uboot/include/dm/device.h
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2013 Google, Inc
   3 *
   4 * (C) Copyright 2012
   5 * Pavel Herrmann <morpheus.ibis@gmail.com>
   6 * Marek Vasut <marex@denx.de>
   7 *
   8 * SPDX-License-Identifier:     GPL-2.0+
   9 */
  10
  11#ifndef _DM_DEVICE_H
  12#define _DM_DEVICE_H
  13
  14#include <dm/uclass-id.h>
  15#include <fdtdec.h>
  16#include <linker_lists.h>
  17#include <linux/compat.h>
  18#include <linux/kernel.h>
  19#include <linux/list.h>
  20
  21struct driver_info;
  22
  23/* Driver is active (probed). Cleared when it is removed */
  24#define DM_FLAG_ACTIVATED               (1 << 0)
  25
  26/* DM is responsible for allocating and freeing platdata */
  27#define DM_FLAG_ALLOC_PDATA             (1 << 1)
  28
  29/* DM should init this device prior to relocation */
  30#define DM_FLAG_PRE_RELOC               (1 << 2)
  31
  32/* DM is responsible for allocating and freeing parent_platdata */
  33#define DM_FLAG_ALLOC_PARENT_PDATA      (1 << 3)
  34
  35/* DM is responsible for allocating and freeing uclass_platdata */
  36#define DM_FLAG_ALLOC_UCLASS_PDATA      (1 << 4)
  37
  38/* Allocate driver private data on a DMA boundary */
  39#define DM_FLAG_ALLOC_PRIV_DMA          (1 << 5)
  40
  41/* Device is bound */
  42#define DM_FLAG_BOUND                   (1 << 6)
  43
  44/* Device name is allocated and should be freed on unbind() */
  45#define DM_NAME_ALLOCED                 (1 << 7)
  46
  47/**
  48 * struct udevice - An instance of a driver
  49 *
  50 * This holds information about a device, which is a driver bound to a
  51 * particular port or peripheral (essentially a driver instance).
  52 *
  53 * A device will come into existence through a 'bind' call, either due to
  54 * a U_BOOT_DEVICE() macro (in which case platdata is non-NULL) or a node
  55 * in the device tree (in which case of_offset is >= 0). In the latter case
  56 * we translate the device tree information into platdata in a function
  57 * implemented by the driver ofdata_to_platdata method (called just before the
  58 * probe method if the device has a device tree node.
  59 *
  60 * All three of platdata, priv and uclass_priv can be allocated by the
  61 * driver, or you can use the auto_alloc_size members of struct driver and
  62 * struct uclass_driver to have driver model do this automatically.
  63 *
  64 * @driver: The driver used by this device
  65 * @name: Name of device, typically the FDT node name
  66 * @platdata: Configuration data for this device
  67 * @parent_platdata: The parent bus's configuration data for this device
  68 * @uclass_platdata: The uclass's configuration data for this device
  69 * @of_offset: Device tree node offset for this device (- for none)
  70 * @driver_data: Driver data word for the entry that matched this device with
  71 *              its driver
  72 * @parent: Parent of this device, or NULL for the top level device
  73 * @priv: Private data for this device
  74 * @uclass: Pointer to uclass for this device
  75 * @uclass_priv: The uclass's private data for this device
  76 * @parent_priv: The parent's private data for this device
  77 * @uclass_node: Used by uclass to link its devices
  78 * @child_head: List of children of this device
  79 * @sibling_node: Next device in list of all devices
  80 * @flags: Flags for this device DM_FLAG_...
  81 * @req_seq: Requested sequence number for this device (-1 = any)
  82 * @seq: Allocated sequence number for this device (-1 = none). This is set up
  83 * when the device is probed and will be unique within the device's uclass.
  84 * @devres_head: List of memory allocations associated with this device.
  85 *              When CONFIG_DEVRES is enabled, devm_kmalloc() and friends will
  86 *              add to this list. Memory so-allocated will be freed
  87 *              automatically when the device is removed / unbound
  88 */
  89struct udevice {
  90        const struct driver *driver;
  91        const char *name;
  92        void *platdata;
  93        void *parent_platdata;
  94        void *uclass_platdata;
  95        int of_offset;
  96        ulong driver_data;
  97        struct udevice *parent;
  98        void *priv;
  99        struct uclass *uclass;
 100        void *uclass_priv;
 101        void *parent_priv;
 102        struct list_head uclass_node;
 103        struct list_head child_head;
 104        struct list_head sibling_node;
 105        uint32_t flags;
 106        int req_seq;
 107        int seq;
 108#ifdef CONFIG_DEVRES
 109        struct list_head devres_head;
 110#endif
 111};
 112
 113/* Maximum sequence number supported */
 114#define DM_MAX_SEQ      999
 115
 116/* Returns the operations for a device */
 117#define device_get_ops(dev)     (dev->driver->ops)
 118
 119/* Returns non-zero if the device is active (probed and not removed) */
 120#define device_active(dev)      ((dev)->flags & DM_FLAG_ACTIVATED)
 121
 122/**
 123 * struct udevice_id - Lists the compatible strings supported by a driver
 124 * @compatible: Compatible string
 125 * @data: Data for this compatible string
 126 */
 127struct udevice_id {
 128        const char *compatible;
 129        ulong data;
 130};
 131
 132#if CONFIG_IS_ENABLED(OF_CONTROL)
 133#define of_match_ptr(_ptr)      (_ptr)
 134#else
 135#define of_match_ptr(_ptr)      NULL
 136#endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
 137
 138/**
 139 * struct driver - A driver for a feature or peripheral
 140 *
 141 * This holds methods for setting up a new device, and also removing it.
 142 * The device needs information to set itself up - this is provided either
 143 * by platdata or a device tree node (which we find by looking up
 144 * matching compatible strings with of_match).
 145 *
 146 * Drivers all belong to a uclass, representing a class of devices of the
 147 * same type. Common elements of the drivers can be implemented in the uclass,
 148 * or the uclass can provide a consistent interface to the drivers within
 149 * it.
 150 *
 151 * @name: Device name
 152 * @id: Identiies the uclass we belong to
 153 * @of_match: List of compatible strings to match, and any identifying data
 154 * for each.
 155 * @bind: Called to bind a device to its driver
 156 * @probe: Called to probe a device, i.e. activate it
 157 * @remove: Called to remove a device, i.e. de-activate it
 158 * @unbind: Called to unbind a device from its driver
 159 * @ofdata_to_platdata: Called before probe to decode device tree data
 160 * @child_post_bind: Called after a new child has been bound
 161 * @child_pre_probe: Called before a child device is probed. The device has
 162 * memory allocated but it has not yet been probed.
 163 * @child_post_remove: Called after a child device is removed. The device
 164 * has memory allocated but its device_remove() method has been called.
 165 * @priv_auto_alloc_size: If non-zero this is the size of the private data
 166 * to be allocated in the device's ->priv pointer. If zero, then the driver
 167 * is responsible for allocating any data required.
 168 * @platdata_auto_alloc_size: If non-zero this is the size of the
 169 * platform data to be allocated in the device's ->platdata pointer.
 170 * This is typically only useful for device-tree-aware drivers (those with
 171 * an of_match), since drivers which use platdata will have the data
 172 * provided in the U_BOOT_DEVICE() instantiation.
 173 * @per_child_auto_alloc_size: Each device can hold private data owned by
 174 * its parent. If required this will be automatically allocated if this
 175 * value is non-zero.
 176 * @per_child_platdata_auto_alloc_size: A bus likes to store information about
 177 * its children. If non-zero this is the size of this data, to be allocated
 178 * in the child's parent_platdata pointer.
 179 * @ops: Driver-specific operations. This is typically a list of function
 180 * pointers defined by the driver, to implement driver functions required by
 181 * the uclass.
 182 * @flags: driver flags - see DM_FLAGS_...
 183 */
 184struct driver {
 185        char *name;
 186        enum uclass_id id;
 187        const struct udevice_id *of_match;
 188        int (*bind)(struct udevice *dev);
 189        int (*probe)(struct udevice *dev);
 190        int (*remove)(struct udevice *dev);
 191        int (*unbind)(struct udevice *dev);
 192        int (*ofdata_to_platdata)(struct udevice *dev);
 193        int (*child_post_bind)(struct udevice *dev);
 194        int (*child_pre_probe)(struct udevice *dev);
 195        int (*child_post_remove)(struct udevice *dev);
 196        int priv_auto_alloc_size;
 197        int platdata_auto_alloc_size;
 198        int per_child_auto_alloc_size;
 199        int per_child_platdata_auto_alloc_size;
 200        const void *ops;        /* driver-specific operations */
 201        uint32_t flags;
 202};
 203
 204/* Declare a new U-Boot driver */
 205#define U_BOOT_DRIVER(__name)                                           \
 206        ll_entry_declare(struct driver, __name, driver)
 207
 208/**
 209 * dev_get_platdata() - Get the platform data for a device
 210 *
 211 * This checks that dev is not NULL, but no other checks for now
 212 *
 213 * @dev         Device to check
 214 * @return platform data, or NULL if none
 215 */
 216void *dev_get_platdata(struct udevice *dev);
 217
 218/**
 219 * dev_get_parent_platdata() - Get the parent platform data for a device
 220 *
 221 * This checks that dev is not NULL, but no other checks for now
 222 *
 223 * @dev         Device to check
 224 * @return parent's platform data, or NULL if none
 225 */
 226void *dev_get_parent_platdata(struct udevice *dev);
 227
 228/**
 229 * dev_get_uclass_platdata() - Get the uclass platform data for a device
 230 *
 231 * This checks that dev is not NULL, but no other checks for now
 232 *
 233 * @dev         Device to check
 234 * @return uclass's platform data, or NULL if none
 235 */
 236void *dev_get_uclass_platdata(struct udevice *dev);
 237
 238/**
 239 * dev_get_priv() - Get the private data for a device
 240 *
 241 * This checks that dev is not NULL, but no other checks for now
 242 *
 243 * @dev         Device to check
 244 * @return private data, or NULL if none
 245 */
 246void *dev_get_priv(struct udevice *dev);
 247
 248/**
 249 * dev_get_parent_priv() - Get the parent private data for a device
 250 *
 251 * The parent private data is data stored in the device but owned by the
 252 * parent. For example, a USB device may have parent data which contains
 253 * information about how to talk to the device over USB.
 254 *
 255 * This checks that dev is not NULL, but no other checks for now
 256 *
 257 * @dev         Device to check
 258 * @return parent data, or NULL if none
 259 */
 260void *dev_get_parent_priv(struct udevice *dev);
 261
 262/**
 263 * dev_get_uclass_priv() - Get the private uclass data for a device
 264 *
 265 * This checks that dev is not NULL, but no other checks for now
 266 *
 267 * @dev         Device to check
 268 * @return private uclass data for this device, or NULL if none
 269 */
 270void *dev_get_uclass_priv(struct udevice *dev);
 271
 272/**
 273 * struct dev_get_parent() - Get the parent of a device
 274 *
 275 * @child:      Child to check
 276 * @return parent of child, or NULL if this is the root device
 277 */
 278struct udevice *dev_get_parent(struct udevice *child);
 279
 280/**
 281 * dev_get_driver_data() - get the driver data used to bind a device
 282 *
 283 * When a device is bound using a device tree node, it matches a
 284 * particular compatible string in struct udevice_id. This function
 285 * returns the associated data value for that compatible string. This is
 286 * the 'data' field in struct udevice_id.
 287 *
 288 * As an example, consider this structure:
 289 * static const struct udevice_id tegra_i2c_ids[] = {
 290 *      { .compatible = "nvidia,tegra114-i2c", .data = TYPE_114 },
 291 *      { .compatible = "nvidia,tegra20-i2c", .data = TYPE_STD },
 292 *      { .compatible = "nvidia,tegra20-i2c-dvc", .data = TYPE_DVC },
 293 *      { }
 294 * };
 295 *
 296 * When driver model finds a driver for this it will store the 'data' value
 297 * corresponding to the compatible string it matches. This function returns
 298 * that value. This allows the driver to handle several variants of a device.
 299 *
 300 * For USB devices, this is the driver_info field in struct usb_device_id.
 301 *
 302 * @dev:        Device to check
 303 * @return driver data (0 if none is provided)
 304 */
 305ulong dev_get_driver_data(struct udevice *dev);
 306
 307/**
 308 * dev_get_driver_ops() - get the device's driver's operations
 309 *
 310 * This checks that dev is not NULL, and returns the pointer to device's
 311 * driver's operations.
 312 *
 313 * @dev:        Device to check
 314 * @return void pointer to driver's operations or NULL for NULL-dev or NULL-ops
 315 */
 316const void *dev_get_driver_ops(struct udevice *dev);
 317
 318/**
 319 * device_get_uclass_id() - return the uclass ID of a device
 320 *
 321 * @dev:        Device to check
 322 * @return uclass ID for the device
 323 */
 324enum uclass_id device_get_uclass_id(struct udevice *dev);
 325
 326/**
 327 * dev_get_uclass_name() - return the uclass name of a device
 328 *
 329 * This checks that dev is not NULL.
 330 *
 331 * @dev:        Device to check
 332 * @return  pointer to the uclass name for the device
 333 */
 334const char *dev_get_uclass_name(struct udevice *dev);
 335
 336/**
 337 * device_get_child() - Get the child of a device by index
 338 *
 339 * Returns the numbered child, 0 being the first. This does not use
 340 * sequence numbers, only the natural order.
 341 *
 342 * @dev:        Parent device to check
 343 * @index:      Child index
 344 * @devp:       Returns pointer to device
 345 * @return 0 if OK, -ENODEV if no such device, other error if the device fails
 346 *         to probe
 347 */
 348int device_get_child(struct udevice *parent, int index, struct udevice **devp);
 349
 350/**
 351 * device_find_child_by_seq() - Find a child device based on a sequence
 352 *
 353 * This searches for a device with the given seq or req_seq.
 354 *
 355 * For seq, if an active device has this sequence it will be returned.
 356 * If there is no such device then this will return -ENODEV.
 357 *
 358 * For req_seq, if a device (whether activated or not) has this req_seq
 359 * value, that device will be returned. This is a strong indication that
 360 * the device will receive that sequence when activated.
 361 *
 362 * @parent: Parent device
 363 * @seq_or_req_seq: Sequence number to find (0=first)
 364 * @find_req_seq: true to find req_seq, false to find seq
 365 * @devp: Returns pointer to device (there is only one per for each seq).
 366 * Set to NULL if none is found
 367 * @return 0 if OK, -ve on error
 368 */
 369int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq,
 370                             bool find_req_seq, struct udevice **devp);
 371
 372/**
 373 * device_get_child_by_seq() - Get a child device based on a sequence
 374 *
 375 * If an active device has this sequence it will be returned. If there is no
 376 * such device then this will check for a device that is requesting this
 377 * sequence.
 378 *
 379 * The device is probed to activate it ready for use.
 380 *
 381 * @parent: Parent device
 382 * @seq: Sequence number to find (0=first)
 383 * @devp: Returns pointer to device (there is only one per for each seq)
 384 * Set to NULL if none is found
 385 * @return 0 if OK, -ve on error
 386 */
 387int device_get_child_by_seq(struct udevice *parent, int seq,
 388                            struct udevice **devp);
 389
 390/**
 391 * device_find_child_by_of_offset() - Find a child device based on FDT offset
 392 *
 393 * Locates a child device by its device tree offset.
 394 *
 395 * @parent: Parent device
 396 * @of_offset: Device tree offset to find
 397 * @devp: Returns pointer to device if found, otherwise this is set to NULL
 398 * @return 0 if OK, -ve on error
 399 */
 400int device_find_child_by_of_offset(struct udevice *parent, int of_offset,
 401                                   struct udevice **devp);
 402
 403/**
 404 * device_get_child_by_of_offset() - Get a child device based on FDT offset
 405 *
 406 * Locates a child device by its device tree offset.
 407 *
 408 * The device is probed to activate it ready for use.
 409 *
 410 * @parent: Parent device
 411 * @of_offset: Device tree offset to find
 412 * @devp: Returns pointer to device if found, otherwise this is set to NULL
 413 * @return 0 if OK, -ve on error
 414 */
 415int device_get_child_by_of_offset(struct udevice *parent, int of_offset,
 416                                  struct udevice **devp);
 417
 418/**
 419 * device_get_global_by_of_offset() - Get a device based on FDT offset
 420 *
 421 * Locates a device by its device tree offset, searching globally throughout
 422 * the all driver model devices.
 423 *
 424 * The device is probed to activate it ready for use.
 425 *
 426 * @of_offset: Device tree offset to find
 427 * @devp: Returns pointer to device if found, otherwise this is set to NULL
 428 * @return 0 if OK, -ve on error
 429 */
 430int device_get_global_by_of_offset(int of_offset, struct udevice **devp);
 431
 432/**
 433 * device_find_first_child() - Find the first child of a device
 434 *
 435 * @parent: Parent device to search
 436 * @devp: Returns first child device, or NULL if none
 437 * @return 0
 438 */
 439int device_find_first_child(struct udevice *parent, struct udevice **devp);
 440
 441/**
 442 * device_find_next_child() - Find the next child of a device
 443 *
 444 * @devp: Pointer to previous child device on entry. Returns pointer to next
 445 *              child device, or NULL if none
 446 * @return 0
 447 */
 448int device_find_next_child(struct udevice **devp);
 449
 450/**
 451 * dev_get_addr() - Get the reg property of a device
 452 *
 453 * @dev: Pointer to a device
 454 *
 455 * @return addr
 456 */
 457fdt_addr_t dev_get_addr(struct udevice *dev);
 458
 459/**
 460 * dev_get_addr_ptr() - Return pointer to the address of the reg property
 461 *                      of a device
 462 *
 463 * @dev: Pointer to a device
 464 *
 465 * @return Pointer to addr, or NULL if there is no such property
 466 */
 467void *dev_get_addr_ptr(struct udevice *dev);
 468
 469/**
 470 * dev_get_addr_index() - Get the indexed reg property of a device
 471 *
 472 * @dev: Pointer to a device
 473 * @index: the 'reg' property can hold a list of <addr, size> pairs
 474 *         and @index is used to select which one is required
 475 *
 476 * @return addr
 477 */
 478fdt_addr_t dev_get_addr_index(struct udevice *dev, int index);
 479
 480/**
 481 * dev_get_addr_name() - Get the reg property of a device, indexed by name
 482 *
 483 * @dev: Pointer to a device
 484 * @name: the 'reg' property can hold a list of <addr, size> pairs, with the
 485 *        'reg-names' property providing named-based identification. @index
 486 *        indicates the value to search for in 'reg-names'.
 487 *
 488 * @return addr
 489 */
 490fdt_addr_t dev_get_addr_name(struct udevice *dev, const char *name);
 491
 492/**
 493 * device_has_children() - check if a device has any children
 494 *
 495 * @dev:        Device to check
 496 * @return true if the device has one or more children
 497 */
 498bool device_has_children(struct udevice *dev);
 499
 500/**
 501 * device_has_active_children() - check if a device has any active children
 502 *
 503 * @dev:        Device to check
 504 * @return true if the device has one or more children and at least one of
 505 * them is active (probed).
 506 */
 507bool device_has_active_children(struct udevice *dev);
 508
 509/**
 510 * device_is_last_sibling() - check if a device is the last sibling
 511 *
 512 * This function can be useful for display purposes, when special action needs
 513 * to be taken when displaying the last sibling. This can happen when a tree
 514 * view of devices is being displayed.
 515 *
 516 * @dev:        Device to check
 517 * @return true if there are no more siblings after this one - i.e. is it
 518 * last in the list.
 519 */
 520bool device_is_last_sibling(struct udevice *dev);
 521
 522/**
 523 * device_set_name() - set the name of a device
 524 *
 525 * This must be called in the device's bind() method and no later. Normally
 526 * this is unnecessary but for probed devices which don't get a useful name
 527 * this function can be helpful.
 528 *
 529 * The name is allocated and will be freed automatically when the device is
 530 * unbound.
 531 *
 532 * @dev:        Device to update
 533 * @name:       New name (this string is allocated new memory and attached to
 534 *              the device)
 535 * @return 0 if OK, -ENOMEM if there is not enough memory to allocate the
 536 * string
 537 */
 538int device_set_name(struct udevice *dev, const char *name);
 539
 540/**
 541 * device_set_name_alloced() - note that a device name is allocated
 542 *
 543 * This sets the DM_NAME_ALLOCED flag for the device, so that when it is
 544 * unbound the name will be freed. This avoids memory leaks.
 545 *
 546 * @dev:        Device to update
 547 */
 548void device_set_name_alloced(struct udevice *dev);
 549
 550/**
 551 * of_device_is_compatible() - check if the device is compatible with the compat
 552 *
 553 * This allows to check whether the device is comaptible with the compat.
 554 *
 555 * @dev:        udevice pointer for which compatible needs to be verified.
 556 * @compat:     Compatible string which needs to verified in the given
 557 *              device
 558 * @return true if OK, false if the compatible is not found
 559 */
 560bool of_device_is_compatible(struct udevice *dev, const char *compat);
 561
 562/**
 563 * of_machine_is_compatible() - check if the machine is compatible with
 564 *                              the compat
 565 *
 566 * This allows to check whether the machine is comaptible with the compat.
 567 *
 568 * @compat:     Compatible string which needs to verified
 569 * @return true if OK, false if the compatible is not found
 570 */
 571bool of_machine_is_compatible(const char *compat);
 572
 573/**
 574 * device_is_on_pci_bus - Test if a device is on a PCI bus
 575 *
 576 * @dev:        device to test
 577 * @return:     true if it is on a PCI bus, false otherwise
 578 */
 579static inline bool device_is_on_pci_bus(struct udevice *dev)
 580{
 581        return device_get_uclass_id(dev->parent) == UCLASS_PCI;
 582}
 583
 584/**
 585 * device_foreach_child_safe() - iterate through child devices safely
 586 *
 587 * This allows the @pos child to be removed in the loop if required.
 588 *
 589 * @pos: struct udevice * for the current device
 590 * @next: struct udevice * for the next device
 591 * @parent: parent device to scan
 592 */
 593#define device_foreach_child_safe(pos, next, parent)    \
 594        list_for_each_entry_safe(pos, next, &parent->child_head, sibling_node)
 595
 596/* device resource management */
 597typedef void (*dr_release_t)(struct udevice *dev, void *res);
 598typedef int (*dr_match_t)(struct udevice *dev, void *res, void *match_data);
 599
 600#ifdef CONFIG_DEVRES
 601
 602#ifdef CONFIG_DEBUG_DEVRES
 603void *__devres_alloc(dr_release_t release, size_t size, gfp_t gfp,
 604                     const char *name);
 605#define _devres_alloc(release, size, gfp) \
 606        __devres_alloc(release, size, gfp, #release)
 607#else
 608void *_devres_alloc(dr_release_t release, size_t size, gfp_t gfp);
 609#endif
 610
 611/**
 612 * devres_alloc() - Allocate device resource data
 613 * @release: Release function devres will be associated with
 614 * @size: Allocation size
 615 * @gfp: Allocation flags
 616 *
 617 * Allocate devres of @size bytes.  The allocated area is associated
 618 * with @release.  The returned pointer can be passed to
 619 * other devres_*() functions.
 620 *
 621 * RETURNS:
 622 * Pointer to allocated devres on success, NULL on failure.
 623 */
 624#define devres_alloc(release, size, gfp) \
 625        _devres_alloc(release, size, gfp | __GFP_ZERO)
 626
 627/**
 628 * devres_free() - Free device resource data
 629 * @res: Pointer to devres data to free
 630 *
 631 * Free devres created with devres_alloc().
 632 */
 633void devres_free(void *res);
 634
 635/**
 636 * devres_add() - Register device resource
 637 * @dev: Device to add resource to
 638 * @res: Resource to register
 639 *
 640 * Register devres @res to @dev.  @res should have been allocated
 641 * using devres_alloc().  On driver detach, the associated release
 642 * function will be invoked and devres will be freed automatically.
 643 */
 644void devres_add(struct udevice *dev, void *res);
 645
 646/**
 647 * devres_find() - Find device resource
 648 * @dev: Device to lookup resource from
 649 * @release: Look for resources associated with this release function
 650 * @match: Match function (optional)
 651 * @match_data: Data for the match function
 652 *
 653 * Find the latest devres of @dev which is associated with @release
 654 * and for which @match returns 1.  If @match is NULL, it's considered
 655 * to match all.
 656 *
 657 * @return pointer to found devres, NULL if not found.
 658 */
 659void *devres_find(struct udevice *dev, dr_release_t release,
 660                  dr_match_t match, void *match_data);
 661
 662/**
 663 * devres_get() - Find devres, if non-existent, add one atomically
 664 * @dev: Device to lookup or add devres for
 665 * @new_res: Pointer to new initialized devres to add if not found
 666 * @match: Match function (optional)
 667 * @match_data: Data for the match function
 668 *
 669 * Find the latest devres of @dev which has the same release function
 670 * as @new_res and for which @match return 1.  If found, @new_res is
 671 * freed; otherwise, @new_res is added atomically.
 672 *
 673 * @return ointer to found or added devres.
 674 */
 675void *devres_get(struct udevice *dev, void *new_res,
 676                 dr_match_t match, void *match_data);
 677
 678/**
 679 * devres_remove() - Find a device resource and remove it
 680 * @dev: Device to find resource from
 681 * @release: Look for resources associated with this release function
 682 * @match: Match function (optional)
 683 * @match_data: Data for the match function
 684 *
 685 * Find the latest devres of @dev associated with @release and for
 686 * which @match returns 1.  If @match is NULL, it's considered to
 687 * match all.  If found, the resource is removed atomically and
 688 * returned.
 689 *
 690 * @return ointer to removed devres on success, NULL if not found.
 691 */
 692void *devres_remove(struct udevice *dev, dr_release_t release,
 693                    dr_match_t match, void *match_data);
 694
 695/**
 696 * devres_destroy() - Find a device resource and destroy it
 697 * @dev: Device to find resource from
 698 * @release: Look for resources associated with this release function
 699 * @match: Match function (optional)
 700 * @match_data: Data for the match function
 701 *
 702 * Find the latest devres of @dev associated with @release and for
 703 * which @match returns 1.  If @match is NULL, it's considered to
 704 * match all.  If found, the resource is removed atomically and freed.
 705 *
 706 * Note that the release function for the resource will not be called,
 707 * only the devres-allocated data will be freed.  The caller becomes
 708 * responsible for freeing any other data.
 709 *
 710 * @return 0 if devres is found and freed, -ENOENT if not found.
 711 */
 712int devres_destroy(struct udevice *dev, dr_release_t release,
 713                   dr_match_t match, void *match_data);
 714
 715/**
 716 * devres_release() - Find a device resource and destroy it, calling release
 717 * @dev: Device to find resource from
 718 * @release: Look for resources associated with this release function
 719 * @match: Match function (optional)
 720 * @match_data: Data for the match function
 721 *
 722 * Find the latest devres of @dev associated with @release and for
 723 * which @match returns 1.  If @match is NULL, it's considered to
 724 * match all.  If found, the resource is removed atomically, the
 725 * release function called and the resource freed.
 726 *
 727 * @return 0 if devres is found and freed, -ENOENT if not found.
 728 */
 729int devres_release(struct udevice *dev, dr_release_t release,
 730                   dr_match_t match, void *match_data);
 731
 732/* managed devm_k.alloc/kfree for device drivers */
 733/**
 734 * devm_kmalloc() - Resource-managed kmalloc
 735 * @dev: Device to allocate memory for
 736 * @size: Allocation size
 737 * @gfp: Allocation gfp flags
 738 *
 739 * Managed kmalloc.  Memory allocated with this function is
 740 * automatically freed on driver detach.  Like all other devres
 741 * resources, guaranteed alignment is unsigned long long.
 742 *
 743 * @return pointer to allocated memory on success, NULL on failure.
 744 */
 745void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp);
 746static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
 747{
 748        return devm_kmalloc(dev, size, gfp | __GFP_ZERO);
 749}
 750static inline void *devm_kmalloc_array(struct udevice *dev,
 751                                       size_t n, size_t size, gfp_t flags)
 752{
 753        if (size != 0 && n > SIZE_MAX / size)
 754                return NULL;
 755        return devm_kmalloc(dev, n * size, flags);
 756}
 757static inline void *devm_kcalloc(struct udevice *dev,
 758                                 size_t n, size_t size, gfp_t flags)
 759{
 760        return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO);
 761}
 762
 763/**
 764 * devm_kfree() - Resource-managed kfree
 765 * @dev: Device this memory belongs to
 766 * @ptr: Memory to free
 767 *
 768 * Free memory allocated with devm_kmalloc().
 769 */
 770void devm_kfree(struct udevice *dev, void *ptr);
 771
 772#else /* ! CONFIG_DEVRES */
 773
 774static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp)
 775{
 776        return kzalloc(size, gfp);
 777}
 778
 779static inline void devres_free(void *res)
 780{
 781        kfree(res);
 782}
 783
 784static inline void devres_add(struct udevice *dev, void *res)
 785{
 786}
 787
 788static inline void *devres_find(struct udevice *dev, dr_release_t release,
 789                                dr_match_t match, void *match_data)
 790{
 791        return NULL;
 792}
 793
 794static inline void *devres_get(struct udevice *dev, void *new_res,
 795                               dr_match_t match, void *match_data)
 796{
 797        return NULL;
 798}
 799
 800static inline void *devres_remove(struct udevice *dev, dr_release_t release,
 801                                  dr_match_t match, void *match_data)
 802{
 803        return NULL;
 804}
 805
 806static inline int devres_destroy(struct udevice *dev, dr_release_t release,
 807                                 dr_match_t match, void *match_data)
 808{
 809        return 0;
 810}
 811
 812static inline int devres_release(struct udevice *dev, dr_release_t release,
 813                                 dr_match_t match, void *match_data)
 814{
 815        return 0;
 816}
 817
 818static inline void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp)
 819{
 820        return kmalloc(size, gfp);
 821}
 822
 823static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
 824{
 825        return kzalloc(size, gfp);
 826}
 827
 828static inline void *devm_kmaloc_array(struct udevice *dev,
 829                                      size_t n, size_t size, gfp_t flags)
 830{
 831        /* TODO: add kmalloc_array() to linux/compat.h */
 832        if (size != 0 && n > SIZE_MAX / size)
 833                return NULL;
 834        return kmalloc(n * size, flags);
 835}
 836
 837static inline void *devm_kcalloc(struct udevice *dev,
 838                                 size_t n, size_t size, gfp_t flags)
 839{
 840        /* TODO: add kcalloc() to linux/compat.h */
 841        return kmalloc(n * size, flags | __GFP_ZERO);
 842}
 843
 844static inline void devm_kfree(struct udevice *dev, void *ptr)
 845{
 846        kfree(ptr);
 847}
 848
 849#endif /* ! CONFIG_DEVRES */
 850
 851/**
 852 * dm_set_translation_offset() - Set translation offset
 853 * @offs: Translation offset
 854 *
 855 * Some platforms need a special address translation. Those
 856 * platforms (e.g. mvebu in SPL) can configure a translation
 857 * offset in the DM by calling this function. It will be
 858 * added to all addresses returned in dev_get_addr().
 859 */
 860void dm_set_translation_offset(fdt_addr_t offs);
 861
 862/**
 863 * dm_get_translation_offset() - Get translation offset
 864 *
 865 * This function returns the translation offset that can
 866 * be configured by calling dm_set_translation_offset().
 867 *
 868 * @return translation offset for the device address (0 as default).
 869 */
 870fdt_addr_t dm_get_translation_offset(void);
 871
 872#endif
 873