uboot/drivers/mtd/nand/tegra_nand.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2011 The Chromium OS Authors.
   3 * (C) Copyright 2011 NVIDIA Corporation <www.nvidia.com>
   4 * (C) Copyright 2006 Detlev Zundel, dzu@denx.de
   5 * (C) Copyright 2006 DENX Software Engineering
   6 *
   7 * SPDX-License-Identifier:     GPL-2.0+
   8 */
   9
  10#include <common.h>
  11#include <asm/io.h>
  12#include <memalign.h>
  13#include <nand.h>
  14#include <asm/arch/clock.h>
  15#include <asm/arch/funcmux.h>
  16#include <asm/arch-tegra/clk_rst.h>
  17#include <linux/errno.h>
  18#include <asm/gpio.h>
  19#include <fdtdec.h>
  20#include <bouncebuf.h>
  21#include "tegra_nand.h"
  22
  23DECLARE_GLOBAL_DATA_PTR;
  24
  25#define NAND_CMD_TIMEOUT_MS             10
  26
  27#define SKIPPED_SPARE_BYTES             4
  28
  29/* ECC bytes to be generated for tag data */
  30#define TAG_ECC_BYTES                   4
  31
  32/* 64 byte oob block info for large page (== 2KB) device
  33 *
  34 * OOB flash layout for Tegra with Reed-Solomon 4 symbol correct ECC:
  35 *      Skipped bytes(4)
  36 *      Main area Ecc(36)
  37 *      Tag data(20)
  38 *      Tag data Ecc(4)
  39 *
  40 * Yaffs2 will use 16 tag bytes.
  41 */
  42static struct nand_ecclayout eccoob = {
  43        .eccbytes = 36,
  44        .eccpos = {
  45                4,  5,  6,  7,  8,  9,  10, 11, 12,
  46                13, 14, 15, 16, 17, 18, 19, 20, 21,
  47                22, 23, 24, 25, 26, 27, 28, 29, 30,
  48                31, 32, 33, 34, 35, 36, 37, 38, 39,
  49        },
  50        .oobavail = 20,
  51        .oobfree = {
  52                        {
  53                        .offset = 40,
  54                        .length = 20,
  55                        },
  56        }
  57};
  58
  59enum {
  60        ECC_OK,
  61        ECC_TAG_ERROR = 1 << 0,
  62        ECC_DATA_ERROR = 1 << 1
  63};
  64
  65/* Timing parameters */
  66enum {
  67        FDT_NAND_MAX_TRP_TREA,
  68        FDT_NAND_TWB,
  69        FDT_NAND_MAX_TCR_TAR_TRR,
  70        FDT_NAND_TWHR,
  71        FDT_NAND_MAX_TCS_TCH_TALS_TALH,
  72        FDT_NAND_TWH,
  73        FDT_NAND_TWP,
  74        FDT_NAND_TRH,
  75        FDT_NAND_TADL,
  76
  77        FDT_NAND_TIMING_COUNT
  78};
  79
  80/* Information about an attached NAND chip */
  81struct fdt_nand {
  82        struct nand_ctlr *reg;
  83        int enabled;            /* 1 to enable, 0 to disable */
  84        struct gpio_desc wp_gpio;       /* write-protect GPIO */
  85        s32 width;              /* bit width, normally 8 */
  86        u32 timing[FDT_NAND_TIMING_COUNT];
  87};
  88
  89struct nand_drv {
  90        struct nand_ctlr *reg;
  91        struct fdt_nand config;
  92};
  93
  94static struct nand_drv nand_ctrl;
  95static struct mtd_info *our_mtd;
  96static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
  97
  98/**
  99 * Wait for command completion
 100 *
 101 * @param reg   nand_ctlr structure
 102 * @return
 103 *      1 - Command completed
 104 *      0 - Timeout
 105 */
 106static int nand_waitfor_cmd_completion(struct nand_ctlr *reg)
 107{
 108        u32 reg_val;
 109        int running;
 110        int i;
 111
 112        for (i = 0; i < NAND_CMD_TIMEOUT_MS * 1000; i++) {
 113                if ((readl(&reg->command) & CMD_GO) ||
 114                                !(readl(&reg->status) & STATUS_RBSY0) ||
 115                                !(readl(&reg->isr) & ISR_IS_CMD_DONE)) {
 116                        udelay(1);
 117                        continue;
 118                }
 119                reg_val = readl(&reg->dma_mst_ctrl);
 120                /*
 121                 * If DMA_MST_CTRL_EN_A_ENABLE or DMA_MST_CTRL_EN_B_ENABLE
 122                 * is set, that means DMA engine is running.
 123                 *
 124                 * Then we have to wait until DMA_MST_CTRL_IS_DMA_DONE
 125                 * is cleared, indicating DMA transfer completion.
 126                 */
 127                running = reg_val & (DMA_MST_CTRL_EN_A_ENABLE |
 128                                DMA_MST_CTRL_EN_B_ENABLE);
 129                if (!running || (reg_val & DMA_MST_CTRL_IS_DMA_DONE))
 130                        return 1;
 131                udelay(1);
 132        }
 133        return 0;
 134}
 135
 136/**
 137 * Read one byte from the chip
 138 *
 139 * @param mtd   MTD device structure
 140 * @return      data byte
 141 *
 142 * Read function for 8bit bus-width
 143 */
 144static uint8_t read_byte(struct mtd_info *mtd)
 145{
 146        struct nand_chip *chip = mtd_to_nand(mtd);
 147        struct nand_drv *info;
 148
 149        info = (struct nand_drv *)nand_get_controller_data(chip);
 150
 151        writel(CMD_GO | CMD_PIO | CMD_RX | CMD_CE0 | CMD_A_VALID,
 152               &info->reg->command);
 153        if (!nand_waitfor_cmd_completion(info->reg))
 154                printf("Command timeout\n");
 155
 156        return (uint8_t)readl(&info->reg->resp);
 157}
 158
 159/**
 160 * Read len bytes from the chip into a buffer
 161 *
 162 * @param mtd   MTD device structure
 163 * @param buf   buffer to store data to
 164 * @param len   number of bytes to read
 165 *
 166 * Read function for 8bit bus-width
 167 */
 168static void read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 169{
 170        int i, s;
 171        unsigned int reg;
 172        struct nand_chip *chip = mtd_to_nand(mtd);
 173        struct nand_drv *info = (struct nand_drv *)nand_get_controller_data(chip);
 174
 175        for (i = 0; i < len; i += 4) {
 176                s = (len - i) > 4 ? 4 : len - i;
 177                writel(CMD_PIO | CMD_RX | CMD_A_VALID | CMD_CE0 |
 178                        ((s - 1) << CMD_TRANS_SIZE_SHIFT) | CMD_GO,
 179                        &info->reg->command);
 180                if (!nand_waitfor_cmd_completion(info->reg))
 181                        puts("Command timeout during read_buf\n");
 182                reg = readl(&info->reg->resp);
 183                memcpy(buf + i, &reg, s);
 184        }
 185}
 186
 187/**
 188 * Check NAND status to see if it is ready or not
 189 *
 190 * @param mtd   MTD device structure
 191 * @return
 192 *      1 - ready
 193 *      0 - not ready
 194 */
 195static int nand_dev_ready(struct mtd_info *mtd)
 196{
 197        struct nand_chip *chip = mtd_to_nand(mtd);
 198        int reg_val;
 199        struct nand_drv *info;
 200
 201        info = (struct nand_drv *)nand_get_controller_data(chip);
 202
 203        reg_val = readl(&info->reg->status);
 204        if (reg_val & STATUS_RBSY0)
 205                return 1;
 206        else
 207                return 0;
 208}
 209
 210/* Dummy implementation: we don't support multiple chips */
 211static void nand_select_chip(struct mtd_info *mtd, int chipnr)
 212{
 213        switch (chipnr) {
 214        case -1:
 215        case 0:
 216                break;
 217
 218        default:
 219                BUG();
 220        }
 221}
 222
 223/**
 224 * Clear all interrupt status bits
 225 *
 226 * @param reg   nand_ctlr structure
 227 */
 228static void nand_clear_interrupt_status(struct nand_ctlr *reg)
 229{
 230        u32 reg_val;
 231
 232        /* Clear interrupt status */
 233        reg_val = readl(&reg->isr);
 234        writel(reg_val, &reg->isr);
 235}
 236
 237/**
 238 * Send command to NAND device
 239 *
 240 * @param mtd           MTD device structure
 241 * @param command       the command to be sent
 242 * @param column        the column address for this command, -1 if none
 243 * @param page_addr     the page address for this command, -1 if none
 244 */
 245static void nand_command(struct mtd_info *mtd, unsigned int command,
 246        int column, int page_addr)
 247{
 248        struct nand_chip *chip = mtd_to_nand(mtd);
 249        struct nand_drv *info;
 250
 251        info = (struct nand_drv *)nand_get_controller_data(chip);
 252
 253        /*
 254         * Write out the command to the device.
 255         *
 256         * Only command NAND_CMD_RESET or NAND_CMD_READID will come
 257         * here before mtd->writesize is initialized.
 258         */
 259
 260        /* Emulate NAND_CMD_READOOB */
 261        if (command == NAND_CMD_READOOB) {
 262                assert(mtd->writesize != 0);
 263                column += mtd->writesize;
 264                command = NAND_CMD_READ0;
 265        }
 266
 267        /* Adjust columns for 16 bit bus-width */
 268        if (column != -1 && (chip->options & NAND_BUSWIDTH_16))
 269                column >>= 1;
 270
 271        nand_clear_interrupt_status(info->reg);
 272
 273        /* Stop DMA engine, clear DMA completion status */
 274        writel(DMA_MST_CTRL_EN_A_DISABLE
 275                | DMA_MST_CTRL_EN_B_DISABLE
 276                | DMA_MST_CTRL_IS_DMA_DONE,
 277                &info->reg->dma_mst_ctrl);
 278
 279        /*
 280         * Program and erase have their own busy handlers
 281         * status and sequential in needs no delay
 282         */
 283        switch (command) {
 284        case NAND_CMD_READID:
 285                writel(NAND_CMD_READID, &info->reg->cmd_reg1);
 286                writel(column & 0xFF, &info->reg->addr_reg1);
 287                writel(CMD_GO | CMD_CLE | CMD_ALE | CMD_CE0,
 288                       &info->reg->command);
 289                break;
 290        case NAND_CMD_PARAM:
 291                writel(NAND_CMD_PARAM, &info->reg->cmd_reg1);
 292                writel(column & 0xFF, &info->reg->addr_reg1);
 293                writel(CMD_GO | CMD_CLE | CMD_ALE | CMD_CE0,
 294                        &info->reg->command);
 295                break;
 296        case NAND_CMD_READ0:
 297                writel(NAND_CMD_READ0, &info->reg->cmd_reg1);
 298                writel(NAND_CMD_READSTART, &info->reg->cmd_reg2);
 299                writel((page_addr << 16) | (column & 0xFFFF),
 300                        &info->reg->addr_reg1);
 301                writel(page_addr >> 16, &info->reg->addr_reg2);
 302                return;
 303        case NAND_CMD_SEQIN:
 304                writel(NAND_CMD_SEQIN, &info->reg->cmd_reg1);
 305                writel(NAND_CMD_PAGEPROG, &info->reg->cmd_reg2);
 306                writel((page_addr << 16) | (column & 0xFFFF),
 307                        &info->reg->addr_reg1);
 308                writel(page_addr >> 16,
 309                        &info->reg->addr_reg2);
 310                return;
 311        case NAND_CMD_PAGEPROG:
 312                return;
 313        case NAND_CMD_ERASE1:
 314                writel(NAND_CMD_ERASE1, &info->reg->cmd_reg1);
 315                writel(NAND_CMD_ERASE2, &info->reg->cmd_reg2);
 316                writel(page_addr, &info->reg->addr_reg1);
 317                writel(CMD_GO | CMD_CLE | CMD_ALE |
 318                        CMD_SEC_CMD | CMD_CE0 | CMD_ALE_BYTES3,
 319                        &info->reg->command);
 320                break;
 321        case NAND_CMD_ERASE2:
 322                return;
 323        case NAND_CMD_STATUS:
 324                writel(NAND_CMD_STATUS, &info->reg->cmd_reg1);
 325                writel(CMD_GO | CMD_CLE | CMD_PIO | CMD_RX
 326                        | ((1 - 0) << CMD_TRANS_SIZE_SHIFT)
 327                        | CMD_CE0,
 328                        &info->reg->command);
 329                break;
 330        case NAND_CMD_RESET:
 331                writel(NAND_CMD_RESET, &info->reg->cmd_reg1);
 332                writel(CMD_GO | CMD_CLE | CMD_CE0,
 333                        &info->reg->command);
 334                break;
 335        case NAND_CMD_RNDOUT:
 336        default:
 337                printf("%s: Unsupported command %d\n", __func__, command);
 338                return;
 339        }
 340        if (!nand_waitfor_cmd_completion(info->reg))
 341                printf("Command 0x%02X timeout\n", command);
 342}
 343
 344/**
 345 * Check whether the pointed buffer are all 0xff (blank).
 346 *
 347 * @param buf   data buffer for blank check
 348 * @param len   length of the buffer in byte
 349 * @return
 350 *      1 - blank
 351 *      0 - non-blank
 352 */
 353static int blank_check(u8 *buf, int len)
 354{
 355        int i;
 356
 357        for (i = 0; i < len; i++)
 358                if (buf[i] != 0xFF)
 359                        return 0;
 360        return 1;
 361}
 362
 363/**
 364 * After a DMA transfer for read, we call this function to see whether there
 365 * is any uncorrectable error on the pointed data buffer or oob buffer.
 366 *
 367 * @param reg           nand_ctlr structure
 368 * @param databuf       data buffer
 369 * @param a_len         data buffer length
 370 * @param oobbuf        oob buffer
 371 * @param b_len         oob buffer length
 372 * @return
 373 *      ECC_OK - no ECC error or correctable ECC error
 374 *      ECC_TAG_ERROR - uncorrectable tag ECC error
 375 *      ECC_DATA_ERROR - uncorrectable data ECC error
 376 *      ECC_DATA_ERROR + ECC_TAG_ERROR - uncorrectable data+tag ECC error
 377 */
 378static int check_ecc_error(struct nand_ctlr *reg, u8 *databuf,
 379        int a_len, u8 *oobbuf, int b_len)
 380{
 381        int return_val = ECC_OK;
 382        u32 reg_val;
 383
 384        if (!(readl(&reg->isr) & ISR_IS_ECC_ERR))
 385                return ECC_OK;
 386
 387        /*
 388         * Area A is used for the data block (databuf). Area B is used for
 389         * the spare block (oobbuf)
 390         */
 391        reg_val = readl(&reg->dec_status);
 392        if ((reg_val & DEC_STATUS_A_ECC_FAIL) && databuf) {
 393                reg_val = readl(&reg->bch_dec_status_buf);
 394                /*
 395                 * If uncorrectable error occurs on data area, then see whether
 396                 * they are all FF. If all are FF, it's a blank page.
 397                 * Not error.
 398                 */
 399                if ((reg_val & BCH_DEC_STATUS_FAIL_SEC_FLAG_MASK) &&
 400                                !blank_check(databuf, a_len))
 401                        return_val |= ECC_DATA_ERROR;
 402        }
 403
 404        if ((reg_val & DEC_STATUS_B_ECC_FAIL) && oobbuf) {
 405                reg_val = readl(&reg->bch_dec_status_buf);
 406                /*
 407                 * If uncorrectable error occurs on tag area, then see whether
 408                 * they are all FF. If all are FF, it's a blank page.
 409                 * Not error.
 410                 */
 411                if ((reg_val & BCH_DEC_STATUS_FAIL_TAG_MASK) &&
 412                                !blank_check(oobbuf, b_len))
 413                        return_val |= ECC_TAG_ERROR;
 414        }
 415
 416        return return_val;
 417}
 418
 419/**
 420 * Set GO bit to send command to device
 421 *
 422 * @param reg   nand_ctlr structure
 423 */
 424static void start_command(struct nand_ctlr *reg)
 425{
 426        u32 reg_val;
 427
 428        reg_val = readl(&reg->command);
 429        reg_val |= CMD_GO;
 430        writel(reg_val, &reg->command);
 431}
 432
 433/**
 434 * Clear command GO bit, DMA GO bit, and DMA completion status
 435 *
 436 * @param reg   nand_ctlr structure
 437 */
 438static void stop_command(struct nand_ctlr *reg)
 439{
 440        /* Stop command */
 441        writel(0, &reg->command);
 442
 443        /* Stop DMA engine and clear DMA completion status */
 444        writel(DMA_MST_CTRL_GO_DISABLE
 445                | DMA_MST_CTRL_IS_DMA_DONE,
 446                &reg->dma_mst_ctrl);
 447}
 448
 449/**
 450 * Set up NAND bus width and page size
 451 *
 452 * @param info          nand_info structure
 453 * @param *reg_val      address of reg_val
 454 * @return 0 if ok, -1 on error
 455 */
 456static int set_bus_width_page_size(struct fdt_nand *config,
 457        u32 *reg_val)
 458{
 459        if (config->width == 8)
 460                *reg_val = CFG_BUS_WIDTH_8BIT;
 461        else if (config->width == 16)
 462                *reg_val = CFG_BUS_WIDTH_16BIT;
 463        else {
 464                debug("%s: Unsupported bus width %d\n", __func__,
 465                      config->width);
 466                return -1;
 467        }
 468
 469        if (our_mtd->writesize == 512)
 470                *reg_val |= CFG_PAGE_SIZE_512;
 471        else if (our_mtd->writesize == 2048)
 472                *reg_val |= CFG_PAGE_SIZE_2048;
 473        else if (our_mtd->writesize == 4096)
 474                *reg_val |= CFG_PAGE_SIZE_4096;
 475        else {
 476                debug("%s: Unsupported page size %d\n", __func__,
 477                      our_mtd->writesize);
 478                return -1;
 479        }
 480
 481        return 0;
 482}
 483
 484/**
 485 * Page read/write function
 486 *
 487 * @param mtd           mtd info structure
 488 * @param chip          nand chip info structure
 489 * @param buf           data buffer
 490 * @param page          page number
 491 * @param with_ecc      1 to enable ECC, 0 to disable ECC
 492 * @param is_writing    0 for read, 1 for write
 493 * @return      0 when successfully completed
 494 *              -EIO when command timeout
 495 */
 496static int nand_rw_page(struct mtd_info *mtd, struct nand_chip *chip,
 497        uint8_t *buf, int page, int with_ecc, int is_writing)
 498{
 499        u32 reg_val;
 500        int tag_size;
 501        struct nand_oobfree *free = chip->ecc.layout->oobfree;
 502        /* 4*128=512 (byte) is the value that our HW can support. */
 503        ALLOC_CACHE_ALIGN_BUFFER(u32, tag_buf, 128);
 504        char *tag_ptr;
 505        struct nand_drv *info;
 506        struct fdt_nand *config;
 507        unsigned int bbflags;
 508        struct bounce_buffer bbstate, bbstate_oob;
 509
 510        if ((uintptr_t)buf & 0x03) {
 511                printf("buf %p has to be 4-byte aligned\n", buf);
 512                return -EINVAL;
 513        }
 514
 515        info = (struct nand_drv *)nand_get_controller_data(chip);
 516        config = &info->config;
 517        if (set_bus_width_page_size(config, &reg_val))
 518                return -EINVAL;
 519
 520        /* Need to be 4-byte aligned */
 521        tag_ptr = (char *)tag_buf;
 522
 523        stop_command(info->reg);
 524
 525        if (is_writing)
 526                bbflags = GEN_BB_READ;
 527        else
 528                bbflags = GEN_BB_WRITE;
 529
 530        bounce_buffer_start(&bbstate, (void *)buf, 1 << chip->page_shift,
 531                            bbflags);
 532        writel((1 << chip->page_shift) - 1, &info->reg->dma_cfg_a);
 533        writel(virt_to_phys(bbstate.bounce_buffer), &info->reg->data_block_ptr);
 534
 535        /* Set ECC selection, configure ECC settings */
 536        if (with_ecc) {
 537                if (is_writing)
 538                        memcpy(tag_ptr, chip->oob_poi + free->offset,
 539                               chip->ecc.layout->oobavail + TAG_ECC_BYTES);
 540                tag_size = chip->ecc.layout->oobavail + TAG_ECC_BYTES;
 541                reg_val |= (CFG_SKIP_SPARE_SEL_4
 542                        | CFG_SKIP_SPARE_ENABLE
 543                        | CFG_HW_ECC_CORRECTION_ENABLE
 544                        | CFG_ECC_EN_TAG_DISABLE
 545                        | CFG_HW_ECC_SEL_RS
 546                        | CFG_HW_ECC_ENABLE
 547                        | CFG_TVAL4
 548                        | (tag_size - 1));
 549
 550                if (!is_writing)
 551                        tag_size += SKIPPED_SPARE_BYTES;
 552                bounce_buffer_start(&bbstate_oob, (void *)tag_ptr, tag_size,
 553                                    bbflags);
 554        } else {
 555                tag_size = mtd->oobsize;
 556                reg_val |= (CFG_SKIP_SPARE_DISABLE
 557                        | CFG_HW_ECC_CORRECTION_DISABLE
 558                        | CFG_ECC_EN_TAG_DISABLE
 559                        | CFG_HW_ECC_DISABLE
 560                        | (tag_size - 1));
 561                bounce_buffer_start(&bbstate_oob, (void *)chip->oob_poi,
 562                                    tag_size, bbflags);
 563        }
 564        writel(reg_val, &info->reg->config);
 565        writel(virt_to_phys(bbstate_oob.bounce_buffer), &info->reg->tag_ptr);
 566        writel(BCH_CONFIG_BCH_ECC_DISABLE, &info->reg->bch_config);
 567        writel(tag_size - 1, &info->reg->dma_cfg_b);
 568
 569        nand_clear_interrupt_status(info->reg);
 570
 571        reg_val = CMD_CLE | CMD_ALE
 572                | CMD_SEC_CMD
 573                | (CMD_ALE_BYTES5 << CMD_ALE_BYTE_SIZE_SHIFT)
 574                | CMD_A_VALID
 575                | CMD_B_VALID
 576                | (CMD_TRANS_SIZE_PAGE << CMD_TRANS_SIZE_SHIFT)
 577                | CMD_CE0;
 578        if (!is_writing)
 579                reg_val |= (CMD_AFT_DAT_DISABLE | CMD_RX);
 580        else
 581                reg_val |= (CMD_AFT_DAT_ENABLE | CMD_TX);
 582        writel(reg_val, &info->reg->command);
 583
 584        /* Setup DMA engine */
 585        reg_val = DMA_MST_CTRL_GO_ENABLE
 586                | DMA_MST_CTRL_BURST_8WORDS
 587                | DMA_MST_CTRL_EN_A_ENABLE
 588                | DMA_MST_CTRL_EN_B_ENABLE;
 589
 590        if (!is_writing)
 591                reg_val |= DMA_MST_CTRL_DIR_READ;
 592        else
 593                reg_val |= DMA_MST_CTRL_DIR_WRITE;
 594
 595        writel(reg_val, &info->reg->dma_mst_ctrl);
 596
 597        start_command(info->reg);
 598
 599        if (!nand_waitfor_cmd_completion(info->reg)) {
 600                if (!is_writing)
 601                        printf("Read Page 0x%X timeout ", page);
 602                else
 603                        printf("Write Page 0x%X timeout ", page);
 604                if (with_ecc)
 605                        printf("with ECC");
 606                else
 607                        printf("without ECC");
 608                printf("\n");
 609                return -EIO;
 610        }
 611
 612        bounce_buffer_stop(&bbstate_oob);
 613        bounce_buffer_stop(&bbstate);
 614
 615        if (with_ecc && !is_writing) {
 616                memcpy(chip->oob_poi, tag_ptr,
 617                        SKIPPED_SPARE_BYTES);
 618                memcpy(chip->oob_poi + free->offset,
 619                        tag_ptr + SKIPPED_SPARE_BYTES,
 620                        chip->ecc.layout->oobavail);
 621                reg_val = (u32)check_ecc_error(info->reg, (u8 *)buf,
 622                        1 << chip->page_shift,
 623                        (u8 *)(tag_ptr + SKIPPED_SPARE_BYTES),
 624                        chip->ecc.layout->oobavail);
 625                if (reg_val & ECC_TAG_ERROR)
 626                        printf("Read Page 0x%X tag ECC error\n", page);
 627                if (reg_val & ECC_DATA_ERROR)
 628                        printf("Read Page 0x%X data ECC error\n",
 629                                page);
 630                if (reg_val & (ECC_DATA_ERROR | ECC_TAG_ERROR))
 631                        return -EIO;
 632        }
 633        return 0;
 634}
 635
 636/**
 637 * Hardware ecc based page read function
 638 *
 639 * @param mtd   mtd info structure
 640 * @param chip  nand chip info structure
 641 * @param buf   buffer to store read data
 642 * @param page  page number to read
 643 * @return      0 when successfully completed
 644 *              -EIO when command timeout
 645 */
 646static int nand_read_page_hwecc(struct mtd_info *mtd,
 647        struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
 648{
 649        return nand_rw_page(mtd, chip, buf, page, 1, 0);
 650}
 651
 652/**
 653 * Hardware ecc based page write function
 654 *
 655 * @param mtd   mtd info structure
 656 * @param chip  nand chip info structure
 657 * @param buf   data buffer
 658 */
 659static int nand_write_page_hwecc(struct mtd_info *mtd,
 660        struct nand_chip *chip, const uint8_t *buf, int oob_required,
 661        int page)
 662{
 663        nand_rw_page(mtd, chip, (uint8_t *)buf, page, 1, 1);
 664        return 0;
 665}
 666
 667
 668/**
 669 * Read raw page data without ecc
 670 *
 671 * @param mtd   mtd info structure
 672 * @param chip  nand chip info structure
 673 * @param buf   buffer to store read data
 674 * @param page  page number to read
 675 * @return      0 when successfully completed
 676 *              -EINVAL when chip->oob_poi is not double-word aligned
 677 *              -EIO when command timeout
 678 */
 679static int nand_read_page_raw(struct mtd_info *mtd,
 680        struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
 681{
 682        return nand_rw_page(mtd, chip, buf, page, 0, 0);
 683}
 684
 685/**
 686 * Raw page write function
 687 *
 688 * @param mtd   mtd info structure
 689 * @param chip  nand chip info structure
 690 * @param buf   data buffer
 691 */
 692static int nand_write_page_raw(struct mtd_info *mtd,
 693                struct nand_chip *chip, const uint8_t *buf,
 694                int oob_required, int page)
 695{
 696        nand_rw_page(mtd, chip, (uint8_t *)buf, page, 0, 1);
 697        return 0;
 698}
 699
 700/**
 701 * OOB data read/write function
 702 *
 703 * @param mtd           mtd info structure
 704 * @param chip          nand chip info structure
 705 * @param page          page number to read
 706 * @param with_ecc      1 to enable ECC, 0 to disable ECC
 707 * @param is_writing    0 for read, 1 for write
 708 * @return      0 when successfully completed
 709 *              -EINVAL when chip->oob_poi is not double-word aligned
 710 *              -EIO when command timeout
 711 */
 712static int nand_rw_oob(struct mtd_info *mtd, struct nand_chip *chip,
 713        int page, int with_ecc, int is_writing)
 714{
 715        u32 reg_val;
 716        int tag_size;
 717        struct nand_oobfree *free = chip->ecc.layout->oobfree;
 718        struct nand_drv *info;
 719        unsigned int bbflags;
 720        struct bounce_buffer bbstate_oob;
 721
 722        if (((int)chip->oob_poi) & 0x03)
 723                return -EINVAL;
 724        info = (struct nand_drv *)nand_get_controller_data(chip);
 725        if (set_bus_width_page_size(&info->config, &reg_val))
 726                return -EINVAL;
 727
 728        stop_command(info->reg);
 729
 730        /* Set ECC selection */
 731        tag_size = mtd->oobsize;
 732        if (with_ecc)
 733                reg_val |= CFG_ECC_EN_TAG_ENABLE;
 734        else
 735                reg_val |= (CFG_ECC_EN_TAG_DISABLE);
 736
 737        reg_val |= ((tag_size - 1) |
 738                CFG_SKIP_SPARE_DISABLE |
 739                CFG_HW_ECC_CORRECTION_DISABLE |
 740                CFG_HW_ECC_DISABLE);
 741        writel(reg_val, &info->reg->config);
 742
 743        if (is_writing && with_ecc)
 744                tag_size -= TAG_ECC_BYTES;
 745
 746        if (is_writing)
 747                bbflags = GEN_BB_READ;
 748        else
 749                bbflags = GEN_BB_WRITE;
 750
 751        bounce_buffer_start(&bbstate_oob, (void *)chip->oob_poi, tag_size,
 752                            bbflags);
 753        writel(virt_to_phys(bbstate_oob.bounce_buffer), &info->reg->tag_ptr);
 754
 755        writel(BCH_CONFIG_BCH_ECC_DISABLE, &info->reg->bch_config);
 756
 757        writel(tag_size - 1, &info->reg->dma_cfg_b);
 758
 759        nand_clear_interrupt_status(info->reg);
 760
 761        reg_val = CMD_CLE | CMD_ALE
 762                | CMD_SEC_CMD
 763                | (CMD_ALE_BYTES5 << CMD_ALE_BYTE_SIZE_SHIFT)
 764                | CMD_B_VALID
 765                | CMD_CE0;
 766        if (!is_writing)
 767                reg_val |= (CMD_AFT_DAT_DISABLE | CMD_RX);
 768        else
 769                reg_val |= (CMD_AFT_DAT_ENABLE | CMD_TX);
 770        writel(reg_val, &info->reg->command);
 771
 772        /* Setup DMA engine */
 773        reg_val = DMA_MST_CTRL_GO_ENABLE
 774                | DMA_MST_CTRL_BURST_8WORDS
 775                | DMA_MST_CTRL_EN_B_ENABLE;
 776        if (!is_writing)
 777                reg_val |= DMA_MST_CTRL_DIR_READ;
 778        else
 779                reg_val |= DMA_MST_CTRL_DIR_WRITE;
 780
 781        writel(reg_val, &info->reg->dma_mst_ctrl);
 782
 783        start_command(info->reg);
 784
 785        if (!nand_waitfor_cmd_completion(info->reg)) {
 786                if (!is_writing)
 787                        printf("Read OOB of Page 0x%X timeout\n", page);
 788                else
 789                        printf("Write OOB of Page 0x%X timeout\n", page);
 790                return -EIO;
 791        }
 792
 793        bounce_buffer_stop(&bbstate_oob);
 794
 795        if (with_ecc && !is_writing) {
 796                reg_val = (u32)check_ecc_error(info->reg, 0, 0,
 797                        (u8 *)(chip->oob_poi + free->offset),
 798                        chip->ecc.layout->oobavail);
 799                if (reg_val & ECC_TAG_ERROR)
 800                        printf("Read OOB of Page 0x%X tag ECC error\n", page);
 801        }
 802        return 0;
 803}
 804
 805/**
 806 * OOB data read function
 807 *
 808 * @param mtd           mtd info structure
 809 * @param chip          nand chip info structure
 810 * @param page          page number to read
 811 */
 812static int nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
 813        int page)
 814{
 815        chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
 816        nand_rw_oob(mtd, chip, page, 0, 0);
 817        return 0;
 818}
 819
 820/**
 821 * OOB data write function
 822 *
 823 * @param mtd   mtd info structure
 824 * @param chip  nand chip info structure
 825 * @param page  page number to write
 826 * @return      0 when successfully completed
 827 *              -EINVAL when chip->oob_poi is not double-word aligned
 828 *              -EIO when command timeout
 829 */
 830static int nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
 831        int page)
 832{
 833        chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
 834
 835        return nand_rw_oob(mtd, chip, page, 0, 1);
 836}
 837
 838/**
 839 * Set up NAND memory timings according to the provided parameters
 840 *
 841 * @param timing        Timing parameters
 842 * @param reg           NAND controller register address
 843 */
 844static void setup_timing(unsigned timing[FDT_NAND_TIMING_COUNT],
 845                         struct nand_ctlr *reg)
 846{
 847        u32 reg_val, clk_rate, clk_period, time_val;
 848
 849        clk_rate = (u32)clock_get_periph_rate(PERIPH_ID_NDFLASH,
 850                CLOCK_ID_PERIPH) / 1000000;
 851        clk_period = 1000 / clk_rate;
 852        reg_val = ((timing[FDT_NAND_MAX_TRP_TREA] / clk_period) <<
 853                TIMING_TRP_RESP_CNT_SHIFT) & TIMING_TRP_RESP_CNT_MASK;
 854        reg_val |= ((timing[FDT_NAND_TWB] / clk_period) <<
 855                TIMING_TWB_CNT_SHIFT) & TIMING_TWB_CNT_MASK;
 856        time_val = timing[FDT_NAND_MAX_TCR_TAR_TRR] / clk_period;
 857        if (time_val > 2)
 858                reg_val |= ((time_val - 2) << TIMING_TCR_TAR_TRR_CNT_SHIFT) &
 859                        TIMING_TCR_TAR_TRR_CNT_MASK;
 860        reg_val |= ((timing[FDT_NAND_TWHR] / clk_period) <<
 861                TIMING_TWHR_CNT_SHIFT) & TIMING_TWHR_CNT_MASK;
 862        time_val = timing[FDT_NAND_MAX_TCS_TCH_TALS_TALH] / clk_period;
 863        if (time_val > 1)
 864                reg_val |= ((time_val - 1) << TIMING_TCS_CNT_SHIFT) &
 865                        TIMING_TCS_CNT_MASK;
 866        reg_val |= ((timing[FDT_NAND_TWH] / clk_period) <<
 867                TIMING_TWH_CNT_SHIFT) & TIMING_TWH_CNT_MASK;
 868        reg_val |= ((timing[FDT_NAND_TWP] / clk_period) <<
 869                TIMING_TWP_CNT_SHIFT) & TIMING_TWP_CNT_MASK;
 870        reg_val |= ((timing[FDT_NAND_TRH] / clk_period) <<
 871                TIMING_TRH_CNT_SHIFT) & TIMING_TRH_CNT_MASK;
 872        reg_val |= ((timing[FDT_NAND_MAX_TRP_TREA] / clk_period) <<
 873                TIMING_TRP_CNT_SHIFT) & TIMING_TRP_CNT_MASK;
 874        writel(reg_val, &reg->timing);
 875
 876        reg_val = 0;
 877        time_val = timing[FDT_NAND_TADL] / clk_period;
 878        if (time_val > 2)
 879                reg_val = (time_val - 2) & TIMING2_TADL_CNT_MASK;
 880        writel(reg_val, &reg->timing2);
 881}
 882
 883/**
 884 * Decode NAND parameters from the device tree
 885 *
 886 * @param blob  Device tree blob
 887 * @param node  Node containing "nand-flash" compatible node
 888 * @return 0 if ok, -ve on error (FDT_ERR_...)
 889 */
 890static int fdt_decode_nand(const void *blob, int node, struct fdt_nand *config)
 891{
 892        int err;
 893
 894        config->reg = (struct nand_ctlr *)fdtdec_get_addr(blob, node, "reg");
 895        config->enabled = fdtdec_get_is_enabled(blob, node);
 896        config->width = fdtdec_get_int(blob, node, "nvidia,nand-width", 8);
 897        err = gpio_request_by_name_nodev(blob, node, "nvidia,wp-gpios", 0,
 898                                 &config->wp_gpio, GPIOD_IS_OUT);
 899        if (err)
 900                return err;
 901        err = fdtdec_get_int_array(blob, node, "nvidia,timing",
 902                        config->timing, FDT_NAND_TIMING_COUNT);
 903        if (err < 0)
 904                return err;
 905
 906        /* Now look up the controller and decode that */
 907        node = fdt_next_node(blob, node, NULL);
 908        if (node < 0)
 909                return node;
 910
 911        return 0;
 912}
 913
 914/**
 915 * Board-specific NAND initialization
 916 *
 917 * @param nand  nand chip info structure
 918 * @return 0, after initialized, -1 on error
 919 */
 920int tegra_nand_init(struct nand_chip *nand, int devnum)
 921{
 922        struct nand_drv *info = &nand_ctrl;
 923        struct fdt_nand *config = &info->config;
 924        int node, ret;
 925
 926        node = fdtdec_next_compatible(gd->fdt_blob, 0,
 927                                      COMPAT_NVIDIA_TEGRA20_NAND);
 928        if (node < 0)
 929                return -1;
 930        if (fdt_decode_nand(gd->fdt_blob, node, config)) {
 931                printf("Could not decode nand-flash in device tree\n");
 932                return -1;
 933        }
 934        if (!config->enabled)
 935                return -1;
 936        info->reg = config->reg;
 937        nand->ecc.mode = NAND_ECC_HW;
 938        nand->ecc.layout = &eccoob;
 939
 940        nand->options = LP_OPTIONS;
 941        nand->cmdfunc = nand_command;
 942        nand->read_byte = read_byte;
 943        nand->read_buf = read_buf;
 944        nand->ecc.read_page = nand_read_page_hwecc;
 945        nand->ecc.write_page = nand_write_page_hwecc;
 946        nand->ecc.read_page_raw = nand_read_page_raw;
 947        nand->ecc.write_page_raw = nand_write_page_raw;
 948        nand->ecc.read_oob = nand_read_oob;
 949        nand->ecc.write_oob = nand_write_oob;
 950        nand->ecc.strength = 1;
 951        nand->select_chip = nand_select_chip;
 952        nand->dev_ready  = nand_dev_ready;
 953        nand_set_controller_data(nand, &nand_ctrl);
 954
 955        /* Disable subpage writes as we do not provide ecc->hwctl */
 956        nand->options |= NAND_NO_SUBPAGE_WRITE;
 957
 958        /* Adjust controller clock rate */
 959        clock_start_periph_pll(PERIPH_ID_NDFLASH, CLOCK_ID_PERIPH, 52000000);
 960
 961        /* Adjust timing for NAND device */
 962        setup_timing(config->timing, info->reg);
 963
 964        dm_gpio_set_value(&config->wp_gpio, 1);
 965
 966        our_mtd = nand_to_mtd(nand);
 967        ret = nand_scan_ident(our_mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
 968        if (ret)
 969                return ret;
 970
 971        nand->ecc.size = our_mtd->writesize;
 972        nand->ecc.bytes = our_mtd->oobsize;
 973
 974        ret = nand_scan_tail(our_mtd);
 975        if (ret)
 976                return ret;
 977
 978        ret = nand_register(devnum, our_mtd);
 979        if (ret)
 980                return ret;
 981
 982        return 0;
 983}
 984
 985void board_nand_init(void)
 986{
 987        struct nand_chip *nand = &nand_chip[0];
 988
 989        if (tegra_nand_init(nand, 0))
 990                puts("Tegra NAND init failed\n");
 991}
 992