uboot/common/dlmalloc.c
<<
>>
Prefs
   1#include <common.h>
   2
   3#ifdef CONFIG_SANDBOX
   4#define DEBUG
   5#endif
   6
   7#include <malloc.h>
   8#include <asm/io.h>
   9
  10#ifdef DEBUG
  11#if __STD_C
  12static void malloc_update_mallinfo (void);
  13void malloc_stats (void);
  14#else
  15static void malloc_update_mallinfo ();
  16void malloc_stats();
  17#endif
  18#endif  /* DEBUG */
  19
  20DECLARE_GLOBAL_DATA_PTR;
  21
  22/*
  23  Emulation of sbrk for WIN32
  24  All code within the ifdef WIN32 is untested by me.
  25
  26  Thanks to Martin Fong and others for supplying this.
  27*/
  28
  29
  30#ifdef WIN32
  31
  32#define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
  33~(malloc_getpagesize-1))
  34#define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
  35
  36/* resrve 64MB to insure large contiguous space */
  37#define RESERVED_SIZE (1024*1024*64)
  38#define NEXT_SIZE (2048*1024)
  39#define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
  40
  41struct GmListElement;
  42typedef struct GmListElement GmListElement;
  43
  44struct GmListElement
  45{
  46        GmListElement* next;
  47        void* base;
  48};
  49
  50static GmListElement* head = 0;
  51static unsigned int gNextAddress = 0;
  52static unsigned int gAddressBase = 0;
  53static unsigned int gAllocatedSize = 0;
  54
  55static
  56GmListElement* makeGmListElement (void* bas)
  57{
  58        GmListElement* this;
  59        this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
  60        assert (this);
  61        if (this)
  62        {
  63                this->base = bas;
  64                this->next = head;
  65                head = this;
  66        }
  67        return this;
  68}
  69
  70void gcleanup ()
  71{
  72        BOOL rval;
  73        assert ( (head == NULL) || (head->base == (void*)gAddressBase));
  74        if (gAddressBase && (gNextAddress - gAddressBase))
  75        {
  76                rval = VirtualFree ((void*)gAddressBase,
  77                                                        gNextAddress - gAddressBase,
  78                                                        MEM_DECOMMIT);
  79        assert (rval);
  80        }
  81        while (head)
  82        {
  83                GmListElement* next = head->next;
  84                rval = VirtualFree (head->base, 0, MEM_RELEASE);
  85                assert (rval);
  86                LocalFree (head);
  87                head = next;
  88        }
  89}
  90
  91static
  92void* findRegion (void* start_address, unsigned long size)
  93{
  94        MEMORY_BASIC_INFORMATION info;
  95        if (size >= TOP_MEMORY) return NULL;
  96
  97        while ((unsigned long)start_address + size < TOP_MEMORY)
  98        {
  99                VirtualQuery (start_address, &info, sizeof (info));
 100                if ((info.State == MEM_FREE) && (info.RegionSize >= size))
 101                        return start_address;
 102                else
 103                {
 104                        /* Requested region is not available so see if the */
 105                        /* next region is available.  Set 'start_address' */
 106                        /* to the next region and call 'VirtualQuery()' */
 107                        /* again. */
 108
 109                        start_address = (char*)info.BaseAddress + info.RegionSize;
 110
 111                        /* Make sure we start looking for the next region */
 112                        /* on the *next* 64K boundary.  Otherwise, even if */
 113                        /* the new region is free according to */
 114                        /* 'VirtualQuery()', the subsequent call to */
 115                        /* 'VirtualAlloc()' (which follows the call to */
 116                        /* this routine in 'wsbrk()') will round *down* */
 117                        /* the requested address to a 64K boundary which */
 118                        /* we already know is an address in the */
 119                        /* unavailable region.  Thus, the subsequent call */
 120                        /* to 'VirtualAlloc()' will fail and bring us back */
 121                        /* here, causing us to go into an infinite loop. */
 122
 123                        start_address =
 124                                (void *) AlignPage64K((unsigned long) start_address);
 125                }
 126        }
 127        return NULL;
 128
 129}
 130
 131
 132void* wsbrk (long size)
 133{
 134        void* tmp;
 135        if (size > 0)
 136        {
 137                if (gAddressBase == 0)
 138                {
 139                        gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
 140                        gNextAddress = gAddressBase =
 141                                (unsigned int)VirtualAlloc (NULL, gAllocatedSize,
 142                                                                                        MEM_RESERVE, PAGE_NOACCESS);
 143                } else if (AlignPage (gNextAddress + size) > (gAddressBase +
 144gAllocatedSize))
 145                {
 146                        long new_size = max (NEXT_SIZE, AlignPage (size));
 147                        void* new_address = (void*)(gAddressBase+gAllocatedSize);
 148                        do
 149                        {
 150                                new_address = findRegion (new_address, new_size);
 151
 152                                if (new_address == 0)
 153                                        return (void*)-1;
 154
 155                                gAddressBase = gNextAddress =
 156                                        (unsigned int)VirtualAlloc (new_address, new_size,
 157                                                                                                MEM_RESERVE, PAGE_NOACCESS);
 158                                /* repeat in case of race condition */
 159                                /* The region that we found has been snagged */
 160                                /* by another thread */
 161                        }
 162                        while (gAddressBase == 0);
 163
 164                        assert (new_address == (void*)gAddressBase);
 165
 166                        gAllocatedSize = new_size;
 167
 168                        if (!makeGmListElement ((void*)gAddressBase))
 169                                return (void*)-1;
 170                }
 171                if ((size + gNextAddress) > AlignPage (gNextAddress))
 172                {
 173                        void* res;
 174                        res = VirtualAlloc ((void*)AlignPage (gNextAddress),
 175                                                                (size + gNextAddress -
 176                                                                 AlignPage (gNextAddress)),
 177                                                                MEM_COMMIT, PAGE_READWRITE);
 178                        if (res == 0)
 179                                return (void*)-1;
 180                }
 181                tmp = (void*)gNextAddress;
 182                gNextAddress = (unsigned int)tmp + size;
 183                return tmp;
 184        }
 185        else if (size < 0)
 186        {
 187                unsigned int alignedGoal = AlignPage (gNextAddress + size);
 188                /* Trim by releasing the virtual memory */
 189                if (alignedGoal >= gAddressBase)
 190                {
 191                        VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
 192                                                 MEM_DECOMMIT);
 193                        gNextAddress = gNextAddress + size;
 194                        return (void*)gNextAddress;
 195                }
 196                else
 197                {
 198                        VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
 199                                                 MEM_DECOMMIT);
 200                        gNextAddress = gAddressBase;
 201                        return (void*)-1;
 202                }
 203        }
 204        else
 205        {
 206                return (void*)gNextAddress;
 207        }
 208}
 209
 210#endif
 211
 212
 213
 214/*
 215  Type declarations
 216*/
 217
 218
 219struct malloc_chunk
 220{
 221  INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
 222  INTERNAL_SIZE_T size;      /* Size in bytes, including overhead. */
 223  struct malloc_chunk* fd;   /* double links -- used only if free. */
 224  struct malloc_chunk* bk;
 225} __attribute__((__may_alias__)) ;
 226
 227typedef struct malloc_chunk* mchunkptr;
 228
 229/*
 230
 231   malloc_chunk details:
 232
 233    (The following includes lightly edited explanations by Colin Plumb.)
 234
 235    Chunks of memory are maintained using a `boundary tag' method as
 236    described in e.g., Knuth or Standish.  (See the paper by Paul
 237    Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
 238    survey of such techniques.)  Sizes of free chunks are stored both
 239    in the front of each chunk and at the end.  This makes
 240    consolidating fragmented chunks into bigger chunks very fast.  The
 241    size fields also hold bits representing whether chunks are free or
 242    in use.
 243
 244    An allocated chunk looks like this:
 245
 246
 247    chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 248            |             Size of previous chunk, if allocated            | |
 249            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 250            |             Size of chunk, in bytes                         |P|
 251      mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 252            |             User data starts here...                          .
 253            .                                                               .
 254            .             (malloc_usable_space() bytes)                     .
 255            .                                                               |
 256nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 257            |             Size of chunk                                     |
 258            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 259
 260
 261    Where "chunk" is the front of the chunk for the purpose of most of
 262    the malloc code, but "mem" is the pointer that is returned to the
 263    user.  "Nextchunk" is the beginning of the next contiguous chunk.
 264
 265    Chunks always begin on even word boundries, so the mem portion
 266    (which is returned to the user) is also on an even word boundary, and
 267    thus double-word aligned.
 268
 269    Free chunks are stored in circular doubly-linked lists, and look like this:
 270
 271    chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 272            |             Size of previous chunk                            |
 273            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 274    `head:' |             Size of chunk, in bytes                         |P|
 275      mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 276            |             Forward pointer to next chunk in list             |
 277            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 278            |             Back pointer to previous chunk in list            |
 279            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 280            |             Unused space (may be 0 bytes long)                .
 281            .                                                               .
 282            .                                                               |
 283nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 284    `foot:' |             Size of chunk, in bytes                           |
 285            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 286
 287    The P (PREV_INUSE) bit, stored in the unused low-order bit of the
 288    chunk size (which is always a multiple of two words), is an in-use
 289    bit for the *previous* chunk.  If that bit is *clear*, then the
 290    word before the current chunk size contains the previous chunk
 291    size, and can be used to find the front of the previous chunk.
 292    (The very first chunk allocated always has this bit set,
 293    preventing access to non-existent (or non-owned) memory.)
 294
 295    Note that the `foot' of the current chunk is actually represented
 296    as the prev_size of the NEXT chunk. (This makes it easier to
 297    deal with alignments etc).
 298
 299    The two exceptions to all this are
 300
 301     1. The special chunk `top', which doesn't bother using the
 302        trailing size field since there is no
 303        next contiguous chunk that would have to index off it. (After
 304        initialization, `top' is forced to always exist.  If it would
 305        become less than MINSIZE bytes long, it is replenished via
 306        malloc_extend_top.)
 307
 308     2. Chunks allocated via mmap, which have the second-lowest-order
 309        bit (IS_MMAPPED) set in their size fields.  Because they are
 310        never merged or traversed from any other chunk, they have no
 311        foot size or inuse information.
 312
 313    Available chunks are kept in any of several places (all declared below):
 314
 315    * `av': An array of chunks serving as bin headers for consolidated
 316       chunks. Each bin is doubly linked.  The bins are approximately
 317       proportionally (log) spaced.  There are a lot of these bins
 318       (128). This may look excessive, but works very well in
 319       practice.  All procedures maintain the invariant that no
 320       consolidated chunk physically borders another one. Chunks in
 321       bins are kept in size order, with ties going to the
 322       approximately least recently used chunk.
 323
 324       The chunks in each bin are maintained in decreasing sorted order by
 325       size.  This is irrelevant for the small bins, which all contain
 326       the same-sized chunks, but facilitates best-fit allocation for
 327       larger chunks. (These lists are just sequential. Keeping them in
 328       order almost never requires enough traversal to warrant using
 329       fancier ordered data structures.)  Chunks of the same size are
 330       linked with the most recently freed at the front, and allocations
 331       are taken from the back.  This results in LRU or FIFO allocation
 332       order, which tends to give each chunk an equal opportunity to be
 333       consolidated with adjacent freed chunks, resulting in larger free
 334       chunks and less fragmentation.
 335
 336    * `top': The top-most available chunk (i.e., the one bordering the
 337       end of available memory) is treated specially. It is never
 338       included in any bin, is used only if no other chunk is
 339       available, and is released back to the system if it is very
 340       large (see M_TRIM_THRESHOLD).
 341
 342    * `last_remainder': A bin holding only the remainder of the
 343       most recently split (non-top) chunk. This bin is checked
 344       before other non-fitting chunks, so as to provide better
 345       locality for runs of sequentially allocated chunks.
 346
 347    *  Implicitly, through the host system's memory mapping tables.
 348       If supported, requests greater than a threshold are usually
 349       serviced via calls to mmap, and then later released via munmap.
 350
 351*/
 352
 353/*  sizes, alignments */
 354
 355#define SIZE_SZ                (sizeof(INTERNAL_SIZE_T))
 356#define MALLOC_ALIGNMENT       (SIZE_SZ + SIZE_SZ)
 357#define MALLOC_ALIGN_MASK      (MALLOC_ALIGNMENT - 1)
 358#define MINSIZE                (sizeof(struct malloc_chunk))
 359
 360/* conversion from malloc headers to user pointers, and back */
 361
 362#define chunk2mem(p)   ((Void_t*)((char*)(p) + 2*SIZE_SZ))
 363#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
 364
 365/* pad request bytes into a usable size */
 366
 367#define request2size(req) \
 368 (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
 369  (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
 370   (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
 371
 372/* Check if m has acceptable alignment */
 373
 374#define aligned_OK(m)    (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
 375
 376
 377
 378
 379/*
 380  Physical chunk operations
 381*/
 382
 383
 384/* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
 385
 386#define PREV_INUSE 0x1
 387
 388/* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
 389
 390#define IS_MMAPPED 0x2
 391
 392/* Bits to mask off when extracting size */
 393
 394#define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
 395
 396
 397/* Ptr to next physical malloc_chunk. */
 398
 399#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
 400
 401/* Ptr to previous physical malloc_chunk */
 402
 403#define prev_chunk(p)\
 404   ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
 405
 406
 407/* Treat space at ptr + offset as a chunk */
 408
 409#define chunk_at_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))
 410
 411
 412
 413
 414/*
 415  Dealing with use bits
 416*/
 417
 418/* extract p's inuse bit */
 419
 420#define inuse(p)\
 421((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
 422
 423/* extract inuse bit of previous chunk */
 424
 425#define prev_inuse(p)  ((p)->size & PREV_INUSE)
 426
 427/* check for mmap()'ed chunk */
 428
 429#define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
 430
 431/* set/clear chunk as in use without otherwise disturbing */
 432
 433#define set_inuse(p)\
 434((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
 435
 436#define clear_inuse(p)\
 437((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
 438
 439/* check/set/clear inuse bits in known places */
 440
 441#define inuse_bit_at_offset(p, s)\
 442 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
 443
 444#define set_inuse_bit_at_offset(p, s)\
 445 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
 446
 447#define clear_inuse_bit_at_offset(p, s)\
 448 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
 449
 450
 451
 452
 453/*
 454  Dealing with size fields
 455*/
 456
 457/* Get size, ignoring use bits */
 458
 459#define chunksize(p)          ((p)->size & ~(SIZE_BITS))
 460
 461/* Set size at head, without disturbing its use bit */
 462
 463#define set_head_size(p, s)   ((p)->size = (((p)->size & PREV_INUSE) | (s)))
 464
 465/* Set size/use ignoring previous bits in header */
 466
 467#define set_head(p, s)        ((p)->size = (s))
 468
 469/* Set size at footer (only when chunk is not in use) */
 470
 471#define set_foot(p, s)   (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
 472
 473
 474
 475
 476
 477/*
 478   Bins
 479
 480    The bins, `av_' are an array of pairs of pointers serving as the
 481    heads of (initially empty) doubly-linked lists of chunks, laid out
 482    in a way so that each pair can be treated as if it were in a
 483    malloc_chunk. (This way, the fd/bk offsets for linking bin heads
 484    and chunks are the same).
 485
 486    Bins for sizes < 512 bytes contain chunks of all the same size, spaced
 487    8 bytes apart. Larger bins are approximately logarithmically
 488    spaced. (See the table below.) The `av_' array is never mentioned
 489    directly in the code, but instead via bin access macros.
 490
 491    Bin layout:
 492
 493    64 bins of size       8
 494    32 bins of size      64
 495    16 bins of size     512
 496     8 bins of size    4096
 497     4 bins of size   32768
 498     2 bins of size  262144
 499     1 bin  of size what's left
 500
 501    There is actually a little bit of slop in the numbers in bin_index
 502    for the sake of speed. This makes no difference elsewhere.
 503
 504    The special chunks `top' and `last_remainder' get their own bins,
 505    (this is implemented via yet more trickery with the av_ array),
 506    although `top' is never properly linked to its bin since it is
 507    always handled specially.
 508
 509*/
 510
 511#define NAV             128   /* number of bins */
 512
 513typedef struct malloc_chunk* mbinptr;
 514
 515/* access macros */
 516
 517#define bin_at(i)      ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
 518#define next_bin(b)    ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
 519#define prev_bin(b)    ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
 520
 521/*
 522   The first 2 bins are never indexed. The corresponding av_ cells are instead
 523   used for bookkeeping. This is not to save space, but to simplify
 524   indexing, maintain locality, and avoid some initialization tests.
 525*/
 526
 527#define top            (av_[2])          /* The topmost chunk */
 528#define last_remainder (bin_at(1))       /* remainder from last split */
 529
 530
 531/*
 532   Because top initially points to its own bin with initial
 533   zero size, thus forcing extension on the first malloc request,
 534   we avoid having any special code in malloc to check whether
 535   it even exists yet. But we still need to in malloc_extend_top.
 536*/
 537
 538#define initial_top    ((mchunkptr)(bin_at(0)))
 539
 540/* Helper macro to initialize bins */
 541
 542#define IAV(i)  bin_at(i), bin_at(i)
 543
 544static mbinptr av_[NAV * 2 + 2] = {
 545 NULL, NULL,
 546 IAV(0),   IAV(1),   IAV(2),   IAV(3),   IAV(4),   IAV(5),   IAV(6),   IAV(7),
 547 IAV(8),   IAV(9),   IAV(10),  IAV(11),  IAV(12),  IAV(13),  IAV(14),  IAV(15),
 548 IAV(16),  IAV(17),  IAV(18),  IAV(19),  IAV(20),  IAV(21),  IAV(22),  IAV(23),
 549 IAV(24),  IAV(25),  IAV(26),  IAV(27),  IAV(28),  IAV(29),  IAV(30),  IAV(31),
 550 IAV(32),  IAV(33),  IAV(34),  IAV(35),  IAV(36),  IAV(37),  IAV(38),  IAV(39),
 551 IAV(40),  IAV(41),  IAV(42),  IAV(43),  IAV(44),  IAV(45),  IAV(46),  IAV(47),
 552 IAV(48),  IAV(49),  IAV(50),  IAV(51),  IAV(52),  IAV(53),  IAV(54),  IAV(55),
 553 IAV(56),  IAV(57),  IAV(58),  IAV(59),  IAV(60),  IAV(61),  IAV(62),  IAV(63),
 554 IAV(64),  IAV(65),  IAV(66),  IAV(67),  IAV(68),  IAV(69),  IAV(70),  IAV(71),
 555 IAV(72),  IAV(73),  IAV(74),  IAV(75),  IAV(76),  IAV(77),  IAV(78),  IAV(79),
 556 IAV(80),  IAV(81),  IAV(82),  IAV(83),  IAV(84),  IAV(85),  IAV(86),  IAV(87),
 557 IAV(88),  IAV(89),  IAV(90),  IAV(91),  IAV(92),  IAV(93),  IAV(94),  IAV(95),
 558 IAV(96),  IAV(97),  IAV(98),  IAV(99),  IAV(100), IAV(101), IAV(102), IAV(103),
 559 IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
 560 IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
 561 IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
 562};
 563
 564#ifdef CONFIG_NEEDS_MANUAL_RELOC
 565static void malloc_bin_reloc(void)
 566{
 567        mbinptr *p = &av_[2];
 568        size_t i;
 569
 570        for (i = 2; i < ARRAY_SIZE(av_); ++i, ++p)
 571                *p = (mbinptr)((ulong)*p + gd->reloc_off);
 572}
 573#else
 574static inline void malloc_bin_reloc(void) {}
 575#endif
 576
 577ulong mem_malloc_start = 0;
 578ulong mem_malloc_end = 0;
 579ulong mem_malloc_brk = 0;
 580
 581void *sbrk(ptrdiff_t increment)
 582{
 583        ulong old = mem_malloc_brk;
 584        ulong new = old + increment;
 585
 586        /*
 587         * if we are giving memory back make sure we clear it out since
 588         * we set MORECORE_CLEARS to 1
 589         */
 590        if (increment < 0)
 591                memset((void *)new, 0, -increment);
 592
 593        if ((new < mem_malloc_start) || (new > mem_malloc_end))
 594                return (void *)MORECORE_FAILURE;
 595
 596        mem_malloc_brk = new;
 597
 598        return (void *)old;
 599}
 600
 601void mem_malloc_init(ulong start, ulong size)
 602{
 603        mem_malloc_start = start;
 604        mem_malloc_end = start + size;
 605        mem_malloc_brk = start;
 606
 607        debug("using memory %#lx-%#lx for malloc()\n", mem_malloc_start,
 608              mem_malloc_end);
 609#ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
 610        memset((void *)mem_malloc_start, 0x0, size);
 611#endif
 612        malloc_bin_reloc();
 613}
 614
 615/* field-extraction macros */
 616
 617#define first(b) ((b)->fd)
 618#define last(b)  ((b)->bk)
 619
 620/*
 621  Indexing into bins
 622*/
 623
 624#define bin_index(sz)                                                          \
 625(((((unsigned long)(sz)) >> 9) ==    0) ?       (((unsigned long)(sz)) >>  3): \
 626 ((((unsigned long)(sz)) >> 9) <=    4) ?  56 + (((unsigned long)(sz)) >>  6): \
 627 ((((unsigned long)(sz)) >> 9) <=   20) ?  91 + (((unsigned long)(sz)) >>  9): \
 628 ((((unsigned long)(sz)) >> 9) <=   84) ? 110 + (((unsigned long)(sz)) >> 12): \
 629 ((((unsigned long)(sz)) >> 9) <=  340) ? 119 + (((unsigned long)(sz)) >> 15): \
 630 ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
 631                                          126)
 632/*
 633  bins for chunks < 512 are all spaced 8 bytes apart, and hold
 634  identically sized chunks. This is exploited in malloc.
 635*/
 636
 637#define MAX_SMALLBIN         63
 638#define MAX_SMALLBIN_SIZE   512
 639#define SMALLBIN_WIDTH        8
 640
 641#define smallbin_index(sz)  (((unsigned long)(sz)) >> 3)
 642
 643/*
 644   Requests are `small' if both the corresponding and the next bin are small
 645*/
 646
 647#define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
 648
 649
 650
 651/*
 652    To help compensate for the large number of bins, a one-level index
 653    structure is used for bin-by-bin searching.  `binblocks' is a
 654    one-word bitvector recording whether groups of BINBLOCKWIDTH bins
 655    have any (possibly) non-empty bins, so they can be skipped over
 656    all at once during during traversals. The bits are NOT always
 657    cleared as soon as all bins in a block are empty, but instead only
 658    when all are noticed to be empty during traversal in malloc.
 659*/
 660
 661#define BINBLOCKWIDTH     4   /* bins per block */
 662
 663#define binblocks_r     ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */
 664#define binblocks_w     (av_[1])
 665
 666/* bin<->block macros */
 667
 668#define idx2binblock(ix)    ((unsigned)1 << (ix / BINBLOCKWIDTH))
 669#define mark_binblock(ii)   (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii)))
 670#define clear_binblock(ii)  (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii))))
 671
 672
 673
 674
 675
 676/*  Other static bookkeeping data */
 677
 678/* variables holding tunable values */
 679
 680static unsigned long trim_threshold   = DEFAULT_TRIM_THRESHOLD;
 681static unsigned long top_pad          = DEFAULT_TOP_PAD;
 682static unsigned int  n_mmaps_max      = DEFAULT_MMAP_MAX;
 683static unsigned long mmap_threshold   = DEFAULT_MMAP_THRESHOLD;
 684
 685/* The first value returned from sbrk */
 686static char* sbrk_base = (char*)(-1);
 687
 688/* The maximum memory obtained from system via sbrk */
 689static unsigned long max_sbrked_mem = 0;
 690
 691/* The maximum via either sbrk or mmap */
 692static unsigned long max_total_mem = 0;
 693
 694/* internal working copy of mallinfo */
 695static struct mallinfo current_mallinfo = {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
 696
 697/* The total memory obtained from system via sbrk */
 698#define sbrked_mem  (current_mallinfo.arena)
 699
 700/* Tracking mmaps */
 701
 702#ifdef DEBUG
 703static unsigned int n_mmaps = 0;
 704#endif  /* DEBUG */
 705static unsigned long mmapped_mem = 0;
 706#if HAVE_MMAP
 707static unsigned int max_n_mmaps = 0;
 708static unsigned long max_mmapped_mem = 0;
 709#endif
 710
 711
 712
 713/*
 714  Debugging support
 715*/
 716
 717#ifdef DEBUG
 718
 719
 720/*
 721  These routines make a number of assertions about the states
 722  of data structures that should be true at all times. If any
 723  are not true, it's very likely that a user program has somehow
 724  trashed memory. (It's also possible that there is a coding error
 725  in malloc. In which case, please report it!)
 726*/
 727
 728#if __STD_C
 729static void do_check_chunk(mchunkptr p)
 730#else
 731static void do_check_chunk(p) mchunkptr p;
 732#endif
 733{
 734  INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
 735
 736  /* No checkable chunk is mmapped */
 737  assert(!chunk_is_mmapped(p));
 738
 739  /* Check for legal address ... */
 740  assert((char*)p >= sbrk_base);
 741  if (p != top)
 742    assert((char*)p + sz <= (char*)top);
 743  else
 744    assert((char*)p + sz <= sbrk_base + sbrked_mem);
 745
 746}
 747
 748
 749#if __STD_C
 750static void do_check_free_chunk(mchunkptr p)
 751#else
 752static void do_check_free_chunk(p) mchunkptr p;
 753#endif
 754{
 755  INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
 756  mchunkptr next = chunk_at_offset(p, sz);
 757
 758  do_check_chunk(p);
 759
 760  /* Check whether it claims to be free ... */
 761  assert(!inuse(p));
 762
 763  /* Unless a special marker, must have OK fields */
 764  if ((long)sz >= (long)MINSIZE)
 765  {
 766    assert((sz & MALLOC_ALIGN_MASK) == 0);
 767    assert(aligned_OK(chunk2mem(p)));
 768    /* ... matching footer field */
 769    assert(next->prev_size == sz);
 770    /* ... and is fully consolidated */
 771    assert(prev_inuse(p));
 772    assert (next == top || inuse(next));
 773
 774    /* ... and has minimally sane links */
 775    assert(p->fd->bk == p);
 776    assert(p->bk->fd == p);
 777  }
 778  else /* markers are always of size SIZE_SZ */
 779    assert(sz == SIZE_SZ);
 780}
 781
 782#if __STD_C
 783static void do_check_inuse_chunk(mchunkptr p)
 784#else
 785static void do_check_inuse_chunk(p) mchunkptr p;
 786#endif
 787{
 788  mchunkptr next = next_chunk(p);
 789  do_check_chunk(p);
 790
 791  /* Check whether it claims to be in use ... */
 792  assert(inuse(p));
 793
 794  /* ... and is surrounded by OK chunks.
 795    Since more things can be checked with free chunks than inuse ones,
 796    if an inuse chunk borders them and debug is on, it's worth doing them.
 797  */
 798  if (!prev_inuse(p))
 799  {
 800    mchunkptr prv = prev_chunk(p);
 801    assert(next_chunk(prv) == p);
 802    do_check_free_chunk(prv);
 803  }
 804  if (next == top)
 805  {
 806    assert(prev_inuse(next));
 807    assert(chunksize(next) >= MINSIZE);
 808  }
 809  else if (!inuse(next))
 810    do_check_free_chunk(next);
 811
 812}
 813
 814#if __STD_C
 815static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
 816#else
 817static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
 818#endif
 819{
 820  INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
 821  long room = sz - s;
 822
 823  do_check_inuse_chunk(p);
 824
 825  /* Legal size ... */
 826  assert((long)sz >= (long)MINSIZE);
 827  assert((sz & MALLOC_ALIGN_MASK) == 0);
 828  assert(room >= 0);
 829  assert(room < (long)MINSIZE);
 830
 831  /* ... and alignment */
 832  assert(aligned_OK(chunk2mem(p)));
 833
 834
 835  /* ... and was allocated at front of an available chunk */
 836  assert(prev_inuse(p));
 837
 838}
 839
 840
 841#define check_free_chunk(P)  do_check_free_chunk(P)
 842#define check_inuse_chunk(P) do_check_inuse_chunk(P)
 843#define check_chunk(P) do_check_chunk(P)
 844#define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
 845#else
 846#define check_free_chunk(P)
 847#define check_inuse_chunk(P)
 848#define check_chunk(P)
 849#define check_malloced_chunk(P,N)
 850#endif
 851
 852
 853
 854/*
 855  Macro-based internal utilities
 856*/
 857
 858
 859/*
 860  Linking chunks in bin lists.
 861  Call these only with variables, not arbitrary expressions, as arguments.
 862*/
 863
 864/*
 865  Place chunk p of size s in its bin, in size order,
 866  putting it ahead of others of same size.
 867*/
 868
 869
 870#define frontlink(P, S, IDX, BK, FD)                                          \
 871{                                                                             \
 872  if (S < MAX_SMALLBIN_SIZE)                                                  \
 873  {                                                                           \
 874    IDX = smallbin_index(S);                                                  \
 875    mark_binblock(IDX);                                                       \
 876    BK = bin_at(IDX);                                                         \
 877    FD = BK->fd;                                                              \
 878    P->bk = BK;                                                               \
 879    P->fd = FD;                                                               \
 880    FD->bk = BK->fd = P;                                                      \
 881  }                                                                           \
 882  else                                                                        \
 883  {                                                                           \
 884    IDX = bin_index(S);                                                       \
 885    BK = bin_at(IDX);                                                         \
 886    FD = BK->fd;                                                              \
 887    if (FD == BK) mark_binblock(IDX);                                         \
 888    else                                                                      \
 889    {                                                                         \
 890      while (FD != BK && S < chunksize(FD)) FD = FD->fd;                      \
 891      BK = FD->bk;                                                            \
 892    }                                                                         \
 893    P->bk = BK;                                                               \
 894    P->fd = FD;                                                               \
 895    FD->bk = BK->fd = P;                                                      \
 896  }                                                                           \
 897}
 898
 899
 900/* take a chunk off a list */
 901
 902#define unlink(P, BK, FD)                                                     \
 903{                                                                             \
 904  BK = P->bk;                                                                 \
 905  FD = P->fd;                                                                 \
 906  FD->bk = BK;                                                                \
 907  BK->fd = FD;                                                                \
 908}                                                                             \
 909
 910/* Place p as the last remainder */
 911
 912#define link_last_remainder(P)                                                \
 913{                                                                             \
 914  last_remainder->fd = last_remainder->bk =  P;                               \
 915  P->fd = P->bk = last_remainder;                                             \
 916}
 917
 918/* Clear the last_remainder bin */
 919
 920#define clear_last_remainder \
 921  (last_remainder->fd = last_remainder->bk = last_remainder)
 922
 923
 924
 925
 926
 927/* Routines dealing with mmap(). */
 928
 929#if HAVE_MMAP
 930
 931#if __STD_C
 932static mchunkptr mmap_chunk(size_t size)
 933#else
 934static mchunkptr mmap_chunk(size) size_t size;
 935#endif
 936{
 937  size_t page_mask = malloc_getpagesize - 1;
 938  mchunkptr p;
 939
 940#ifndef MAP_ANONYMOUS
 941  static int fd = -1;
 942#endif
 943
 944  if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
 945
 946  /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
 947   * there is no following chunk whose prev_size field could be used.
 948   */
 949  size = (size + SIZE_SZ + page_mask) & ~page_mask;
 950
 951#ifdef MAP_ANONYMOUS
 952  p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
 953                      MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
 954#else /* !MAP_ANONYMOUS */
 955  if (fd < 0)
 956  {
 957    fd = open("/dev/zero", O_RDWR);
 958    if(fd < 0) return 0;
 959  }
 960  p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
 961#endif
 962
 963  if(p == (mchunkptr)-1) return 0;
 964
 965  n_mmaps++;
 966  if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
 967
 968  /* We demand that eight bytes into a page must be 8-byte aligned. */
 969  assert(aligned_OK(chunk2mem(p)));
 970
 971  /* The offset to the start of the mmapped region is stored
 972   * in the prev_size field of the chunk; normally it is zero,
 973   * but that can be changed in memalign().
 974   */
 975  p->prev_size = 0;
 976  set_head(p, size|IS_MMAPPED);
 977
 978  mmapped_mem += size;
 979  if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
 980    max_mmapped_mem = mmapped_mem;
 981  if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
 982    max_total_mem = mmapped_mem + sbrked_mem;
 983  return p;
 984}
 985
 986#if __STD_C
 987static void munmap_chunk(mchunkptr p)
 988#else
 989static void munmap_chunk(p) mchunkptr p;
 990#endif
 991{
 992  INTERNAL_SIZE_T size = chunksize(p);
 993  int ret;
 994
 995  assert (chunk_is_mmapped(p));
 996  assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
 997  assert((n_mmaps > 0));
 998  assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
 999
1000  n_mmaps--;
1001  mmapped_mem -= (size + p->prev_size);
1002
1003  ret = munmap((char *)p - p->prev_size, size + p->prev_size);
1004
1005  /* munmap returns non-zero on failure */
1006  assert(ret == 0);
1007}
1008
1009#if HAVE_MREMAP
1010
1011#if __STD_C
1012static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
1013#else
1014static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
1015#endif
1016{
1017  size_t page_mask = malloc_getpagesize - 1;
1018  INTERNAL_SIZE_T offset = p->prev_size;
1019  INTERNAL_SIZE_T size = chunksize(p);
1020  char *cp;
1021
1022  assert (chunk_is_mmapped(p));
1023  assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1024  assert((n_mmaps > 0));
1025  assert(((size + offset) & (malloc_getpagesize-1)) == 0);
1026
1027  /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1028  new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
1029
1030  cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
1031
1032  if (cp == (char *)-1) return 0;
1033
1034  p = (mchunkptr)(cp + offset);
1035
1036  assert(aligned_OK(chunk2mem(p)));
1037
1038  assert((p->prev_size == offset));
1039  set_head(p, (new_size - offset)|IS_MMAPPED);
1040
1041  mmapped_mem -= size + offset;
1042  mmapped_mem += new_size;
1043  if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1044    max_mmapped_mem = mmapped_mem;
1045  if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1046    max_total_mem = mmapped_mem + sbrked_mem;
1047  return p;
1048}
1049
1050#endif /* HAVE_MREMAP */
1051
1052#endif /* HAVE_MMAP */
1053
1054
1055
1056
1057/*
1058  Extend the top-most chunk by obtaining memory from system.
1059  Main interface to sbrk (but see also malloc_trim).
1060*/
1061
1062#if __STD_C
1063static void malloc_extend_top(INTERNAL_SIZE_T nb)
1064#else
1065static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
1066#endif
1067{
1068  char*     brk;                  /* return value from sbrk */
1069  INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
1070  INTERNAL_SIZE_T correction;     /* bytes for 2nd sbrk call */
1071  char*     new_brk;              /* return of 2nd sbrk call */
1072  INTERNAL_SIZE_T top_size;       /* new size of top chunk */
1073
1074  mchunkptr old_top     = top;  /* Record state of old top */
1075  INTERNAL_SIZE_T old_top_size = chunksize(old_top);
1076  char*     old_end      = (char*)(chunk_at_offset(old_top, old_top_size));
1077
1078  /* Pad request with top_pad plus minimal overhead */
1079
1080  INTERNAL_SIZE_T    sbrk_size     = nb + top_pad + MINSIZE;
1081  unsigned long pagesz    = malloc_getpagesize;
1082
1083  /* If not the first time through, round to preserve page boundary */
1084  /* Otherwise, we need to correct to a page size below anyway. */
1085  /* (We also correct below if an intervening foreign sbrk call.) */
1086
1087  if (sbrk_base != (char*)(-1))
1088    sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
1089
1090  brk = (char*)(MORECORE (sbrk_size));
1091
1092  /* Fail if sbrk failed or if a foreign sbrk call killed our space */
1093  if (brk == (char*)(MORECORE_FAILURE) ||
1094      (brk < old_end && old_top != initial_top))
1095    return;
1096
1097  sbrked_mem += sbrk_size;
1098
1099  if (brk == old_end) /* can just add bytes to current top */
1100  {
1101    top_size = sbrk_size + old_top_size;
1102    set_head(top, top_size | PREV_INUSE);
1103  }
1104  else
1105  {
1106    if (sbrk_base == (char*)(-1))  /* First time through. Record base */
1107      sbrk_base = brk;
1108    else  /* Someone else called sbrk().  Count those bytes as sbrked_mem. */
1109      sbrked_mem += brk - (char*)old_end;
1110
1111    /* Guarantee alignment of first new chunk made from this space */
1112    front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
1113    if (front_misalign > 0)
1114    {
1115      correction = (MALLOC_ALIGNMENT) - front_misalign;
1116      brk += correction;
1117    }
1118    else
1119      correction = 0;
1120
1121    /* Guarantee the next brk will be at a page boundary */
1122
1123    correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
1124                   ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
1125
1126    /* Allocate correction */
1127    new_brk = (char*)(MORECORE (correction));
1128    if (new_brk == (char*)(MORECORE_FAILURE)) return;
1129
1130    sbrked_mem += correction;
1131
1132    top = (mchunkptr)brk;
1133    top_size = new_brk - brk + correction;
1134    set_head(top, top_size | PREV_INUSE);
1135
1136    if (old_top != initial_top)
1137    {
1138
1139      /* There must have been an intervening foreign sbrk call. */
1140      /* A double fencepost is necessary to prevent consolidation */
1141
1142      /* If not enough space to do this, then user did something very wrong */
1143      if (old_top_size < MINSIZE)
1144      {
1145        set_head(top, PREV_INUSE); /* will force null return from malloc */
1146        return;
1147      }
1148
1149      /* Also keep size a multiple of MALLOC_ALIGNMENT */
1150      old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
1151      set_head_size(old_top, old_top_size);
1152      chunk_at_offset(old_top, old_top_size          )->size =
1153        SIZE_SZ|PREV_INUSE;
1154      chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
1155        SIZE_SZ|PREV_INUSE;
1156      /* If possible, release the rest. */
1157      if (old_top_size >= MINSIZE)
1158        fREe(chunk2mem(old_top));
1159    }
1160  }
1161
1162  if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
1163    max_sbrked_mem = sbrked_mem;
1164  if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1165    max_total_mem = mmapped_mem + sbrked_mem;
1166
1167  /* We always land on a page boundary */
1168  assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
1169}
1170
1171
1172
1173
1174/* Main public routines */
1175
1176
1177/*
1178  Malloc Algorthim:
1179
1180    The requested size is first converted into a usable form, `nb'.
1181    This currently means to add 4 bytes overhead plus possibly more to
1182    obtain 8-byte alignment and/or to obtain a size of at least
1183    MINSIZE (currently 16 bytes), the smallest allocatable size.
1184    (All fits are considered `exact' if they are within MINSIZE bytes.)
1185
1186    From there, the first successful of the following steps is taken:
1187
1188      1. The bin corresponding to the request size is scanned, and if
1189         a chunk of exactly the right size is found, it is taken.
1190
1191      2. The most recently remaindered chunk is used if it is big
1192         enough.  This is a form of (roving) first fit, used only in
1193         the absence of exact fits. Runs of consecutive requests use
1194         the remainder of the chunk used for the previous such request
1195         whenever possible. This limited use of a first-fit style
1196         allocation strategy tends to give contiguous chunks
1197         coextensive lifetimes, which improves locality and can reduce
1198         fragmentation in the long run.
1199
1200      3. Other bins are scanned in increasing size order, using a
1201         chunk big enough to fulfill the request, and splitting off
1202         any remainder.  This search is strictly by best-fit; i.e.,
1203         the smallest (with ties going to approximately the least
1204         recently used) chunk that fits is selected.
1205
1206      4. If large enough, the chunk bordering the end of memory
1207         (`top') is split off. (This use of `top' is in accord with
1208         the best-fit search rule.  In effect, `top' is treated as
1209         larger (and thus less well fitting) than any other available
1210         chunk since it can be extended to be as large as necessary
1211         (up to system limitations).
1212
1213      5. If the request size meets the mmap threshold and the
1214         system supports mmap, and there are few enough currently
1215         allocated mmapped regions, and a call to mmap succeeds,
1216         the request is allocated via direct memory mapping.
1217
1218      6. Otherwise, the top of memory is extended by
1219         obtaining more space from the system (normally using sbrk,
1220         but definable to anything else via the MORECORE macro).
1221         Memory is gathered from the system (in system page-sized
1222         units) in a way that allows chunks obtained across different
1223         sbrk calls to be consolidated, but does not require
1224         contiguous memory. Thus, it should be safe to intersperse
1225         mallocs with other sbrk calls.
1226
1227
1228      All allocations are made from the the `lowest' part of any found
1229      chunk. (The implementation invariant is that prev_inuse is
1230      always true of any allocated chunk; i.e., that each allocated
1231      chunk borders either a previously allocated and still in-use chunk,
1232      or the base of its memory arena.)
1233
1234*/
1235
1236#if __STD_C
1237Void_t* mALLOc(size_t bytes)
1238#else
1239Void_t* mALLOc(bytes) size_t bytes;
1240#endif
1241{
1242  mchunkptr victim;                  /* inspected/selected chunk */
1243  INTERNAL_SIZE_T victim_size;       /* its size */
1244  int       idx;                     /* index for bin traversal */
1245  mbinptr   bin;                     /* associated bin */
1246  mchunkptr remainder;               /* remainder from a split */
1247  long      remainder_size;          /* its size */
1248  int       remainder_index;         /* its bin index */
1249  unsigned long block;               /* block traverser bit */
1250  int       startidx;                /* first bin of a traversed block */
1251  mchunkptr fwd;                     /* misc temp for linking */
1252  mchunkptr bck;                     /* misc temp for linking */
1253  mbinptr q;                         /* misc temp */
1254
1255  INTERNAL_SIZE_T nb;
1256
1257#ifdef CONFIG_SYS_MALLOC_F_LEN
1258        if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT))
1259                return malloc_simple(bytes);
1260#endif
1261
1262  /* check if mem_malloc_init() was run */
1263  if ((mem_malloc_start == 0) && (mem_malloc_end == 0)) {
1264    /* not initialized yet */
1265    return NULL;
1266  }
1267
1268  if ((long)bytes < 0) return NULL;
1269
1270  nb = request2size(bytes);  /* padded request size; */
1271
1272  /* Check for exact match in a bin */
1273
1274  if (is_small_request(nb))  /* Faster version for small requests */
1275  {
1276    idx = smallbin_index(nb);
1277
1278    /* No traversal or size check necessary for small bins.  */
1279
1280    q = bin_at(idx);
1281    victim = last(q);
1282
1283    /* Also scan the next one, since it would have a remainder < MINSIZE */
1284    if (victim == q)
1285    {
1286      q = next_bin(q);
1287      victim = last(q);
1288    }
1289    if (victim != q)
1290    {
1291      victim_size = chunksize(victim);
1292      unlink(victim, bck, fwd);
1293      set_inuse_bit_at_offset(victim, victim_size);
1294      check_malloced_chunk(victim, nb);
1295      return chunk2mem(victim);
1296    }
1297
1298    idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
1299
1300  }
1301  else
1302  {
1303    idx = bin_index(nb);
1304    bin = bin_at(idx);
1305
1306    for (victim = last(bin); victim != bin; victim = victim->bk)
1307    {
1308      victim_size = chunksize(victim);
1309      remainder_size = victim_size - nb;
1310
1311      if (remainder_size >= (long)MINSIZE) /* too big */
1312      {
1313        --idx; /* adjust to rescan below after checking last remainder */
1314        break;
1315      }
1316
1317      else if (remainder_size >= 0) /* exact fit */
1318      {
1319        unlink(victim, bck, fwd);
1320        set_inuse_bit_at_offset(victim, victim_size);
1321        check_malloced_chunk(victim, nb);
1322        return chunk2mem(victim);
1323      }
1324    }
1325
1326    ++idx;
1327
1328  }
1329
1330  /* Try to use the last split-off remainder */
1331
1332  if ( (victim = last_remainder->fd) != last_remainder)
1333  {
1334    victim_size = chunksize(victim);
1335    remainder_size = victim_size - nb;
1336
1337    if (remainder_size >= (long)MINSIZE) /* re-split */
1338    {
1339      remainder = chunk_at_offset(victim, nb);
1340      set_head(victim, nb | PREV_INUSE);
1341      link_last_remainder(remainder);
1342      set_head(remainder, remainder_size | PREV_INUSE);
1343      set_foot(remainder, remainder_size);
1344      check_malloced_chunk(victim, nb);
1345      return chunk2mem(victim);
1346    }
1347
1348    clear_last_remainder;
1349
1350    if (remainder_size >= 0)  /* exhaust */
1351    {
1352      set_inuse_bit_at_offset(victim, victim_size);
1353      check_malloced_chunk(victim, nb);
1354      return chunk2mem(victim);
1355    }
1356
1357    /* Else place in bin */
1358
1359    frontlink(victim, victim_size, remainder_index, bck, fwd);
1360  }
1361
1362  /*
1363     If there are any possibly nonempty big-enough blocks,
1364     search for best fitting chunk by scanning bins in blockwidth units.
1365  */
1366
1367  if ( (block = idx2binblock(idx)) <= binblocks_r)
1368  {
1369
1370    /* Get to the first marked block */
1371
1372    if ( (block & binblocks_r) == 0)
1373    {
1374      /* force to an even block boundary */
1375      idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
1376      block <<= 1;
1377      while ((block & binblocks_r) == 0)
1378      {
1379        idx += BINBLOCKWIDTH;
1380        block <<= 1;
1381      }
1382    }
1383
1384    /* For each possibly nonempty block ... */
1385    for (;;)
1386    {
1387      startidx = idx;          /* (track incomplete blocks) */
1388      q = bin = bin_at(idx);
1389
1390      /* For each bin in this block ... */
1391      do
1392      {
1393        /* Find and use first big enough chunk ... */
1394
1395        for (victim = last(bin); victim != bin; victim = victim->bk)
1396        {
1397          victim_size = chunksize(victim);
1398          remainder_size = victim_size - nb;
1399
1400          if (remainder_size >= (long)MINSIZE) /* split */
1401          {
1402            remainder = chunk_at_offset(victim, nb);
1403            set_head(victim, nb | PREV_INUSE);
1404            unlink(victim, bck, fwd);
1405            link_last_remainder(remainder);
1406            set_head(remainder, remainder_size | PREV_INUSE);
1407            set_foot(remainder, remainder_size);
1408            check_malloced_chunk(victim, nb);
1409            return chunk2mem(victim);
1410          }
1411
1412          else if (remainder_size >= 0)  /* take */
1413          {
1414            set_inuse_bit_at_offset(victim, victim_size);
1415            unlink(victim, bck, fwd);
1416            check_malloced_chunk(victim, nb);
1417            return chunk2mem(victim);
1418          }
1419
1420        }
1421
1422       bin = next_bin(bin);
1423
1424      } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
1425
1426      /* Clear out the block bit. */
1427
1428      do   /* Possibly backtrack to try to clear a partial block */
1429      {
1430        if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
1431        {
1432          av_[1] = (mbinptr)(binblocks_r & ~block);
1433          break;
1434        }
1435        --startidx;
1436       q = prev_bin(q);
1437      } while (first(q) == q);
1438
1439      /* Get to the next possibly nonempty block */
1440
1441      if ( (block <<= 1) <= binblocks_r && (block != 0) )
1442      {
1443        while ((block & binblocks_r) == 0)
1444        {
1445          idx += BINBLOCKWIDTH;
1446          block <<= 1;
1447        }
1448      }
1449      else
1450        break;
1451    }
1452  }
1453
1454
1455  /* Try to use top chunk */
1456
1457  /* Require that there be a remainder, ensuring top always exists  */
1458  if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
1459  {
1460
1461#if HAVE_MMAP
1462    /* If big and would otherwise need to extend, try to use mmap instead */
1463    if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
1464        (victim = mmap_chunk(nb)) != 0)
1465      return chunk2mem(victim);
1466#endif
1467
1468    /* Try to extend */
1469    malloc_extend_top(nb);
1470    if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
1471      return NULL; /* propagate failure */
1472  }
1473
1474  victim = top;
1475  set_head(victim, nb | PREV_INUSE);
1476  top = chunk_at_offset(victim, nb);
1477  set_head(top, remainder_size | PREV_INUSE);
1478  check_malloced_chunk(victim, nb);
1479  return chunk2mem(victim);
1480
1481}
1482
1483
1484
1485
1486/*
1487
1488  free() algorithm :
1489
1490    cases:
1491
1492       1. free(0) has no effect.
1493
1494       2. If the chunk was allocated via mmap, it is release via munmap().
1495
1496       3. If a returned chunk borders the current high end of memory,
1497          it is consolidated into the top, and if the total unused
1498          topmost memory exceeds the trim threshold, malloc_trim is
1499          called.
1500
1501       4. Other chunks are consolidated as they arrive, and
1502          placed in corresponding bins. (This includes the case of
1503          consolidating with the current `last_remainder').
1504
1505*/
1506
1507
1508#if __STD_C
1509void fREe(Void_t* mem)
1510#else
1511void fREe(mem) Void_t* mem;
1512#endif
1513{
1514  mchunkptr p;         /* chunk corresponding to mem */
1515  INTERNAL_SIZE_T hd;  /* its head field */
1516  INTERNAL_SIZE_T sz;  /* its size */
1517  int       idx;       /* its bin index */
1518  mchunkptr next;      /* next contiguous chunk */
1519  INTERNAL_SIZE_T nextsz; /* its size */
1520  INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
1521  mchunkptr bck;       /* misc temp for linking */
1522  mchunkptr fwd;       /* misc temp for linking */
1523  int       islr;      /* track whether merging with last_remainder */
1524
1525#ifdef CONFIG_SYS_MALLOC_F_LEN
1526        /* free() is a no-op - all the memory will be freed on relocation */
1527        if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT))
1528                return;
1529#endif
1530
1531  if (mem == NULL)                              /* free(0) has no effect */
1532    return;
1533
1534  p = mem2chunk(mem);
1535  hd = p->size;
1536
1537#if HAVE_MMAP
1538  if (hd & IS_MMAPPED)                       /* release mmapped memory. */
1539  {
1540    munmap_chunk(p);
1541    return;
1542  }
1543#endif
1544
1545  check_inuse_chunk(p);
1546
1547  sz = hd & ~PREV_INUSE;
1548  next = chunk_at_offset(p, sz);
1549  nextsz = chunksize(next);
1550
1551  if (next == top)                            /* merge with top */
1552  {
1553    sz += nextsz;
1554
1555    if (!(hd & PREV_INUSE))                    /* consolidate backward */
1556    {
1557      prevsz = p->prev_size;
1558      p = chunk_at_offset(p, -((long) prevsz));
1559      sz += prevsz;
1560      unlink(p, bck, fwd);
1561    }
1562
1563    set_head(p, sz | PREV_INUSE);
1564    top = p;
1565    if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
1566      malloc_trim(top_pad);
1567    return;
1568  }
1569
1570  set_head(next, nextsz);                    /* clear inuse bit */
1571
1572  islr = 0;
1573
1574  if (!(hd & PREV_INUSE))                    /* consolidate backward */
1575  {
1576    prevsz = p->prev_size;
1577    p = chunk_at_offset(p, -((long) prevsz));
1578    sz += prevsz;
1579
1580    if (p->fd == last_remainder)             /* keep as last_remainder */
1581      islr = 1;
1582    else
1583      unlink(p, bck, fwd);
1584  }
1585
1586  if (!(inuse_bit_at_offset(next, nextsz)))   /* consolidate forward */
1587  {
1588    sz += nextsz;
1589
1590    if (!islr && next->fd == last_remainder)  /* re-insert last_remainder */
1591    {
1592      islr = 1;
1593      link_last_remainder(p);
1594    }
1595    else
1596      unlink(next, bck, fwd);
1597  }
1598
1599
1600  set_head(p, sz | PREV_INUSE);
1601  set_foot(p, sz);
1602  if (!islr)
1603    frontlink(p, sz, idx, bck, fwd);
1604}
1605
1606
1607
1608
1609
1610/*
1611
1612  Realloc algorithm:
1613
1614    Chunks that were obtained via mmap cannot be extended or shrunk
1615    unless HAVE_MREMAP is defined, in which case mremap is used.
1616    Otherwise, if their reallocation is for additional space, they are
1617    copied.  If for less, they are just left alone.
1618
1619    Otherwise, if the reallocation is for additional space, and the
1620    chunk can be extended, it is, else a malloc-copy-free sequence is
1621    taken.  There are several different ways that a chunk could be
1622    extended. All are tried:
1623
1624       * Extending forward into following adjacent free chunk.
1625       * Shifting backwards, joining preceding adjacent space
1626       * Both shifting backwards and extending forward.
1627       * Extending into newly sbrked space
1628
1629    Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
1630    size argument of zero (re)allocates a minimum-sized chunk.
1631
1632    If the reallocation is for less space, and the new request is for
1633    a `small' (<512 bytes) size, then the newly unused space is lopped
1634    off and freed.
1635
1636    The old unix realloc convention of allowing the last-free'd chunk
1637    to be used as an argument to realloc is no longer supported.
1638    I don't know of any programs still relying on this feature,
1639    and allowing it would also allow too many other incorrect
1640    usages of realloc to be sensible.
1641
1642
1643*/
1644
1645
1646#if __STD_C
1647Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
1648#else
1649Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
1650#endif
1651{
1652  INTERNAL_SIZE_T    nb;      /* padded request size */
1653
1654  mchunkptr oldp;             /* chunk corresponding to oldmem */
1655  INTERNAL_SIZE_T    oldsize; /* its size */
1656
1657  mchunkptr newp;             /* chunk to return */
1658  INTERNAL_SIZE_T    newsize; /* its size */
1659  Void_t*   newmem;           /* corresponding user mem */
1660
1661  mchunkptr next;             /* next contiguous chunk after oldp */
1662  INTERNAL_SIZE_T  nextsize;  /* its size */
1663
1664  mchunkptr prev;             /* previous contiguous chunk before oldp */
1665  INTERNAL_SIZE_T  prevsize;  /* its size */
1666
1667  mchunkptr remainder;        /* holds split off extra space from newp */
1668  INTERNAL_SIZE_T  remainder_size;   /* its size */
1669
1670  mchunkptr bck;              /* misc temp for linking */
1671  mchunkptr fwd;              /* misc temp for linking */
1672
1673#ifdef REALLOC_ZERO_BYTES_FREES
1674  if (bytes == 0) { fREe(oldmem); return 0; }
1675#endif
1676
1677  if ((long)bytes < 0) return NULL;
1678
1679  /* realloc of null is supposed to be same as malloc */
1680  if (oldmem == NULL) return mALLOc(bytes);
1681
1682#ifdef CONFIG_SYS_MALLOC_F_LEN
1683        if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
1684                /* This is harder to support and should not be needed */
1685                panic("pre-reloc realloc() is not supported");
1686        }
1687#endif
1688
1689  newp    = oldp    = mem2chunk(oldmem);
1690  newsize = oldsize = chunksize(oldp);
1691
1692
1693  nb = request2size(bytes);
1694
1695#if HAVE_MMAP
1696  if (chunk_is_mmapped(oldp))
1697  {
1698#if HAVE_MREMAP
1699    newp = mremap_chunk(oldp, nb);
1700    if(newp) return chunk2mem(newp);
1701#endif
1702    /* Note the extra SIZE_SZ overhead. */
1703    if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
1704    /* Must alloc, copy, free. */
1705    newmem = mALLOc(bytes);
1706    if (newmem == 0) return 0; /* propagate failure */
1707    MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
1708    munmap_chunk(oldp);
1709    return newmem;
1710  }
1711#endif
1712
1713  check_inuse_chunk(oldp);
1714
1715  if ((long)(oldsize) < (long)(nb))
1716  {
1717
1718    /* Try expanding forward */
1719
1720    next = chunk_at_offset(oldp, oldsize);
1721    if (next == top || !inuse(next))
1722    {
1723      nextsize = chunksize(next);
1724
1725      /* Forward into top only if a remainder */
1726      if (next == top)
1727      {
1728        if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
1729        {
1730          newsize += nextsize;
1731          top = chunk_at_offset(oldp, nb);
1732          set_head(top, (newsize - nb) | PREV_INUSE);
1733          set_head_size(oldp, nb);
1734          return chunk2mem(oldp);
1735        }
1736      }
1737
1738      /* Forward into next chunk */
1739      else if (((long)(nextsize + newsize) >= (long)(nb)))
1740      {
1741        unlink(next, bck, fwd);
1742        newsize  += nextsize;
1743        goto split;
1744      }
1745    }
1746    else
1747    {
1748      next = NULL;
1749      nextsize = 0;
1750    }
1751
1752    /* Try shifting backwards. */
1753
1754    if (!prev_inuse(oldp))
1755    {
1756      prev = prev_chunk(oldp);
1757      prevsize = chunksize(prev);
1758
1759      /* try forward + backward first to save a later consolidation */
1760
1761      if (next != NULL)
1762      {
1763        /* into top */
1764        if (next == top)
1765        {
1766          if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
1767          {
1768            unlink(prev, bck, fwd);
1769            newp = prev;
1770            newsize += prevsize + nextsize;
1771            newmem = chunk2mem(newp);
1772            MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1773            top = chunk_at_offset(newp, nb);
1774            set_head(top, (newsize - nb) | PREV_INUSE);
1775            set_head_size(newp, nb);
1776            return newmem;
1777          }
1778        }
1779
1780        /* into next chunk */
1781        else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
1782        {
1783          unlink(next, bck, fwd);
1784          unlink(prev, bck, fwd);
1785          newp = prev;
1786          newsize += nextsize + prevsize;
1787          newmem = chunk2mem(newp);
1788          MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1789          goto split;
1790        }
1791      }
1792
1793      /* backward only */
1794      if (prev != NULL && (long)(prevsize + newsize) >= (long)nb)
1795      {
1796        unlink(prev, bck, fwd);
1797        newp = prev;
1798        newsize += prevsize;
1799        newmem = chunk2mem(newp);
1800        MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1801        goto split;
1802      }
1803    }
1804
1805    /* Must allocate */
1806
1807    newmem = mALLOc (bytes);
1808
1809    if (newmem == NULL)  /* propagate failure */
1810      return NULL;
1811
1812    /* Avoid copy if newp is next chunk after oldp. */
1813    /* (This can only happen when new chunk is sbrk'ed.) */
1814
1815    if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
1816    {
1817      newsize += chunksize(newp);
1818      newp = oldp;
1819      goto split;
1820    }
1821
1822    /* Otherwise copy, free, and exit */
1823    MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1824    fREe(oldmem);
1825    return newmem;
1826  }
1827
1828
1829 split:  /* split off extra room in old or expanded chunk */
1830
1831  if (newsize - nb >= MINSIZE) /* split off remainder */
1832  {
1833    remainder = chunk_at_offset(newp, nb);
1834    remainder_size = newsize - nb;
1835    set_head_size(newp, nb);
1836    set_head(remainder, remainder_size | PREV_INUSE);
1837    set_inuse_bit_at_offset(remainder, remainder_size);
1838    fREe(chunk2mem(remainder)); /* let free() deal with it */
1839  }
1840  else
1841  {
1842    set_head_size(newp, newsize);
1843    set_inuse_bit_at_offset(newp, newsize);
1844  }
1845
1846  check_inuse_chunk(newp);
1847  return chunk2mem(newp);
1848}
1849
1850
1851
1852
1853/*
1854
1855  memalign algorithm:
1856
1857    memalign requests more than enough space from malloc, finds a spot
1858    within that chunk that meets the alignment request, and then
1859    possibly frees the leading and trailing space.
1860
1861    The alignment argument must be a power of two. This property is not
1862    checked by memalign, so misuse may result in random runtime errors.
1863
1864    8-byte alignment is guaranteed by normal malloc calls, so don't
1865    bother calling memalign with an argument of 8 or less.
1866
1867    Overreliance on memalign is a sure way to fragment space.
1868
1869*/
1870
1871
1872#if __STD_C
1873Void_t* mEMALIGn(size_t alignment, size_t bytes)
1874#else
1875Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
1876#endif
1877{
1878  INTERNAL_SIZE_T    nb;      /* padded  request size */
1879  char*     m;                /* memory returned by malloc call */
1880  mchunkptr p;                /* corresponding chunk */
1881  char*     brk;              /* alignment point within p */
1882  mchunkptr newp;             /* chunk to return */
1883  INTERNAL_SIZE_T  newsize;   /* its size */
1884  INTERNAL_SIZE_T  leadsize;  /* leading space befor alignment point */
1885  mchunkptr remainder;        /* spare room at end to split off */
1886  long      remainder_size;   /* its size */
1887
1888  if ((long)bytes < 0) return NULL;
1889
1890  /* If need less alignment than we give anyway, just relay to malloc */
1891
1892  if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
1893
1894  /* Otherwise, ensure that it is at least a minimum chunk size */
1895
1896  if (alignment <  MINSIZE) alignment = MINSIZE;
1897
1898  /* Call malloc with worst case padding to hit alignment. */
1899
1900  nb = request2size(bytes);
1901  m  = (char*)(mALLOc(nb + alignment + MINSIZE));
1902
1903  /*
1904  * The attempt to over-allocate (with a size large enough to guarantee the
1905  * ability to find an aligned region within allocated memory) failed.
1906  *
1907  * Try again, this time only allocating exactly the size the user wants. If
1908  * the allocation now succeeds and just happens to be aligned, we can still
1909  * fulfill the user's request.
1910  */
1911  if (m == NULL) {
1912    size_t extra, extra2;
1913    /*
1914     * Use bytes not nb, since mALLOc internally calls request2size too, and
1915     * each call increases the size to allocate, to account for the header.
1916     */
1917    m  = (char*)(mALLOc(bytes));
1918    /* Aligned -> return it */
1919    if ((((unsigned long)(m)) % alignment) == 0)
1920      return m;
1921    /*
1922     * Otherwise, try again, requesting enough extra space to be able to
1923     * acquire alignment.
1924     */
1925    fREe(m);
1926    /* Add in extra bytes to match misalignment of unexpanded allocation */
1927    extra = alignment - (((unsigned long)(m)) % alignment);
1928    m  = (char*)(mALLOc(bytes + extra));
1929    /*
1930     * m might not be the same as before. Validate that the previous value of
1931     * extra still works for the current value of m.
1932     * If (!m), extra2=alignment so 
1933     */
1934    if (m) {
1935      extra2 = alignment - (((unsigned long)(m)) % alignment);
1936      if (extra2 > extra) {
1937        fREe(m);
1938        m = NULL;
1939      }
1940    }
1941    /* Fall through to original NULL check and chunk splitting logic */
1942  }
1943
1944  if (m == NULL) return NULL; /* propagate failure */
1945
1946  p = mem2chunk(m);
1947
1948  if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
1949  {
1950#if HAVE_MMAP
1951    if(chunk_is_mmapped(p))
1952      return chunk2mem(p); /* nothing more to do */
1953#endif
1954  }
1955  else /* misaligned */
1956  {
1957    /*
1958      Find an aligned spot inside chunk.
1959      Since we need to give back leading space in a chunk of at
1960      least MINSIZE, if the first calculation places us at
1961      a spot with less than MINSIZE leader, we can move to the
1962      next aligned spot -- we've allocated enough total room so that
1963      this is always possible.
1964    */
1965
1966    brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
1967    if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
1968
1969    newp = (mchunkptr)brk;
1970    leadsize = brk - (char*)(p);
1971    newsize = chunksize(p) - leadsize;
1972
1973#if HAVE_MMAP
1974    if(chunk_is_mmapped(p))
1975    {
1976      newp->prev_size = p->prev_size + leadsize;
1977      set_head(newp, newsize|IS_MMAPPED);
1978      return chunk2mem(newp);
1979    }
1980#endif
1981
1982    /* give back leader, use the rest */
1983
1984    set_head(newp, newsize | PREV_INUSE);
1985    set_inuse_bit_at_offset(newp, newsize);
1986    set_head_size(p, leadsize);
1987    fREe(chunk2mem(p));
1988    p = newp;
1989
1990    assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
1991  }
1992
1993  /* Also give back spare room at the end */
1994
1995  remainder_size = chunksize(p) - nb;
1996
1997  if (remainder_size >= (long)MINSIZE)
1998  {
1999    remainder = chunk_at_offset(p, nb);
2000    set_head(remainder, remainder_size | PREV_INUSE);
2001    set_head_size(p, nb);
2002    fREe(chunk2mem(remainder));
2003  }
2004
2005  check_inuse_chunk(p);
2006  return chunk2mem(p);
2007
2008}
2009
2010
2011
2012
2013/*
2014    valloc just invokes memalign with alignment argument equal
2015    to the page size of the system (or as near to this as can
2016    be figured out from all the includes/defines above.)
2017*/
2018
2019#if __STD_C
2020Void_t* vALLOc(size_t bytes)
2021#else
2022Void_t* vALLOc(bytes) size_t bytes;
2023#endif
2024{
2025  return mEMALIGn (malloc_getpagesize, bytes);
2026}
2027
2028/*
2029  pvalloc just invokes valloc for the nearest pagesize
2030  that will accommodate request
2031*/
2032
2033
2034#if __STD_C
2035Void_t* pvALLOc(size_t bytes)
2036#else
2037Void_t* pvALLOc(bytes) size_t bytes;
2038#endif
2039{
2040  size_t pagesize = malloc_getpagesize;
2041  return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
2042}
2043
2044/*
2045
2046  calloc calls malloc, then zeroes out the allocated chunk.
2047
2048*/
2049
2050#if __STD_C
2051Void_t* cALLOc(size_t n, size_t elem_size)
2052#else
2053Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
2054#endif
2055{
2056  mchunkptr p;
2057  INTERNAL_SIZE_T csz;
2058
2059  INTERNAL_SIZE_T sz = n * elem_size;
2060
2061
2062  /* check if expand_top called, in which case don't need to clear */
2063#ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
2064#if MORECORE_CLEARS
2065  mchunkptr oldtop = top;
2066  INTERNAL_SIZE_T oldtopsize = chunksize(top);
2067#endif
2068#endif
2069  Void_t* mem = mALLOc (sz);
2070
2071  if ((long)n < 0) return NULL;
2072
2073  if (mem == NULL)
2074    return NULL;
2075  else
2076  {
2077#ifdef CONFIG_SYS_MALLOC_F_LEN
2078        if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
2079                MALLOC_ZERO(mem, sz);
2080                return mem;
2081        }
2082#endif
2083    p = mem2chunk(mem);
2084
2085    /* Two optional cases in which clearing not necessary */
2086
2087
2088#if HAVE_MMAP
2089    if (chunk_is_mmapped(p)) return mem;
2090#endif
2091
2092    csz = chunksize(p);
2093
2094#ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
2095#if MORECORE_CLEARS
2096    if (p == oldtop && csz > oldtopsize)
2097    {
2098      /* clear only the bytes from non-freshly-sbrked memory */
2099      csz = oldtopsize;
2100    }
2101#endif
2102#endif
2103
2104    MALLOC_ZERO(mem, csz - SIZE_SZ);
2105    return mem;
2106  }
2107}
2108
2109/*
2110
2111  cfree just calls free. It is needed/defined on some systems
2112  that pair it with calloc, presumably for odd historical reasons.
2113
2114*/
2115
2116#if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
2117#if __STD_C
2118void cfree(Void_t *mem)
2119#else
2120void cfree(mem) Void_t *mem;
2121#endif
2122{
2123  fREe(mem);
2124}
2125#endif
2126
2127
2128
2129/*
2130
2131    Malloc_trim gives memory back to the system (via negative
2132    arguments to sbrk) if there is unused memory at the `high' end of
2133    the malloc pool. You can call this after freeing large blocks of
2134    memory to potentially reduce the system-level memory requirements
2135    of a program. However, it cannot guarantee to reduce memory. Under
2136    some allocation patterns, some large free blocks of memory will be
2137    locked between two used chunks, so they cannot be given back to
2138    the system.
2139
2140    The `pad' argument to malloc_trim represents the amount of free
2141    trailing space to leave untrimmed. If this argument is zero,
2142    only the minimum amount of memory to maintain internal data
2143    structures will be left (one page or less). Non-zero arguments
2144    can be supplied to maintain enough trailing space to service
2145    future expected allocations without having to re-obtain memory
2146    from the system.
2147
2148    Malloc_trim returns 1 if it actually released any memory, else 0.
2149
2150*/
2151
2152#if __STD_C
2153int malloc_trim(size_t pad)
2154#else
2155int malloc_trim(pad) size_t pad;
2156#endif
2157{
2158  long  top_size;        /* Amount of top-most memory */
2159  long  extra;           /* Amount to release */
2160  char* current_brk;     /* address returned by pre-check sbrk call */
2161  char* new_brk;         /* address returned by negative sbrk call */
2162
2163  unsigned long pagesz = malloc_getpagesize;
2164
2165  top_size = chunksize(top);
2166  extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
2167
2168  if (extra < (long)pagesz)  /* Not enough memory to release */
2169    return 0;
2170
2171  else
2172  {
2173    /* Test to make sure no one else called sbrk */
2174    current_brk = (char*)(MORECORE (0));
2175    if (current_brk != (char*)(top) + top_size)
2176      return 0;     /* Apparently we don't own memory; must fail */
2177
2178    else
2179    {
2180      new_brk = (char*)(MORECORE (-extra));
2181
2182      if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
2183      {
2184        /* Try to figure out what we have */
2185        current_brk = (char*)(MORECORE (0));
2186        top_size = current_brk - (char*)top;
2187        if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
2188        {
2189          sbrked_mem = current_brk - sbrk_base;
2190          set_head(top, top_size | PREV_INUSE);
2191        }
2192        check_chunk(top);
2193        return 0;
2194      }
2195
2196      else
2197      {
2198        /* Success. Adjust top accordingly. */
2199        set_head(top, (top_size - extra) | PREV_INUSE);
2200        sbrked_mem -= extra;
2201        check_chunk(top);
2202        return 1;
2203      }
2204    }
2205  }
2206}
2207
2208
2209
2210/*
2211  malloc_usable_size:
2212
2213    This routine tells you how many bytes you can actually use in an
2214    allocated chunk, which may be more than you requested (although
2215    often not). You can use this many bytes without worrying about
2216    overwriting other allocated objects. Not a particularly great
2217    programming practice, but still sometimes useful.
2218
2219*/
2220
2221#if __STD_C
2222size_t malloc_usable_size(Void_t* mem)
2223#else
2224size_t malloc_usable_size(mem) Void_t* mem;
2225#endif
2226{
2227  mchunkptr p;
2228  if (mem == NULL)
2229    return 0;
2230  else
2231  {
2232    p = mem2chunk(mem);
2233    if(!chunk_is_mmapped(p))
2234    {
2235      if (!inuse(p)) return 0;
2236      check_inuse_chunk(p);
2237      return chunksize(p) - SIZE_SZ;
2238    }
2239    return chunksize(p) - 2*SIZE_SZ;
2240  }
2241}
2242
2243
2244
2245
2246/* Utility to update current_mallinfo for malloc_stats and mallinfo() */
2247
2248#ifdef DEBUG
2249static void malloc_update_mallinfo()
2250{
2251  int i;
2252  mbinptr b;
2253  mchunkptr p;
2254#ifdef DEBUG
2255  mchunkptr q;
2256#endif
2257
2258  INTERNAL_SIZE_T avail = chunksize(top);
2259  int   navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
2260
2261  for (i = 1; i < NAV; ++i)
2262  {
2263    b = bin_at(i);
2264    for (p = last(b); p != b; p = p->bk)
2265    {
2266#ifdef DEBUG
2267      check_free_chunk(p);
2268      for (q = next_chunk(p);
2269           q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
2270           q = next_chunk(q))
2271        check_inuse_chunk(q);
2272#endif
2273      avail += chunksize(p);
2274      navail++;
2275    }
2276  }
2277
2278  current_mallinfo.ordblks = navail;
2279  current_mallinfo.uordblks = sbrked_mem - avail;
2280  current_mallinfo.fordblks = avail;
2281  current_mallinfo.hblks = n_mmaps;
2282  current_mallinfo.hblkhd = mmapped_mem;
2283  current_mallinfo.keepcost = chunksize(top);
2284
2285}
2286#endif  /* DEBUG */
2287
2288
2289
2290/*
2291
2292  malloc_stats:
2293
2294    Prints on the amount of space obtain from the system (both
2295    via sbrk and mmap), the maximum amount (which may be more than
2296    current if malloc_trim and/or munmap got called), the maximum
2297    number of simultaneous mmap regions used, and the current number
2298    of bytes allocated via malloc (or realloc, etc) but not yet
2299    freed. (Note that this is the number of bytes allocated, not the
2300    number requested. It will be larger than the number requested
2301    because of alignment and bookkeeping overhead.)
2302
2303*/
2304
2305#ifdef DEBUG
2306void malloc_stats()
2307{
2308  malloc_update_mallinfo();
2309  printf("max system bytes = %10u\n",
2310          (unsigned int)(max_total_mem));
2311  printf("system bytes     = %10u\n",
2312          (unsigned int)(sbrked_mem + mmapped_mem));
2313  printf("in use bytes     = %10u\n",
2314          (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
2315#if HAVE_MMAP
2316  printf("max mmap regions = %10u\n",
2317          (unsigned int)max_n_mmaps);
2318#endif
2319}
2320#endif  /* DEBUG */
2321
2322/*
2323  mallinfo returns a copy of updated current mallinfo.
2324*/
2325
2326#ifdef DEBUG
2327struct mallinfo mALLINFo()
2328{
2329  malloc_update_mallinfo();
2330  return current_mallinfo;
2331}
2332#endif  /* DEBUG */
2333
2334
2335
2336
2337/*
2338  mallopt:
2339
2340    mallopt is the general SVID/XPG interface to tunable parameters.
2341    The format is to provide a (parameter-number, parameter-value) pair.
2342    mallopt then sets the corresponding parameter to the argument
2343    value if it can (i.e., so long as the value is meaningful),
2344    and returns 1 if successful else 0.
2345
2346    See descriptions of tunable parameters above.
2347
2348*/
2349
2350#if __STD_C
2351int mALLOPt(int param_number, int value)
2352#else
2353int mALLOPt(param_number, value) int param_number; int value;
2354#endif
2355{
2356  switch(param_number)
2357  {
2358    case M_TRIM_THRESHOLD:
2359      trim_threshold = value; return 1;
2360    case M_TOP_PAD:
2361      top_pad = value; return 1;
2362    case M_MMAP_THRESHOLD:
2363      mmap_threshold = value; return 1;
2364    case M_MMAP_MAX:
2365#if HAVE_MMAP
2366      n_mmaps_max = value; return 1;
2367#else
2368      if (value != 0) return 0; else  n_mmaps_max = value; return 1;
2369#endif
2370
2371    default:
2372      return 0;
2373  }
2374}
2375
2376int initf_malloc(void)
2377{
2378#ifdef CONFIG_SYS_MALLOC_F_LEN
2379        assert(gd->malloc_base);        /* Set up by crt0.S */
2380        gd->malloc_limit = CONFIG_SYS_MALLOC_F_LEN;
2381        gd->malloc_ptr = 0;
2382#endif
2383
2384        return 0;
2385}
2386
2387/*
2388
2389History:
2390
2391    V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee)
2392      * return null for negative arguments
2393      * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com>
2394         * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
2395          (e.g. WIN32 platforms)
2396         * Cleanup up header file inclusion for WIN32 platforms
2397         * Cleanup code to avoid Microsoft Visual C++ compiler complaints
2398         * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
2399           memory allocation routines
2400         * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
2401         * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
2402           usage of 'assert' in non-WIN32 code
2403         * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
2404           avoid infinite loop
2405      * Always call 'fREe()' rather than 'free()'
2406
2407    V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee)
2408      * Fixed ordering problem with boundary-stamping
2409
2410    V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
2411      * Added pvalloc, as recommended by H.J. Liu
2412      * Added 64bit pointer support mainly from Wolfram Gloger
2413      * Added anonymously donated WIN32 sbrk emulation
2414      * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
2415      * malloc_extend_top: fix mask error that caused wastage after
2416        foreign sbrks
2417      * Add linux mremap support code from HJ Liu
2418
2419    V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
2420      * Integrated most documentation with the code.
2421      * Add support for mmap, with help from
2422        Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
2423      * Use last_remainder in more cases.
2424      * Pack bins using idea from  colin@nyx10.cs.du.edu
2425      * Use ordered bins instead of best-fit threshhold
2426      * Eliminate block-local decls to simplify tracing and debugging.
2427      * Support another case of realloc via move into top
2428      * Fix error occuring when initial sbrk_base not word-aligned.
2429      * Rely on page size for units instead of SBRK_UNIT to
2430        avoid surprises about sbrk alignment conventions.
2431      * Add mallinfo, mallopt. Thanks to Raymond Nijssen
2432        (raymond@es.ele.tue.nl) for the suggestion.
2433      * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
2434      * More precautions for cases where other routines call sbrk,
2435        courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
2436      * Added macros etc., allowing use in linux libc from
2437        H.J. Lu (hjl@gnu.ai.mit.edu)
2438      * Inverted this history list
2439
2440    V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
2441      * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
2442      * Removed all preallocation code since under current scheme
2443        the work required to undo bad preallocations exceeds
2444        the work saved in good cases for most test programs.
2445      * No longer use return list or unconsolidated bins since
2446        no scheme using them consistently outperforms those that don't
2447        given above changes.
2448      * Use best fit for very large chunks to prevent some worst-cases.
2449      * Added some support for debugging
2450
2451    V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
2452      * Removed footers when chunks are in use. Thanks to
2453        Paul Wilson (wilson@cs.texas.edu) for the suggestion.
2454
2455    V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
2456      * Added malloc_trim, with help from Wolfram Gloger
2457        (wmglo@Dent.MED.Uni-Muenchen.DE).
2458
2459    V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)
2460
2461    V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
2462      * realloc: try to expand in both directions
2463      * malloc: swap order of clean-bin strategy;
2464      * realloc: only conditionally expand backwards
2465      * Try not to scavenge used bins
2466      * Use bin counts as a guide to preallocation
2467      * Occasionally bin return list chunks in first scan
2468      * Add a few optimizations from colin@nyx10.cs.du.edu
2469
2470    V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
2471      * faster bin computation & slightly different binning
2472      * merged all consolidations to one part of malloc proper
2473         (eliminating old malloc_find_space & malloc_clean_bin)
2474      * Scan 2 returns chunks (not just 1)
2475      * Propagate failure in realloc if malloc returns 0
2476      * Add stuff to allow compilation on non-ANSI compilers
2477          from kpv@research.att.com
2478
2479    V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
2480      * removed potential for odd address access in prev_chunk
2481      * removed dependency on getpagesize.h
2482      * misc cosmetics and a bit more internal documentation
2483      * anticosmetics: mangled names in macros to evade debugger strangeness
2484      * tested on sparc, hp-700, dec-mips, rs6000
2485          with gcc & native cc (hp, dec only) allowing
2486          Detlefs & Zorn comparison study (in SIGPLAN Notices.)
2487
2488    Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
2489      * Based loosely on libg++-1.2X malloc. (It retains some of the overall
2490         structure of old version,  but most details differ.)
2491
2492*/
2493