "ubifs.h"
  14
  15/*
  16 * An orphan is an inode number whose inode node has been committed to the index
  17 * with a link count of zero. That happens when an open file is deleted
  18 * (unlinked) and then a commit is run. In the normal course of events the inode
  19 * would be deleted when the file is closed. However in the case of an unclean
  20 * unmount, orphans need to be accounted for. After an unclean unmount, the
  21 * orphans' inodes must be deleted which means either scanning the entire index
  22 * looking for them, or keeping a list on flash somewhere. This unit implements
  23 * the latter approach.
  24 *
  25 * The orphan area is a fixed number of LEBs situated between the LPT area and
  26 * the main area. The number of orphan area LEBs is specified when the file
  27 * system is created. The minimum number is 1. The size of the orphan area
  28 * should be so that it can hold the maximum number of orphans that are expected
  29 * to ever exist at one time.
  30 *
  31 * The number of orphans that can fit in a LEB is:
  32 *
  33 *         (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
  34 *
  35 * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
  36 *
  37 * Orphans are accumulated in a rb-tree. When an inode's link count drops to
  38 * zero, the inode number is added to the rb-tree. It is removed from the tree
  39 * when the inode is deleted.  Any new orphans that are in the orphan tree when
  40 * the commit is run, are written to the orphan area in 1 or more orphan nodes.
  41 * If the orphan area is full, it is consolidated to make space.  There is
  42 * always enough space because validation prevents the user from creating more
  43 * than the maximum number of orphans allowed.
  44 */
  45
  46static int dbg_check_orphans(struct ubifs_info *c);
  47
  48/**
  49 * ubifs_add_orphan - add an orphan.
  50 * @c: UBIFS file-system description object
  51 * @inum: orphan inode number
  52 *
  53 * Add an orphan. This function is called when an inodes link count drops to
  54 * zero.
  55 */
  56int ubifs_add_orphan(struct ubifs_info *c, ino_t inum)
  57{
  58        struct ubifs_orphan *orphan, *o;
  59        struct rb_node **p, *parent = NULL;
  60
  61        orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
  62        if (!orphan)
  63                return -ENOMEM;
  64        orphan->inum = inum;
  65        orphan->new = 1;
  66
  67        spin_lock(&c->orphan_lock);
  68        if (c->tot_orphans >= c->max_orphans) {
  69                spin_unlock(&c->orphan_lock);
  70                kfree(orphan);
  71                return -ENFILE;
  72        }
  73        p = &c->orph_tree.rb_node;
  74        while (*p) {
  75                parent = *p;
  76                o = rb_entry(parent, struct ubifs_orphan, rb);
  77                if (inum < o->inum)
  78                        p = &(*p)->rb_left;
  79                else if (inum > o->inum)
  80                        p = &(*p)->rb_right;
  81                else {
  82                        ubifs_err(c, "orphaned twice");
  83                        spin_unlock(&c->orphan_lock);
  84                        kfree(orphan);
  85                        return 0;
  86                }
  87        }
  88        c->tot_orphans += 1;
  89        c->new_orphans += 1;
  90        rb_link_node(&orphan->rb, parent, p);
  91        rb_insert_color(&orphan->rb, &c->orph_tree);
  92        list_add_tail(&orphan->list, &c->orph_list);
  93        list_add_tail(&orphan->new_list, &c->orph_new);
  94        spin_unlock(&c->orphan_lock);
  95        dbg_gen("ino %lu", (unsigned long)inum);
  96        return 0;
  97}
  98
  99/**
 100 * ubifs_delete_orphan - delete an orphan.
 101 * @c: UBIFS file-system description object
 102 * @inum: orphan inode number
 103 *
 104 * Delete an orphan. This function is called when an inode is deleted.
 105 */
 106void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum)
 107{
 108        struct ubifs_orphan *o;
 109        struct rb_node *p;
 110
 111        spin_lock(&c->orphan_lock);
 112        p = c->orph_tree.rb_node;
 113        while (p) {
 114                o = rb_entry(p, struct ubifs_orphan, rb);
 115                if (inum < o->inum)
 116                        p = p->rb_left;
 117                else if (inum > o->inum)
 118                        p = p->rb_right;
 119                else {
 120                        if (o->del) {
 121                                spin_unlock(&c->orphan_lock);
 122                                dbg_gen("deleted twice ino %lu",
 123                                        (unsigned long)inum);
 124                                return;
 125                        }
 126                        if (o->cmt) {
 127                                o->del = 1;
 128                                o->dnext = c->orph_dnext;
 129                                c->orph_dnext = o;
 130                                spin_unlock(&c->orphan_lock);
 131                                dbg_gen("delete later ino %lu",
 132                                        (unsigned long)inum);
 133                                return;
 134                        }
 135                        rb_erase(p, &c->orph_tree);
 136                        list_del(&o->list);
 137                        c->tot_orphans -= 1;
 138                        if (o->new) {
 139                                list_del(&o->new_list);
 140                                c->new_orphans -= 1;
 141                        }
 142                        spin_unlock(&c->orphan_lock);
 143                        kfree(o);
 144                        dbg_gen("inum %lu", (unsigned long)inum);
 145                        return;
 146                }
 147        }
 148        spin_unlock(&c->orphan_lock);
 149        ubifs_err(c, "missing orphan ino %lu", (unsigned long)inum);
 150        dump_stack();
 151}
 152
 153/**
 154 * ubifs_orphan_start_commit - start commit of orphans.
 155 * @c: UBIFS file-system description object
 156 *
 157 * Start commit of orphans.
 158 */
 159int ubifs_orphan_start_commit(struct ubifs_info *c)
 160{
 161        struct ubifs_orphan *orphan, **last;
 162
 163        spin_lock(&c->orphan_lock);
 164        last = &c->orph_cnext;
 165        list_for_each_entry(orphan, &c->orph_new, new_list) {
 166                ubifs_assert(orphan->new);
 167                ubifs_assert(!orphan->cmt);
 168                orphan->new = 0;
 169                orphan->cmt = 1;
 170                *last = orphan;
 171                last = &orphan->cnext;
 172        }
 173        *last = NULL;
 174        c->cmt_orphans = c->new_orphans;
 175        c->new_orphans = 0;
 176        dbg_cmt("%d orphans to commit", c->cmt_orphans);
 177        INIT_LIST_HEAD(&c->orph_new);
 178        if (c->tot_orphans == 0)
 179                c->no_orphs = 1;
 180        else
 181                c->no_orphs = 0;
 182        spin_unlock(&c->orphan_lock);
 183        return 0;
 184}
 185
 186/**
 187 * avail_orphs - calculate available space.
 188 * @c: UBIFS file-system description object
 189 *
 190 * This function returns the number of orphans that can be written in the
 191 * available space.
 192 */
 193static int avail_orphs(struct ubifs_info *c)
 194{
 195        int avail_lebs, avail, gap;
 196
 197        avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
 198        avail = avail_lebs *
 199               ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
 200        gap = c->leb_size - c->ohead_offs;
 201        if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
 202                avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
 203        return avail;
 204}
 205
 206/**
 207 * tot_avail_orphs - calculate total space.
 208 * @c: UBIFS file-system description object
 209 *
 210 * This function returns the number of orphans that can be written in half
 211 * the total space. That leaves half the space for adding new orphans.
 212 */
 213static int tot_avail_orphs(struct ubifs_info *c)
 214{
 215        int avail_lebs, avail;
 216
 217        avail_lebs = c->orph_lebs;
 218        avail = avail_lebs *
 219               ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
 220        return avail / 2;
 221}
 222
 223/**
 224 * do_write_orph_node - write a node to the orphan head.
 225 * @c: UBIFS file-system description object
 226 * @len: length of node
 227 * @atomic: write atomically
 228 *
 229 * This function writes a node to the orphan head from the orphan buffer. If
 230 * %atomic is not zero, then the write is done atomically. On success, %0 is
 231 * returned, otherwise a negative error code is returned.
 232 */
 233static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
 234{
 235        int err = 0;
 236
 237        if (atomic) {
 238                ubifs_assert(c->ohead_offs == 0);
 239                ubifs_prepare_node(c, c->orph_buf, len, 1);
 240                len = ALIGN(len, c->min_io_size);
 241                err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len);
 242        } else {
 243                if (c->ohead_offs == 0) {
 244                        /* Ensure LEB has been unmapped */
 245                        err = ubifs_leb_unmap(c, c->ohead_lnum);
 246                        if (err)
 247                                return err;
 248                }
 249                err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
 250                                       c->ohead_offs);
 251        }
 252        return err;
 253}
 254
 255/**
 256 * write_orph_node - write an orphan node.
 257 * @c: UBIFS file-system description object
 258 * @atomic: write atomically
 259 *
 260 * This function builds an orphan node from the cnext list and writes it to the
 261 * orphan head. On success, %0 is returned, otherwise a negative error code
 262 * is returned.
 263 */
 264static int write_orph_node(struct ubifs_info *c, int atomic)
 265{
 266        struct ubifs_orphan *orphan, *cnext;
 267        struct ubifs_orph_node *orph;
 268        int gap, err, len, cnt, i;
 269
 270        ubifs_assert(c->cmt_orphans > 0);
 271        gap = c->leb_size - c->ohead_offs;
 272        if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
 273                c->ohead_lnum += 1;
 274                c->ohead_offs = 0;
 275                gap = c->leb_size;
 276                if (c->ohead_lnum > c->orph_last) {
 277                        /*
 278                         * We limit the number of orphans so that this should
 279                         * never happen.
 280                         */
 281                        ubifs_err(c, "out of space in orphan area");
 282                        return -EINVAL;
 283                }
 284        }
 285        cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
 286        if (cnt > c->cmt_orphans)
 287                cnt = c->cmt_orphans;
 288        len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
 289        ubifs_assert(c->orph_buf);
 290        orph = c->orph_buf;
 291        orph->ch.node_type = UBIFS_ORPH_NODE;
 292        spin_lock(&c->orphan_lock);
 293        cnext = c->orph_cnext;
 294        for (i = 0; i < cnt; i++) {
 295                orphan = cnext;
 296                ubifs_assert(orphan->cmt);
 297                orph->inos[i] = cpu_to_le64(orphan->inum);
 298                orphan->cmt = 0;
 299                cnext = orphan->cnext;
 300                orphan->cnext = NULL;
 301        }
 302        c->orph_cnext = cnext;
 303        c->cmt_orphans -= cnt;
 304        spin_unlock(&c->orphan_lock);
 305        if (c->cmt_orphans)
 306                orph->cmt_no = cpu_to_le64(c->cmt_no);
 307        else
 308                /* Mark the last node of the commit */
 309                orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63));
 310        ubifs_assert(c->ohead_offs + len <= c->leb_size);
 311        ubifs_assert(c->ohead_lnum >= c->orph_first);
 312        ubifs_assert(c->ohead_lnum <= c->orph_last);
 313        err = do_write_orph_node(c, len, atomic);
 314        c->ohead_offs += ALIGN(len, c->min_io_size);
 315        c->ohead_offs = ALIGN(c->ohead_offs, 8);
 316        return err;
 317}
 318
 319/**
 320 * write_orph_nodes - write orphan nodes until there are no more to commit.
 321 * @c: UBIFS file-system description object
 322 * @atomic: write atomically
 323 *
 324 * This function writes orphan nodes for all the orphans to commit. On success,
 325 * %0 is returned, otherwise a negative error code is returned.
 326 */
 327static int write_orph_nodes(struct ubifs_info *c, int atomic)
 328{
 329        int err;
 330
 331        while (c->cmt_orphans > 0) {
 332                err = write_orph_node(c, atomic);
 333                if (err)
 334                        return err;
 335        }
 336        if (atomic) {
 337                int lnum;
 338
 339                /* Unmap any unused LEBs after consolidation */
 340                for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
 341                        err = ubifs_leb_unmap(c, lnum);
 342                        if (err)
 343                                return err;
 344                }
 345        }
 346        return 0;
 347}
 348
 349/**
 350 * consolidate - consolidate the orphan area.
 351 * @c: UBIFS file-system description object
 352 *
 353 * This function enables consolidation by putting all the orphans into the list
 354 * to commit. The list is in the order that the orphans were added, and the
 355 * LEBs are written atomically in order, so at no time can orphans be lost by
 356 * an unclean unmount.
 357 *
 358 * This function returns %0 on success and a negative error code on failure.
 359 */
 360static int consolidate(struct ubifs_info *c)
 361{
 362        int tot_avail = tot_avail_orphs(c), err = 0;
 363
 364        spin_lock(&c->orphan_lock);
 365        dbg_cmt("there is space for %d orphans and there are %d",
 366                tot_avail, c->tot_orphans);
 367        if (c->tot_orphans - c->new_orphans <= tot_avail) {
 368                struct ubifs_orphan *orphan, **last;
 369                int cnt = 0;
 370
 371                /* Change the cnext list to include all non-new orphans */
 372                last = &c->orph_cnext;
 373                list_for_each_entry(orphan, &c->orph_list, list) {
 374                        if (orphan->new)
 375                                continue;
 376                        orphan->cmt = 1;
 377                        *last = orphan;
 378                        last = &orphan->cnext;
 379                        cnt += 1;
 380                }
 381                *last = NULL;
 382                ubifs_assert(cnt == c->tot_orphans - c->new_orphans);
 383                c->cmt_orphans = cnt;
 384                c->ohead_lnum = c->orph_first;
 385                c->ohead_offs = 0;
 386        } else {
 387                /*
 388                 * We limit the number of orphans so that this should
 389                 * never happen.
 390                 */
 391                ubifs_err(c, "out of space in orphan area");
 392                err = -EINVAL;
 393        }
 394        spin_unlock(&c->orphan_lock);
 395        return err;
 396}
 397
 398/**
 399 * commit_orphans - commit orphans.
 400 * @c: UBIFS file-system description object
 401 *
 402 * This function commits orphans to flash. On success, %0 is returned,
 403 * otherwise a negative error code is returned.
 404 */
 405static int commit_orphans(struct ubifs_info *c)
 406{
 407        int avail, atomic = 0, err;
 408
 409        ubifs_assert(c->cmt_orphans > 0);
 410        avail = avail_orphs(c);
 411        if (avail < c->cmt_orphans) {
 412                /* Not enough space to write new orphans, so consolidate */
 413                err = consolidate(c);
 414                if (err)
 415                        return err;
 416                atomic = 1;
 417        }
 418        err = write_orph_nodes(c, atomic);
 419        return err;
 420}
 421
 422/**
 423 * erase_deleted - erase the orphans marked for deletion.
 424 * @c: UBIFS file-system description object
 425 *
 426 * During commit, the orphans being committed cannot be deleted, so they are
 427 * marked for deletion and deleted by this function. Also, the recovery
 428 * adds killed orphans to the deletion list, and therefore they are deleted
 429 * here too.
 430 */
 431static void erase_deleted(struct ubifs_info *c)
 432{
 433        struct ubifs_orphan *orphan, *dnext;
 434
 435        spin_lock(&c->orphan_lock);
 436        dnext = c->orph_dnext;
 437        while (dnext) {
 438                orphan = dnext;
 439                dnext = orphan->dnext;
 440                ubifs_assert(!orphan->new);
 441                ubifs_assert(orphan->del);
 442                rb_erase(&orphan->rb, &c->orph_tree);
 443                list_del(&orphan->list);
 444                c->tot_orphans -= 1;
 445                dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum);
 446                kfree(orphan);
 447        }
 448        c->orph_dnext = NULL;
 449        spin_unlock(&c->orphan_lock);
 450}
 451
 452/**
 453 * ubifs_orphan_end_commit - end commit of orphans.
 454 * @c: UBIFS file-system description object
 455 *
 456 * End commit of orphans.
 457 */
 458int ubifs_orphan_end_commit(struct ubifs_info *c)
 459{
 460        int err;
 461
 462        if (c->cmt_orphans != 0) {
 463                err = commit_orphans(c);
 464                if (err)
 465                        return err;
 466        }
 467        erase_deleted(c);
 468        err = dbg_check_orphans(c);
 469        return err;
 470}
 471
 472/**
 473 * ubifs_clear_orphans - erase all LEBs used for orphans.
 474 * @c: UBIFS file-system description object
 475 *
 476 * If recovery is not required, then the orphans from the previous session
 477 * are not needed. This function locates the LEBs used to record
 478 * orphans, and un-maps them.
 479 */
 480int ubifs_clear_orphans(struct ubifs_info *c)
 481{
 482        int lnum, err;
 483
 484        for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
 485                err = ubifs_leb_unmap(c, lnum);
 486                if (err)
 487                        return err;
 488        }
 489        c->ohead_lnum = c->orph_first;
 490        c->ohead_offs = 0;
 491        return 0;
 492}
 493
 494/**
 495 * insert_dead_orphan - insert an orphan.
 496 * @c: UBIFS file-system description object
 497 * @inum: orphan inode number
 498 *
 499 * This function is a helper to the 'do_kill_orphans()' function. The orphan
 500 * must be kept until the next commit, so it is added to the rb-tree and the
 501 * deletion list.
 502 */
 503static int insert_dead_orphan(struct ubifs_info *c, ino_t inum)
 504{
 505        struct ubifs_orphan *orphan, *o;
 506        struct rb_node **p, *parent = NULL;
 507
 508        orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL);
 509        if (!orphan)
 510                return -ENOMEM;
 511        orphan->inum = inum;
 512
 513        p = &c->orph_tree.rb_node;
 514        while (*p) {
 515                parent = *p;
 516                o = rb_entry(parent, struct ubifs_orphan, rb);
 517                if (inum < o->inum)
 518                        p = &(*p)->rb_left;
 519                else if (inum > o->inum)
 520                        p = &(*p)->rb_right;
 521                else {
 522                        /* Already added - no problem */
 523                        kfree(orphan);
 524                        return 0;
 525                }
 526        }
 527        c->tot_orphans += 1;
 528        rb_link_node(&orphan->rb, parent, p);
 529        rb_insert_color(&orphan->rb, &c->orph_tree);
 530        list_add_tail(&orphan->list, &c->orph_list);
 531        orphan->del = 1;
 532        orphan->dnext = c->orph_dnext;
 533        c->orph_dnext = orphan;
 534        dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum,
 535                c->new_orphans, c->tot_orphans);
 536        return 0;
 537}
 538
 539/**
 540 * do_kill_orphans - remove orphan inodes from the index.
 541 * @c: UBIFS file-system description object
 542 * @sleb: scanned LEB
 543 * @last_cmt_no: cmt_no of last orphan node read is passed and returned here
 544 * @outofdate: whether the LEB is out of date is returned here
 545 * @last_flagged: whether the end orphan node is encountered
 546 *
 547 * This function is a helper to the 'kill_orphans()' function. It goes through
 548 * every orphan node in a LEB and for every inode number recorded, removes
 549 * all keys for that inode from the TNC.
 550 */
 551static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
 552                           unsigned long long *last_cmt_no, int *outofdate,
 553                           int *last_flagged)
 554{
 555        struct ubifs_scan_node *snod;
 556        struct ubifs_orph_node *orph;
 557        unsigned long long cmt_no;
 558        ino_t inum;
 559        int i, n, err, first = 1;
 560
 561        list_for_each_entry(snod, &sleb->nodes, list) {
 562                if (snod->type != UBIFS_ORPH_NODE) {
 563                        ubifs_err(c, "invalid node type %d in orphan area at %d:%d",
 564                                  snod->type, sleb->lnum, snod->offs);
 565                        ubifs_dump_node(c, snod->node);
 566                        return -EINVAL;
 567                }
 568
 569                orph = snod->node;
 570
 571                /* Check commit number */
 572                cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX;
 573                /*
 574                 * The commit number on the master node may be less, because
 575                 * of a failed commit. If there are several failed commits in a
 576                 * row, the commit number written on orphan nodes will continue
 577                 * to increase (because the commit number is adjusted here) even
 578                 * though the commit number on the master node stays the same
 579                 * because the master node has not been re-written.
 580                 */
 581                if (cmt_no > c->cmt_no)
 582                        c->cmt_no = cmt_no;
 583                if (cmt_no < *last_cmt_no && *last_flagged) {
 584                        /*
 585                         * The last orphan node had a higher commit number and
 586                         * was flagged as the last written for that commit
 587                         * number. That makes this orphan node, out of date.
 588                         */
 589                        if (!first) {
 590                                ubifs_err(c, "out of order commit number %llu in orphan node at %d:%d",
 591                                          cmt_no, sleb->lnum, snod->offs);
 592                                ubifs_dump_node(c, snod->node);
 593                                return -EINVAL;
 594                        }
 595                        dbg_rcvry("out of date LEB %d", sleb->lnum);
 596                        *outofdate = 1;
 597                        return 0;
 598                }
 599
 600                if (first)
 601                        first = 0;
 602
 603                n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
 604                for (i = 0; i < n; i++) {
 605                        inum = le64_to_cpu(orph->inos[i]);
 606                        dbg_rcvry("deleting orphaned inode %lu",
 607                                  (unsigned long)inum);
 608                        err = ubifs_tnc_remove_ino(c, inum);
 609                        if (err)
 610                                return err;
 611                        err = insert_dead_orphan(c, inum);
 612                        if (err)
 613                                return err;
 614                }
 615
 616                *last_cmt_no = cmt_no;
 617                if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) {
 618                        dbg_rcvry("last orph node for commit %llu at %d:%d",
 619                                  cmt_no, sleb->lnum, snod->offs);
 620                        *last_flagged = 1;
 621                } else
 622                        *last_flagged = 0;
 623        }
 624
 625        return 0;
 626}
 627
 628/**
 629 * kill_orphans - remove all orphan inodes from the index.
 630 * @c: UBIFS file-system description object
 631 *
 632 * If recovery is required, then orphan inodes recorded during the previous
 633 * session (which ended with an unclean unmount) must be deleted from the index.
 634 * This is done by updating the TNC, but since the index is not updated until
 635 * the next commit, the LEBs where the orphan information is recorded are not
 636 * erased until the next commit.
 637 */
 638static int kill_orphans(struct ubifs_info *c)
 639{
 640        unsigned long long last_cmt_no = 0;
 641        int lnum, err = 0, outofdate = 0, last_flagged = 0;
 642
 643        c->ohead_lnum = c->orph_first;
 644        c->ohead_offs = 0;
 645        /* Check no-orphans flag and skip this if no orphans */
 646        if (c->no_orphs) {
 647                dbg_rcvry("no orphans");
 648                return 0;
 649        }
 650        /*
 651         * Orph nodes always start at c->orph_first and are written to each
 652         * successive LEB in turn. Generally unused LEBs will have been unmapped
 653         * but may contain out of date orphan nodes if the unmap didn't go
 654         * through. In addition, the last orphan node written for each commit is
 655         * marked (top bit of orph->cmt_no is set to 1). It is possible that
 656         * there are orphan nodes from the next commit (i.e. the commit did not
 657         * complete successfully). In that case, no orphans will have been lost
 658         * due to the way that orphans are written, and any orphans added will
 659         * be valid orphans anyway and so can be deleted.
 660         */
 661        for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
 662                struct ubifs_scan_leb *sleb;
 663
 664                dbg_rcvry("LEB %d", lnum);
 665                sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
 666                if (IS_ERR(sleb)) {
 667                        if (PTR_ERR(sleb) == -EUCLEAN)
 668                                sleb = ubifs_recover_leb(c, lnum, 0,
 669                                                         c->sbuf, -1);
 670                        if (IS_ERR(sleb)) {
 671                                err = PTR_ERR(sleb);
 672                                break;
 673                        }
 674                }
 675                err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate,
 676                                      &last_flagged);
 677                if (err || outofdate) {
 678                        ubifs_scan_destroy(sleb);
 679                        break;
 680                }
 681                if (sleb->endpt) {
 682                        c->ohead_lnum = lnum;
 683                        c->ohead_offs = sleb->endpt;
 684                }
 685                ubifs_scan_destroy(sleb);
 686        }
 687        return err;
 688}
 689
 690/**
 691 * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
 692 * @c: UBIFS file-system description object
 693 * @unclean: indicates recovery from unclean unmount
 694 * @read_only: indicates read only mount
 695 *
 696 * This function is called when mounting to erase orphans from the previous
 697 * session. If UBIFS was not unmounted cleanly, then the inodes recorded as
 698 * orphans are deleted.
 699 */
 700int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
 701{
 702        int err = 0;
 703
 704        c->max_orphans = tot_avail_orphs(c);
 705
 706        if (!read_only) {
 707                c->orph_buf = vmalloc(c->leb_size);
 708                if (!c->orph_buf)
 709                        return -ENOMEM;
 710        }
 711
 712        if (unclean)
 713                err = kill_orphans(c);
 714        else if (!read_only)
 715                err = ubifs_clear_orphans(c);
 716
 717        return err;
 718}
 719
 720/*
 721 * Everything below is related to debugging.
 722 */
 723
 724struct check_orphan {
 725        struct rb_node rb;
 726        ino_t inum;
 727};
 728
 729struct check_info {
 730        unsigned long last_ino;
 731        unsigned long tot_inos;
 732        unsigned long missing;
 733        unsigned long long leaf_cnt;
 734        struct ubifs_ino_node *node;
 735        struct rb_root root;
 736};
 737
 738static int dbg_find_orphan(struct ubifs_info *c, ino_t inum)
 739{
 740        struct ubifs_orphan *o;
 741        struct rb_node *p;
 742
 743        spin_lock(&c->orphan_lock);
 744        p = c->orph_tree.rb_node;
 745        while (p) {
 746                o = rb_entry(p, struct ubifs_orphan, rb);
 747                if (inum < o->inum)
 748                        p = p->rb_left;
 749                else if (inum > o->inum)
 750                        p = p->rb_right;
 751                else {
 752                        spin_unlock(&c->orphan_lock);
 753                        return 1;
 754                }
 755        }
 756        spin_unlock(&c->orphan_lock);
 757        return 0;
 758}
 759
 760static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
 761{
 762        struct check_orphan *orphan, *o;
 763        struct rb_node **p, *parent = NULL;
 764
 765        orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
 766        if (!orphan)
 767                return -ENOMEM;
 768        orphan->inum = inum;
 769
 770        p = &root->rb_node;
 771        while (*p) {
 772                parent = *p;
 773                o = rb_entry(parent, struct check_orphan, rb);
 774                if (inum < o->inum)
 775                        p = &(*p)->rb_left;
 776                else if (inum > o->inum)
 777                        p = &(*p)->rb_right;
 778                else {
 779                        kfree(orphan);
 780                        return 0;
 781                }
 782        }
 783        rb_link_node(&orphan->rb, parent, p);
 784        rb_insert_color(&orphan->rb, root);
 785        return 0;
 786}
 787
 788static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
 789{
 790        struct check_orphan *o;
 791        struct rb_node *p;
 792
 793        p = root->rb_node;
 794        while (p) {
 795                o = rb_entry(p, struct check_orphan, rb);
 796                if (inum < o->inum)
 797                        p = p->rb_left;
 798                else if (inum > o->inum)
 799                        p = p->rb_right;
 800                else
 801                        return 1;
 802        }
 803        return 0;
 804}
 805
 806static void dbg_free_check_tree(struct rb_root *root)
 807{
 808        struct check_orphan *o, *n;
 809
 810        rbtree_postorder_for_each_entry_safe(o, n, root, rb)
 811                kfree(o);
 812}
 813
 814static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 815                            void *priv)
 816{
 817        struct check_info *ci = priv;
 818        ino_t inum;
 819        int err;
 820
 821        inum = key_inum(c, &zbr->key);
 822        if (inum != ci->last_ino) {
 823                /* Lowest node type is the inode node, so it comes first */
 824                if (key_type(c, &zbr->key) != UBIFS_INO_KEY)
 825                        ubifs_err(c, "found orphan node ino %lu, type %d",
 826                                  (unsigned long)inum, key_type(c, &zbr->key));
 827                ci->last_ino = inum;
 828                ci->tot_inos += 1;
 829                err = ubifs_tnc_read_node(c, zbr, ci->node);
 830                if (err) {
 831                        ubifs_err(c, "node read failed, error %d", err);
 832                        return err;
 833                }
 834                if (ci->node->nlink == 0)
 835                        /* Must be recorded as an orphan */
 836                        if (!dbg_find_check_orphan(&ci->root, inum) &&
 837                            !dbg_find_orphan(c, inum)) {
 838                                ubifs_err(c, "missing orphan, ino %lu",
 839                                          (unsigned long)inum);
 840                                ci->missing += 1;
 841                        }
 842        }
 843        ci->leaf_cnt += 1;
 844        return 0;
 845}
 846
 847static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
 848{
 849        struct ubifs_scan_node *snod;
 850        struct ubifs_orph_node *orph;
 851        ino_t inum;
 852        int i, n, err;
 853
 854        list_for_each_entry(snod, &sleb->nodes, list) {
 855                cond_resched();
 856                if (snod->type != UBIFS_ORPH_NODE)
 857                        continue;
 858                orph = snod->node;
 859                n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
 860                for (i = 0; i < n; i++) {
 861                        inum = le64_to_cpu(orph->inos[i]);
 862                        err = dbg_ins_check_orphan(&ci->root, inum);
 863                        if (err)
 864                                return err;
 865                }
 866        }
 867        return 0;
 868}
 869
 870static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
 871{
 872        int lnum, err = 0;
 873        void *buf;
 874
 875        /* Check no-orphans flag and skip this if no orphans */
 876        if (c->no_orphs)
 877                return 0;
 878
 879        buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
 880        if (!buf) {
 881                ubifs_err(c, "cannot allocate memory to check orphans");
 882                return 0;
 883        }
 884
 885        for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
 886                struct ubifs_scan_leb *sleb;
 887
 888                sleb = ubifs_scan(c, lnum, 0, buf, 0);
 889                if (IS_ERR(sleb)) {
 890                        err = PTR_ERR(sleb);
 891                        break;
 892                }
 893
 894                err = dbg_read_orphans(ci, sleb);
 895                ubifs_scan_destroy(sleb);
 896                if (err)
 897                        break;
 898        }
 899
 900        vfree(buf);
 901        return err;
 902}
 903
 904static int dbg_check_orphans(struct ubifs_info *c)
 905{
 906        struct check_info ci;
 907        int err;
 908
 909        if (!dbg_is_chk_orph(c))
 910                return 0;
 911
 912        ci.last_ino = 0;
 913        ci.tot_inos = 0;
 914        ci.missing  = 0;
 915        ci.leaf_cnt = 0;
 916        ci.root = RB_ROOT;
 917        ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
 918        if (!ci.node) {
 919                ubifs_err(c, "out of memory");
 920                return -ENOMEM;
 921        }
 922
 923        err = dbg_scan_orphans(c, &ci);
 924        if (err)
 925                goto out;
 926
 927        err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
 928        if (err) {
 929                ubifs_err(c, "cannot scan TNC, error %d", err);
 930                goto out;
 931        }
 932
 933        if (ci.missing) {
 934                ubifs_err(c, "%lu missing orphan(s)", ci.missing);
 935                err = -EINVAL;
 936                goto out;
 937        }
 938
 939        dbg_cmt("last inode number is %lu", ci.last_ino);
 940        dbg_cmt("total number of inodes is %lu", ci.tot_inos);
 941        dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);
 942
 943out:
 944        dbg_free_check_tree(&ci.root);
 945        kfree(ci.node);
 946        return err;
 947}
 948