uboot/fs/ubifs/orphan.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * SPDX-License-Identifier:     GPL-2.0+
   7 *
   8 * Author: Adrian Hunter
   9 */
  10
  11#include <linux/err.h>
  12#include "ubifs.h"
  13
  14/*
  15 * An orphan is an inode number whose inode node has been committed to the index
  16 * with a link count of zero. That happens when an open file is deleted
  17 * (unlinked) and then a commit is run. In the normal course of events the inode
  18 * would be deleted when the file is closed. However in the case of an unclean
  19 * unmount, orphans need to be accounted for. After an unclean unmount, the
  20 * orphans' inodes must be deleted which means either scanning the entire index
  21 * looking for them, or keeping a list on flash somewhere. This unit implements
  22 * the latter approach.
  23 *
  24 * The orphan area is a fixed number of LEBs situated between the LPT area and
  25 * the main area. The number of orphan area LEBs is specified when the file
  26 * system is created. The minimum number is 1. The size of the orphan area
  27 * should be so that it can hold the maximum number of orphans that are expected
  28 * to ever exist at one time.
  29 *
  30 * The number of orphans that can fit in a LEB is:
  31 *
  32 *         (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
  33 *
  34 * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
  35 *
  36 * Orphans are accumulated in a rb-tree. When an inode's link count drops to
  37 * zero, the inode number is added to the rb-tree. It is removed from the tree
  38 * when the inode is deleted.  Any new orphans that are in the orphan tree when
  39 * the commit is run, are written to the orphan area in 1 or more orphan nodes.
  40 * If the orphan area is full, it is consolidated to make space.  There is
  41 * always enough space because validation prevents the user from creating more
  42 * than the maximum number of orphans allowed.
  43 */
  44
  45static int dbg_check_orphans(struct ubifs_info *c);
  46
  47/**
  48 * ubifs_add_orphan - add an orphan.
  49 * @c: UBIFS file-system description object
  50 * @inum: orphan inode number
  51 *
  52 * Add an orphan. This function is called when an inodes link count drops to
  53 * zero.
  54 */
  55int ubifs_add_orphan(struct ubifs_info *c, ino_t inum)
  56{
  57        struct ubifs_orphan *orphan, *o;
  58        struct rb_node **p, *parent = NULL;
  59
  60        orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
  61        if (!orphan)
  62                return -ENOMEM;
  63        orphan->inum = inum;
  64        orphan->new = 1;
  65
  66        spin_lock(&c->orphan_lock);
  67        if (c->tot_orphans >= c->max_orphans) {
  68                spin_unlock(&c->orphan_lock);
  69                kfree(orphan);
  70                return -ENFILE;
  71        }
  72        p = &c->orph_tree.rb_node;
  73        while (*p) {
  74                parent = *p;
  75                o = rb_entry(parent, struct ubifs_orphan, rb);
  76                if (inum < o->inum)
  77                        p = &(*p)->rb_left;
  78                else if (inum > o->inum)
  79                        p = &(*p)->rb_right;
  80                else {
  81                        ubifs_err(c, "orphaned twice");
  82                        spin_unlock(&c->orphan_lock);
  83                        kfree(orphan);
  84                        return 0;
  85                }
  86        }
  87        c->tot_orphans += 1;
  88        c->new_orphans += 1;
  89        rb_link_node(&orphan->rb, parent, p);
  90        rb_insert_color(&orphan->rb, &c->orph_tree);
  91        list_add_tail(&orphan->list, &c->orph_list);
  92        list_add_tail(&orphan->new_list, &c->orph_new);
  93        spin_unlock(&c->orphan_lock);
  94        dbg_gen("ino %lu", (unsigned long)inum);
  95        return 0;
  96}
  97
  98/**
  99 * ubifs_delete_orphan - delete an orphan.
 100 * @c: UBIFS file-system description object
 101 * @inum: orphan inode number
 102 *
 103 * Delete an orphan. This function is called when an inode is deleted.
 104 */
 105void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum)
 106{
 107        struct ubifs_orphan *o;
 108        struct rb_node *p;
 109
 110        spin_lock(&c->orphan_lock);
 111        p = c->orph_tree.rb_node;
 112        while (p) {
 113                o = rb_entry(p, struct ubifs_orphan, rb);
 114                if (inum < o->inum)
 115                        p = p->rb_left;
 116                else if (inum > o->inum)
 117                        p = p->rb_right;
 118                else {
 119                        if (o->del) {
 120                                spin_unlock(&c->orphan_lock);
 121                                dbg_gen("deleted twice ino %lu",
 122                                        (unsigned long)inum);
 123                                return;
 124                        }
 125                        if (o->cmt) {
 126                                o->del = 1;
 127                                o->dnext = c->orph_dnext;
 128                                c->orph_dnext = o;
 129                                spin_unlock(&c->orphan_lock);
 130                                dbg_gen("delete later ino %lu",
 131                                        (unsigned long)inum);
 132                                return;
 133                        }
 134                        rb_erase(p, &c->orph_tree);
 135                        list_del(&o->list);
 136                        c->tot_orphans -= 1;
 137                        if (o->new) {
 138                                list_del(&o->new_list);
 139                                c->new_orphans -= 1;
 140                        }
 141                        spin_unlock(&c->orphan_lock);
 142                        kfree(o);
 143                        dbg_gen("inum %lu", (unsigned long)inum);
 144                        return;
 145                }
 146        }
 147        spin_unlock(&c->orphan_lock);
 148        ubifs_err(c, "missing orphan ino %lu", (unsigned long)inum);
 149        dump_stack();
 150}
 151
 152/**
 153 * ubifs_orphan_start_commit - start commit of orphans.
 154 * @c: UBIFS file-system description object
 155 *
 156 * Start commit of orphans.
 157 */
 158int ubifs_orphan_start_commit(struct ubifs_info *c)
 159{
 160        struct ubifs_orphan *orphan, **last;
 161
 162        spin_lock(&c->orphan_lock);
 163        last = &c->orph_cnext;
 164        list_for_each_entry(orphan, &c->orph_new, new_list) {
 165                ubifs_assert(orphan->new);
 166                ubifs_assert(!orphan->cmt);
 167                orphan->new = 0;
 168                orphan->cmt = 1;
 169                *last = orphan;
 170                last = &orphan->cnext;
 171        }
 172        *last = NULL;
 173        c->cmt_orphans = c->new_orphans;
 174        c->new_orphans = 0;
 175        dbg_cmt("%d orphans to commit", c->cmt_orphans);
 176        INIT_LIST_HEAD(&c->orph_new);
 177        if (c->tot_orphans == 0)
 178                c->no_orphs = 1;
 179        else
 180                c->no_orphs = 0;
 181        spin_unlock(&c->orphan_lock);
 182        return 0;
 183}
 184
 185/**
 186 * avail_orphs - calculate available space.
 187 * @c: UBIFS file-system description object
 188 *
 189 * This function returns the number of orphans that can be written in the
 190 * available space.
 191 */
 192static int avail_orphs(struct ubifs_info *c)
 193{
 194        int avail_lebs, avail, gap;
 195
 196        avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
 197        avail = avail_lebs *
 198               ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
 199        gap = c->leb_size - c->ohead_offs;
 200        if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
 201                avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
 202        return avail;
 203}
 204
 205/**
 206 * tot_avail_orphs - calculate total space.
 207 * @c: UBIFS file-system description object
 208 *
 209 * This function returns the number of orphans that can be written in half
 210 * the total space. That leaves half the space for adding new orphans.
 211 */
 212static int tot_avail_orphs(struct ubifs_info *c)
 213{
 214        int avail_lebs, avail;
 215
 216        avail_lebs = c->orph_lebs;
 217        avail = avail_lebs *
 218               ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
 219        return avail / 2;
 220}
 221
 222/**
 223 * do_write_orph_node - write a node to the orphan head.
 224 * @c: UBIFS file-system description object
 225 * @len: length of node
 226 * @atomic: write atomically
 227 *
 228 * This function writes a node to the orphan head from the orphan buffer. If
 229 * %atomic is not zero, then the write is done atomically. On success, %0 is
 230 * returned, otherwise a negative error code is returned.
 231 */
 232static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
 233{
 234        int err = 0;
 235
 236        if (atomic) {
 237                ubifs_assert(c->ohead_offs == 0);
 238                ubifs_prepare_node(c, c->orph_buf, len, 1);
 239                len = ALIGN(len, c->min_io_size);
 240                err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len);
 241        } else {
 242                if (c->ohead_offs == 0) {
 243                        /* Ensure LEB has been unmapped */
 244                        err = ubifs_leb_unmap(c, c->ohead_lnum);
 245                        if (err)
 246                                return err;
 247                }
 248                err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
 249                                       c->ohead_offs);
 250        }
 251        return err;
 252}
 253
 254/**
 255 * write_orph_node - write an orphan node.
 256 * @c: UBIFS file-system description object
 257 * @atomic: write atomically
 258 *
 259 * This function builds an orphan node from the cnext list and writes it to the
 260 * orphan head. On success, %0 is returned, otherwise a negative error code
 261 * is returned.
 262 */
 263static int write_orph_node(struct ubifs_info *c, int atomic)
 264{
 265        struct ubifs_orphan *orphan, *cnext;
 266        struct ubifs_orph_node *orph;
 267        int gap, err, len, cnt, i;
 268
 269        ubifs_assert(c->cmt_orphans > 0);
 270        gap = c->leb_size - c->ohead_offs;
 271        if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
 272                c->ohead_lnum += 1;
 273                c->ohead_offs = 0;
 274                gap = c->leb_size;
 275                if (c->ohead_lnum > c->orph_last) {
 276                        /*
 277                         * We limit the number of orphans so that this should
 278                         * never happen.
 279                         */
 280                        ubifs_err(c, "out of space in orphan area");
 281                        return -EINVAL;
 282                }
 283        }
 284        cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
 285        if (cnt > c->cmt_orphans)
 286                cnt = c->cmt_orphans;
 287        len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
 288        ubifs_assert(c->orph_buf);
 289        orph = c->orph_buf;
 290        orph->ch.node_type = UBIFS_ORPH_NODE;
 291        spin_lock(&c->orphan_lock);
 292        cnext = c->orph_cnext;
 293        for (i = 0; i < cnt; i++) {
 294                orphan = cnext;
 295                ubifs_assert(orphan->cmt);
 296                orph->inos[i] = cpu_to_le64(orphan->inum);
 297                orphan->cmt = 0;
 298                cnext = orphan->cnext;
 299                orphan->cnext = NULL;
 300        }
 301        c->orph_cnext = cnext;
 302        c->cmt_orphans -= cnt;
 303        spin_unlock(&c->orphan_lock);
 304        if (c->cmt_orphans)
 305                orph->cmt_no = cpu_to_le64(c->cmt_no);
 306        else
 307                /* Mark the last node of the commit */
 308                orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63));
 309        ubifs_assert(c->ohead_offs + len <= c->leb_size);
 310        ubifs_assert(c->ohead_lnum >= c->orph_first);
 311        ubifs_assert(c->ohead_lnum <= c->orph_last);
 312        err = do_write_orph_node(c, len, atomic);
 313        c->ohead_offs += ALIGN(len, c->min_io_size);
 314        c->ohead_offs = ALIGN(c->ohead_offs, 8);
 315        return err;
 316}
 317
 318/**
 319 * write_orph_nodes - write orphan nodes until there are no more to commit.
 320 * @c: UBIFS file-system description object
 321 * @atomic: write atomically
 322 *
 323 * This function writes orphan nodes for all the orphans to commit. On success,
 324 * %0 is returned, otherwise a negative error code is returned.
 325 */
 326static int write_orph_nodes(struct ubifs_info *c, int atomic)
 327{
 328        int err;
 329
 330        while (c->cmt_orphans > 0) {
 331                err = write_orph_node(c, atomic);
 332                if (err)
 333                        return err;
 334        }
 335        if (atomic) {
 336                int lnum;
 337
 338                /* Unmap any unused LEBs after consolidation */
 339                for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
 340                        err = ubifs_leb_unmap(c, lnum);
 341                        if (err)
 342                                return err;
 343                }
 344        }
 345        return 0;
 346}
 347
 348/**
 349 * consolidate - consolidate the orphan area.
 350 * @c: UBIFS file-system description object
 351 *
 352 * This function enables consolidation by putting all the orphans into the list
 353 * to commit. The list is in the order that the orphans were added, and the
 354 * LEBs are written atomically in order, so at no time can orphans be lost by
 355 * an unclean unmount.
 356 *
 357 * This function returns %0 on success and a negative error code on failure.
 358 */
 359static int consolidate(struct ubifs_info *c)
 360{
 361        int tot_avail = tot_avail_orphs(c), err = 0;
 362
 363        spin_lock(&c->orphan_lock);
 364        dbg_cmt("there is space for %d orphans and there are %d",
 365                tot_avail, c->tot_orphans);
 366        if (c->tot_orphans - c->new_orphans <= tot_avail) {
 367                struct ubifs_orphan *orphan, **last;
 368                int cnt = 0;
 369
 370                /* Change the cnext list to include all non-new orphans */
 371                last = &c->orph_cnext;
 372                list_for_each_entry(orphan, &c->orph_list, list) {
 373                        if (orphan->new)
 374                                continue;
 375                        orphan->cmt = 1;
 376                        *last = orphan;
 377                        last = &orphan->cnext;
 378                        cnt += 1;
 379                }
 380                *last = NULL;
 381                ubifs_assert(cnt == c->tot_orphans - c->new_orphans);
 382                c->cmt_orphans = cnt;
 383                c->ohead_lnum = c->orph_first;
 384                c->ohead_offs = 0;
 385        } else {
 386                /*
 387                 * We limit the number of orphans so that this should
 388                 * never happen.
 389                 */
 390                ubifs_err(c, "out of space in orphan area");
 391                err = -EINVAL;
 392        }
 393        spin_unlock(&c->orphan_lock);
 394        return err;
 395}
 396
 397/**
 398 * commit_orphans - commit orphans.
 399 * @c: UBIFS file-system description object
 400 *
 401 * This function commits orphans to flash. On success, %0 is returned,
 402 * otherwise a negative error code is returned.
 403 */
 404static int commit_orphans(struct ubifs_info *c)
 405{
 406        int avail, atomic = 0, err;
 407
 408        ubifs_assert(c->cmt_orphans > 0);
 409        avail = avail_orphs(c);
 410        if (avail < c->cmt_orphans) {
 411                /* Not enough space to write new orphans, so consolidate */
 412                err = consolidate(c);
 413                if (err)
 414                        return err;
 415                atomic = 1;
 416        }
 417        err = write_orph_nodes(c, atomic);
 418        return err;
 419}
 420
 421/**
 422 * erase_deleted - erase the orphans marked for deletion.
 423 * @c: UBIFS file-system description object
 424 *
 425 * During commit, the orphans being committed cannot be deleted, so they are
 426 * marked for deletion and deleted by this function. Also, the recovery
 427 * adds killed orphans to the deletion list, and therefore they are deleted
 428 * here too.
 429 */
 430static void erase_deleted(struct ubifs_info *c)
 431{
 432        struct ubifs_orphan *orphan, *dnext;
 433
 434        spin_lock(&c->orphan_lock);
 435        dnext = c->orph_dnext;
 436        while (dnext) {
 437                orphan = dnext;
 438                dnext = orphan->dnext;
 439                ubifs_assert(!orphan->new);
 440                ubifs_assert(orphan->del);
 441                rb_erase(&orphan->rb, &c->orph_tree);
 442                list_del(&orphan->list);
 443                c->tot_orphans -= 1;
 444                dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum);
 445                kfree(orphan);
 446        }
 447        c->orph_dnext = NULL;
 448        spin_unlock(&c->orphan_lock);
 449}
 450
 451/**
 452 * ubifs_orphan_end_commit - end commit of orphans.
 453 * @c: UBIFS file-system description object
 454 *
 455 * End commit of orphans.
 456 */
 457int ubifs_orphan_end_commit(struct ubifs_info *c)
 458{
 459        int err;
 460
 461        if (c->cmt_orphans != 0) {
 462                err = commit_orphans(c);
 463                if (err)
 464                        return err;
 465        }
 466        erase_deleted(c);
 467        err = dbg_check_orphans(c);
 468        return err;
 469}
 470
 471/**
 472 * ubifs_clear_orphans - erase all LEBs used for orphans.
 473 * @c: UBIFS file-system description object
 474 *
 475 * If recovery is not required, then the orphans from the previous session
 476 * are not needed. This function locates the LEBs used to record
 477 * orphans, and un-maps them.
 478 */
 479int ubifs_clear_orphans(struct ubifs_info *c)
 480{
 481        int lnum, err;
 482
 483        for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
 484                err = ubifs_leb_unmap(c, lnum);
 485                if (err)
 486                        return err;
 487        }
 488        c->ohead_lnum = c->orph_first;
 489        c->ohead_offs = 0;
 490        return 0;
 491}
 492
 493/**
 494 * insert_dead_orphan - insert an orphan.
 495 * @c: UBIFS file-system description object
 496 * @inum: orphan inode number
 497 *
 498 * This function is a helper to the 'do_kill_orphans()' function. The orphan
 499 * must be kept until the next commit, so it is added to the rb-tree and the
 500 * deletion list.
 501 */
 502static int insert_dead_orphan(struct ubifs_info *c, ino_t inum)
 503{
 504        struct ubifs_orphan *orphan, *o;
 505        struct rb_node **p, *parent = NULL;
 506
 507        orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL);
 508        if (!orphan)
 509                return -ENOMEM;
 510        orphan->inum = inum;
 511
 512        p = &c->orph_tree.rb_node;
 513        while (*p) {
 514                parent = *p;
 515                o = rb_entry(parent, struct ubifs_orphan, rb);
 516                if (inum < o->inum)
 517                        p = &(*p)->rb_left;
 518                else if (inum > o->inum)
 519                        p = &(*p)->rb_right;
 520                else {
 521                        /* Already added - no problem */
 522                        kfree(orphan);
 523                        return 0;
 524                }
 525        }
 526        c->tot_orphans += 1;
 527        rb_link_node(&orphan->rb, parent, p);
 528        rb_insert_color(&orphan->rb, &c->orph_tree);
 529        list_add_tail(&orphan->list, &c->orph_list);
 530        orphan->del = 1;
 531        orphan->dnext = c->orph_dnext;
 532        c->orph_dnext = orphan;
 533        dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum,
 534                c->new_orphans, c->tot_orphans);
 535        return 0;
 536}
 537
 538/**
 539 * do_kill_orphans - remove orphan inodes from the index.
 540 * @c: UBIFS file-system description object
 541 * @sleb: scanned LEB
 542 * @last_cmt_no: cmt_no of last orphan node read is passed and returned here
 543 * @outofdate: whether the LEB is out of date is returned here
 544 * @last_flagged: whether the end orphan node is encountered
 545 *
 546 * This function is a helper to the 'kill_orphans()' function. It goes through
 547 * every orphan node in a LEB and for every inode number recorded, removes
 548 * all keys for that inode from the TNC.
 549 */
 550static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
 551                           unsigned long long *last_cmt_no, int *outofdate,
 552                           int *last_flagged)
 553{
 554        struct ubifs_scan_node *snod;
 555        struct ubifs_orph_node *orph;
 556        unsigned long long cmt_no;
 557        ino_t inum;
 558        int i, n, err, first = 1;
 559
 560        list_for_each_entry(snod, &sleb->nodes, list) {
 561                if (snod->type != UBIFS_ORPH_NODE) {
 562                        ubifs_err(c, "invalid node type %d in orphan area at %d:%d",
 563                                  snod->type, sleb->lnum, snod->offs);
 564                        ubifs_dump_node(c, snod->node);
 565                        return -EINVAL;
 566                }
 567
 568                orph = snod->node;
 569
 570                /* Check commit number */
 571                cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX;
 572                /*
 573                 * The commit number on the master node may be less, because
 574                 * of a failed commit. If there are several failed commits in a
 575                 * row, the commit number written on orphan nodes will continue
 576                 * to increase (because the commit number is adjusted here) even
 577                 * though the commit number on the master node stays the same
 578                 * because the master node has not been re-written.
 579                 */
 580                if (cmt_no > c->cmt_no)
 581                        c->cmt_no = cmt_no;
 582                if (cmt_no < *last_cmt_no && *last_flagged) {
 583                        /*
 584                         * The last orphan node had a higher commit number and
 585                         * was flagged as the last written for that commit
 586                         * number. That makes this orphan node, out of date.
 587                         */
 588                        if (!first) {
 589                                ubifs_err(c, "out of order commit number %llu in orphan node at %d:%d",
 590                                          cmt_no, sleb->lnum, snod->offs);
 591                                ubifs_dump_node(c, snod->node);
 592                                return -EINVAL;
 593                        }
 594                        dbg_rcvry("out of date LEB %d", sleb->lnum);
 595                        *outofdate = 1;
 596                        return 0;
 597                }
 598
 599                if (first)
 600                        first = 0;
 601
 602                n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
 603                for (i = 0; i < n; i++) {
 604                        inum = le64_to_cpu(orph->inos[i]);
 605                        dbg_rcvry("deleting orphaned inode %lu",
 606                                  (unsigned long)inum);
 607                        err = ubifs_tnc_remove_ino(c, inum);
 608                        if (err)
 609                                return err;
 610                        err = insert_dead_orphan(c, inum);
 611                        if (err)
 612                                return err;
 613                }
 614
 615                *last_cmt_no = cmt_no;
 616                if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) {
 617                        dbg_rcvry("last orph node for commit %llu at %d:%d",
 618                                  cmt_no, sleb->lnum, snod->offs);
 619                        *last_flagged = 1;
 620                } else
 621                        *last_flagged = 0;
 622        }
 623
 624        return 0;
 625}
 626
 627/**
 628 * kill_orphans - remove all orphan inodes from the index.
 629 * @c: UBIFS file-system description object
 630 *
 631 * If recovery is required, then orphan inodes recorded during the previous
 632 * session (which ended with an unclean unmount) must be deleted from the index.
 633 * This is done by updating the TNC, but since the index is not updated until
 634 * the next commit, the LEBs where the orphan information is recorded are not
 635 * erased until the next commit.
 636 */
 637static int kill_orphans(struct ubifs_info *c)
 638{
 639        unsigned long long last_cmt_no = 0;
 640        int lnum, err = 0, outofdate = 0, last_flagged = 0;
 641
 642        c->ohead_lnum = c->orph_first;
 643        c->ohead_offs = 0;
 644        /* Check no-orphans flag and skip this if no orphans */
 645        if (c->no_orphs) {
 646                dbg_rcvry("no orphans");
 647                return 0;
 648        }
 649        /*
 650         * Orph nodes always start at c->orph_first and are written to each
 651         * successive LEB in turn. Generally unused LEBs will have been unmapped
 652         * but may contain out of date orphan nodes if the unmap didn't go
 653         * through. In addition, the last orphan node written for each commit is
 654         * marked (top bit of orph->cmt_no is set to 1). It is possible that
 655         * there are orphan nodes from the next commit (i.e. the commit did not
 656         * complete successfully). In that case, no orphans will have been lost
 657         * due to the way that orphans are written, and any orphans added will
 658         * be valid orphans anyway and so can be deleted.
 659         */
 660        for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
 661                struct ubifs_scan_leb *sleb;
 662
 663                dbg_rcvry("LEB %d", lnum);
 664                sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
 665                if (IS_ERR(sleb)) {
 666                        if (PTR_ERR(sleb) == -EUCLEAN)
 667                                sleb = ubifs_recover_leb(c, lnum, 0,
 668                                                         c->sbuf, -1);
 669                        if (IS_ERR(sleb)) {
 670                                err = PTR_ERR(sleb);
 671                                break;
 672                        }
 673                }
 674                err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate,
 675                                      &last_flagged);
 676                if (err || outofdate) {
 677                        ubifs_scan_destroy(sleb);
 678                        break;
 679                }
 680                if (sleb->endpt) {
 681                        c->ohead_lnum = lnum;
 682                        c->ohead_offs = sleb->endpt;
 683                }
 684                ubifs_scan_destroy(sleb);
 685        }
 686        return err;
 687}
 688
 689/**
 690 * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
 691 * @c: UBIFS file-system description object
 692 * @unclean: indicates recovery from unclean unmount
 693 * @read_only: indicates read only mount
 694 *
 695 * This function is called when mounting to erase orphans from the previous
 696 * session. If UBIFS was not unmounted cleanly, then the inodes recorded as
 697 * orphans are deleted.
 698 */
 699int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
 700{
 701        int err = 0;
 702
 703        c->max_orphans = tot_avail_orphs(c);
 704
 705        if (!read_only) {
 706                c->orph_buf = vmalloc(c->leb_size);
 707                if (!c->orph_buf)
 708                        return -ENOMEM;
 709        }
 710
 711        if (unclean)
 712                err = kill_orphans(c);
 713        else if (!read_only)
 714                err = ubifs_clear_orphans(c);
 715
 716        return err;
 717}
 718
 719/*
 720 * Everything below is related to debugging.
 721 */
 722
 723struct check_orphan {
 724        struct rb_node rb;
 725        ino_t inum;
 726};
 727
 728struct check_info {
 729        unsigned long last_ino;
 730        unsigned long tot_inos;
 731        unsigned long missing;
 732        unsigned long long leaf_cnt;
 733        struct ubifs_ino_node *node;
 734        struct rb_root root;
 735};
 736
 737static int dbg_find_orphan(struct ubifs_info *c, ino_t inum)
 738{
 739        struct ubifs_orphan *o;
 740        struct rb_node *p;
 741
 742        spin_lock(&c->orphan_lock);
 743        p = c->orph_tree.rb_node;
 744        while (p) {
 745                o = rb_entry(p, struct ubifs_orphan, rb);
 746                if (inum < o->inum)
 747                        p = p->rb_left;
 748                else if (inum > o->inum)
 749                        p = p->rb_right;
 750                else {
 751                        spin_unlock(&c->orphan_lock);
 752                        return 1;
 753                }
 754        }
 755        spin_unlock(&c->orphan_lock);
 756        return 0;
 757}
 758
 759static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
 760{
 761        struct check_orphan *orphan, *o;
 762        struct rb_node **p, *parent = NULL;
 763
 764        orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
 765        if (!orphan)
 766                return -ENOMEM;
 767        orphan->inum = inum;
 768
 769        p = &root->rb_node;
 770        while (*p) {
 771                parent = *p;
 772                o = rb_entry(parent, struct check_orphan, rb);
 773                if (inum < o->inum)
 774                        p = &(*p)->rb_left;
 775                else if (inum > o->inum)
 776                        p = &(*p)->rb_right;
 777                else {
 778                        kfree(orphan);
 779                        return 0;
 780                }
 781        }
 782        rb_link_node(&orphan->rb, parent, p);
 783        rb_insert_color(&orphan->rb, root);
 784        return 0;
 785}
 786
 787static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
 788{
 789        struct check_orphan *o;
 790        struct rb_node *p;
 791
 792        p = root->rb_node;
 793        while (p) {
 794                o = rb_entry(p, struct check_orphan, rb);
 795                if (inum < o->inum)
 796                        p = p->rb_left;
 797                else if (inum > o->inum)
 798                        p = p->rb_right;
 799                else
 800                        return 1;
 801        }
 802        return 0;
 803}
 804
 805static void dbg_free_check_tree(struct rb_root *root)
 806{
 807        struct check_orphan *o, *n;
 808
 809        rbtree_postorder_for_each_entry_safe(o, n, root, rb)
 810                kfree(o);
 811}
 812
 813static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 814                            void *priv)
 815{
 816        struct check_info *ci = priv;
 817        ino_t inum;
 818        int err;
 819
 820        inum = key_inum(c, &zbr->key);
 821        if (inum != ci->last_ino) {
 822                /* Lowest node type is the inode node, so it comes first */
 823                if (key_type(c, &zbr->key) != UBIFS_INO_KEY)
 824                        ubifs_err(c, "found orphan node ino %lu, type %d",
 825                                  (unsigned long)inum, key_type(c, &zbr->key));
 826                ci->last_ino = inum;
 827                ci->tot_inos += 1;
 828                err = ubifs_tnc_read_node(c, zbr, ci->node);
 829                if (err) {
 830                        ubifs_err(c, "node read failed, error %d", err);
 831                        return err;
 832                }
 833                if (ci->node->nlink == 0)
 834                        /* Must be recorded as an orphan */
 835                        if (!dbg_find_check_orphan(&ci->root, inum) &&
 836                            !dbg_find_orphan(c, inum)) {
 837                                ubifs_err(c, "missing orphan, ino %lu",
 838                                          (unsigned long)inum);
 839                                ci->missing += 1;
 840                        }
 841        }
 842        ci->leaf_cnt += 1;
 843        return 0;
 844}
 845
 846static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
 847{
 848        struct ubifs_scan_node *snod;
 849        struct ubifs_orph_node *orph;
 850        ino_t inum;
 851        int i, n, err;
 852
 853        list_for_each_entry(snod, &sleb->nodes, list) {
 854                cond_resched();
 855                if (snod->type != UBIFS_ORPH_NODE)
 856                        continue;
 857                orph = snod->node;
 858                n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
 859                for (i = 0; i < n; i++) {
 860                        inum = le64_to_cpu(orph->inos[i]);
 861                        err = dbg_ins_check_orphan(&ci->root, inum);
 862                        if (err)
 863                                return err;
 864                }
 865        }
 866        return 0;
 867}
 868
 869static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
 870{
 871        int lnum, err = 0;
 872        void *buf;
 873
 874        /* Check no-orphans flag and skip this if no orphans */
 875        if (c->no_orphs)
 876                return 0;
 877
 878        buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
 879        if (!buf) {
 880                ubifs_err(c, "cannot allocate memory to check orphans");
 881                return 0;
 882        }
 883
 884        for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
 885                struct ubifs_scan_leb *sleb;
 886
 887                sleb = ubifs_scan(c, lnum, 0, buf, 0);
 888                if (IS_ERR(sleb)) {
 889                        err = PTR_ERR(sleb);
 890                        break;
 891                }
 892
 893                err = dbg_read_orphans(ci, sleb);
 894                ubifs_scan_destroy(sleb);
 895                if (err)
 896                        break;
 897        }
 898
 899        vfree(buf);
 900        return err;
 901}
 902
 903static int dbg_check_orphans(struct ubifs_info *c)
 904{
 905        struct check_info ci;
 906        int err;
 907
 908        if (!dbg_is_chk_orph(c))
 909                return 0;
 910
 911        ci.last_ino = 0;
 912        ci.tot_inos = 0;
 913        ci.missing  = 0;
 914        ci.leaf_cnt = 0;
 915        ci.root = RB_ROOT;
 916        ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
 917        if (!ci.node) {
 918                ubifs_err(c, "out of memory");
 919                return -ENOMEM;
 920        }
 921
 922        err = dbg_scan_orphans(c, &ci);
 923        if (err)
 924                goto out;
 925
 926        err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
 927        if (err) {
 928                ubifs_err(c, "cannot scan TNC, error %d", err);
 929                goto out;
 930        }
 931
 932        if (ci.missing) {
 933                ubifs_err(c, "%lu missing orphan(s)", ci.missing);
 934                err = -EINVAL;
 935                goto out;
 936        }
 937
 938        dbg_cmt("last inode number is %lu", ci.last_ino);
 939        dbg_cmt("total number of inodes is %lu", ci.tot_inos);
 940        dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);
 941
 942out:
 943        dbg_free_check_tree(&ci.root);
 944        kfree(ci.node);
 945        return err;
 946}
 947