uboot/drivers/ddr/fsl/lc_common_dimm_params.c
<<
>>
Prefs
   1/*
   2 * Copyright 2008-2014 Freescale Semiconductor, Inc.
   3 *
   4 * SPDX-License-Identifier:     GPL-2.0
   5 */
   6
   7#include <common.h>
   8#include <fsl_ddr_sdram.h>
   9
  10#include <fsl_ddr.h>
  11
  12#if defined(CONFIG_SYS_FSL_DDR3) || defined(CONFIG_SYS_FSL_DDR4)
  13static unsigned int
  14compute_cas_latency(const unsigned int ctrl_num,
  15                    const dimm_params_t *dimm_params,
  16                    common_timing_params_t *outpdimm,
  17                    unsigned int number_of_dimms)
  18{
  19        unsigned int i;
  20        unsigned int common_caslat;
  21        unsigned int caslat_actual;
  22        unsigned int retry = 16;
  23        unsigned int tmp = ~0;
  24        const unsigned int mclk_ps = get_memory_clk_period_ps(ctrl_num);
  25#ifdef CONFIG_SYS_FSL_DDR3
  26        const unsigned int taamax = 20000;
  27#else
  28        const unsigned int taamax = 18000;
  29#endif
  30
  31        /* compute the common CAS latency supported between slots */
  32        for (i = 0; i < number_of_dimms; i++) {
  33                if (dimm_params[i].n_ranks)
  34                        tmp &= dimm_params[i].caslat_x;
  35        }
  36        common_caslat = tmp;
  37
  38        /* validate if the memory clk is in the range of dimms */
  39        if (mclk_ps < outpdimm->tckmin_x_ps) {
  40                printf("DDR clock (MCLK cycle %u ps) is faster than "
  41                        "the slowest DIMM(s) (tCKmin %u ps) can support.\n",
  42                        mclk_ps, outpdimm->tckmin_x_ps);
  43        }
  44#ifdef CONFIG_SYS_FSL_DDR4
  45        if (mclk_ps > outpdimm->tckmax_ps) {
  46                printf("DDR clock (MCLK cycle %u ps) is slower than DIMM(s) (tCKmax %u ps) can support.\n",
  47                       mclk_ps, outpdimm->tckmax_ps);
  48        }
  49#endif
  50        /* determine the acutal cas latency */
  51        caslat_actual = (outpdimm->taamin_ps + mclk_ps - 1) / mclk_ps;
  52        /* check if the dimms support the CAS latency */
  53        while (!(common_caslat & (1 << caslat_actual)) && retry > 0) {
  54                caslat_actual++;
  55                retry--;
  56        }
  57        /* once the caculation of caslat_actual is completed
  58         * we must verify that this CAS latency value does not
  59         * exceed tAAmax, which is 20 ns for all DDR3 speed grades,
  60         * 18ns for all DDR4 speed grades.
  61         */
  62        if (caslat_actual * mclk_ps > taamax) {
  63                printf("The chosen cas latency %d is too large\n",
  64                       caslat_actual);
  65        }
  66        outpdimm->lowest_common_spd_caslat = caslat_actual;
  67        debug("lowest_common_spd_caslat is 0x%x\n", caslat_actual);
  68
  69        return 0;
  70}
  71#else   /* for DDR1 and DDR2 */
  72static unsigned int
  73compute_cas_latency(const unsigned int ctrl_num,
  74                    const dimm_params_t *dimm_params,
  75                    common_timing_params_t *outpdimm,
  76                    unsigned int number_of_dimms)
  77{
  78        int i;
  79        const unsigned int mclk_ps = get_memory_clk_period_ps(ctrl_num);
  80        unsigned int lowest_good_caslat;
  81        unsigned int not_ok;
  82        unsigned int temp1, temp2;
  83
  84        debug("using mclk_ps = %u\n", mclk_ps);
  85        if (mclk_ps > outpdimm->tckmax_ps) {
  86                printf("Warning: DDR clock (%u ps) is slower than DIMM(s) (tCKmax %u ps)\n",
  87                       mclk_ps, outpdimm->tckmax_ps);
  88        }
  89
  90        /*
  91         * Compute a CAS latency suitable for all DIMMs
  92         *
  93         * Strategy for SPD-defined latencies: compute only
  94         * CAS latency defined by all DIMMs.
  95         */
  96
  97        /*
  98         * Step 1: find CAS latency common to all DIMMs using bitwise
  99         * operation.
 100         */
 101        temp1 = 0xFF;
 102        for (i = 0; i < number_of_dimms; i++) {
 103                if (dimm_params[i].n_ranks) {
 104                        temp2 = 0;
 105                        temp2 |= 1 << dimm_params[i].caslat_x;
 106                        temp2 |= 1 << dimm_params[i].caslat_x_minus_1;
 107                        temp2 |= 1 << dimm_params[i].caslat_x_minus_2;
 108                        /*
 109                         * If there was no entry for X-2 (X-1) in
 110                         * the SPD, then caslat_x_minus_2
 111                         * (caslat_x_minus_1) contains either 255 or
 112                         * 0xFFFFFFFF because that's what the glorious
 113                         * __ilog2 function returns for an input of 0.
 114                         * On 32-bit PowerPC, left shift counts with bit
 115                         * 26 set (that the value of 255 or 0xFFFFFFFF
 116                         * will have), cause the destination register to
 117                         * be 0.  That is why this works.
 118                         */
 119                        temp1 &= temp2;
 120                }
 121        }
 122
 123        /*
 124         * Step 2: check each common CAS latency against tCK of each
 125         * DIMM's SPD.
 126         */
 127        lowest_good_caslat = 0;
 128        temp2 = 0;
 129        while (temp1) {
 130                not_ok = 0;
 131                temp2 =  __ilog2(temp1);
 132                debug("checking common caslat = %u\n", temp2);
 133
 134                /* Check if this CAS latency will work on all DIMMs at tCK. */
 135                for (i = 0; i < number_of_dimms; i++) {
 136                        if (!dimm_params[i].n_ranks)
 137                                continue;
 138
 139                        if (dimm_params[i].caslat_x == temp2) {
 140                                if (mclk_ps >= dimm_params[i].tckmin_x_ps) {
 141                                        debug("CL = %u ok on DIMM %u at tCK=%u ps with tCKmin_X_ps of %u\n",
 142                                              temp2, i, mclk_ps,
 143                                              dimm_params[i].tckmin_x_ps);
 144                                        continue;
 145                                } else {
 146                                        not_ok++;
 147                                }
 148                        }
 149
 150                        if (dimm_params[i].caslat_x_minus_1 == temp2) {
 151                                unsigned int tckmin_x_minus_1_ps
 152                                        = dimm_params[i].tckmin_x_minus_1_ps;
 153                                if (mclk_ps >= tckmin_x_minus_1_ps) {
 154                                        debug("CL = %u ok on DIMM %u at tCK=%u ps with tckmin_x_minus_1_ps of %u\n",
 155                                              temp2, i, mclk_ps,
 156                                              tckmin_x_minus_1_ps);
 157                                        continue;
 158                                } else {
 159                                        not_ok++;
 160                                }
 161                        }
 162
 163                        if (dimm_params[i].caslat_x_minus_2 == temp2) {
 164                                unsigned int tckmin_x_minus_2_ps
 165                                        = dimm_params[i].tckmin_x_minus_2_ps;
 166                                if (mclk_ps >= tckmin_x_minus_2_ps) {
 167                                        debug("CL = %u ok on DIMM %u at tCK=%u ps with tckmin_x_minus_2_ps of %u\n",
 168                                              temp2, i, mclk_ps,
 169                                              tckmin_x_minus_2_ps);
 170                                        continue;
 171                                } else {
 172                                        not_ok++;
 173                                }
 174                        }
 175                }
 176
 177                if (!not_ok)
 178                        lowest_good_caslat = temp2;
 179
 180                temp1 &= ~(1 << temp2);
 181        }
 182
 183        debug("lowest common SPD-defined CAS latency = %u\n",
 184              lowest_good_caslat);
 185        outpdimm->lowest_common_spd_caslat = lowest_good_caslat;
 186
 187
 188        /*
 189         * Compute a common 'de-rated' CAS latency.
 190         *
 191         * The strategy here is to find the *highest* dereated cas latency
 192         * with the assumption that all of the DIMMs will support a dereated
 193         * CAS latency higher than or equal to their lowest dereated value.
 194         */
 195        temp1 = 0;
 196        for (i = 0; i < number_of_dimms; i++)
 197                temp1 = max(temp1, dimm_params[i].caslat_lowest_derated);
 198
 199        outpdimm->highest_common_derated_caslat = temp1;
 200        debug("highest common dereated CAS latency = %u\n", temp1);
 201
 202        return 0;
 203}
 204#endif
 205
 206/*
 207 * compute_lowest_common_dimm_parameters()
 208 *
 209 * Determine the worst-case DIMM timing parameters from the set of DIMMs
 210 * whose parameters have been computed into the array pointed to
 211 * by dimm_params.
 212 */
 213unsigned int
 214compute_lowest_common_dimm_parameters(const unsigned int ctrl_num,
 215                                      const dimm_params_t *dimm_params,
 216                                      common_timing_params_t *outpdimm,
 217                                      const unsigned int number_of_dimms)
 218{
 219        unsigned int i, j;
 220
 221        unsigned int tckmin_x_ps = 0;
 222        unsigned int tckmax_ps = 0xFFFFFFFF;
 223        unsigned int trcd_ps = 0;
 224        unsigned int trp_ps = 0;
 225        unsigned int tras_ps = 0;
 226#if defined(CONFIG_SYS_FSL_DDR3) || defined(CONFIG_SYS_FSL_DDR4)
 227        unsigned int taamin_ps = 0;
 228#endif
 229#ifdef CONFIG_SYS_FSL_DDR4
 230        unsigned int twr_ps = 15000;
 231        unsigned int trfc1_ps = 0;
 232        unsigned int trfc2_ps = 0;
 233        unsigned int trfc4_ps = 0;
 234        unsigned int trrds_ps = 0;
 235        unsigned int trrdl_ps = 0;
 236        unsigned int tccdl_ps = 0;
 237#else
 238        unsigned int twr_ps = 0;
 239        unsigned int twtr_ps = 0;
 240        unsigned int trfc_ps = 0;
 241        unsigned int trrd_ps = 0;
 242        unsigned int trtp_ps = 0;
 243#endif
 244        unsigned int trc_ps = 0;
 245        unsigned int refresh_rate_ps = 0;
 246        unsigned int extended_op_srt = 1;
 247#if defined(CONFIG_SYS_FSL_DDR1) || defined(CONFIG_SYS_FSL_DDR2)
 248        unsigned int tis_ps = 0;
 249        unsigned int tih_ps = 0;
 250        unsigned int tds_ps = 0;
 251        unsigned int tdh_ps = 0;
 252        unsigned int tdqsq_max_ps = 0;
 253        unsigned int tqhs_ps = 0;
 254#endif
 255        unsigned int temp1, temp2;
 256        unsigned int additive_latency = 0;
 257
 258        temp1 = 0;
 259        for (i = 0; i < number_of_dimms; i++) {
 260                /*
 261                 * If there are no ranks on this DIMM,
 262                 * it probably doesn't exist, so skip it.
 263                 */
 264                if (dimm_params[i].n_ranks == 0) {
 265                        temp1++;
 266                        continue;
 267                }
 268                if (dimm_params[i].n_ranks == 4 && i != 0) {
 269                        printf("Found Quad-rank DIMM in wrong bank, ignored."
 270                                " Software may not run as expected.\n");
 271                        temp1++;
 272                        continue;
 273                }
 274
 275                /*
 276                 * check if quad-rank DIMM is plugged if
 277                 * CONFIG_CHIP_SELECT_QUAD_CAPABLE is not defined
 278                 * Only the board with proper design is capable
 279                 */
 280#ifndef CONFIG_FSL_DDR_FIRST_SLOT_QUAD_CAPABLE
 281                if (dimm_params[i].n_ranks == 4 && \
 282                  CONFIG_CHIP_SELECTS_PER_CTRL/CONFIG_DIMM_SLOTS_PER_CTLR < 4) {
 283                        printf("Found Quad-rank DIMM, not able to support.");
 284                        temp1++;
 285                        continue;
 286                }
 287#endif
 288                /*
 289                 * Find minimum tckmax_ps to find fastest slow speed,
 290                 * i.e., this is the slowest the whole system can go.
 291                 */
 292                tckmax_ps = min(tckmax_ps,
 293                                (unsigned int)dimm_params[i].tckmax_ps);
 294#if defined(CONFIG_SYS_FSL_DDR3) || defined(CONFIG_SYS_FSL_DDR4)
 295                taamin_ps = max(taamin_ps,
 296                                (unsigned int)dimm_params[i].taa_ps);
 297#endif
 298                tckmin_x_ps = max(tckmin_x_ps,
 299                                  (unsigned int)dimm_params[i].tckmin_x_ps);
 300                trcd_ps = max(trcd_ps, (unsigned int)dimm_params[i].trcd_ps);
 301                trp_ps = max(trp_ps, (unsigned int)dimm_params[i].trp_ps);
 302                tras_ps = max(tras_ps, (unsigned int)dimm_params[i].tras_ps);
 303#ifdef CONFIG_SYS_FSL_DDR4
 304                trfc1_ps = max(trfc1_ps,
 305                               (unsigned int)dimm_params[i].trfc1_ps);
 306                trfc2_ps = max(trfc2_ps,
 307                               (unsigned int)dimm_params[i].trfc2_ps);
 308                trfc4_ps = max(trfc4_ps,
 309                               (unsigned int)dimm_params[i].trfc4_ps);
 310                trrds_ps = max(trrds_ps,
 311                               (unsigned int)dimm_params[i].trrds_ps);
 312                trrdl_ps = max(trrdl_ps,
 313                               (unsigned int)dimm_params[i].trrdl_ps);
 314                tccdl_ps = max(tccdl_ps,
 315                               (unsigned int)dimm_params[i].tccdl_ps);
 316#else
 317                twr_ps = max(twr_ps, (unsigned int)dimm_params[i].twr_ps);
 318                twtr_ps = max(twtr_ps, (unsigned int)dimm_params[i].twtr_ps);
 319                trfc_ps = max(trfc_ps, (unsigned int)dimm_params[i].trfc_ps);
 320                trrd_ps = max(trrd_ps, (unsigned int)dimm_params[i].trrd_ps);
 321                trtp_ps = max(trtp_ps, (unsigned int)dimm_params[i].trtp_ps);
 322#endif
 323                trc_ps = max(trc_ps, (unsigned int)dimm_params[i].trc_ps);
 324#if defined(CONFIG_SYS_FSL_DDR1) || defined(CONFIG_SYS_FSL_DDR2)
 325                tis_ps = max(tis_ps, (unsigned int)dimm_params[i].tis_ps);
 326                tih_ps = max(tih_ps, (unsigned int)dimm_params[i].tih_ps);
 327                tds_ps = max(tds_ps, (unsigned int)dimm_params[i].tds_ps);
 328                tdh_ps = max(tdh_ps, (unsigned int)dimm_params[i].tdh_ps);
 329                tqhs_ps = max(tqhs_ps, (unsigned int)dimm_params[i].tqhs_ps);
 330                /*
 331                 * Find maximum tdqsq_max_ps to find slowest.
 332                 *
 333                 * FIXME: is finding the slowest value the correct
 334                 * strategy for this parameter?
 335                 */
 336                tdqsq_max_ps = max(tdqsq_max_ps,
 337                                   (unsigned int)dimm_params[i].tdqsq_max_ps);
 338#endif
 339                refresh_rate_ps = max(refresh_rate_ps,
 340                                      (unsigned int)dimm_params[i].refresh_rate_ps);
 341                /* extended_op_srt is either 0 or 1, 0 having priority */
 342                extended_op_srt = min(extended_op_srt,
 343                                      (unsigned int)dimm_params[i].extended_op_srt);
 344        }
 345
 346        outpdimm->ndimms_present = number_of_dimms - temp1;
 347
 348        if (temp1 == number_of_dimms) {
 349                debug("no dimms this memory controller\n");
 350                return 0;
 351        }
 352
 353        outpdimm->tckmin_x_ps = tckmin_x_ps;
 354        outpdimm->tckmax_ps = tckmax_ps;
 355#if defined(CONFIG_SYS_FSL_DDR3) || defined(CONFIG_SYS_FSL_DDR4)
 356        outpdimm->taamin_ps = taamin_ps;
 357#endif
 358        outpdimm->trcd_ps = trcd_ps;
 359        outpdimm->trp_ps = trp_ps;
 360        outpdimm->tras_ps = tras_ps;
 361#ifdef CONFIG_SYS_FSL_DDR4
 362        outpdimm->trfc1_ps = trfc1_ps;
 363        outpdimm->trfc2_ps = trfc2_ps;
 364        outpdimm->trfc4_ps = trfc4_ps;
 365        outpdimm->trrds_ps = trrds_ps;
 366        outpdimm->trrdl_ps = trrdl_ps;
 367        outpdimm->tccdl_ps = tccdl_ps;
 368#else
 369        outpdimm->twtr_ps = twtr_ps;
 370        outpdimm->trfc_ps = trfc_ps;
 371        outpdimm->trrd_ps = trrd_ps;
 372        outpdimm->trtp_ps = trtp_ps;
 373#endif
 374        outpdimm->twr_ps = twr_ps;
 375        outpdimm->trc_ps = trc_ps;
 376        outpdimm->refresh_rate_ps = refresh_rate_ps;
 377        outpdimm->extended_op_srt = extended_op_srt;
 378#if defined(CONFIG_SYS_FSL_DDR1) || defined(CONFIG_SYS_FSL_DDR2)
 379        outpdimm->tis_ps = tis_ps;
 380        outpdimm->tih_ps = tih_ps;
 381        outpdimm->tds_ps = tds_ps;
 382        outpdimm->tdh_ps = tdh_ps;
 383        outpdimm->tdqsq_max_ps = tdqsq_max_ps;
 384        outpdimm->tqhs_ps = tqhs_ps;
 385#endif
 386
 387        /* Determine common burst length for all DIMMs. */
 388        temp1 = 0xff;
 389        for (i = 0; i < number_of_dimms; i++) {
 390                if (dimm_params[i].n_ranks) {
 391                        temp1 &= dimm_params[i].burst_lengths_bitmask;
 392                }
 393        }
 394        outpdimm->all_dimms_burst_lengths_bitmask = temp1;
 395
 396        /* Determine if all DIMMs registered buffered. */
 397        temp1 = temp2 = 0;
 398        for (i = 0; i < number_of_dimms; i++) {
 399                if (dimm_params[i].n_ranks) {
 400                        if (dimm_params[i].registered_dimm) {
 401                                temp1 = 1;
 402#ifndef CONFIG_SPL_BUILD
 403                                printf("Detected RDIMM %s\n",
 404                                        dimm_params[i].mpart);
 405#endif
 406                        } else {
 407                                temp2 = 1;
 408#ifndef CONFIG_SPL_BUILD
 409                                printf("Detected UDIMM %s\n",
 410                                        dimm_params[i].mpart);
 411#endif
 412                        }
 413                }
 414        }
 415
 416        outpdimm->all_dimms_registered = 0;
 417        outpdimm->all_dimms_unbuffered = 0;
 418        if (temp1 && !temp2) {
 419                outpdimm->all_dimms_registered = 1;
 420        } else if (!temp1 && temp2) {
 421                outpdimm->all_dimms_unbuffered = 1;
 422        } else {
 423                printf("ERROR:  Mix of registered buffered and unbuffered "
 424                                "DIMMs detected!\n");
 425        }
 426
 427        temp1 = 0;
 428        if (outpdimm->all_dimms_registered)
 429                for (j = 0; j < 16; j++) {
 430                        outpdimm->rcw[j] = dimm_params[0].rcw[j];
 431                        for (i = 1; i < number_of_dimms; i++) {
 432                                if (!dimm_params[i].n_ranks)
 433                                        continue;
 434                                if (dimm_params[i].rcw[j] != dimm_params[0].rcw[j]) {
 435                                        temp1 = 1;
 436                                        break;
 437                                }
 438                        }
 439                }
 440
 441        if (temp1 != 0)
 442                printf("ERROR: Mix different RDIMM detected!\n");
 443
 444        /* calculate cas latency for all DDR types */
 445        if (compute_cas_latency(ctrl_num, dimm_params,
 446                                outpdimm, number_of_dimms))
 447                return 1;
 448
 449        /* Determine if all DIMMs ECC capable. */
 450        temp1 = 1;
 451        for (i = 0; i < number_of_dimms; i++) {
 452                if (dimm_params[i].n_ranks &&
 453                        !(dimm_params[i].edc_config & EDC_ECC)) {
 454                        temp1 = 0;
 455                        break;
 456                }
 457        }
 458        if (temp1) {
 459                debug("all DIMMs ECC capable\n");
 460        } else {
 461                debug("Warning: not all DIMMs ECC capable, cant enable ECC\n");
 462        }
 463        outpdimm->all_dimms_ecc_capable = temp1;
 464
 465        /*
 466         * Compute additive latency.
 467         *
 468         * For DDR1, additive latency should be 0.
 469         *
 470         * For DDR2, with ODT enabled, use "a value" less than ACTTORW,
 471         *      which comes from Trcd, and also note that:
 472         *          add_lat + caslat must be >= 4
 473         *
 474         * For DDR3, we use the AL=0
 475         *
 476         * When to use additive latency for DDR2:
 477         *
 478         * I. Because you are using CL=3 and need to do ODT on writes and
 479         *    want functionality.
 480         *    1. Are you going to use ODT? (Does your board not have
 481         *      additional termination circuitry for DQ, DQS, DQS_,
 482         *      DM, RDQS, RDQS_ for x4/x8 configs?)
 483         *    2. If so, is your lowest supported CL going to be 3?
 484         *    3. If so, then you must set AL=1 because
 485         *
 486         *       WL >= 3 for ODT on writes
 487         *       RL = AL + CL
 488         *       WL = RL - 1
 489         *       ->
 490         *       WL = AL + CL - 1
 491         *       AL + CL - 1 >= 3
 492         *       AL + CL >= 4
 493         *  QED
 494         *
 495         *  RL >= 3 for ODT on reads
 496         *  RL = AL + CL
 497         *
 498         *  Since CL aren't usually less than 2, AL=0 is a minimum,
 499         *  so the WL-derived AL should be the  -- FIXME?
 500         *
 501         * II. Because you are using auto-precharge globally and want to
 502         *     use additive latency (posted CAS) to get more bandwidth.
 503         *     1. Are you going to use auto-precharge mode globally?
 504         *
 505         *        Use addtivie latency and compute AL to be 1 cycle less than
 506         *        tRCD, i.e. the READ or WRITE command is in the cycle
 507         *        immediately following the ACTIVATE command..
 508         *
 509         * III. Because you feel like it or want to do some sort of
 510         *      degraded-performance experiment.
 511         *     1.  Do you just want to use additive latency because you feel
 512         *         like it?
 513         *
 514         * Validation:  AL is less than tRCD, and within the other
 515         * read-to-precharge constraints.
 516         */
 517
 518        additive_latency = 0;
 519
 520#if defined(CONFIG_SYS_FSL_DDR2)
 521        if ((outpdimm->lowest_common_spd_caslat < 4) &&
 522            (picos_to_mclk(ctrl_num, trcd_ps) >
 523             outpdimm->lowest_common_spd_caslat)) {
 524                additive_latency = picos_to_mclk(ctrl_num, trcd_ps) -
 525                                   outpdimm->lowest_common_spd_caslat;
 526                if (mclk_to_picos(ctrl_num, additive_latency) > trcd_ps) {
 527                        additive_latency = picos_to_mclk(ctrl_num, trcd_ps);
 528                        debug("setting additive_latency to %u because it was "
 529                                " greater than tRCD_ps\n", additive_latency);
 530                }
 531        }
 532#endif
 533
 534        /*
 535         * Validate additive latency
 536         *
 537         * AL <= tRCD(min)
 538         */
 539        if (mclk_to_picos(ctrl_num, additive_latency) > trcd_ps) {
 540                printf("Error: invalid additive latency exceeds tRCD(min).\n");
 541                return 1;
 542        }
 543
 544        /*
 545         * RL = CL + AL;  RL >= 3 for ODT_RD_CFG to be enabled
 546         * WL = RL - 1;  WL >= 3 for ODT_WL_CFG to be enabled
 547         * ADD_LAT (the register) must be set to a value less
 548         * than ACTTORW if WL = 1, then AL must be set to 1
 549         * RD_TO_PRE (the register) must be set to a minimum
 550         * tRTP + AL if AL is nonzero
 551         */
 552
 553        /*
 554         * Additive latency will be applied only if the memctl option to
 555         * use it.
 556         */
 557        outpdimm->additive_latency = additive_latency;
 558
 559        debug("tCKmin_ps = %u\n", outpdimm->tckmin_x_ps);
 560        debug("trcd_ps   = %u\n", outpdimm->trcd_ps);
 561        debug("trp_ps    = %u\n", outpdimm->trp_ps);
 562        debug("tras_ps   = %u\n", outpdimm->tras_ps);
 563#ifdef CONFIG_SYS_FSL_DDR4
 564        debug("trfc1_ps = %u\n", trfc1_ps);
 565        debug("trfc2_ps = %u\n", trfc2_ps);
 566        debug("trfc4_ps = %u\n", trfc4_ps);
 567        debug("trrds_ps = %u\n", trrds_ps);
 568        debug("trrdl_ps = %u\n", trrdl_ps);
 569        debug("tccdl_ps = %u\n", tccdl_ps);
 570#else
 571        debug("twtr_ps   = %u\n", outpdimm->twtr_ps);
 572        debug("trfc_ps   = %u\n", outpdimm->trfc_ps);
 573        debug("trrd_ps   = %u\n", outpdimm->trrd_ps);
 574#endif
 575        debug("twr_ps    = %u\n", outpdimm->twr_ps);
 576        debug("trc_ps    = %u\n", outpdimm->trc_ps);
 577
 578        return 0;
 579}
 580