uboot/lib/zlib/trees.c
<<
>>
Prefs
   1/* trees.c -- output deflated data using Huffman coding
   2 * Copyright (C) 1995-2010 Jean-loup Gailly
   3 * detect_data_type() function provided freely by Cosmin Truta, 2006
   4 * For conditions of distribution and use, see copyright notice in zlib.h
   5 */
   6
   7/*
   8 *  ALGORITHM
   9 *
  10 *      The "deflation" process uses several Huffman trees. The more
  11 *      common source values are represented by shorter bit sequences.
  12 *
  13 *      Each code tree is stored in a compressed form which is itself
  14 * a Huffman encoding of the lengths of all the code strings (in
  15 * ascending order by source values).  The actual code strings are
  16 * reconstructed from the lengths in the inflate process, as described
  17 * in the deflate specification.
  18 *
  19 *  REFERENCES
  20 *
  21 *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
  22 *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
  23 *
  24 *      Storer, James A.
  25 *          Data Compression:  Methods and Theory, pp. 49-50.
  26 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
  27 *
  28 *      Sedgewick, R.
  29 *          Algorithms, p290.
  30 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
  31 */
  32
  33/* @(#) $Id$ */
  34
  35/* #define GEN_TREES_H */
  36
  37#include "deflate.h"
  38
  39#ifdef DEBUG
  40#  include <ctype.h>
  41#endif
  42
  43/* ===========================================================================
  44 * Constants
  45 */
  46
  47#define MAX_BL_BITS 7
  48/* Bit length codes must not exceed MAX_BL_BITS bits */
  49
  50#define END_BLOCK 256
  51/* end of block literal code */
  52
  53#define REP_3_6      16
  54/* repeat previous bit length 3-6 times (2 bits of repeat count) */
  55
  56#define REPZ_3_10    17
  57/* repeat a zero length 3-10 times  (3 bits of repeat count) */
  58
  59#define REPZ_11_138  18
  60/* repeat a zero length 11-138 times  (7 bits of repeat count) */
  61
  62local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
  63   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
  64
  65local const int extra_dbits[D_CODES] /* extra bits for each distance code */
  66   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
  67
  68local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
  69   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
  70
  71local const uch bl_order[BL_CODES]
  72   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
  73/* The lengths of the bit length codes are sent in order of decreasing
  74 * probability, to avoid transmitting the lengths for unused bit length codes.
  75 */
  76
  77#define Buf_size (8 * 2*sizeof(char))
  78/* Number of bits used within bi_buf. (bi_buf might be implemented on
  79 * more than 16 bits on some systems.)
  80 */
  81
  82/* ===========================================================================
  83 * Local data. These are initialized only once.
  84 */
  85
  86#define DIST_CODE_LEN  512 /* see definition of array dist_code below */
  87
  88#if defined(GEN_TREES_H) || !defined(STDC)
  89/* non ANSI compilers may not accept trees.h */
  90
  91local ct_data static_ltree[L_CODES+2];
  92/* The static literal tree. Since the bit lengths are imposed, there is no
  93 * need for the L_CODES extra codes used during heap construction. However
  94 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
  95 * below).
  96 */
  97
  98local ct_data static_dtree[D_CODES];
  99/* The static distance tree. (Actually a trivial tree since all codes use
 100 * 5 bits.)
 101 */
 102
 103uch _dist_code[DIST_CODE_LEN];
 104/* Distance codes. The first 256 values correspond to the distances
 105 * 3 .. 258, the last 256 values correspond to the top 8 bits of
 106 * the 15 bit distances.
 107 */
 108
 109uch _length_code[MAX_MATCH-MIN_MATCH+1];
 110/* length code for each normalized match length (0 == MIN_MATCH) */
 111
 112local int base_length[LENGTH_CODES];
 113/* First normalized length for each code (0 = MIN_MATCH) */
 114
 115local int base_dist[D_CODES];
 116/* First normalized distance for each code (0 = distance of 1) */
 117
 118#else
 119#  include "trees.h"
 120#endif /* GEN_TREES_H */
 121
 122struct static_tree_desc_s {
 123    const ct_data *static_tree;  /* static tree or NULL */
 124    const intf *extra_bits;      /* extra bits for each code or NULL */
 125    int     extra_base;          /* base index for extra_bits */
 126    int     elems;               /* max number of elements in the tree */
 127    int     max_length;          /* max bit length for the codes */
 128};
 129
 130local static_tree_desc  static_l_desc =
 131{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
 132
 133local static_tree_desc  static_d_desc =
 134{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
 135
 136local static_tree_desc  static_bl_desc =
 137{(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
 138
 139/* ===========================================================================
 140 * Local (static) routines in this file.
 141 */
 142
 143local void tr_static_init OF((void));
 144local void init_block     OF((deflate_state *s));
 145local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
 146local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
 147local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
 148local void build_tree     OF((deflate_state *s, tree_desc *desc));
 149local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
 150local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
 151local int  build_bl_tree  OF((deflate_state *s));
 152local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
 153                              int blcodes));
 154local void compress_block OF((deflate_state *s, ct_data *ltree,
 155                              ct_data *dtree));
 156local int  detect_data_type OF((deflate_state *s));
 157local unsigned bi_reverse OF((unsigned value, int length));
 158local void bi_windup      OF((deflate_state *s));
 159local void bi_flush       OF((deflate_state *s));
 160local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
 161                              int header));
 162
 163#ifdef GEN_TREES_H
 164local void gen_trees_header OF((void));
 165#endif
 166
 167#ifndef DEBUG
 168#  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
 169   /* Send a code of the given tree. c and tree must not have side effects */
 170
 171#else /* DEBUG */
 172#  define send_code(s, c, tree) \
 173     { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
 174       send_bits(s, tree[c].Code, tree[c].Len); }
 175#endif
 176
 177/* ===========================================================================
 178 * Output a short LSB first on the stream.
 179 * IN assertion: there is enough room in pendingBuf.
 180 */
 181#define put_short(s, w) { \
 182    put_byte(s, (uch)((w) & 0xff)); \
 183    put_byte(s, (uch)((ush)(w) >> 8)); \
 184}
 185
 186/* ===========================================================================
 187 * Send a value on a given number of bits.
 188 * IN assertion: length <= 16 and value fits in length bits.
 189 */
 190#ifdef DEBUG
 191local void send_bits      OF((deflate_state *s, int value, int length));
 192
 193local void send_bits(s, value, length)
 194    deflate_state *s;
 195    int value;  /* value to send */
 196    int length; /* number of bits */
 197{
 198    Tracevv((stderr," l %2d v %4x ", length, value));
 199    Assert(length > 0 && length <= 15, "invalid length");
 200    s->bits_sent += (ulg)length;
 201
 202    /* If not enough room in bi_buf, use (valid) bits from bi_buf and
 203     * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
 204     * unused bits in value.
 205     */
 206    if (s->bi_valid > (int)Buf_size - length) {
 207        s->bi_buf |= (ush)value << s->bi_valid;
 208        put_short(s, s->bi_buf);
 209        s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
 210        s->bi_valid += length - Buf_size;
 211    } else {
 212        s->bi_buf |= (ush)value << s->bi_valid;
 213        s->bi_valid += length;
 214    }
 215}
 216#else /* !DEBUG */
 217
 218#define send_bits(s, value, length) \
 219{ int len = length;\
 220  if (s->bi_valid > (int)Buf_size - len) {\
 221    int val = value;\
 222    s->bi_buf |= (ush)val << s->bi_valid;\
 223    put_short(s, s->bi_buf);\
 224    s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
 225    s->bi_valid += len - Buf_size;\
 226  } else {\
 227    s->bi_buf |= (ush)(value) << s->bi_valid;\
 228    s->bi_valid += len;\
 229  }\
 230}
 231#endif /* DEBUG */
 232
 233
 234/* the arguments must not have side effects */
 235
 236/* ===========================================================================
 237 * Initialize the various 'constant' tables.
 238 */
 239local void tr_static_init()
 240{
 241#if defined(GEN_TREES_H) || !defined(STDC)
 242    static int static_init_done = 0;
 243    int n;        /* iterates over tree elements */
 244    int bits;     /* bit counter */
 245    int length;   /* length value */
 246    int code;     /* code value */
 247    int dist;     /* distance index */
 248    ush bl_count[MAX_BITS+1];
 249    /* number of codes at each bit length for an optimal tree */
 250
 251    if (static_init_done) return;
 252
 253    /* For some embedded targets, global variables are not initialized: */
 254#ifdef NO_INIT_GLOBAL_POINTERS
 255    static_l_desc.static_tree = static_ltree;
 256    static_l_desc.extra_bits = extra_lbits;
 257    static_d_desc.static_tree = static_dtree;
 258    static_d_desc.extra_bits = extra_dbits;
 259    static_bl_desc.extra_bits = extra_blbits;
 260#endif
 261
 262    /* Initialize the mapping length (0..255) -> length code (0..28) */
 263    length = 0;
 264    for (code = 0; code < LENGTH_CODES-1; code++) {
 265        base_length[code] = length;
 266        for (n = 0; n < (1<<extra_lbits[code]); n++) {
 267            _length_code[length++] = (uch)code;
 268        }
 269    }
 270    Assert (length == 256, "tr_static_init: length != 256");
 271    /* Note that the length 255 (match length 258) can be represented
 272     * in two different ways: code 284 + 5 bits or code 285, so we
 273     * overwrite length_code[255] to use the best encoding:
 274     */
 275    _length_code[length-1] = (uch)code;
 276
 277    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
 278    dist = 0;
 279    for (code = 0 ; code < 16; code++) {
 280        base_dist[code] = dist;
 281        for (n = 0; n < (1<<extra_dbits[code]); n++) {
 282            _dist_code[dist++] = (uch)code;
 283        }
 284    }
 285    Assert (dist == 256, "tr_static_init: dist != 256");
 286    dist >>= 7; /* from now on, all distances are divided by 128 */
 287    for ( ; code < D_CODES; code++) {
 288        base_dist[code] = dist << 7;
 289        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
 290            _dist_code[256 + dist++] = (uch)code;
 291        }
 292    }
 293    Assert (dist == 256, "tr_static_init: 256+dist != 512");
 294
 295    /* Construct the codes of the static literal tree */
 296    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
 297    n = 0;
 298    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
 299    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
 300    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
 301    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
 302    /* Codes 286 and 287 do not exist, but we must include them in the
 303     * tree construction to get a canonical Huffman tree (longest code
 304     * all ones)
 305     */
 306    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
 307
 308    /* The static distance tree is trivial: */
 309    for (n = 0; n < D_CODES; n++) {
 310        static_dtree[n].Len = 5;
 311        static_dtree[n].Code = bi_reverse((unsigned)n, 5);
 312    }
 313    static_init_done = 1;
 314
 315#  ifdef GEN_TREES_H
 316    gen_trees_header();
 317#  endif
 318#endif /* defined(GEN_TREES_H) || !defined(STDC) */
 319}
 320
 321/* ===========================================================================
 322 * Genererate the file trees.h describing the static trees.
 323 */
 324#ifdef GEN_TREES_H
 325#  ifndef DEBUG
 326#    include <stdio.h>
 327#  endif
 328
 329#  define SEPARATOR(i, last, width) \
 330      ((i) == (last)? "\n};\n\n" :    \
 331       ((i) % (width) == (width)-1 ? ",\n" : ", "))
 332
 333void gen_trees_header()
 334{
 335    FILE *header = fopen("trees.h", "w");
 336    int i;
 337
 338    Assert (header != NULL, "Can't open trees.h");
 339    fprintf(header,
 340            "/* header created automatically with -DGEN_TREES_H */\n\n");
 341
 342    fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
 343    for (i = 0; i < L_CODES+2; i++) {
 344        fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
 345                static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
 346    }
 347
 348    fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
 349    for (i = 0; i < D_CODES; i++) {
 350        fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
 351                static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
 352    }
 353
 354    fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
 355    for (i = 0; i < DIST_CODE_LEN; i++) {
 356        fprintf(header, "%2u%s", _dist_code[i],
 357                SEPARATOR(i, DIST_CODE_LEN-1, 20));
 358    }
 359
 360    fprintf(header,
 361        "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
 362    for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
 363        fprintf(header, "%2u%s", _length_code[i],
 364                SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
 365    }
 366
 367    fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
 368    for (i = 0; i < LENGTH_CODES; i++) {
 369        fprintf(header, "%1u%s", base_length[i],
 370                SEPARATOR(i, LENGTH_CODES-1, 20));
 371    }
 372
 373    fprintf(header, "local const int base_dist[D_CODES] = {\n");
 374    for (i = 0; i < D_CODES; i++) {
 375        fprintf(header, "%5u%s", base_dist[i],
 376                SEPARATOR(i, D_CODES-1, 10));
 377    }
 378
 379    fclose(header);
 380}
 381#endif /* GEN_TREES_H */
 382
 383/* ===========================================================================
 384 * Initialize the tree data structures for a new zlib stream.
 385 */
 386void ZLIB_INTERNAL _tr_init(s)
 387    deflate_state *s;
 388{
 389    tr_static_init();
 390
 391    s->l_desc.dyn_tree = s->dyn_ltree;
 392    s->l_desc.stat_desc = &static_l_desc;
 393
 394    s->d_desc.dyn_tree = s->dyn_dtree;
 395    s->d_desc.stat_desc = &static_d_desc;
 396
 397    s->bl_desc.dyn_tree = s->bl_tree;
 398    s->bl_desc.stat_desc = &static_bl_desc;
 399
 400    s->bi_buf = 0;
 401    s->bi_valid = 0;
 402    s->last_eob_len = 8; /* enough lookahead for inflate */
 403#ifdef DEBUG
 404    s->compressed_len = 0L;
 405    s->bits_sent = 0L;
 406#endif
 407
 408    /* Initialize the first block of the first file: */
 409    init_block(s);
 410}
 411
 412/* ===========================================================================
 413 * Initialize a new block.
 414 */
 415local void init_block(s)
 416    deflate_state *s;
 417{
 418    int n; /* iterates over tree elements */
 419
 420    /* Initialize the trees. */
 421    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
 422    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
 423    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
 424
 425    s->dyn_ltree[END_BLOCK].Freq = 1;
 426    s->opt_len = s->static_len = 0L;
 427    s->last_lit = s->matches = 0;
 428}
 429
 430#define SMALLEST 1
 431/* Index within the heap array of least frequent node in the Huffman tree */
 432
 433
 434/* ===========================================================================
 435 * Remove the smallest element from the heap and recreate the heap with
 436 * one less element. Updates heap and heap_len.
 437 */
 438#define pqremove(s, tree, top) \
 439{\
 440    top = s->heap[SMALLEST]; \
 441    s->heap[SMALLEST] = s->heap[s->heap_len--]; \
 442    pqdownheap(s, tree, SMALLEST); \
 443}
 444
 445/* ===========================================================================
 446 * Compares to subtrees, using the tree depth as tie breaker when
 447 * the subtrees have equal frequency. This minimizes the worst case length.
 448 */
 449#define smaller(tree, n, m, depth) \
 450   (tree[n].Freq < tree[m].Freq || \
 451   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
 452
 453/* ===========================================================================
 454 * Restore the heap property by moving down the tree starting at node k,
 455 * exchanging a node with the smallest of its two sons if necessary, stopping
 456 * when the heap property is re-established (each father smaller than its
 457 * two sons).
 458 */
 459local void pqdownheap(s, tree, k)
 460    deflate_state *s;
 461    ct_data *tree;  /* the tree to restore */
 462    int k;               /* node to move down */
 463{
 464    int v = s->heap[k];
 465    int j = k << 1;  /* left son of k */
 466    while (j <= s->heap_len) {
 467        /* Set j to the smallest of the two sons: */
 468        if (j < s->heap_len &&
 469            smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
 470            j++;
 471        }
 472        /* Exit if v is smaller than both sons */
 473        if (smaller(tree, v, s->heap[j], s->depth)) break;
 474
 475        /* Exchange v with the smallest son */
 476        s->heap[k] = s->heap[j];  k = j;
 477
 478        /* And continue down the tree, setting j to the left son of k */
 479        j <<= 1;
 480    }
 481    s->heap[k] = v;
 482}
 483
 484/* ===========================================================================
 485 * Compute the optimal bit lengths for a tree and update the total bit length
 486 * for the current block.
 487 * IN assertion: the fields freq and dad are set, heap[heap_max] and
 488 *    above are the tree nodes sorted by increasing frequency.
 489 * OUT assertions: the field len is set to the optimal bit length, the
 490 *     array bl_count contains the frequencies for each bit length.
 491 *     The length opt_len is updated; static_len is also updated if stree is
 492 *     not null.
 493 */
 494local void gen_bitlen(s, desc)
 495    deflate_state *s;
 496    tree_desc *desc;    /* the tree descriptor */
 497{
 498    ct_data *tree        = desc->dyn_tree;
 499    int max_code         = desc->max_code;
 500    const ct_data *stree = desc->stat_desc->static_tree;
 501    const intf *extra    = desc->stat_desc->extra_bits;
 502    int base             = desc->stat_desc->extra_base;
 503    int max_length       = desc->stat_desc->max_length;
 504    int h;              /* heap index */
 505    int n, m;           /* iterate over the tree elements */
 506    int bits;           /* bit length */
 507    int xbits;          /* extra bits */
 508    ush f;              /* frequency */
 509    int overflow = 0;   /* number of elements with bit length too large */
 510
 511    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
 512
 513    /* In a first pass, compute the optimal bit lengths (which may
 514     * overflow in the case of the bit length tree).
 515     */
 516    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
 517
 518    for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
 519        n = s->heap[h];
 520        bits = tree[tree[n].Dad].Len + 1;
 521        if (bits > max_length) bits = max_length, overflow++;
 522        tree[n].Len = (ush)bits;
 523        /* We overwrite tree[n].Dad which is no longer needed */
 524
 525        if (n > max_code) continue; /* not a leaf node */
 526
 527        s->bl_count[bits]++;
 528        xbits = 0;
 529        if (n >= base) xbits = extra[n-base];
 530        f = tree[n].Freq;
 531        s->opt_len += (ulg)f * (bits + xbits);
 532        if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
 533    }
 534    if (overflow == 0) return;
 535
 536    Trace((stderr,"\nbit length overflow\n"));
 537    /* This happens for example on obj2 and pic of the Calgary corpus */
 538
 539    /* Find the first bit length which could increase: */
 540    do {
 541        bits = max_length-1;
 542        while (s->bl_count[bits] == 0) bits--;
 543        s->bl_count[bits]--;      /* move one leaf down the tree */
 544        s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
 545        s->bl_count[max_length]--;
 546        /* The brother of the overflow item also moves one step up,
 547         * but this does not affect bl_count[max_length]
 548         */
 549        overflow -= 2;
 550    } while (overflow > 0);
 551
 552    /* Now recompute all bit lengths, scanning in increasing frequency.
 553     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
 554     * lengths instead of fixing only the wrong ones. This idea is taken
 555     * from 'ar' written by Haruhiko Okumura.)
 556     */
 557    for (bits = max_length; bits != 0; bits--) {
 558        n = s->bl_count[bits];
 559        while (n != 0) {
 560            m = s->heap[--h];
 561            if (m > max_code) continue;
 562            if ((unsigned) tree[m].Len != (unsigned) bits) {
 563                Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
 564                s->opt_len += ((long)bits - (long)tree[m].Len)
 565                              *(long)tree[m].Freq;
 566                tree[m].Len = (ush)bits;
 567            }
 568            n--;
 569        }
 570    }
 571}
 572
 573/* ===========================================================================
 574 * Generate the codes for a given tree and bit counts (which need not be
 575 * optimal).
 576 * IN assertion: the array bl_count contains the bit length statistics for
 577 * the given tree and the field len is set for all tree elements.
 578 * OUT assertion: the field code is set for all tree elements of non
 579 *     zero code length.
 580 */
 581local void gen_codes (tree, max_code, bl_count)
 582    ct_data *tree;             /* the tree to decorate */
 583    int max_code;              /* largest code with non zero frequency */
 584    ushf *bl_count;            /* number of codes at each bit length */
 585{
 586    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
 587    ush code = 0;              /* running code value */
 588    int bits;                  /* bit index */
 589    int n;                     /* code index */
 590
 591    /* The distribution counts are first used to generate the code values
 592     * without bit reversal.
 593     */
 594    for (bits = 1; bits <= MAX_BITS; bits++) {
 595        next_code[bits] = code = (code + bl_count[bits-1]) << 1;
 596    }
 597    /* Check that the bit counts in bl_count are consistent. The last code
 598     * must be all ones.
 599     */
 600    Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
 601            "inconsistent bit counts");
 602    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
 603
 604    for (n = 0;  n <= max_code; n++) {
 605        int len = tree[n].Len;
 606        if (len == 0) continue;
 607        /* Now reverse the bits */
 608        tree[n].Code = bi_reverse(next_code[len]++, len);
 609
 610        Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
 611             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
 612    }
 613}
 614
 615/* ===========================================================================
 616 * Construct one Huffman tree and assigns the code bit strings and lengths.
 617 * Update the total bit length for the current block.
 618 * IN assertion: the field freq is set for all tree elements.
 619 * OUT assertions: the fields len and code are set to the optimal bit length
 620 *     and corresponding code. The length opt_len is updated; static_len is
 621 *     also updated if stree is not null. The field max_code is set.
 622 */
 623local void build_tree(s, desc)
 624    deflate_state *s;
 625    tree_desc *desc; /* the tree descriptor */
 626{
 627    ct_data *tree         = desc->dyn_tree;
 628    const ct_data *stree  = desc->stat_desc->static_tree;
 629    int elems             = desc->stat_desc->elems;
 630    int n, m;          /* iterate over heap elements */
 631    int max_code = -1; /* largest code with non zero frequency */
 632    int node;          /* new node being created */
 633
 634    /* Construct the initial heap, with least frequent element in
 635     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
 636     * heap[0] is not used.
 637     */
 638    s->heap_len = 0, s->heap_max = HEAP_SIZE;
 639
 640    for (n = 0; n < elems; n++) {
 641        if (tree[n].Freq != 0) {
 642            s->heap[++(s->heap_len)] = max_code = n;
 643            s->depth[n] = 0;
 644        } else {
 645            tree[n].Len = 0;
 646        }
 647    }
 648
 649    /* The pkzip format requires that at least one distance code exists,
 650     * and that at least one bit should be sent even if there is only one
 651     * possible code. So to avoid special checks later on we force at least
 652     * two codes of non zero frequency.
 653     */
 654    while (s->heap_len < 2) {
 655        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
 656        tree[node].Freq = 1;
 657        s->depth[node] = 0;
 658        s->opt_len--; if (stree) s->static_len -= stree[node].Len;
 659        /* node is 0 or 1 so it does not have extra bits */
 660    }
 661    desc->max_code = max_code;
 662
 663    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
 664     * establish sub-heaps of increasing lengths:
 665     */
 666    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
 667
 668    /* Construct the Huffman tree by repeatedly combining the least two
 669     * frequent nodes.
 670     */
 671    node = elems;              /* next internal node of the tree */
 672    do {
 673        pqremove(s, tree, n);  /* n = node of least frequency */
 674        m = s->heap[SMALLEST]; /* m = node of next least frequency */
 675
 676        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
 677        s->heap[--(s->heap_max)] = m;
 678
 679        /* Create a new node father of n and m */
 680        tree[node].Freq = tree[n].Freq + tree[m].Freq;
 681        s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
 682                                s->depth[n] : s->depth[m]) + 1);
 683        tree[n].Dad = tree[m].Dad = (ush)node;
 684#ifdef DUMP_BL_TREE
 685        if (tree == s->bl_tree) {
 686            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
 687                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
 688        }
 689#endif
 690        /* and insert the new node in the heap */
 691        s->heap[SMALLEST] = node++;
 692        pqdownheap(s, tree, SMALLEST);
 693
 694    } while (s->heap_len >= 2);
 695
 696    s->heap[--(s->heap_max)] = s->heap[SMALLEST];
 697
 698    /* At this point, the fields freq and dad are set. We can now
 699     * generate the bit lengths.
 700     */
 701    gen_bitlen(s, (tree_desc *)desc);
 702
 703    /* The field len is now set, we can generate the bit codes */
 704    gen_codes ((ct_data *)tree, max_code, s->bl_count);
 705}
 706
 707/* ===========================================================================
 708 * Scan a literal or distance tree to determine the frequencies of the codes
 709 * in the bit length tree.
 710 */
 711local void scan_tree (s, tree, max_code)
 712    deflate_state *s;
 713    ct_data *tree;   /* the tree to be scanned */
 714    int max_code;    /* and its largest code of non zero frequency */
 715{
 716    int n;                     /* iterates over all tree elements */
 717    int prevlen = -1;          /* last emitted length */
 718    int curlen;                /* length of current code */
 719    int nextlen = tree[0].Len; /* length of next code */
 720    int count = 0;             /* repeat count of the current code */
 721    int max_count = 7;         /* max repeat count */
 722    int min_count = 4;         /* min repeat count */
 723
 724    if (nextlen == 0) max_count = 138, min_count = 3;
 725    tree[max_code+1].Len = (ush)0xffff; /* guard */
 726
 727    for (n = 0; n <= max_code; n++) {
 728        curlen = nextlen; nextlen = tree[n+1].Len;
 729        if (++count < max_count && curlen == nextlen) {
 730            continue;
 731        } else if (count < min_count) {
 732            s->bl_tree[curlen].Freq += count;
 733        } else if (curlen != 0) {
 734            if (curlen != prevlen) s->bl_tree[curlen].Freq++;
 735            s->bl_tree[REP_3_6].Freq++;
 736        } else if (count <= 10) {
 737            s->bl_tree[REPZ_3_10].Freq++;
 738        } else {
 739            s->bl_tree[REPZ_11_138].Freq++;
 740        }
 741        count = 0; prevlen = curlen;
 742        if (nextlen == 0) {
 743            max_count = 138, min_count = 3;
 744        } else if (curlen == nextlen) {
 745            max_count = 6, min_count = 3;
 746        } else {
 747            max_count = 7, min_count = 4;
 748        }
 749    }
 750}
 751
 752/* ===========================================================================
 753 * Send a literal or distance tree in compressed form, using the codes in
 754 * bl_tree.
 755 */
 756local void send_tree (s, tree, max_code)
 757    deflate_state *s;
 758    ct_data *tree; /* the tree to be scanned */
 759    int max_code;       /* and its largest code of non zero frequency */
 760{
 761    int n;                     /* iterates over all tree elements */
 762    int prevlen = -1;          /* last emitted length */
 763    int curlen;                /* length of current code */
 764    int nextlen = tree[0].Len; /* length of next code */
 765    int count = 0;             /* repeat count of the current code */
 766    int max_count = 7;         /* max repeat count */
 767    int min_count = 4;         /* min repeat count */
 768
 769    /* tree[max_code+1].Len = -1; */  /* guard already set */
 770    if (nextlen == 0) max_count = 138, min_count = 3;
 771
 772    for (n = 0; n <= max_code; n++) {
 773        curlen = nextlen; nextlen = tree[n+1].Len;
 774        if (++count < max_count && curlen == nextlen) {
 775            continue;
 776        } else if (count < min_count) {
 777            do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
 778
 779        } else if (curlen != 0) {
 780            if (curlen != prevlen) {
 781                send_code(s, curlen, s->bl_tree); count--;
 782            }
 783            Assert(count >= 3 && count <= 6, " 3_6?");
 784            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
 785
 786        } else if (count <= 10) {
 787            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
 788
 789        } else {
 790            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
 791        }
 792        count = 0; prevlen = curlen;
 793        if (nextlen == 0) {
 794            max_count = 138, min_count = 3;
 795        } else if (curlen == nextlen) {
 796            max_count = 6, min_count = 3;
 797        } else {
 798            max_count = 7, min_count = 4;
 799        }
 800    }
 801}
 802
 803/* ===========================================================================
 804 * Construct the Huffman tree for the bit lengths and return the index in
 805 * bl_order of the last bit length code to send.
 806 */
 807local int build_bl_tree(s)
 808    deflate_state *s;
 809{
 810    int max_blindex;  /* index of last bit length code of non zero freq */
 811
 812    /* Determine the bit length frequencies for literal and distance trees */
 813    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
 814    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
 815
 816    /* Build the bit length tree: */
 817    build_tree(s, (tree_desc *)(&(s->bl_desc)));
 818    /* opt_len now includes the length of the tree representations, except
 819     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
 820     */
 821
 822    /* Determine the number of bit length codes to send. The pkzip format
 823     * requires that at least 4 bit length codes be sent. (appnote.txt says
 824     * 3 but the actual value used is 4.)
 825     */
 826    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
 827        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
 828    }
 829    /* Update opt_len to include the bit length tree and counts */
 830    s->opt_len += 3*(max_blindex+1) + 5+5+4;
 831    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
 832            s->opt_len, s->static_len));
 833
 834    return max_blindex;
 835}
 836
 837/* ===========================================================================
 838 * Send the header for a block using dynamic Huffman trees: the counts, the
 839 * lengths of the bit length codes, the literal tree and the distance tree.
 840 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
 841 */
 842local void send_all_trees(s, lcodes, dcodes, blcodes)
 843    deflate_state *s;
 844    int lcodes, dcodes, blcodes; /* number of codes for each tree */
 845{
 846    int rank;                    /* index in bl_order */
 847
 848    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
 849    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
 850            "too many codes");
 851    Tracev((stderr, "\nbl counts: "));
 852    send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
 853    send_bits(s, dcodes-1,   5);
 854    send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
 855    for (rank = 0; rank < blcodes; rank++) {
 856        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
 857        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
 858    }
 859    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
 860
 861    send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
 862    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
 863
 864    send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
 865    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
 866}
 867
 868/* ===========================================================================
 869 * Send a stored block
 870 */
 871void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
 872    deflate_state *s;
 873    charf *buf;       /* input block */
 874    ulg stored_len;   /* length of input block */
 875    int last;         /* one if this is the last block for a file */
 876{
 877    send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */
 878#ifdef DEBUG
 879    s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
 880    s->compressed_len += (stored_len + 4) << 3;
 881#endif
 882    copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
 883}
 884
 885/* ===========================================================================
 886 * Send one empty static block to give enough lookahead for inflate.
 887 * This takes 10 bits, of which 7 may remain in the bit buffer.
 888 * The current inflate code requires 9 bits of lookahead. If the
 889 * last two codes for the previous block (real code plus EOB) were coded
 890 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
 891 * the last real code. In this case we send two empty static blocks instead
 892 * of one. (There are no problems if the previous block is stored or fixed.)
 893 * To simplify the code, we assume the worst case of last real code encoded
 894 * on one bit only.
 895 */
 896void ZLIB_INTERNAL _tr_align(s)
 897    deflate_state *s;
 898{
 899    send_bits(s, STATIC_TREES<<1, 3);
 900    send_code(s, END_BLOCK, static_ltree);
 901#ifdef DEBUG
 902    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
 903#endif
 904    bi_flush(s);
 905    /* Of the 10 bits for the empty block, we have already sent
 906     * (10 - bi_valid) bits. The lookahead for the last real code (before
 907     * the EOB of the previous block) was thus at least one plus the length
 908     * of the EOB plus what we have just sent of the empty static block.
 909     */
 910    if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
 911        send_bits(s, STATIC_TREES<<1, 3);
 912        send_code(s, END_BLOCK, static_ltree);
 913#ifdef DEBUG
 914        s->compressed_len += 10L;
 915#endif
 916        bi_flush(s);
 917    }
 918    s->last_eob_len = 7;
 919}
 920
 921/* ===========================================================================
 922 * Determine the best encoding for the current block: dynamic trees, static
 923 * trees or store, and output the encoded block to the zip file.
 924 */
 925void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
 926    deflate_state *s;
 927    charf *buf;       /* input block, or NULL if too old */
 928    ulg stored_len;   /* length of input block */
 929    int last;         /* one if this is the last block for a file */
 930{
 931    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
 932    int max_blindex = 0;  /* index of last bit length code of non zero freq */
 933
 934    /* Build the Huffman trees unless a stored block is forced */
 935    if (s->level > 0) {
 936
 937        /* Check if the file is binary or text */
 938        if (s->strm->data_type == Z_UNKNOWN)
 939            s->strm->data_type = detect_data_type(s);
 940
 941        /* Construct the literal and distance trees */
 942        build_tree(s, (tree_desc *)(&(s->l_desc)));
 943        Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
 944                s->static_len));
 945
 946        build_tree(s, (tree_desc *)(&(s->d_desc)));
 947        Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
 948                s->static_len));
 949        /* At this point, opt_len and static_len are the total bit lengths of
 950         * the compressed block data, excluding the tree representations.
 951         */
 952
 953        /* Build the bit length tree for the above two trees, and get the index
 954         * in bl_order of the last bit length code to send.
 955         */
 956        max_blindex = build_bl_tree(s);
 957
 958        /* Determine the best encoding. Compute the block lengths in bytes. */
 959        opt_lenb = (s->opt_len+3+7)>>3;
 960        static_lenb = (s->static_len+3+7)>>3;
 961
 962        Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
 963                opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
 964                s->last_lit));
 965
 966        if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
 967
 968    } else {
 969        Assert(buf != (char*)0, "lost buf");
 970        opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
 971    }
 972
 973#ifdef FORCE_STORED
 974    if (buf != (char*)0) { /* force stored block */
 975#else
 976    if (stored_len+4 <= opt_lenb && buf != (char*)0) {
 977                       /* 4: two words for the lengths */
 978#endif
 979        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
 980         * Otherwise we can't have processed more than WSIZE input bytes since
 981         * the last block flush, because compression would have been
 982         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
 983         * transform a block into a stored block.
 984         */
 985        _tr_stored_block(s, buf, stored_len, last);
 986
 987#ifdef FORCE_STATIC
 988    } else if (static_lenb >= 0) { /* force static trees */
 989#else
 990    } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
 991#endif
 992        send_bits(s, (STATIC_TREES<<1)+last, 3);
 993        compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
 994#ifdef DEBUG
 995        s->compressed_len += 3 + s->static_len;
 996#endif
 997    } else {
 998        send_bits(s, (DYN_TREES<<1)+last, 3);
 999        send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
1000                       max_blindex+1);
1001        compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
1002#ifdef DEBUG
1003        s->compressed_len += 3 + s->opt_len;
1004#endif
1005    }
1006    Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1007    /* The above check is made mod 2^32, for files larger than 512 MB
1008     * and uLong implemented on 32 bits.
1009     */
1010    init_block(s);
1011
1012    if (last) {
1013        bi_windup(s);
1014#ifdef DEBUG
1015        s->compressed_len += 7;  /* align on byte boundary */
1016#endif
1017    }
1018    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1019           s->compressed_len-7*last));
1020}
1021
1022/* ===========================================================================
1023 * Save the match info and tally the frequency counts. Return true if
1024 * the current block must be flushed.
1025 */
1026int ZLIB_INTERNAL _tr_tally (s, dist, lc)
1027    deflate_state *s;
1028    unsigned dist;  /* distance of matched string */
1029    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
1030{
1031    s->d_buf[s->last_lit] = (ush)dist;
1032    s->l_buf[s->last_lit++] = (uch)lc;
1033    if (dist == 0) {
1034        /* lc is the unmatched char */
1035        s->dyn_ltree[lc].Freq++;
1036    } else {
1037        s->matches++;
1038        /* Here, lc is the match length - MIN_MATCH */
1039        dist--;             /* dist = match distance - 1 */
1040        Assert((ush)dist < (ush)MAX_DIST(s) &&
1041               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1042               (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
1043
1044        s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1045        s->dyn_dtree[d_code(dist)].Freq++;
1046    }
1047
1048#ifdef TRUNCATE_BLOCK
1049    /* Try to guess if it is profitable to stop the current block here */
1050    if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1051        /* Compute an upper bound for the compressed length */
1052        ulg out_length = (ulg)s->last_lit*8L;
1053        ulg in_length = (ulg)((long)s->strstart - s->block_start);
1054        int dcode;
1055        for (dcode = 0; dcode < D_CODES; dcode++) {
1056            out_length += (ulg)s->dyn_dtree[dcode].Freq *
1057                (5L+extra_dbits[dcode]);
1058        }
1059        out_length >>= 3;
1060        Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1061               s->last_lit, in_length, out_length,
1062               100L - out_length*100L/in_length));
1063        if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1064    }
1065#endif
1066    return (s->last_lit == s->lit_bufsize-1);
1067    /* We avoid equality with lit_bufsize because of wraparound at 64K
1068     * on 16 bit machines and because stored blocks are restricted to
1069     * 64K-1 bytes.
1070     */
1071}
1072
1073/* ===========================================================================
1074 * Send the block data compressed using the given Huffman trees
1075 */
1076local void compress_block(s, ltree, dtree)
1077    deflate_state *s;
1078    ct_data *ltree; /* literal tree */
1079    ct_data *dtree; /* distance tree */
1080{
1081    unsigned dist;      /* distance of matched string */
1082    int lc;             /* match length or unmatched char (if dist == 0) */
1083    unsigned lx = 0;    /* running index in l_buf */
1084    unsigned code;      /* the code to send */
1085    int extra;          /* number of extra bits to send */
1086
1087    if (s->last_lit != 0) do {
1088        dist = s->d_buf[lx];
1089        lc = s->l_buf[lx++];
1090        if (dist == 0) {
1091            send_code(s, lc, ltree); /* send a literal byte */
1092            Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1093        } else {
1094            /* Here, lc is the match length - MIN_MATCH */
1095            code = _length_code[lc];
1096            send_code(s, code+LITERALS+1, ltree); /* send the length code */
1097            extra = extra_lbits[code];
1098            if (extra != 0) {
1099                lc -= base_length[code];
1100                send_bits(s, lc, extra);       /* send the extra length bits */
1101            }
1102            dist--; /* dist is now the match distance - 1 */
1103            code = d_code(dist);
1104            Assert (code < D_CODES, "bad d_code");
1105
1106            send_code(s, code, dtree);       /* send the distance code */
1107            extra = extra_dbits[code];
1108            if (extra != 0) {
1109                dist -= base_dist[code];
1110                send_bits(s, dist, extra);   /* send the extra distance bits */
1111            }
1112        } /* literal or match pair ? */
1113
1114        /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1115        Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1116               "pendingBuf overflow");
1117
1118    } while (lx < s->last_lit);
1119
1120    send_code(s, END_BLOCK, ltree);
1121    s->last_eob_len = ltree[END_BLOCK].Len;
1122}
1123
1124/* ===========================================================================
1125 * Check if the data type is TEXT or BINARY, using the following algorithm:
1126 * - TEXT if the two conditions below are satisfied:
1127 *    a) There are no non-portable control characters belonging to the
1128 *       "black list" (0..6, 14..25, 28..31).
1129 *    b) There is at least one printable character belonging to the
1130 *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
1131 * - BINARY otherwise.
1132 * - The following partially-portable control characters form a
1133 *   "gray list" that is ignored in this detection algorithm:
1134 *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
1135 * IN assertion: the fields Freq of dyn_ltree are set.
1136 */
1137local int detect_data_type(s)
1138    deflate_state *s;
1139{
1140    /* black_mask is the bit mask of black-listed bytes
1141     * set bits 0..6, 14..25, and 28..31
1142     * 0xf3ffc07f = binary 11110011111111111100000001111111
1143     */
1144    unsigned long black_mask = 0xf3ffc07fUL;
1145    int n;
1146
1147    /* Check for non-textual ("black-listed") bytes. */
1148    for (n = 0; n <= 31; n++, black_mask >>= 1)
1149        if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
1150            return Z_BINARY;
1151
1152    /* Check for textual ("white-listed") bytes. */
1153    if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
1154            || s->dyn_ltree[13].Freq != 0)
1155        return Z_TEXT;
1156    for (n = 32; n < LITERALS; n++)
1157        if (s->dyn_ltree[n].Freq != 0)
1158            return Z_TEXT;
1159
1160    /* There are no "black-listed" or "white-listed" bytes:
1161     * this stream either is empty or has tolerated ("gray-listed") bytes only.
1162     */
1163    return Z_BINARY;
1164}
1165
1166/* ===========================================================================
1167 * Reverse the first len bits of a code, using straightforward code (a faster
1168 * method would use a table)
1169 * IN assertion: 1 <= len <= 15
1170 */
1171local unsigned bi_reverse(value, len)
1172    unsigned value; /* the value to invert */
1173    int len;       /* its bit length */
1174{
1175    register unsigned res = 0;
1176    do {
1177        res |= value & 1;
1178        value >>= 1, res <<= 1;
1179    } while (--len > 0);
1180    return res >> 1;
1181}
1182
1183/* ===========================================================================
1184 * Flush the bit buffer, keeping at most 7 bits in it.
1185 */
1186local void bi_flush(s)
1187    deflate_state *s;
1188{
1189    if (s->bi_valid == 16) {
1190        put_short(s, s->bi_buf);
1191        s->bi_buf = 0;
1192        s->bi_valid = 0;
1193    } else if (s->bi_valid >= 8) {
1194        put_byte(s, (Byte)s->bi_buf);
1195        s->bi_buf >>= 8;
1196        s->bi_valid -= 8;
1197    }
1198}
1199
1200/* ===========================================================================
1201 * Flush the bit buffer and align the output on a byte boundary
1202 */
1203local void bi_windup(s)
1204    deflate_state *s;
1205{
1206    if (s->bi_valid > 8) {
1207        put_short(s, s->bi_buf);
1208    } else if (s->bi_valid > 0) {
1209        put_byte(s, (Byte)s->bi_buf);
1210    }
1211    s->bi_buf = 0;
1212    s->bi_valid = 0;
1213#ifdef DEBUG
1214    s->bits_sent = (s->bits_sent+7) & ~7;
1215#endif
1216}
1217
1218/* ===========================================================================
1219 * Copy a stored block, storing first the length and its
1220 * one's complement if requested.
1221 */
1222local void copy_block(s, buf, len, header)
1223    deflate_state *s;
1224    charf    *buf;    /* the input data */
1225    unsigned len;     /* its length */
1226    int      header;  /* true if block header must be written */
1227{
1228    bi_windup(s);        /* align on byte boundary */
1229    s->last_eob_len = 8; /* enough lookahead for inflate */
1230
1231    if (header) {
1232        put_short(s, (ush)len);
1233        put_short(s, (ush)~len);
1234#ifdef DEBUG
1235        s->bits_sent += 2*16;
1236#endif
1237    }
1238#ifdef DEBUG
1239    s->bits_sent += (ulg)len<<3;
1240#endif
1241    while (len--) {
1242        put_byte(s, *buf++);
1243    }
1244}
1245