uboot/include/linux/math64.h
<<
>>
Prefs
   1#ifndef _LINUX_MATH64_H
   2#define _LINUX_MATH64_H
   3
   4#include <div64.h>
   5#include <linux/bitops.h>
   6#include <linux/types.h>
   7
   8#if BITS_PER_LONG == 64
   9
  10#define div64_long(x, y) div64_s64((x), (y))
  11#define div64_ul(x, y)   div64_u64((x), (y))
  12
  13/**
  14 * div_u64_rem - unsigned 64bit divide with 32bit divisor with remainder
  15 *
  16 * This is commonly provided by 32bit archs to provide an optimized 64bit
  17 * divide.
  18 */
  19static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
  20{
  21        *remainder = dividend % divisor;
  22        return dividend / divisor;
  23}
  24
  25/**
  26 * div_s64_rem - signed 64bit divide with 32bit divisor with remainder
  27 */
  28static inline s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
  29{
  30        *remainder = dividend % divisor;
  31        return dividend / divisor;
  32}
  33
  34/**
  35 * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
  36 */
  37static inline u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
  38{
  39        *remainder = dividend % divisor;
  40        return dividend / divisor;
  41}
  42
  43/**
  44 * div64_u64 - unsigned 64bit divide with 64bit divisor
  45 */
  46static inline u64 div64_u64(u64 dividend, u64 divisor)
  47{
  48        return dividend / divisor;
  49}
  50
  51#define DIV64_U64_ROUND_UP(ll, d)       \
  52        ({ u64 _tmp = (d); div64_u64((ll) + _tmp - 1, _tmp); })
  53
  54/**
  55 * div64_s64 - signed 64bit divide with 64bit divisor
  56 */
  57static inline s64 div64_s64(s64 dividend, s64 divisor)
  58{
  59        return dividend / divisor;
  60}
  61
  62#elif BITS_PER_LONG == 32
  63
  64#define div64_long(x, y) div_s64((x), (y))
  65#define div64_ul(x, y)   div_u64((x), (y))
  66
  67#ifndef div_u64_rem
  68static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
  69{
  70        *remainder = do_div(dividend, divisor);
  71        return dividend;
  72}
  73#endif
  74
  75#ifndef div_s64_rem
  76extern s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder);
  77#endif
  78
  79#ifndef div64_u64_rem
  80extern u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder);
  81#endif
  82
  83#ifndef div64_u64
  84extern u64 div64_u64(u64 dividend, u64 divisor);
  85#endif
  86
  87#ifndef div64_s64
  88extern s64 div64_s64(s64 dividend, s64 divisor);
  89#endif
  90
  91#endif /* BITS_PER_LONG */
  92
  93/**
  94 * div_u64 - unsigned 64bit divide with 32bit divisor
  95 *
  96 * This is the most common 64bit divide and should be used if possible,
  97 * as many 32bit archs can optimize this variant better than a full 64bit
  98 * divide.
  99 */
 100#ifndef div_u64
 101static inline u64 div_u64(u64 dividend, u32 divisor)
 102{
 103        u32 remainder;
 104        return div_u64_rem(dividend, divisor, &remainder);
 105}
 106#endif
 107
 108/**
 109 * div_s64 - signed 64bit divide with 32bit divisor
 110 */
 111#ifndef div_s64
 112static inline s64 div_s64(s64 dividend, s32 divisor)
 113{
 114        s32 remainder;
 115        return div_s64_rem(dividend, divisor, &remainder);
 116}
 117#endif
 118
 119u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder);
 120
 121static __always_inline u32
 122__iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
 123{
 124        u32 ret = 0;
 125
 126        while (dividend >= divisor) {
 127                /* The following asm() prevents the compiler from
 128                   optimising this loop into a modulo operation.  */
 129                asm("" : "+rm"(dividend));
 130
 131                dividend -= divisor;
 132                ret++;
 133        }
 134
 135        *remainder = dividend;
 136
 137        return ret;
 138}
 139
 140#ifndef mul_u32_u32
 141/*
 142 * Many a GCC version messes this up and generates a 64x64 mult :-(
 143 */
 144static inline u64 mul_u32_u32(u32 a, u32 b)
 145{
 146        return (u64)a * b;
 147}
 148#endif
 149
 150#if defined(CONFIG_ARCH_SUPPORTS_INT128) && defined(__SIZEOF_INT128__)
 151
 152#ifndef mul_u64_u32_shr
 153static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
 154{
 155        return (u64)(((unsigned __int128)a * mul) >> shift);
 156}
 157#endif /* mul_u64_u32_shr */
 158
 159#ifndef mul_u64_u64_shr
 160static inline u64 mul_u64_u64_shr(u64 a, u64 mul, unsigned int shift)
 161{
 162        return (u64)(((unsigned __int128)a * mul) >> shift);
 163}
 164#endif /* mul_u64_u64_shr */
 165
 166#else
 167
 168#ifndef mul_u64_u32_shr
 169static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
 170{
 171        u32 ah, al;
 172        u64 ret;
 173
 174        al = a;
 175        ah = a >> 32;
 176
 177        ret = mul_u32_u32(al, mul) >> shift;
 178        if (ah)
 179                ret += mul_u32_u32(ah, mul) << (32 - shift);
 180
 181        return ret;
 182}
 183#endif /* mul_u64_u32_shr */
 184
 185#ifndef mul_u64_u64_shr
 186static inline u64 mul_u64_u64_shr(u64 a, u64 b, unsigned int shift)
 187{
 188        union {
 189                u64 ll;
 190                struct {
 191#ifdef __BIG_ENDIAN
 192                        u32 high, low;
 193#else
 194                        u32 low, high;
 195#endif
 196                } l;
 197        } rl, rm, rn, rh, a0, b0;
 198        u64 c;
 199
 200        a0.ll = a;
 201        b0.ll = b;
 202
 203        rl.ll = mul_u32_u32(a0.l.low, b0.l.low);
 204        rm.ll = mul_u32_u32(a0.l.low, b0.l.high);
 205        rn.ll = mul_u32_u32(a0.l.high, b0.l.low);
 206        rh.ll = mul_u32_u32(a0.l.high, b0.l.high);
 207
 208        /*
 209         * Each of these lines computes a 64-bit intermediate result into "c",
 210         * starting at bits 32-95.  The low 32-bits go into the result of the
 211         * multiplication, the high 32-bits are carried into the next step.
 212         */
 213        rl.l.high = c = (u64)rl.l.high + rm.l.low + rn.l.low;
 214        rh.l.low = c = (c >> 32) + rm.l.high + rn.l.high + rh.l.low;
 215        rh.l.high = (c >> 32) + rh.l.high;
 216
 217        /*
 218         * The 128-bit result of the multiplication is in rl.ll and rh.ll,
 219         * shift it right and throw away the high part of the result.
 220         */
 221        if (shift == 0)
 222                return rl.ll;
 223        if (shift < 64)
 224                return (rl.ll >> shift) | (rh.ll << (64 - shift));
 225        return rh.ll >> (shift & 63);
 226}
 227#endif /* mul_u64_u64_shr */
 228
 229#endif
 230
 231#ifndef mul_u64_u32_div
 232static inline u64 mul_u64_u32_div(u64 a, u32 mul, u32 divisor)
 233{
 234        union {
 235                u64 ll;
 236                struct {
 237#ifdef __BIG_ENDIAN
 238                        u32 high, low;
 239#else
 240                        u32 low, high;
 241#endif
 242                } l;
 243        } u, rl, rh;
 244
 245        u.ll = a;
 246        rl.ll = mul_u32_u32(u.l.low, mul);
 247        rh.ll = mul_u32_u32(u.l.high, mul) + rl.l.high;
 248
 249        /* Bits 32-63 of the result will be in rh.l.low. */
 250        rl.l.high = do_div(rh.ll, divisor);
 251
 252        /* Bits 0-31 of the result will be in rl.l.low. */
 253        do_div(rl.ll, divisor);
 254
 255        rl.l.high = rh.l.low;
 256        return rl.ll;
 257}
 258#endif /* mul_u64_u32_div */
 259
 260#endif /* _LINUX_MATH64_H */
 261