uboot/fs/ubifs/recovery.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation
   6 *
   7 * Authors: Adrian Hunter
   8 *          Artem Bityutskiy (Битюцкий Артём)
   9 */
  10
  11/*
  12 * This file implements functions needed to recover from unclean un-mounts.
  13 * When UBIFS is mounted, it checks a flag on the master node to determine if
  14 * an un-mount was completed successfully. If not, the process of mounting
  15 * incorporates additional checking and fixing of on-flash data structures.
  16 * UBIFS always cleans away all remnants of an unclean un-mount, so that
  17 * errors do not accumulate. However UBIFS defers recovery if it is mounted
  18 * read-only, and the flash is not modified in that case.
  19 *
  20 * The general UBIFS approach to the recovery is that it recovers from
  21 * corruptions which could be caused by power cuts, but it refuses to recover
  22 * from corruption caused by other reasons. And UBIFS tries to distinguish
  23 * between these 2 reasons of corruptions and silently recover in the former
  24 * case and loudly complain in the latter case.
  25 *
  26 * UBIFS writes only to erased LEBs, so it writes only to the flash space
  27 * containing only 0xFFs. UBIFS also always writes strictly from the beginning
  28 * of the LEB to the end. And UBIFS assumes that the underlying flash media
  29 * writes in @c->max_write_size bytes at a time.
  30 *
  31 * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
  32 * I/O unit corresponding to offset X to contain corrupted data, all the
  33 * following min. I/O units have to contain empty space (all 0xFFs). If this is
  34 * not true, the corruption cannot be the result of a power cut, and UBIFS
  35 * refuses to mount.
  36 */
  37
  38#ifndef __UBOOT__
  39#include <log.h>
  40#include <dm/devres.h>
  41#include <linux/crc32.h>
  42#include <linux/slab.h>
  43#include <u-boot/crc.h>
  44#else
  45#include <linux/err.h>
  46#endif
  47#include "ubifs.h"
  48
  49/**
  50 * is_empty - determine whether a buffer is empty (contains all 0xff).
  51 * @buf: buffer to clean
  52 * @len: length of buffer
  53 *
  54 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
  55 * %0 is returned.
  56 */
  57static int is_empty(void *buf, int len)
  58{
  59        uint8_t *p = buf;
  60        int i;
  61
  62        for (i = 0; i < len; i++)
  63                if (*p++ != 0xff)
  64                        return 0;
  65        return 1;
  66}
  67
  68/**
  69 * first_non_ff - find offset of the first non-0xff byte.
  70 * @buf: buffer to search in
  71 * @len: length of buffer
  72 *
  73 * This function returns offset of the first non-0xff byte in @buf or %-1 if
  74 * the buffer contains only 0xff bytes.
  75 */
  76static int first_non_ff(void *buf, int len)
  77{
  78        uint8_t *p = buf;
  79        int i;
  80
  81        for (i = 0; i < len; i++)
  82                if (*p++ != 0xff)
  83                        return i;
  84        return -1;
  85}
  86
  87/**
  88 * get_master_node - get the last valid master node allowing for corruption.
  89 * @c: UBIFS file-system description object
  90 * @lnum: LEB number
  91 * @pbuf: buffer containing the LEB read, is returned here
  92 * @mst: master node, if found, is returned here
  93 * @cor: corruption, if found, is returned here
  94 *
  95 * This function allocates a buffer, reads the LEB into it, and finds and
  96 * returns the last valid master node allowing for one area of corruption.
  97 * The corrupt area, if there is one, must be consistent with the assumption
  98 * that it is the result of an unclean unmount while the master node was being
  99 * written. Under those circumstances, it is valid to use the previously written
 100 * master node.
 101 *
 102 * This function returns %0 on success and a negative error code on failure.
 103 */
 104static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
 105                           struct ubifs_mst_node **mst, void **cor)
 106{
 107        const int sz = c->mst_node_alsz;
 108        int err, offs, len;
 109        void *sbuf, *buf;
 110
 111        sbuf = vmalloc(c->leb_size);
 112        if (!sbuf)
 113                return -ENOMEM;
 114
 115        err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0);
 116        if (err && err != -EBADMSG)
 117                goto out_free;
 118
 119        /* Find the first position that is definitely not a node */
 120        offs = 0;
 121        buf = sbuf;
 122        len = c->leb_size;
 123        while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
 124                struct ubifs_ch *ch = buf;
 125
 126                if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
 127                        break;
 128                offs += sz;
 129                buf  += sz;
 130                len  -= sz;
 131        }
 132        /* See if there was a valid master node before that */
 133        if (offs) {
 134                int ret;
 135
 136                offs -= sz;
 137                buf  -= sz;
 138                len  += sz;
 139                ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
 140                if (ret != SCANNED_A_NODE && offs) {
 141                        /* Could have been corruption so check one place back */
 142                        offs -= sz;
 143                        buf  -= sz;
 144                        len  += sz;
 145                        ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
 146                        if (ret != SCANNED_A_NODE)
 147                                /*
 148                                 * We accept only one area of corruption because
 149                                 * we are assuming that it was caused while
 150                                 * trying to write a master node.
 151                                 */
 152                                goto out_err;
 153                }
 154                if (ret == SCANNED_A_NODE) {
 155                        struct ubifs_ch *ch = buf;
 156
 157                        if (ch->node_type != UBIFS_MST_NODE)
 158                                goto out_err;
 159                        dbg_rcvry("found a master node at %d:%d", lnum, offs);
 160                        *mst = buf;
 161                        offs += sz;
 162                        buf  += sz;
 163                        len  -= sz;
 164                }
 165        }
 166        /* Check for corruption */
 167        if (offs < c->leb_size) {
 168                if (!is_empty(buf, min_t(int, len, sz))) {
 169                        *cor = buf;
 170                        dbg_rcvry("found corruption at %d:%d", lnum, offs);
 171                }
 172                offs += sz;
 173                buf  += sz;
 174                len  -= sz;
 175        }
 176        /* Check remaining empty space */
 177        if (offs < c->leb_size)
 178                if (!is_empty(buf, len))
 179                        goto out_err;
 180        *pbuf = sbuf;
 181        return 0;
 182
 183out_err:
 184        err = -EINVAL;
 185out_free:
 186        vfree(sbuf);
 187        *mst = NULL;
 188        *cor = NULL;
 189        return err;
 190}
 191
 192/**
 193 * write_rcvrd_mst_node - write recovered master node.
 194 * @c: UBIFS file-system description object
 195 * @mst: master node
 196 *
 197 * This function returns %0 on success and a negative error code on failure.
 198 */
 199static int write_rcvrd_mst_node(struct ubifs_info *c,
 200                                struct ubifs_mst_node *mst)
 201{
 202        int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
 203        __le32 save_flags;
 204
 205        dbg_rcvry("recovery");
 206
 207        save_flags = mst->flags;
 208        mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
 209
 210        ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
 211        err = ubifs_leb_change(c, lnum, mst, sz);
 212        if (err)
 213                goto out;
 214        err = ubifs_leb_change(c, lnum + 1, mst, sz);
 215        if (err)
 216                goto out;
 217out:
 218        mst->flags = save_flags;
 219        return err;
 220}
 221
 222/**
 223 * ubifs_recover_master_node - recover the master node.
 224 * @c: UBIFS file-system description object
 225 *
 226 * This function recovers the master node from corruption that may occur due to
 227 * an unclean unmount.
 228 *
 229 * This function returns %0 on success and a negative error code on failure.
 230 */
 231int ubifs_recover_master_node(struct ubifs_info *c)
 232{
 233        void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
 234        struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
 235        const int sz = c->mst_node_alsz;
 236        int err, offs1, offs2;
 237
 238        dbg_rcvry("recovery");
 239
 240        err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
 241        if (err)
 242                goto out_free;
 243
 244        err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
 245        if (err)
 246                goto out_free;
 247
 248        if (mst1) {
 249                offs1 = (void *)mst1 - buf1;
 250                if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
 251                    (offs1 == 0 && !cor1)) {
 252                        /*
 253                         * mst1 was written by recovery at offset 0 with no
 254                         * corruption.
 255                         */
 256                        dbg_rcvry("recovery recovery");
 257                        mst = mst1;
 258                } else if (mst2) {
 259                        offs2 = (void *)mst2 - buf2;
 260                        if (offs1 == offs2) {
 261                                /* Same offset, so must be the same */
 262                                if (memcmp((void *)mst1 + UBIFS_CH_SZ,
 263                                           (void *)mst2 + UBIFS_CH_SZ,
 264                                           UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
 265                                        goto out_err;
 266                                mst = mst1;
 267                        } else if (offs2 + sz == offs1) {
 268                                /* 1st LEB was written, 2nd was not */
 269                                if (cor1)
 270                                        goto out_err;
 271                                mst = mst1;
 272                        } else if (offs1 == 0 &&
 273                                   c->leb_size - offs2 - sz < sz) {
 274                                /* 1st LEB was unmapped and written, 2nd not */
 275                                if (cor1)
 276                                        goto out_err;
 277                                mst = mst1;
 278                        } else
 279                                goto out_err;
 280                } else {
 281                        /*
 282                         * 2nd LEB was unmapped and about to be written, so
 283                         * there must be only one master node in the first LEB
 284                         * and no corruption.
 285                         */
 286                        if (offs1 != 0 || cor1)
 287                                goto out_err;
 288                        mst = mst1;
 289                }
 290        } else {
 291                if (!mst2)
 292                        goto out_err;
 293                /*
 294                 * 1st LEB was unmapped and about to be written, so there must
 295                 * be no room left in 2nd LEB.
 296                 */
 297                offs2 = (void *)mst2 - buf2;
 298                if (offs2 + sz + sz <= c->leb_size)
 299                        goto out_err;
 300                mst = mst2;
 301        }
 302
 303        ubifs_msg(c, "recovered master node from LEB %d",
 304                  (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
 305
 306        memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
 307
 308        if (c->ro_mount) {
 309                /* Read-only mode. Keep a copy for switching to rw mode */
 310                c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
 311                if (!c->rcvrd_mst_node) {
 312                        err = -ENOMEM;
 313                        goto out_free;
 314                }
 315                memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
 316
 317                /*
 318                 * We had to recover the master node, which means there was an
 319                 * unclean reboot. However, it is possible that the master node
 320                 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
 321                 * E.g., consider the following chain of events:
 322                 *
 323                 * 1. UBIFS was cleanly unmounted, so the master node is clean
 324                 * 2. UBIFS is being mounted R/W and starts changing the master
 325                 *    node in the first (%UBIFS_MST_LNUM). A power cut happens,
 326                 *    so this LEB ends up with some amount of garbage at the
 327                 *    end.
 328                 * 3. UBIFS is being mounted R/O. We reach this place and
 329                 *    recover the master node from the second LEB
 330                 *    (%UBIFS_MST_LNUM + 1). But we cannot update the media
 331                 *    because we are being mounted R/O. We have to defer the
 332                 *    operation.
 333                 * 4. However, this master node (@c->mst_node) is marked as
 334                 *    clean (since the step 1). And if we just return, the
 335                 *    mount code will be confused and won't recover the master
 336                 *    node when it is re-mounter R/W later.
 337                 *
 338                 *    Thus, to force the recovery by marking the master node as
 339                 *    dirty.
 340                 */
 341                c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
 342#ifndef __UBOOT__
 343        } else {
 344                /* Write the recovered master node */
 345                c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
 346                err = write_rcvrd_mst_node(c, c->mst_node);
 347                if (err)
 348                        goto out_free;
 349#endif
 350        }
 351
 352        vfree(buf2);
 353        vfree(buf1);
 354
 355        return 0;
 356
 357out_err:
 358        err = -EINVAL;
 359out_free:
 360        ubifs_err(c, "failed to recover master node");
 361        if (mst1) {
 362                ubifs_err(c, "dumping first master node");
 363                ubifs_dump_node(c, mst1);
 364        }
 365        if (mst2) {
 366                ubifs_err(c, "dumping second master node");
 367                ubifs_dump_node(c, mst2);
 368        }
 369        vfree(buf2);
 370        vfree(buf1);
 371        return err;
 372}
 373
 374/**
 375 * ubifs_write_rcvrd_mst_node - write the recovered master node.
 376 * @c: UBIFS file-system description object
 377 *
 378 * This function writes the master node that was recovered during mounting in
 379 * read-only mode and must now be written because we are remounting rw.
 380 *
 381 * This function returns %0 on success and a negative error code on failure.
 382 */
 383int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
 384{
 385        int err;
 386
 387        if (!c->rcvrd_mst_node)
 388                return 0;
 389        c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
 390        c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
 391        err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
 392        if (err)
 393                return err;
 394        kfree(c->rcvrd_mst_node);
 395        c->rcvrd_mst_node = NULL;
 396        return 0;
 397}
 398
 399/**
 400 * is_last_write - determine if an offset was in the last write to a LEB.
 401 * @c: UBIFS file-system description object
 402 * @buf: buffer to check
 403 * @offs: offset to check
 404 *
 405 * This function returns %1 if @offs was in the last write to the LEB whose data
 406 * is in @buf, otherwise %0 is returned. The determination is made by checking
 407 * for subsequent empty space starting from the next @c->max_write_size
 408 * boundary.
 409 */
 410static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
 411{
 412        int empty_offs, check_len;
 413        uint8_t *p;
 414
 415        /*
 416         * Round up to the next @c->max_write_size boundary i.e. @offs is in
 417         * the last wbuf written. After that should be empty space.
 418         */
 419        empty_offs = ALIGN(offs + 1, c->max_write_size);
 420        check_len = c->leb_size - empty_offs;
 421        p = buf + empty_offs - offs;
 422        return is_empty(p, check_len);
 423}
 424
 425/**
 426 * clean_buf - clean the data from an LEB sitting in a buffer.
 427 * @c: UBIFS file-system description object
 428 * @buf: buffer to clean
 429 * @lnum: LEB number to clean
 430 * @offs: offset from which to clean
 431 * @len: length of buffer
 432 *
 433 * This function pads up to the next min_io_size boundary (if there is one) and
 434 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
 435 * @c->min_io_size boundary.
 436 */
 437static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
 438                      int *offs, int *len)
 439{
 440        int empty_offs, pad_len;
 441
 442        lnum = lnum;
 443        dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
 444
 445        ubifs_assert(!(*offs & 7));
 446        empty_offs = ALIGN(*offs, c->min_io_size);
 447        pad_len = empty_offs - *offs;
 448        ubifs_pad(c, *buf, pad_len);
 449        *offs += pad_len;
 450        *buf += pad_len;
 451        *len -= pad_len;
 452        memset(*buf, 0xff, c->leb_size - empty_offs);
 453}
 454
 455/**
 456 * no_more_nodes - determine if there are no more nodes in a buffer.
 457 * @c: UBIFS file-system description object
 458 * @buf: buffer to check
 459 * @len: length of buffer
 460 * @lnum: LEB number of the LEB from which @buf was read
 461 * @offs: offset from which @buf was read
 462 *
 463 * This function ensures that the corrupted node at @offs is the last thing
 464 * written to a LEB. This function returns %1 if more data is not found and
 465 * %0 if more data is found.
 466 */
 467static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
 468                        int lnum, int offs)
 469{
 470        struct ubifs_ch *ch = buf;
 471        int skip, dlen = le32_to_cpu(ch->len);
 472
 473        /* Check for empty space after the corrupt node's common header */
 474        skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs;
 475        if (is_empty(buf + skip, len - skip))
 476                return 1;
 477        /*
 478         * The area after the common header size is not empty, so the common
 479         * header must be intact. Check it.
 480         */
 481        if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
 482                dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
 483                return 0;
 484        }
 485        /* Now we know the corrupt node's length we can skip over it */
 486        skip = ALIGN(offs + dlen, c->max_write_size) - offs;
 487        /* After which there should be empty space */
 488        if (is_empty(buf + skip, len - skip))
 489                return 1;
 490        dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
 491        return 0;
 492}
 493
 494/**
 495 * fix_unclean_leb - fix an unclean LEB.
 496 * @c: UBIFS file-system description object
 497 * @sleb: scanned LEB information
 498 * @start: offset where scan started
 499 */
 500static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
 501                           int start)
 502{
 503        int lnum = sleb->lnum, endpt = start;
 504
 505        /* Get the end offset of the last node we are keeping */
 506        if (!list_empty(&sleb->nodes)) {
 507                struct ubifs_scan_node *snod;
 508
 509                snod = list_entry(sleb->nodes.prev,
 510                                  struct ubifs_scan_node, list);
 511                endpt = snod->offs + snod->len;
 512        }
 513
 514        if (c->ro_mount && !c->remounting_rw) {
 515                /* Add to recovery list */
 516                struct ubifs_unclean_leb *ucleb;
 517
 518                dbg_rcvry("need to fix LEB %d start %d endpt %d",
 519                          lnum, start, sleb->endpt);
 520                ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
 521                if (!ucleb)
 522                        return -ENOMEM;
 523                ucleb->lnum = lnum;
 524                ucleb->endpt = endpt;
 525                list_add_tail(&ucleb->list, &c->unclean_leb_list);
 526#ifndef __UBOOT__
 527        } else {
 528                /* Write the fixed LEB back to flash */
 529                int err;
 530
 531                dbg_rcvry("fixing LEB %d start %d endpt %d",
 532                          lnum, start, sleb->endpt);
 533                if (endpt == 0) {
 534                        err = ubifs_leb_unmap(c, lnum);
 535                        if (err)
 536                                return err;
 537                } else {
 538                        int len = ALIGN(endpt, c->min_io_size);
 539
 540                        if (start) {
 541                                err = ubifs_leb_read(c, lnum, sleb->buf, 0,
 542                                                     start, 1);
 543                                if (err)
 544                                        return err;
 545                        }
 546                        /* Pad to min_io_size */
 547                        if (len > endpt) {
 548                                int pad_len = len - ALIGN(endpt, 8);
 549
 550                                if (pad_len > 0) {
 551                                        void *buf = sleb->buf + len - pad_len;
 552
 553                                        ubifs_pad(c, buf, pad_len);
 554                                }
 555                        }
 556                        err = ubifs_leb_change(c, lnum, sleb->buf, len);
 557                        if (err)
 558                                return err;
 559                }
 560#endif
 561        }
 562        return 0;
 563}
 564
 565/**
 566 * drop_last_group - drop the last group of nodes.
 567 * @sleb: scanned LEB information
 568 * @offs: offset of dropped nodes is returned here
 569 *
 570 * This is a helper function for 'ubifs_recover_leb()' which drops the last
 571 * group of nodes of the scanned LEB.
 572 */
 573static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs)
 574{
 575        while (!list_empty(&sleb->nodes)) {
 576                struct ubifs_scan_node *snod;
 577                struct ubifs_ch *ch;
 578
 579                snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
 580                                  list);
 581                ch = snod->node;
 582                if (ch->group_type != UBIFS_IN_NODE_GROUP)
 583                        break;
 584
 585                dbg_rcvry("dropping grouped node at %d:%d",
 586                          sleb->lnum, snod->offs);
 587                *offs = snod->offs;
 588                list_del(&snod->list);
 589                kfree(snod);
 590                sleb->nodes_cnt -= 1;
 591        }
 592}
 593
 594/**
 595 * drop_last_node - drop the last node.
 596 * @sleb: scanned LEB information
 597 * @offs: offset of dropped nodes is returned here
 598 *
 599 * This is a helper function for 'ubifs_recover_leb()' which drops the last
 600 * node of the scanned LEB.
 601 */
 602static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs)
 603{
 604        struct ubifs_scan_node *snod;
 605
 606        if (!list_empty(&sleb->nodes)) {
 607                snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
 608                                  list);
 609
 610                dbg_rcvry("dropping last node at %d:%d",
 611                          sleb->lnum, snod->offs);
 612                *offs = snod->offs;
 613                list_del(&snod->list);
 614                kfree(snod);
 615                sleb->nodes_cnt -= 1;
 616        }
 617}
 618
 619/**
 620 * ubifs_recover_leb - scan and recover a LEB.
 621 * @c: UBIFS file-system description object
 622 * @lnum: LEB number
 623 * @offs: offset
 624 * @sbuf: LEB-sized buffer to use
 625 * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not
 626 *         belong to any journal head)
 627 *
 628 * This function does a scan of a LEB, but caters for errors that might have
 629 * been caused by the unclean unmount from which we are attempting to recover.
 630 * Returns the scanned information on success and a negative error code on
 631 * failure.
 632 */
 633struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
 634                                         int offs, void *sbuf, int jhead)
 635{
 636        int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit;
 637        int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped;
 638        struct ubifs_scan_leb *sleb;
 639        void *buf = sbuf + offs;
 640
 641        dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped);
 642
 643        sleb = ubifs_start_scan(c, lnum, offs, sbuf);
 644        if (IS_ERR(sleb))
 645                return sleb;
 646
 647        ubifs_assert(len >= 8);
 648        while (len >= 8) {
 649                dbg_scan("look at LEB %d:%d (%d bytes left)",
 650                         lnum, offs, len);
 651
 652                cond_resched();
 653
 654                /*
 655                 * Scan quietly until there is an error from which we cannot
 656                 * recover
 657                 */
 658                ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
 659                if (ret == SCANNED_A_NODE) {
 660                        /* A valid node, and not a padding node */
 661                        struct ubifs_ch *ch = buf;
 662                        int node_len;
 663
 664                        err = ubifs_add_snod(c, sleb, buf, offs);
 665                        if (err)
 666                                goto error;
 667                        node_len = ALIGN(le32_to_cpu(ch->len), 8);
 668                        offs += node_len;
 669                        buf += node_len;
 670                        len -= node_len;
 671                } else if (ret > 0) {
 672                        /* Padding bytes or a valid padding node */
 673                        offs += ret;
 674                        buf += ret;
 675                        len -= ret;
 676                } else if (ret == SCANNED_EMPTY_SPACE ||
 677                           ret == SCANNED_GARBAGE     ||
 678                           ret == SCANNED_A_BAD_PAD_NODE ||
 679                           ret == SCANNED_A_CORRUPT_NODE) {
 680                        dbg_rcvry("found corruption (%d) at %d:%d",
 681                                  ret, lnum, offs);
 682                        break;
 683                } else {
 684                        ubifs_err(c, "unexpected return value %d", ret);
 685                        err = -EINVAL;
 686                        goto error;
 687                }
 688        }
 689
 690        if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) {
 691                if (!is_last_write(c, buf, offs))
 692                        goto corrupted_rescan;
 693        } else if (ret == SCANNED_A_CORRUPT_NODE) {
 694                if (!no_more_nodes(c, buf, len, lnum, offs))
 695                        goto corrupted_rescan;
 696        } else if (!is_empty(buf, len)) {
 697                if (!is_last_write(c, buf, offs)) {
 698                        int corruption = first_non_ff(buf, len);
 699
 700                        /*
 701                         * See header comment for this file for more
 702                         * explanations about the reasons we have this check.
 703                         */
 704                        ubifs_err(c, "corrupt empty space LEB %d:%d, corruption starts at %d",
 705                                  lnum, offs, corruption);
 706                        /* Make sure we dump interesting non-0xFF data */
 707                        offs += corruption;
 708                        buf += corruption;
 709                        goto corrupted;
 710                }
 711        }
 712
 713        min_io_unit = round_down(offs, c->min_io_size);
 714        if (grouped)
 715                /*
 716                 * If nodes are grouped, always drop the incomplete group at
 717                 * the end.
 718                 */
 719                drop_last_group(sleb, &offs);
 720
 721        if (jhead == GCHD) {
 722                /*
 723                 * If this LEB belongs to the GC head then while we are in the
 724                 * middle of the same min. I/O unit keep dropping nodes. So
 725                 * basically, what we want is to make sure that the last min.
 726                 * I/O unit where we saw the corruption is dropped completely
 727                 * with all the uncorrupted nodes which may possibly sit there.
 728                 *
 729                 * In other words, let's name the min. I/O unit where the
 730                 * corruption starts B, and the previous min. I/O unit A. The
 731                 * below code tries to deal with a situation when half of B
 732                 * contains valid nodes or the end of a valid node, and the
 733                 * second half of B contains corrupted data or garbage. This
 734                 * means that UBIFS had been writing to B just before the power
 735                 * cut happened. I do not know how realistic is this scenario
 736                 * that half of the min. I/O unit had been written successfully
 737                 * and the other half not, but this is possible in our 'failure
 738                 * mode emulation' infrastructure at least.
 739                 *
 740                 * So what is the problem, why we need to drop those nodes? Why
 741                 * can't we just clean-up the second half of B by putting a
 742                 * padding node there? We can, and this works fine with one
 743                 * exception which was reproduced with power cut emulation
 744                 * testing and happens extremely rarely.
 745                 *
 746                 * Imagine the file-system is full, we run GC which starts
 747                 * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is
 748                 * the current GC head LEB). The @c->gc_lnum is -1, which means
 749                 * that GC will retain LEB X and will try to continue. Imagine
 750                 * that LEB X is currently the dirtiest LEB, and the amount of
 751                 * used space in LEB Y is exactly the same as amount of free
 752                 * space in LEB X.
 753                 *
 754                 * And a power cut happens when nodes are moved from LEB X to
 755                 * LEB Y. We are here trying to recover LEB Y which is the GC
 756                 * head LEB. We find the min. I/O unit B as described above.
 757                 * Then we clean-up LEB Y by padding min. I/O unit. And later
 758                 * 'ubifs_rcvry_gc_commit()' function fails, because it cannot
 759                 * find a dirty LEB which could be GC'd into LEB Y! Even LEB X
 760                 * does not match because the amount of valid nodes there does
 761                 * not fit the free space in LEB Y any more! And this is
 762                 * because of the padding node which we added to LEB Y. The
 763                 * user-visible effect of this which I once observed and
 764                 * analysed is that we cannot mount the file-system with
 765                 * -ENOSPC error.
 766                 *
 767                 * So obviously, to make sure that situation does not happen we
 768                 * should free min. I/O unit B in LEB Y completely and the last
 769                 * used min. I/O unit in LEB Y should be A. This is basically
 770                 * what the below code tries to do.
 771                 */
 772                while (offs > min_io_unit)
 773                        drop_last_node(sleb, &offs);
 774        }
 775
 776        buf = sbuf + offs;
 777        len = c->leb_size - offs;
 778
 779        clean_buf(c, &buf, lnum, &offs, &len);
 780        ubifs_end_scan(c, sleb, lnum, offs);
 781
 782        err = fix_unclean_leb(c, sleb, start);
 783        if (err)
 784                goto error;
 785
 786        return sleb;
 787
 788corrupted_rescan:
 789        /* Re-scan the corrupted data with verbose messages */
 790        ubifs_err(c, "corruption %d", ret);
 791        ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
 792corrupted:
 793        ubifs_scanned_corruption(c, lnum, offs, buf);
 794        err = -EUCLEAN;
 795error:
 796        ubifs_err(c, "LEB %d scanning failed", lnum);
 797        ubifs_scan_destroy(sleb);
 798        return ERR_PTR(err);
 799}
 800
 801/**
 802 * get_cs_sqnum - get commit start sequence number.
 803 * @c: UBIFS file-system description object
 804 * @lnum: LEB number of commit start node
 805 * @offs: offset of commit start node
 806 * @cs_sqnum: commit start sequence number is returned here
 807 *
 808 * This function returns %0 on success and a negative error code on failure.
 809 */
 810static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
 811                        unsigned long long *cs_sqnum)
 812{
 813        struct ubifs_cs_node *cs_node = NULL;
 814        int err, ret;
 815
 816        dbg_rcvry("at %d:%d", lnum, offs);
 817        cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
 818        if (!cs_node)
 819                return -ENOMEM;
 820        if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
 821                goto out_err;
 822        err = ubifs_leb_read(c, lnum, (void *)cs_node, offs,
 823                             UBIFS_CS_NODE_SZ, 0);
 824        if (err && err != -EBADMSG)
 825                goto out_free;
 826        ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
 827        if (ret != SCANNED_A_NODE) {
 828                ubifs_err(c, "Not a valid node");
 829                goto out_err;
 830        }
 831        if (cs_node->ch.node_type != UBIFS_CS_NODE) {
 832                ubifs_err(c, "Node a CS node, type is %d", cs_node->ch.node_type);
 833                goto out_err;
 834        }
 835        if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
 836                ubifs_err(c, "CS node cmt_no %llu != current cmt_no %llu",
 837                          (unsigned long long)le64_to_cpu(cs_node->cmt_no),
 838                          c->cmt_no);
 839                goto out_err;
 840        }
 841        *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
 842        dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
 843        kfree(cs_node);
 844        return 0;
 845
 846out_err:
 847        err = -EINVAL;
 848out_free:
 849        ubifs_err(c, "failed to get CS sqnum");
 850        kfree(cs_node);
 851        return err;
 852}
 853
 854/**
 855 * ubifs_recover_log_leb - scan and recover a log LEB.
 856 * @c: UBIFS file-system description object
 857 * @lnum: LEB number
 858 * @offs: offset
 859 * @sbuf: LEB-sized buffer to use
 860 *
 861 * This function does a scan of a LEB, but caters for errors that might have
 862 * been caused by unclean reboots from which we are attempting to recover
 863 * (assume that only the last log LEB can be corrupted by an unclean reboot).
 864 *
 865 * This function returns %0 on success and a negative error code on failure.
 866 */
 867struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
 868                                             int offs, void *sbuf)
 869{
 870        struct ubifs_scan_leb *sleb;
 871        int next_lnum;
 872
 873        dbg_rcvry("LEB %d", lnum);
 874        next_lnum = lnum + 1;
 875        if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
 876                next_lnum = UBIFS_LOG_LNUM;
 877        if (next_lnum != c->ltail_lnum) {
 878                /*
 879                 * We can only recover at the end of the log, so check that the
 880                 * next log LEB is empty or out of date.
 881                 */
 882                sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
 883                if (IS_ERR(sleb))
 884                        return sleb;
 885                if (sleb->nodes_cnt) {
 886                        struct ubifs_scan_node *snod;
 887                        unsigned long long cs_sqnum = c->cs_sqnum;
 888
 889                        snod = list_entry(sleb->nodes.next,
 890                                          struct ubifs_scan_node, list);
 891                        if (cs_sqnum == 0) {
 892                                int err;
 893
 894                                err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
 895                                if (err) {
 896                                        ubifs_scan_destroy(sleb);
 897                                        return ERR_PTR(err);
 898                                }
 899                        }
 900                        if (snod->sqnum > cs_sqnum) {
 901                                ubifs_err(c, "unrecoverable log corruption in LEB %d",
 902                                          lnum);
 903                                ubifs_scan_destroy(sleb);
 904                                return ERR_PTR(-EUCLEAN);
 905                        }
 906                }
 907                ubifs_scan_destroy(sleb);
 908        }
 909        return ubifs_recover_leb(c, lnum, offs, sbuf, -1);
 910}
 911
 912/**
 913 * recover_head - recover a head.
 914 * @c: UBIFS file-system description object
 915 * @lnum: LEB number of head to recover
 916 * @offs: offset of head to recover
 917 * @sbuf: LEB-sized buffer to use
 918 *
 919 * This function ensures that there is no data on the flash at a head location.
 920 *
 921 * This function returns %0 on success and a negative error code on failure.
 922 */
 923static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf)
 924{
 925        int len = c->max_write_size, err;
 926
 927        if (offs + len > c->leb_size)
 928                len = c->leb_size - offs;
 929
 930        if (!len)
 931                return 0;
 932
 933        /* Read at the head location and check it is empty flash */
 934        err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1);
 935        if (err || !is_empty(sbuf, len)) {
 936                dbg_rcvry("cleaning head at %d:%d", lnum, offs);
 937                if (offs == 0)
 938                        return ubifs_leb_unmap(c, lnum);
 939                err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1);
 940                if (err)
 941                        return err;
 942                return ubifs_leb_change(c, lnum, sbuf, offs);
 943        }
 944
 945        return 0;
 946}
 947
 948/**
 949 * ubifs_recover_inl_heads - recover index and LPT heads.
 950 * @c: UBIFS file-system description object
 951 * @sbuf: LEB-sized buffer to use
 952 *
 953 * This function ensures that there is no data on the flash at the index and
 954 * LPT head locations.
 955 *
 956 * This deals with the recovery of a half-completed journal commit. UBIFS is
 957 * careful never to overwrite the last version of the index or the LPT. Because
 958 * the index and LPT are wandering trees, data from a half-completed commit will
 959 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
 960 * assumed to be empty and will be unmapped anyway before use, or in the index
 961 * and LPT heads.
 962 *
 963 * This function returns %0 on success and a negative error code on failure.
 964 */
 965int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf)
 966{
 967        int err;
 968
 969        ubifs_assert(!c->ro_mount || c->remounting_rw);
 970
 971        dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
 972        err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
 973        if (err)
 974                return err;
 975
 976        dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
 977
 978        return recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
 979}
 980
 981/**
 982 * clean_an_unclean_leb - read and write a LEB to remove corruption.
 983 * @c: UBIFS file-system description object
 984 * @ucleb: unclean LEB information
 985 * @sbuf: LEB-sized buffer to use
 986 *
 987 * This function reads a LEB up to a point pre-determined by the mount recovery,
 988 * checks the nodes, and writes the result back to the flash, thereby cleaning
 989 * off any following corruption, or non-fatal ECC errors.
 990 *
 991 * This function returns %0 on success and a negative error code on failure.
 992 */
 993static int clean_an_unclean_leb(struct ubifs_info *c,
 994                                struct ubifs_unclean_leb *ucleb, void *sbuf)
 995{
 996        int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
 997        void *buf = sbuf;
 998
 999        dbg_rcvry("LEB %d len %d", lnum, len);
1000
1001        if (len == 0) {
1002                /* Nothing to read, just unmap it */
1003                return ubifs_leb_unmap(c, lnum);
1004        }
1005
1006        err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
1007        if (err && err != -EBADMSG)
1008                return err;
1009
1010        while (len >= 8) {
1011                int ret;
1012
1013                cond_resched();
1014
1015                /* Scan quietly until there is an error */
1016                ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
1017
1018                if (ret == SCANNED_A_NODE) {
1019                        /* A valid node, and not a padding node */
1020                        struct ubifs_ch *ch = buf;
1021                        int node_len;
1022
1023                        node_len = ALIGN(le32_to_cpu(ch->len), 8);
1024                        offs += node_len;
1025                        buf += node_len;
1026                        len -= node_len;
1027                        continue;
1028                }
1029
1030                if (ret > 0) {
1031                        /* Padding bytes or a valid padding node */
1032                        offs += ret;
1033                        buf += ret;
1034                        len -= ret;
1035                        continue;
1036                }
1037
1038                if (ret == SCANNED_EMPTY_SPACE) {
1039                        ubifs_err(c, "unexpected empty space at %d:%d",
1040                                  lnum, offs);
1041                        return -EUCLEAN;
1042                }
1043
1044                if (quiet) {
1045                        /* Redo the last scan but noisily */
1046                        quiet = 0;
1047                        continue;
1048                }
1049
1050                ubifs_scanned_corruption(c, lnum, offs, buf);
1051                return -EUCLEAN;
1052        }
1053
1054        /* Pad to min_io_size */
1055        len = ALIGN(ucleb->endpt, c->min_io_size);
1056        if (len > ucleb->endpt) {
1057                int pad_len = len - ALIGN(ucleb->endpt, 8);
1058
1059                if (pad_len > 0) {
1060                        buf = c->sbuf + len - pad_len;
1061                        ubifs_pad(c, buf, pad_len);
1062                }
1063        }
1064
1065        /* Write back the LEB atomically */
1066        err = ubifs_leb_change(c, lnum, sbuf, len);
1067        if (err)
1068                return err;
1069
1070        dbg_rcvry("cleaned LEB %d", lnum);
1071
1072        return 0;
1073}
1074
1075/**
1076 * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1077 * @c: UBIFS file-system description object
1078 * @sbuf: LEB-sized buffer to use
1079 *
1080 * This function cleans a LEB identified during recovery that needs to be
1081 * written but was not because UBIFS was mounted read-only. This happens when
1082 * remounting to read-write mode.
1083 *
1084 * This function returns %0 on success and a negative error code on failure.
1085 */
1086int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf)
1087{
1088        dbg_rcvry("recovery");
1089        while (!list_empty(&c->unclean_leb_list)) {
1090                struct ubifs_unclean_leb *ucleb;
1091                int err;
1092
1093                ucleb = list_entry(c->unclean_leb_list.next,
1094                                   struct ubifs_unclean_leb, list);
1095                err = clean_an_unclean_leb(c, ucleb, sbuf);
1096                if (err)
1097                        return err;
1098                list_del(&ucleb->list);
1099                kfree(ucleb);
1100        }
1101        return 0;
1102}
1103
1104#ifndef __UBOOT__
1105/**
1106 * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit.
1107 * @c: UBIFS file-system description object
1108 *
1109 * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty
1110 * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns
1111 * zero in case of success and a negative error code in case of failure.
1112 */
1113static int grab_empty_leb(struct ubifs_info *c)
1114{
1115        int lnum, err;
1116
1117        /*
1118         * Note, it is very important to first search for an empty LEB and then
1119         * run the commit, not vice-versa. The reason is that there might be
1120         * only one empty LEB at the moment, the one which has been the
1121         * @c->gc_lnum just before the power cut happened. During the regular
1122         * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no
1123         * one but GC can grab it. But at this moment this single empty LEB is
1124         * not marked as taken, so if we run commit - what happens? Right, the
1125         * commit will grab it and write the index there. Remember that the
1126         * index always expands as long as there is free space, and it only
1127         * starts consolidating when we run out of space.
1128         *
1129         * IOW, if we run commit now, we might not be able to find a free LEB
1130         * after this.
1131         */
1132        lnum = ubifs_find_free_leb_for_idx(c);
1133        if (lnum < 0) {
1134                ubifs_err(c, "could not find an empty LEB");
1135                ubifs_dump_lprops(c);
1136                ubifs_dump_budg(c, &c->bi);
1137                return lnum;
1138        }
1139
1140        /* Reset the index flag */
1141        err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
1142                                  LPROPS_INDEX, 0);
1143        if (err)
1144                return err;
1145
1146        c->gc_lnum = lnum;
1147        dbg_rcvry("found empty LEB %d, run commit", lnum);
1148
1149        return ubifs_run_commit(c);
1150}
1151
1152/**
1153 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1154 * @c: UBIFS file-system description object
1155 *
1156 * Out-of-place garbage collection requires always one empty LEB with which to
1157 * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1158 * written to the master node on unmounting. In the case of an unclean unmount
1159 * the value of gc_lnum recorded in the master node is out of date and cannot
1160 * be used. Instead, recovery must allocate an empty LEB for this purpose.
1161 * However, there may not be enough empty space, in which case it must be
1162 * possible to GC the dirtiest LEB into the GC head LEB.
1163 *
1164 * This function also runs the commit which causes the TNC updates from
1165 * size-recovery and orphans to be written to the flash. That is important to
1166 * ensure correct replay order for subsequent mounts.
1167 *
1168 * This function returns %0 on success and a negative error code on failure.
1169 */
1170int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1171{
1172        struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
1173        struct ubifs_lprops lp;
1174        int err;
1175
1176        dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs);
1177
1178        c->gc_lnum = -1;
1179        if (wbuf->lnum == -1 || wbuf->offs == c->leb_size)
1180                return grab_empty_leb(c);
1181
1182        err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
1183        if (err) {
1184                if (err != -ENOSPC)
1185                        return err;
1186
1187                dbg_rcvry("could not find a dirty LEB");
1188                return grab_empty_leb(c);
1189        }
1190
1191        ubifs_assert(!(lp.flags & LPROPS_INDEX));
1192        ubifs_assert(lp.free + lp.dirty >= wbuf->offs);
1193
1194        /*
1195         * We run the commit before garbage collection otherwise subsequent
1196         * mounts will see the GC and orphan deletion in a different order.
1197         */
1198        dbg_rcvry("committing");
1199        err = ubifs_run_commit(c);
1200        if (err)
1201                return err;
1202
1203        dbg_rcvry("GC'ing LEB %d", lp.lnum);
1204        mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1205        err = ubifs_garbage_collect_leb(c, &lp);
1206        if (err >= 0) {
1207                int err2 = ubifs_wbuf_sync_nolock(wbuf);
1208
1209                if (err2)
1210                        err = err2;
1211        }
1212        mutex_unlock(&wbuf->io_mutex);
1213        if (err < 0) {
1214                ubifs_err(c, "GC failed, error %d", err);
1215                if (err == -EAGAIN)
1216                        err = -EINVAL;
1217                return err;
1218        }
1219
1220        ubifs_assert(err == LEB_RETAINED);
1221        if (err != LEB_RETAINED)
1222                return -EINVAL;
1223
1224        err = ubifs_leb_unmap(c, c->gc_lnum);
1225        if (err)
1226                return err;
1227
1228        dbg_rcvry("allocated LEB %d for GC", lp.lnum);
1229        return 0;
1230}
1231#else
1232int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1233{
1234        return 0;
1235}
1236#endif
1237
1238/**
1239 * struct size_entry - inode size information for recovery.
1240 * @rb: link in the RB-tree of sizes
1241 * @inum: inode number
1242 * @i_size: size on inode
1243 * @d_size: maximum size based on data nodes
1244 * @exists: indicates whether the inode exists
1245 * @inode: inode if pinned in memory awaiting rw mode to fix it
1246 */
1247struct size_entry {
1248        struct rb_node rb;
1249        ino_t inum;
1250        loff_t i_size;
1251        loff_t d_size;
1252        int exists;
1253        struct inode *inode;
1254};
1255
1256/**
1257 * add_ino - add an entry to the size tree.
1258 * @c: UBIFS file-system description object
1259 * @inum: inode number
1260 * @i_size: size on inode
1261 * @d_size: maximum size based on data nodes
1262 * @exists: indicates whether the inode exists
1263 */
1264static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
1265                   loff_t d_size, int exists)
1266{
1267        struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
1268        struct size_entry *e;
1269
1270        while (*p) {
1271                parent = *p;
1272                e = rb_entry(parent, struct size_entry, rb);
1273                if (inum < e->inum)
1274                        p = &(*p)->rb_left;
1275                else
1276                        p = &(*p)->rb_right;
1277        }
1278
1279        e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
1280        if (!e)
1281                return -ENOMEM;
1282
1283        e->inum = inum;
1284        e->i_size = i_size;
1285        e->d_size = d_size;
1286        e->exists = exists;
1287
1288        rb_link_node(&e->rb, parent, p);
1289        rb_insert_color(&e->rb, &c->size_tree);
1290
1291        return 0;
1292}
1293
1294/**
1295 * find_ino - find an entry on the size tree.
1296 * @c: UBIFS file-system description object
1297 * @inum: inode number
1298 */
1299static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
1300{
1301        struct rb_node *p = c->size_tree.rb_node;
1302        struct size_entry *e;
1303
1304        while (p) {
1305                e = rb_entry(p, struct size_entry, rb);
1306                if (inum < e->inum)
1307                        p = p->rb_left;
1308                else if (inum > e->inum)
1309                        p = p->rb_right;
1310                else
1311                        return e;
1312        }
1313        return NULL;
1314}
1315
1316/**
1317 * remove_ino - remove an entry from the size tree.
1318 * @c: UBIFS file-system description object
1319 * @inum: inode number
1320 */
1321static void remove_ino(struct ubifs_info *c, ino_t inum)
1322{
1323        struct size_entry *e = find_ino(c, inum);
1324
1325        if (!e)
1326                return;
1327        rb_erase(&e->rb, &c->size_tree);
1328        kfree(e);
1329}
1330
1331/**
1332 * ubifs_destroy_size_tree - free resources related to the size tree.
1333 * @c: UBIFS file-system description object
1334 */
1335void ubifs_destroy_size_tree(struct ubifs_info *c)
1336{
1337        struct size_entry *e, *n;
1338
1339        rbtree_postorder_for_each_entry_safe(e, n, &c->size_tree, rb) {
1340                if (e->inode)
1341                        iput(e->inode);
1342                kfree(e);
1343        }
1344
1345        c->size_tree = RB_ROOT;
1346}
1347
1348/**
1349 * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1350 * @c: UBIFS file-system description object
1351 * @key: node key
1352 * @deletion: node is for a deletion
1353 * @new_size: inode size
1354 *
1355 * This function has two purposes:
1356 *     1) to ensure there are no data nodes that fall outside the inode size
1357 *     2) to ensure there are no data nodes for inodes that do not exist
1358 * To accomplish those purposes, a rb-tree is constructed containing an entry
1359 * for each inode number in the journal that has not been deleted, and recording
1360 * the size from the inode node, the maximum size of any data node (also altered
1361 * by truncations) and a flag indicating a inode number for which no inode node
1362 * was present in the journal.
1363 *
1364 * Note that there is still the possibility that there are data nodes that have
1365 * been committed that are beyond the inode size, however the only way to find
1366 * them would be to scan the entire index. Alternatively, some provision could
1367 * be made to record the size of inodes at the start of commit, which would seem
1368 * very cumbersome for a scenario that is quite unlikely and the only negative
1369 * consequence of which is wasted space.
1370 *
1371 * This functions returns %0 on success and a negative error code on failure.
1372 */
1373int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
1374                             int deletion, loff_t new_size)
1375{
1376        ino_t inum = key_inum(c, key);
1377        struct size_entry *e;
1378        int err;
1379
1380        switch (key_type(c, key)) {
1381        case UBIFS_INO_KEY:
1382                if (deletion)
1383                        remove_ino(c, inum);
1384                else {
1385                        e = find_ino(c, inum);
1386                        if (e) {
1387                                e->i_size = new_size;
1388                                e->exists = 1;
1389                        } else {
1390                                err = add_ino(c, inum, new_size, 0, 1);
1391                                if (err)
1392                                        return err;
1393                        }
1394                }
1395                break;
1396        case UBIFS_DATA_KEY:
1397                e = find_ino(c, inum);
1398                if (e) {
1399                        if (new_size > e->d_size)
1400                                e->d_size = new_size;
1401                } else {
1402                        err = add_ino(c, inum, 0, new_size, 0);
1403                        if (err)
1404                                return err;
1405                }
1406                break;
1407        case UBIFS_TRUN_KEY:
1408                e = find_ino(c, inum);
1409                if (e)
1410                        e->d_size = new_size;
1411                break;
1412        }
1413        return 0;
1414}
1415
1416#ifndef __UBOOT__
1417/**
1418 * fix_size_in_place - fix inode size in place on flash.
1419 * @c: UBIFS file-system description object
1420 * @e: inode size information for recovery
1421 */
1422static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
1423{
1424        struct ubifs_ino_node *ino = c->sbuf;
1425        unsigned char *p;
1426        union ubifs_key key;
1427        int err, lnum, offs, len;
1428        loff_t i_size;
1429        uint32_t crc;
1430
1431        /* Locate the inode node LEB number and offset */
1432        ino_key_init(c, &key, e->inum);
1433        err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
1434        if (err)
1435                goto out;
1436        /*
1437         * If the size recorded on the inode node is greater than the size that
1438         * was calculated from nodes in the journal then don't change the inode.
1439         */
1440        i_size = le64_to_cpu(ino->size);
1441        if (i_size >= e->d_size)
1442                return 0;
1443        /* Read the LEB */
1444        err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1);
1445        if (err)
1446                goto out;
1447        /* Change the size field and recalculate the CRC */
1448        ino = c->sbuf + offs;
1449        ino->size = cpu_to_le64(e->d_size);
1450        len = le32_to_cpu(ino->ch.len);
1451        crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
1452        ino->ch.crc = cpu_to_le32(crc);
1453        /* Work out where data in the LEB ends and free space begins */
1454        p = c->sbuf;
1455        len = c->leb_size - 1;
1456        while (p[len] == 0xff)
1457                len -= 1;
1458        len = ALIGN(len + 1, c->min_io_size);
1459        /* Atomically write the fixed LEB back again */
1460        err = ubifs_leb_change(c, lnum, c->sbuf, len);
1461        if (err)
1462                goto out;
1463        dbg_rcvry("inode %lu at %d:%d size %lld -> %lld",
1464                  (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
1465        return 0;
1466
1467out:
1468        ubifs_warn(c, "inode %lu failed to fix size %lld -> %lld error %d",
1469                   (unsigned long)e->inum, e->i_size, e->d_size, err);
1470        return err;
1471}
1472#endif
1473
1474/**
1475 * ubifs_recover_size - recover inode size.
1476 * @c: UBIFS file-system description object
1477 *
1478 * This function attempts to fix inode size discrepancies identified by the
1479 * 'ubifs_recover_size_accum()' function.
1480 *
1481 * This functions returns %0 on success and a negative error code on failure.
1482 */
1483int ubifs_recover_size(struct ubifs_info *c)
1484{
1485        struct rb_node *this = rb_first(&c->size_tree);
1486
1487        while (this) {
1488                struct size_entry *e;
1489                int err;
1490
1491                e = rb_entry(this, struct size_entry, rb);
1492                if (!e->exists) {
1493                        union ubifs_key key;
1494
1495                        ino_key_init(c, &key, e->inum);
1496                        err = ubifs_tnc_lookup(c, &key, c->sbuf);
1497                        if (err && err != -ENOENT)
1498                                return err;
1499                        if (err == -ENOENT) {
1500                                /* Remove data nodes that have no inode */
1501                                dbg_rcvry("removing ino %lu",
1502                                          (unsigned long)e->inum);
1503                                err = ubifs_tnc_remove_ino(c, e->inum);
1504                                if (err)
1505                                        return err;
1506                        } else {
1507                                struct ubifs_ino_node *ino = c->sbuf;
1508
1509                                e->exists = 1;
1510                                e->i_size = le64_to_cpu(ino->size);
1511                        }
1512                }
1513
1514                if (e->exists && e->i_size < e->d_size) {
1515                        if (c->ro_mount) {
1516                                /* Fix the inode size and pin it in memory */
1517                                struct inode *inode;
1518                                struct ubifs_inode *ui;
1519
1520                                ubifs_assert(!e->inode);
1521
1522                                inode = ubifs_iget(c->vfs_sb, e->inum);
1523                                if (IS_ERR(inode))
1524                                        return PTR_ERR(inode);
1525
1526                                ui = ubifs_inode(inode);
1527                                if (inode->i_size < e->d_size) {
1528                                        dbg_rcvry("ino %lu size %lld -> %lld",
1529                                                  (unsigned long)e->inum,
1530                                                  inode->i_size, e->d_size);
1531                                        inode->i_size = e->d_size;
1532                                        ui->ui_size = e->d_size;
1533                                        ui->synced_i_size = e->d_size;
1534                                        e->inode = inode;
1535                                        this = rb_next(this);
1536                                        continue;
1537                                }
1538                                iput(inode);
1539#ifndef __UBOOT__
1540                        } else {
1541                                /* Fix the size in place */
1542                                err = fix_size_in_place(c, e);
1543                                if (err)
1544                                        return err;
1545                                if (e->inode)
1546                                        iput(e->inode);
1547#endif
1548                        }
1549                }
1550
1551                this = rb_next(this);
1552                rb_erase(&e->rb, &c->size_tree);
1553                kfree(e);
1554        }
1555
1556        return 0;
1557}
1558