uboot/drivers/mtd/ubi/attach.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 *
   4 * SPDX-License-Identifier:     GPL-2.0+
   5 *
   6 * Author: Artem Bityutskiy (Битюцкий Артём)
   7 */
   8
   9/*
  10 * UBI attaching sub-system.
  11 *
  12 * This sub-system is responsible for attaching MTD devices and it also
  13 * implements flash media scanning.
  14 *
  15 * The attaching information is represented by a &struct ubi_attach_info'
  16 * object. Information about volumes is represented by &struct ubi_ainf_volume
  17 * objects which are kept in volume RB-tree with root at the @volumes field.
  18 * The RB-tree is indexed by the volume ID.
  19 *
  20 * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
  21 * objects are kept in per-volume RB-trees with the root at the corresponding
  22 * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
  23 * per-volume objects and each of these objects is the root of RB-tree of
  24 * per-LEB objects.
  25 *
  26 * Corrupted physical eraseblocks are put to the @corr list, free physical
  27 * eraseblocks are put to the @free list and the physical eraseblock to be
  28 * erased are put to the @erase list.
  29 *
  30 * About corruptions
  31 * ~~~~~~~~~~~~~~~~~
  32 *
  33 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
  34 * whether the headers are corrupted or not. Sometimes UBI also protects the
  35 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
  36 * when it moves the contents of a PEB for wear-leveling purposes.
  37 *
  38 * UBI tries to distinguish between 2 types of corruptions.
  39 *
  40 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
  41 * tries to handle them gracefully, without printing too many warnings and
  42 * error messages. The idea is that we do not lose important data in these
  43 * cases - we may lose only the data which were being written to the media just
  44 * before the power cut happened, and the upper layers (e.g., UBIFS) are
  45 * supposed to handle such data losses (e.g., by using the FS journal).
  46 *
  47 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
  48 * the reason is a power cut, UBI puts this PEB to the @erase list, and all
  49 * PEBs in the @erase list are scheduled for erasure later.
  50 *
  51 * 2. Unexpected corruptions which are not caused by power cuts. During
  52 * attaching, such PEBs are put to the @corr list and UBI preserves them.
  53 * Obviously, this lessens the amount of available PEBs, and if at some  point
  54 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
  55 * about such PEBs every time the MTD device is attached.
  56 *
  57 * However, it is difficult to reliably distinguish between these types of
  58 * corruptions and UBI's strategy is as follows (in case of attaching by
  59 * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
  60 * the data area does not contain all 0xFFs, and there were no bit-flips or
  61 * integrity errors (e.g., ECC errors in case of NAND) while reading the data
  62 * area.  Otherwise UBI assumes corruption type 1. So the decision criteria
  63 * are as follows.
  64 *   o If the data area contains only 0xFFs, there are no data, and it is safe
  65 *     to just erase this PEB - this is corruption type 1.
  66 *   o If the data area has bit-flips or data integrity errors (ECC errors on
  67 *     NAND), it is probably a PEB which was being erased when power cut
  68 *     happened, so this is corruption type 1. However, this is just a guess,
  69 *     which might be wrong.
  70 *   o Otherwise this is corruption type 2.
  71 */
  72
  73#ifndef __UBOOT__
  74#include <linux/err.h>
  75#include <linux/slab.h>
  76#include <linux/crc32.h>
  77#include <linux/random.h>
  78#else
  79#include <div64.h>
  80#include <linux/err.h>
  81#endif
  82
  83#include <linux/math64.h>
  84
  85#include <ubi_uboot.h>
  86#include "ubi.h"
  87
  88static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
  89
  90/* Temporary variables used during scanning */
  91static struct ubi_ec_hdr *ech;
  92static struct ubi_vid_hdr *vidh;
  93
  94/**
  95 * add_to_list - add physical eraseblock to a list.
  96 * @ai: attaching information
  97 * @pnum: physical eraseblock number to add
  98 * @vol_id: the last used volume id for the PEB
  99 * @lnum: the last used LEB number for the PEB
 100 * @ec: erase counter of the physical eraseblock
 101 * @to_head: if not zero, add to the head of the list
 102 * @list: the list to add to
 103 *
 104 * This function allocates a 'struct ubi_ainf_peb' object for physical
 105 * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
 106 * It stores the @lnum and @vol_id alongside, which can both be
 107 * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
 108 * If @to_head is not zero, PEB will be added to the head of the list, which
 109 * basically means it will be processed first later. E.g., we add corrupted
 110 * PEBs (corrupted due to power cuts) to the head of the erase list to make
 111 * sure we erase them first and get rid of corruptions ASAP. This function
 112 * returns zero in case of success and a negative error code in case of
 113 * failure.
 114 */
 115static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
 116                       int lnum, int ec, int to_head, struct list_head *list)
 117{
 118        struct ubi_ainf_peb *aeb;
 119
 120        if (list == &ai->free) {
 121                dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
 122        } else if (list == &ai->erase) {
 123                dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
 124        } else if (list == &ai->alien) {
 125                dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
 126                ai->alien_peb_count += 1;
 127        } else
 128                BUG();
 129
 130        aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 131        if (!aeb)
 132                return -ENOMEM;
 133
 134        aeb->pnum = pnum;
 135        aeb->vol_id = vol_id;
 136        aeb->lnum = lnum;
 137        aeb->ec = ec;
 138        if (to_head)
 139                list_add(&aeb->u.list, list);
 140        else
 141                list_add_tail(&aeb->u.list, list);
 142        return 0;
 143}
 144
 145/**
 146 * add_corrupted - add a corrupted physical eraseblock.
 147 * @ai: attaching information
 148 * @pnum: physical eraseblock number to add
 149 * @ec: erase counter of the physical eraseblock
 150 *
 151 * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
 152 * physical eraseblock @pnum and adds it to the 'corr' list.  The corruption
 153 * was presumably not caused by a power cut. Returns zero in case of success
 154 * and a negative error code in case of failure.
 155 */
 156static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
 157{
 158        struct ubi_ainf_peb *aeb;
 159
 160        dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
 161
 162        aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 163        if (!aeb)
 164                return -ENOMEM;
 165
 166        ai->corr_peb_count += 1;
 167        aeb->pnum = pnum;
 168        aeb->ec = ec;
 169        list_add(&aeb->u.list, &ai->corr);
 170        return 0;
 171}
 172
 173/**
 174 * validate_vid_hdr - check volume identifier header.
 175 * @ubi: UBI device description object
 176 * @vid_hdr: the volume identifier header to check
 177 * @av: information about the volume this logical eraseblock belongs to
 178 * @pnum: physical eraseblock number the VID header came from
 179 *
 180 * This function checks that data stored in @vid_hdr is consistent. Returns
 181 * non-zero if an inconsistency was found and zero if not.
 182 *
 183 * Note, UBI does sanity check of everything it reads from the flash media.
 184 * Most of the checks are done in the I/O sub-system. Here we check that the
 185 * information in the VID header is consistent to the information in other VID
 186 * headers of the same volume.
 187 */
 188static int validate_vid_hdr(const struct ubi_device *ubi,
 189                            const struct ubi_vid_hdr *vid_hdr,
 190                            const struct ubi_ainf_volume *av, int pnum)
 191{
 192        int vol_type = vid_hdr->vol_type;
 193        int vol_id = be32_to_cpu(vid_hdr->vol_id);
 194        int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 195        int data_pad = be32_to_cpu(vid_hdr->data_pad);
 196
 197        if (av->leb_count != 0) {
 198                int av_vol_type;
 199
 200                /*
 201                 * This is not the first logical eraseblock belonging to this
 202                 * volume. Ensure that the data in its VID header is consistent
 203                 * to the data in previous logical eraseblock headers.
 204                 */
 205
 206                if (vol_id != av->vol_id) {
 207                        ubi_err(ubi, "inconsistent vol_id");
 208                        goto bad;
 209                }
 210
 211                if (av->vol_type == UBI_STATIC_VOLUME)
 212                        av_vol_type = UBI_VID_STATIC;
 213                else
 214                        av_vol_type = UBI_VID_DYNAMIC;
 215
 216                if (vol_type != av_vol_type) {
 217                        ubi_err(ubi, "inconsistent vol_type");
 218                        goto bad;
 219                }
 220
 221                if (used_ebs != av->used_ebs) {
 222                        ubi_err(ubi, "inconsistent used_ebs");
 223                        goto bad;
 224                }
 225
 226                if (data_pad != av->data_pad) {
 227                        ubi_err(ubi, "inconsistent data_pad");
 228                        goto bad;
 229                }
 230        }
 231
 232        return 0;
 233
 234bad:
 235        ubi_err(ubi, "inconsistent VID header at PEB %d", pnum);
 236        ubi_dump_vid_hdr(vid_hdr);
 237        ubi_dump_av(av);
 238        return -EINVAL;
 239}
 240
 241/**
 242 * add_volume - add volume to the attaching information.
 243 * @ai: attaching information
 244 * @vol_id: ID of the volume to add
 245 * @pnum: physical eraseblock number
 246 * @vid_hdr: volume identifier header
 247 *
 248 * If the volume corresponding to the @vid_hdr logical eraseblock is already
 249 * present in the attaching information, this function does nothing. Otherwise
 250 * it adds corresponding volume to the attaching information. Returns a pointer
 251 * to the allocated "av" object in case of success and a negative error code in
 252 * case of failure.
 253 */
 254static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
 255                                          int vol_id, int pnum,
 256                                          const struct ubi_vid_hdr *vid_hdr)
 257{
 258        struct ubi_ainf_volume *av;
 259        struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
 260
 261        ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
 262
 263        /* Walk the volume RB-tree to look if this volume is already present */
 264        while (*p) {
 265                parent = *p;
 266                av = rb_entry(parent, struct ubi_ainf_volume, rb);
 267
 268                if (vol_id == av->vol_id)
 269                        return av;
 270
 271                if (vol_id > av->vol_id)
 272                        p = &(*p)->rb_left;
 273                else
 274                        p = &(*p)->rb_right;
 275        }
 276
 277        /* The volume is absent - add it */
 278        av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
 279        if (!av)
 280                return ERR_PTR(-ENOMEM);
 281
 282        av->highest_lnum = av->leb_count = 0;
 283        av->vol_id = vol_id;
 284        av->root = RB_ROOT;
 285        av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 286        av->data_pad = be32_to_cpu(vid_hdr->data_pad);
 287        av->compat = vid_hdr->compat;
 288        av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
 289                                                            : UBI_STATIC_VOLUME;
 290        if (vol_id > ai->highest_vol_id)
 291                ai->highest_vol_id = vol_id;
 292
 293        rb_link_node(&av->rb, parent, p);
 294        rb_insert_color(&av->rb, &ai->volumes);
 295        ai->vols_found += 1;
 296        dbg_bld("added volume %d", vol_id);
 297        return av;
 298}
 299
 300/**
 301 * ubi_compare_lebs - find out which logical eraseblock is newer.
 302 * @ubi: UBI device description object
 303 * @aeb: first logical eraseblock to compare
 304 * @pnum: physical eraseblock number of the second logical eraseblock to
 305 * compare
 306 * @vid_hdr: volume identifier header of the second logical eraseblock
 307 *
 308 * This function compares 2 copies of a LEB and informs which one is newer. In
 309 * case of success this function returns a positive value, in case of failure, a
 310 * negative error code is returned. The success return codes use the following
 311 * bits:
 312 *     o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
 313 *       second PEB (described by @pnum and @vid_hdr);
 314 *     o bit 0 is set: the second PEB is newer;
 315 *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
 316 *     o bit 1 is set: bit-flips were detected in the newer LEB;
 317 *     o bit 2 is cleared: the older LEB is not corrupted;
 318 *     o bit 2 is set: the older LEB is corrupted.
 319 */
 320int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
 321                        int pnum, const struct ubi_vid_hdr *vid_hdr)
 322{
 323        int len, err, second_is_newer, bitflips = 0, corrupted = 0;
 324        uint32_t data_crc, crc;
 325        struct ubi_vid_hdr *vh = NULL;
 326        unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
 327
 328        if (sqnum2 == aeb->sqnum) {
 329                /*
 330                 * This must be a really ancient UBI image which has been
 331                 * created before sequence numbers support has been added. At
 332                 * that times we used 32-bit LEB versions stored in logical
 333                 * eraseblocks. That was before UBI got into mainline. We do not
 334                 * support these images anymore. Well, those images still work,
 335                 * but only if no unclean reboots happened.
 336                 */
 337                ubi_err(ubi, "unsupported on-flash UBI format");
 338                return -EINVAL;
 339        }
 340
 341        /* Obviously the LEB with lower sequence counter is older */
 342        second_is_newer = (sqnum2 > aeb->sqnum);
 343
 344        /*
 345         * Now we know which copy is newer. If the copy flag of the PEB with
 346         * newer version is not set, then we just return, otherwise we have to
 347         * check data CRC. For the second PEB we already have the VID header,
 348         * for the first one - we'll need to re-read it from flash.
 349         *
 350         * Note: this may be optimized so that we wouldn't read twice.
 351         */
 352
 353        if (second_is_newer) {
 354                if (!vid_hdr->copy_flag) {
 355                        /* It is not a copy, so it is newer */
 356                        dbg_bld("second PEB %d is newer, copy_flag is unset",
 357                                pnum);
 358                        return 1;
 359                }
 360        } else {
 361                if (!aeb->copy_flag) {
 362                        /* It is not a copy, so it is newer */
 363                        dbg_bld("first PEB %d is newer, copy_flag is unset",
 364                                pnum);
 365                        return bitflips << 1;
 366                }
 367
 368                vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
 369                if (!vh)
 370                        return -ENOMEM;
 371
 372                pnum = aeb->pnum;
 373                err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
 374                if (err) {
 375                        if (err == UBI_IO_BITFLIPS)
 376                                bitflips = 1;
 377                        else {
 378                                ubi_err(ubi, "VID of PEB %d header is bad, but it was OK earlier, err %d",
 379                                        pnum, err);
 380                                if (err > 0)
 381                                        err = -EIO;
 382
 383                                goto out_free_vidh;
 384                        }
 385                }
 386
 387                vid_hdr = vh;
 388        }
 389
 390        /* Read the data of the copy and check the CRC */
 391
 392        len = be32_to_cpu(vid_hdr->data_size);
 393
 394        mutex_lock(&ubi->buf_mutex);
 395        err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
 396        if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
 397                goto out_unlock;
 398
 399        data_crc = be32_to_cpu(vid_hdr->data_crc);
 400        crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
 401        if (crc != data_crc) {
 402                dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
 403                        pnum, crc, data_crc);
 404                corrupted = 1;
 405                bitflips = 0;
 406                second_is_newer = !second_is_newer;
 407        } else {
 408                dbg_bld("PEB %d CRC is OK", pnum);
 409                bitflips |= !!err;
 410        }
 411        mutex_unlock(&ubi->buf_mutex);
 412
 413        ubi_free_vid_hdr(ubi, vh);
 414
 415        if (second_is_newer)
 416                dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
 417        else
 418                dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
 419
 420        return second_is_newer | (bitflips << 1) | (corrupted << 2);
 421
 422out_unlock:
 423        mutex_unlock(&ubi->buf_mutex);
 424out_free_vidh:
 425        ubi_free_vid_hdr(ubi, vh);
 426        return err;
 427}
 428
 429/**
 430 * ubi_add_to_av - add used physical eraseblock to the attaching information.
 431 * @ubi: UBI device description object
 432 * @ai: attaching information
 433 * @pnum: the physical eraseblock number
 434 * @ec: erase counter
 435 * @vid_hdr: the volume identifier header
 436 * @bitflips: if bit-flips were detected when this physical eraseblock was read
 437 *
 438 * This function adds information about a used physical eraseblock to the
 439 * 'used' tree of the corresponding volume. The function is rather complex
 440 * because it has to handle cases when this is not the first physical
 441 * eraseblock belonging to the same logical eraseblock, and the newer one has
 442 * to be picked, while the older one has to be dropped. This function returns
 443 * zero in case of success and a negative error code in case of failure.
 444 */
 445int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
 446                  int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
 447{
 448        int err, vol_id, lnum;
 449        unsigned long long sqnum;
 450        struct ubi_ainf_volume *av;
 451        struct ubi_ainf_peb *aeb;
 452        struct rb_node **p, *parent = NULL;
 453
 454        vol_id = be32_to_cpu(vid_hdr->vol_id);
 455        lnum = be32_to_cpu(vid_hdr->lnum);
 456        sqnum = be64_to_cpu(vid_hdr->sqnum);
 457
 458        dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
 459                pnum, vol_id, lnum, ec, sqnum, bitflips);
 460
 461        av = add_volume(ai, vol_id, pnum, vid_hdr);
 462        if (IS_ERR(av))
 463                return PTR_ERR(av);
 464
 465        if (ai->max_sqnum < sqnum)
 466                ai->max_sqnum = sqnum;
 467
 468        /*
 469         * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
 470         * if this is the first instance of this logical eraseblock or not.
 471         */
 472        p = &av->root.rb_node;
 473        while (*p) {
 474                int cmp_res;
 475
 476                parent = *p;
 477                aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
 478                if (lnum != aeb->lnum) {
 479                        if (lnum < aeb->lnum)
 480                                p = &(*p)->rb_left;
 481                        else
 482                                p = &(*p)->rb_right;
 483                        continue;
 484                }
 485
 486                /*
 487                 * There is already a physical eraseblock describing the same
 488                 * logical eraseblock present.
 489                 */
 490
 491                dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
 492                        aeb->pnum, aeb->sqnum, aeb->ec);
 493
 494                /*
 495                 * Make sure that the logical eraseblocks have different
 496                 * sequence numbers. Otherwise the image is bad.
 497                 *
 498                 * However, if the sequence number is zero, we assume it must
 499                 * be an ancient UBI image from the era when UBI did not have
 500                 * sequence numbers. We still can attach these images, unless
 501                 * there is a need to distinguish between old and new
 502                 * eraseblocks, in which case we'll refuse the image in
 503                 * 'ubi_compare_lebs()'. In other words, we attach old clean
 504                 * images, but refuse attaching old images with duplicated
 505                 * logical eraseblocks because there was an unclean reboot.
 506                 */
 507                if (aeb->sqnum == sqnum && sqnum != 0) {
 508                        ubi_err(ubi, "two LEBs with same sequence number %llu",
 509                                sqnum);
 510                        ubi_dump_aeb(aeb, 0);
 511                        ubi_dump_vid_hdr(vid_hdr);
 512                        return -EINVAL;
 513                }
 514
 515                /*
 516                 * Now we have to drop the older one and preserve the newer
 517                 * one.
 518                 */
 519                cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
 520                if (cmp_res < 0)
 521                        return cmp_res;
 522
 523                if (cmp_res & 1) {
 524                        /*
 525                         * This logical eraseblock is newer than the one
 526                         * found earlier.
 527                         */
 528                        err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
 529                        if (err)
 530                                return err;
 531
 532                        err = add_to_list(ai, aeb->pnum, aeb->vol_id,
 533                                          aeb->lnum, aeb->ec, cmp_res & 4,
 534                                          &ai->erase);
 535                        if (err)
 536                                return err;
 537
 538                        aeb->ec = ec;
 539                        aeb->pnum = pnum;
 540                        aeb->vol_id = vol_id;
 541                        aeb->lnum = lnum;
 542                        aeb->scrub = ((cmp_res & 2) || bitflips);
 543                        aeb->copy_flag = vid_hdr->copy_flag;
 544                        aeb->sqnum = sqnum;
 545
 546                        if (av->highest_lnum == lnum)
 547                                av->last_data_size =
 548                                        be32_to_cpu(vid_hdr->data_size);
 549
 550                        return 0;
 551                } else {
 552                        /*
 553                         * This logical eraseblock is older than the one found
 554                         * previously.
 555                         */
 556                        return add_to_list(ai, pnum, vol_id, lnum, ec,
 557                                           cmp_res & 4, &ai->erase);
 558                }
 559        }
 560
 561        /*
 562         * We've met this logical eraseblock for the first time, add it to the
 563         * attaching information.
 564         */
 565
 566        err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
 567        if (err)
 568                return err;
 569
 570        aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 571        if (!aeb)
 572                return -ENOMEM;
 573
 574        aeb->ec = ec;
 575        aeb->pnum = pnum;
 576        aeb->vol_id = vol_id;
 577        aeb->lnum = lnum;
 578        aeb->scrub = bitflips;
 579        aeb->copy_flag = vid_hdr->copy_flag;
 580        aeb->sqnum = sqnum;
 581
 582        if (av->highest_lnum <= lnum) {
 583                av->highest_lnum = lnum;
 584                av->last_data_size = be32_to_cpu(vid_hdr->data_size);
 585        }
 586
 587        av->leb_count += 1;
 588        rb_link_node(&aeb->u.rb, parent, p);
 589        rb_insert_color(&aeb->u.rb, &av->root);
 590        return 0;
 591}
 592
 593/**
 594 * ubi_find_av - find volume in the attaching information.
 595 * @ai: attaching information
 596 * @vol_id: the requested volume ID
 597 *
 598 * This function returns a pointer to the volume description or %NULL if there
 599 * are no data about this volume in the attaching information.
 600 */
 601struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
 602                                    int vol_id)
 603{
 604        struct ubi_ainf_volume *av;
 605        struct rb_node *p = ai->volumes.rb_node;
 606
 607        while (p) {
 608                av = rb_entry(p, struct ubi_ainf_volume, rb);
 609
 610                if (vol_id == av->vol_id)
 611                        return av;
 612
 613                if (vol_id > av->vol_id)
 614                        p = p->rb_left;
 615                else
 616                        p = p->rb_right;
 617        }
 618
 619        return NULL;
 620}
 621
 622/**
 623 * ubi_remove_av - delete attaching information about a volume.
 624 * @ai: attaching information
 625 * @av: the volume attaching information to delete
 626 */
 627void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
 628{
 629        struct rb_node *rb;
 630        struct ubi_ainf_peb *aeb;
 631
 632        dbg_bld("remove attaching information about volume %d", av->vol_id);
 633
 634        while ((rb = rb_first(&av->root))) {
 635                aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
 636                rb_erase(&aeb->u.rb, &av->root);
 637                list_add_tail(&aeb->u.list, &ai->erase);
 638        }
 639
 640        rb_erase(&av->rb, &ai->volumes);
 641        kfree(av);
 642        ai->vols_found -= 1;
 643}
 644
 645/**
 646 * early_erase_peb - erase a physical eraseblock.
 647 * @ubi: UBI device description object
 648 * @ai: attaching information
 649 * @pnum: physical eraseblock number to erase;
 650 * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
 651 *
 652 * This function erases physical eraseblock 'pnum', and writes the erase
 653 * counter header to it. This function should only be used on UBI device
 654 * initialization stages, when the EBA sub-system had not been yet initialized.
 655 * This function returns zero in case of success and a negative error code in
 656 * case of failure.
 657 */
 658static int early_erase_peb(struct ubi_device *ubi,
 659                           const struct ubi_attach_info *ai, int pnum, int ec)
 660{
 661        int err;
 662        struct ubi_ec_hdr *ec_hdr;
 663
 664        if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
 665                /*
 666                 * Erase counter overflow. Upgrade UBI and use 64-bit
 667                 * erase counters internally.
 668                 */
 669                ubi_err(ubi, "erase counter overflow at PEB %d, EC %d",
 670                        pnum, ec);
 671                return -EINVAL;
 672        }
 673
 674        ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
 675        if (!ec_hdr)
 676                return -ENOMEM;
 677
 678        ec_hdr->ec = cpu_to_be64(ec);
 679
 680        err = ubi_io_sync_erase(ubi, pnum, 0);
 681        if (err < 0)
 682                goto out_free;
 683
 684        err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
 685
 686out_free:
 687        kfree(ec_hdr);
 688        return err;
 689}
 690
 691/**
 692 * ubi_early_get_peb - get a free physical eraseblock.
 693 * @ubi: UBI device description object
 694 * @ai: attaching information
 695 *
 696 * This function returns a free physical eraseblock. It is supposed to be
 697 * called on the UBI initialization stages when the wear-leveling sub-system is
 698 * not initialized yet. This function picks a physical eraseblocks from one of
 699 * the lists, writes the EC header if it is needed, and removes it from the
 700 * list.
 701 *
 702 * This function returns a pointer to the "aeb" of the found free PEB in case
 703 * of success and an error code in case of failure.
 704 */
 705struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
 706                                       struct ubi_attach_info *ai)
 707{
 708        int err = 0;
 709        struct ubi_ainf_peb *aeb, *tmp_aeb;
 710
 711        if (!list_empty(&ai->free)) {
 712                aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
 713                list_del(&aeb->u.list);
 714                dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
 715                return aeb;
 716        }
 717
 718        /*
 719         * We try to erase the first physical eraseblock from the erase list
 720         * and pick it if we succeed, or try to erase the next one if not. And
 721         * so forth. We don't want to take care about bad eraseblocks here -
 722         * they'll be handled later.
 723         */
 724        list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
 725                if (aeb->ec == UBI_UNKNOWN)
 726                        aeb->ec = ai->mean_ec;
 727
 728                err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
 729                if (err)
 730                        continue;
 731
 732                aeb->ec += 1;
 733                list_del(&aeb->u.list);
 734                dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
 735                return aeb;
 736        }
 737
 738        ubi_err(ubi, "no free eraseblocks");
 739        return ERR_PTR(-ENOSPC);
 740}
 741
 742/**
 743 * check_corruption - check the data area of PEB.
 744 * @ubi: UBI device description object
 745 * @vid_hdr: the (corrupted) VID header of this PEB
 746 * @pnum: the physical eraseblock number to check
 747 *
 748 * This is a helper function which is used to distinguish between VID header
 749 * corruptions caused by power cuts and other reasons. If the PEB contains only
 750 * 0xFF bytes in the data area, the VID header is most probably corrupted
 751 * because of a power cut (%0 is returned in this case). Otherwise, it was
 752 * probably corrupted for some other reasons (%1 is returned in this case). A
 753 * negative error code is returned if a read error occurred.
 754 *
 755 * If the corruption reason was a power cut, UBI can safely erase this PEB.
 756 * Otherwise, it should preserve it to avoid possibly destroying important
 757 * information.
 758 */
 759static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
 760                            int pnum)
 761{
 762        int err;
 763
 764        mutex_lock(&ubi->buf_mutex);
 765        memset(ubi->peb_buf, 0x00, ubi->leb_size);
 766
 767        err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
 768                          ubi->leb_size);
 769        if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
 770                /*
 771                 * Bit-flips or integrity errors while reading the data area.
 772                 * It is difficult to say for sure what type of corruption is
 773                 * this, but presumably a power cut happened while this PEB was
 774                 * erased, so it became unstable and corrupted, and should be
 775                 * erased.
 776                 */
 777                err = 0;
 778                goto out_unlock;
 779        }
 780
 781        if (err)
 782                goto out_unlock;
 783
 784        if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
 785                goto out_unlock;
 786
 787        ubi_err(ubi, "PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
 788                pnum);
 789        ubi_err(ubi, "this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
 790        ubi_dump_vid_hdr(vid_hdr);
 791        pr_err("hexdump of PEB %d offset %d, length %d",
 792               pnum, ubi->leb_start, ubi->leb_size);
 793        ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
 794                               ubi->peb_buf, ubi->leb_size, 1);
 795        err = 1;
 796
 797out_unlock:
 798        mutex_unlock(&ubi->buf_mutex);
 799        return err;
 800}
 801
 802/**
 803 * scan_peb - scan and process UBI headers of a PEB.
 804 * @ubi: UBI device description object
 805 * @ai: attaching information
 806 * @pnum: the physical eraseblock number
 807 * @vid: The volume ID of the found volume will be stored in this pointer
 808 * @sqnum: The sqnum of the found volume will be stored in this pointer
 809 *
 810 * This function reads UBI headers of PEB @pnum, checks them, and adds
 811 * information about this PEB to the corresponding list or RB-tree in the
 812 * "attaching info" structure. Returns zero if the physical eraseblock was
 813 * successfully handled and a negative error code in case of failure.
 814 */
 815static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
 816                    int pnum, int *vid, unsigned long long *sqnum)
 817{
 818        long long uninitialized_var(ec);
 819        int err, bitflips = 0, vol_id = -1, ec_err = 0;
 820
 821        dbg_bld("scan PEB %d", pnum);
 822
 823        /* Skip bad physical eraseblocks */
 824        err = ubi_io_is_bad(ubi, pnum);
 825        if (err < 0)
 826                return err;
 827        else if (err) {
 828                ai->bad_peb_count += 1;
 829                return 0;
 830        }
 831
 832        err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
 833        if (err < 0)
 834                return err;
 835        switch (err) {
 836        case 0:
 837                break;
 838        case UBI_IO_BITFLIPS:
 839                bitflips = 1;
 840                break;
 841        case UBI_IO_FF:
 842                ai->empty_peb_count += 1;
 843                return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 844                                   UBI_UNKNOWN, 0, &ai->erase);
 845        case UBI_IO_FF_BITFLIPS:
 846                ai->empty_peb_count += 1;
 847                return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 848                                   UBI_UNKNOWN, 1, &ai->erase);
 849        case UBI_IO_BAD_HDR_EBADMSG:
 850        case UBI_IO_BAD_HDR:
 851                /*
 852                 * We have to also look at the VID header, possibly it is not
 853                 * corrupted. Set %bitflips flag in order to make this PEB be
 854                 * moved and EC be re-created.
 855                 */
 856                ec_err = err;
 857                ec = UBI_UNKNOWN;
 858                bitflips = 1;
 859                break;
 860        default:
 861                ubi_err(ubi, "'ubi_io_read_ec_hdr()' returned unknown code %d",
 862                        err);
 863                return -EINVAL;
 864        }
 865
 866        if (!ec_err) {
 867                int image_seq;
 868
 869                /* Make sure UBI version is OK */
 870                if (ech->version != UBI_VERSION) {
 871                        ubi_err(ubi, "this UBI version is %d, image version is %d",
 872                                UBI_VERSION, (int)ech->version);
 873                        return -EINVAL;
 874                }
 875
 876                ec = be64_to_cpu(ech->ec);
 877                if (ec > UBI_MAX_ERASECOUNTER) {
 878                        /*
 879                         * Erase counter overflow. The EC headers have 64 bits
 880                         * reserved, but we anyway make use of only 31 bit
 881                         * values, as this seems to be enough for any existing
 882                         * flash. Upgrade UBI and use 64-bit erase counters
 883                         * internally.
 884                         */
 885                        ubi_err(ubi, "erase counter overflow, max is %d",
 886                                UBI_MAX_ERASECOUNTER);
 887                        ubi_dump_ec_hdr(ech);
 888                        return -EINVAL;
 889                }
 890
 891                /*
 892                 * Make sure that all PEBs have the same image sequence number.
 893                 * This allows us to detect situations when users flash UBI
 894                 * images incorrectly, so that the flash has the new UBI image
 895                 * and leftovers from the old one. This feature was added
 896                 * relatively recently, and the sequence number was always
 897                 * zero, because old UBI implementations always set it to zero.
 898                 * For this reasons, we do not panic if some PEBs have zero
 899                 * sequence number, while other PEBs have non-zero sequence
 900                 * number.
 901                 */
 902                image_seq = be32_to_cpu(ech->image_seq);
 903                if (!ubi->image_seq)
 904                        ubi->image_seq = image_seq;
 905                if (image_seq && ubi->image_seq != image_seq) {
 906                        ubi_err(ubi, "bad image sequence number %d in PEB %d, expected %d",
 907                                image_seq, pnum, ubi->image_seq);
 908                        ubi_dump_ec_hdr(ech);
 909                        return -EINVAL;
 910                }
 911        }
 912
 913        /* OK, we've done with the EC header, let's look at the VID header */
 914
 915        err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
 916        if (err < 0)
 917                return err;
 918        switch (err) {
 919        case 0:
 920                break;
 921        case UBI_IO_BITFLIPS:
 922                bitflips = 1;
 923                break;
 924        case UBI_IO_BAD_HDR_EBADMSG:
 925                if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
 926                        /*
 927                         * Both EC and VID headers are corrupted and were read
 928                         * with data integrity error, probably this is a bad
 929                         * PEB, bit it is not marked as bad yet. This may also
 930                         * be a result of power cut during erasure.
 931                         */
 932                        ai->maybe_bad_peb_count += 1;
 933        case UBI_IO_BAD_HDR:
 934                if (ec_err)
 935                        /*
 936                         * Both headers are corrupted. There is a possibility
 937                         * that this a valid UBI PEB which has corresponding
 938                         * LEB, but the headers are corrupted. However, it is
 939                         * impossible to distinguish it from a PEB which just
 940                         * contains garbage because of a power cut during erase
 941                         * operation. So we just schedule this PEB for erasure.
 942                         *
 943                         * Besides, in case of NOR flash, we deliberately
 944                         * corrupt both headers because NOR flash erasure is
 945                         * slow and can start from the end.
 946                         */
 947                        err = 0;
 948                else
 949                        /*
 950                         * The EC was OK, but the VID header is corrupted. We
 951                         * have to check what is in the data area.
 952                         */
 953                        err = check_corruption(ubi, vidh, pnum);
 954
 955                if (err < 0)
 956                        return err;
 957                else if (!err)
 958                        /* This corruption is caused by a power cut */
 959                        err = add_to_list(ai, pnum, UBI_UNKNOWN,
 960                                          UBI_UNKNOWN, ec, 1, &ai->erase);
 961                else
 962                        /* This is an unexpected corruption */
 963                        err = add_corrupted(ai, pnum, ec);
 964                if (err)
 965                        return err;
 966                goto adjust_mean_ec;
 967        case UBI_IO_FF_BITFLIPS:
 968                err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 969                                  ec, 1, &ai->erase);
 970                if (err)
 971                        return err;
 972                goto adjust_mean_ec;
 973        case UBI_IO_FF:
 974                if (ec_err || bitflips)
 975                        err = add_to_list(ai, pnum, UBI_UNKNOWN,
 976                                          UBI_UNKNOWN, ec, 1, &ai->erase);
 977                else
 978                        err = add_to_list(ai, pnum, UBI_UNKNOWN,
 979                                          UBI_UNKNOWN, ec, 0, &ai->free);
 980                if (err)
 981                        return err;
 982                goto adjust_mean_ec;
 983        default:
 984                ubi_err(ubi, "'ubi_io_read_vid_hdr()' returned unknown code %d",
 985                        err);
 986                return -EINVAL;
 987        }
 988
 989        vol_id = be32_to_cpu(vidh->vol_id);
 990        if (vid)
 991                *vid = vol_id;
 992        if (sqnum)
 993                *sqnum = be64_to_cpu(vidh->sqnum);
 994        if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
 995                int lnum = be32_to_cpu(vidh->lnum);
 996
 997                /* Unsupported internal volume */
 998                switch (vidh->compat) {
 999                case UBI_COMPAT_DELETE:
1000                        if (vol_id != UBI_FM_SB_VOLUME_ID
1001                            && vol_id != UBI_FM_DATA_VOLUME_ID) {
1002                                ubi_msg(ubi, "\"delete\" compatible internal volume %d:%d found, will remove it",
1003                                        vol_id, lnum);
1004                        }
1005                        err = add_to_list(ai, pnum, vol_id, lnum,
1006                                          ec, 1, &ai->erase);
1007                        if (err)
1008                                return err;
1009                        return 0;
1010
1011                case UBI_COMPAT_RO:
1012                        ubi_msg(ubi, "read-only compatible internal volume %d:%d found, switch to read-only mode",
1013                                vol_id, lnum);
1014                        ubi->ro_mode = 1;
1015                        break;
1016
1017                case UBI_COMPAT_PRESERVE:
1018                        ubi_msg(ubi, "\"preserve\" compatible internal volume %d:%d found",
1019                                vol_id, lnum);
1020                        err = add_to_list(ai, pnum, vol_id, lnum,
1021                                          ec, 0, &ai->alien);
1022                        if (err)
1023                                return err;
1024                        return 0;
1025
1026                case UBI_COMPAT_REJECT:
1027                        ubi_err(ubi, "incompatible internal volume %d:%d found",
1028                                vol_id, lnum);
1029                        return -EINVAL;
1030                }
1031        }
1032
1033        if (ec_err)
1034                ubi_warn(ubi, "valid VID header but corrupted EC header at PEB %d",
1035                         pnum);
1036        err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1037        if (err)
1038                return err;
1039
1040adjust_mean_ec:
1041        if (!ec_err) {
1042                ai->ec_sum += ec;
1043                ai->ec_count += 1;
1044                if (ec > ai->max_ec)
1045                        ai->max_ec = ec;
1046                if (ec < ai->min_ec)
1047                        ai->min_ec = ec;
1048        }
1049
1050        return 0;
1051}
1052
1053/**
1054 * late_analysis - analyze the overall situation with PEB.
1055 * @ubi: UBI device description object
1056 * @ai: attaching information
1057 *
1058 * This is a helper function which takes a look what PEBs we have after we
1059 * gather information about all of them ("ai" is compete). It decides whether
1060 * the flash is empty and should be formatted of whether there are too many
1061 * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1062 * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1063 */
1064static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1065{
1066        struct ubi_ainf_peb *aeb;
1067        int max_corr, peb_count;
1068
1069        peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1070        max_corr = peb_count / 20 ?: 8;
1071
1072        /*
1073         * Few corrupted PEBs is not a problem and may be just a result of
1074         * unclean reboots. However, many of them may indicate some problems
1075         * with the flash HW or driver.
1076         */
1077        if (ai->corr_peb_count) {
1078                ubi_err(ubi, "%d PEBs are corrupted and preserved",
1079                        ai->corr_peb_count);
1080                pr_err("Corrupted PEBs are:");
1081                list_for_each_entry(aeb, &ai->corr, u.list)
1082                        pr_cont(" %d", aeb->pnum);
1083                pr_cont("\n");
1084
1085                /*
1086                 * If too many PEBs are corrupted, we refuse attaching,
1087                 * otherwise, only print a warning.
1088                 */
1089                if (ai->corr_peb_count >= max_corr) {
1090                        ubi_err(ubi, "too many corrupted PEBs, refusing");
1091                        return -EINVAL;
1092                }
1093        }
1094
1095        if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1096                /*
1097                 * All PEBs are empty, or almost all - a couple PEBs look like
1098                 * they may be bad PEBs which were not marked as bad yet.
1099                 *
1100                 * This piece of code basically tries to distinguish between
1101                 * the following situations:
1102                 *
1103                 * 1. Flash is empty, but there are few bad PEBs, which are not
1104                 *    marked as bad so far, and which were read with error. We
1105                 *    want to go ahead and format this flash. While formatting,
1106                 *    the faulty PEBs will probably be marked as bad.
1107                 *
1108                 * 2. Flash contains non-UBI data and we do not want to format
1109                 *    it and destroy possibly important information.
1110                 */
1111                if (ai->maybe_bad_peb_count <= 2) {
1112                        ai->is_empty = 1;
1113                        ubi_msg(ubi, "empty MTD device detected");
1114                        get_random_bytes(&ubi->image_seq,
1115                                         sizeof(ubi->image_seq));
1116                } else {
1117                        ubi_err(ubi, "MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
1118                        return -EINVAL;
1119                }
1120
1121        }
1122
1123        return 0;
1124}
1125
1126/**
1127 * destroy_av - free volume attaching information.
1128 * @av: volume attaching information
1129 * @ai: attaching information
1130 *
1131 * This function destroys the volume attaching information.
1132 */
1133static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
1134{
1135        struct ubi_ainf_peb *aeb;
1136        struct rb_node *this = av->root.rb_node;
1137
1138        while (this) {
1139                if (this->rb_left)
1140                        this = this->rb_left;
1141                else if (this->rb_right)
1142                        this = this->rb_right;
1143                else {
1144                        aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1145                        this = rb_parent(this);
1146                        if (this) {
1147                                if (this->rb_left == &aeb->u.rb)
1148                                        this->rb_left = NULL;
1149                                else
1150                                        this->rb_right = NULL;
1151                        }
1152
1153                        kmem_cache_free(ai->aeb_slab_cache, aeb);
1154                }
1155        }
1156        kfree(av);
1157}
1158
1159/**
1160 * destroy_ai - destroy attaching information.
1161 * @ai: attaching information
1162 */
1163static void destroy_ai(struct ubi_attach_info *ai)
1164{
1165        struct ubi_ainf_peb *aeb, *aeb_tmp;
1166        struct ubi_ainf_volume *av;
1167        struct rb_node *rb;
1168
1169        list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1170                list_del(&aeb->u.list);
1171                kmem_cache_free(ai->aeb_slab_cache, aeb);
1172        }
1173        list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1174                list_del(&aeb->u.list);
1175                kmem_cache_free(ai->aeb_slab_cache, aeb);
1176        }
1177        list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1178                list_del(&aeb->u.list);
1179                kmem_cache_free(ai->aeb_slab_cache, aeb);
1180        }
1181        list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1182                list_del(&aeb->u.list);
1183                kmem_cache_free(ai->aeb_slab_cache, aeb);
1184        }
1185
1186        /* Destroy the volume RB-tree */
1187        rb = ai->volumes.rb_node;
1188        while (rb) {
1189                if (rb->rb_left)
1190                        rb = rb->rb_left;
1191                else if (rb->rb_right)
1192                        rb = rb->rb_right;
1193                else {
1194                        av = rb_entry(rb, struct ubi_ainf_volume, rb);
1195
1196                        rb = rb_parent(rb);
1197                        if (rb) {
1198                                if (rb->rb_left == &av->rb)
1199                                        rb->rb_left = NULL;
1200                                else
1201                                        rb->rb_right = NULL;
1202                        }
1203
1204                        destroy_av(ai, av);
1205                }
1206        }
1207
1208        if (ai->aeb_slab_cache)
1209                kmem_cache_destroy(ai->aeb_slab_cache);
1210
1211        kfree(ai);
1212}
1213
1214/**
1215 * scan_all - scan entire MTD device.
1216 * @ubi: UBI device description object
1217 * @ai: attach info object
1218 * @start: start scanning at this PEB
1219 *
1220 * This function does full scanning of an MTD device and returns complete
1221 * information about it in form of a "struct ubi_attach_info" object. In case
1222 * of failure, an error code is returned.
1223 */
1224static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1225                    int start)
1226{
1227        int err, pnum;
1228        struct rb_node *rb1, *rb2;
1229        struct ubi_ainf_volume *av;
1230        struct ubi_ainf_peb *aeb;
1231
1232        err = -ENOMEM;
1233
1234        ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1235        if (!ech)
1236                return err;
1237
1238        vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1239        if (!vidh)
1240                goto out_ech;
1241
1242        for (pnum = start; pnum < ubi->peb_count; pnum++) {
1243                cond_resched();
1244
1245                dbg_gen("process PEB %d", pnum);
1246                err = scan_peb(ubi, ai, pnum, NULL, NULL);
1247                if (err < 0)
1248                        goto out_vidh;
1249        }
1250
1251        ubi_msg(ubi, "scanning is finished");
1252
1253        /* Calculate mean erase counter */
1254        if (ai->ec_count)
1255                ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1256
1257        err = late_analysis(ubi, ai);
1258        if (err)
1259                goto out_vidh;
1260
1261        /*
1262         * In case of unknown erase counter we use the mean erase counter
1263         * value.
1264         */
1265        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1266                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1267                        if (aeb->ec == UBI_UNKNOWN)
1268                                aeb->ec = ai->mean_ec;
1269        }
1270
1271        list_for_each_entry(aeb, &ai->free, u.list) {
1272                if (aeb->ec == UBI_UNKNOWN)
1273                        aeb->ec = ai->mean_ec;
1274        }
1275
1276        list_for_each_entry(aeb, &ai->corr, u.list)
1277                if (aeb->ec == UBI_UNKNOWN)
1278                        aeb->ec = ai->mean_ec;
1279
1280        list_for_each_entry(aeb, &ai->erase, u.list)
1281                if (aeb->ec == UBI_UNKNOWN)
1282                        aeb->ec = ai->mean_ec;
1283
1284        err = self_check_ai(ubi, ai);
1285        if (err)
1286                goto out_vidh;
1287
1288        ubi_free_vid_hdr(ubi, vidh);
1289        kfree(ech);
1290
1291        return 0;
1292
1293out_vidh:
1294        ubi_free_vid_hdr(ubi, vidh);
1295out_ech:
1296        kfree(ech);
1297        return err;
1298}
1299
1300static struct ubi_attach_info *alloc_ai(void)
1301{
1302        struct ubi_attach_info *ai;
1303
1304        ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1305        if (!ai)
1306                return ai;
1307
1308        INIT_LIST_HEAD(&ai->corr);
1309        INIT_LIST_HEAD(&ai->free);
1310        INIT_LIST_HEAD(&ai->erase);
1311        INIT_LIST_HEAD(&ai->alien);
1312        ai->volumes = RB_ROOT;
1313        ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache",
1314                                               sizeof(struct ubi_ainf_peb),
1315                                               0, 0, NULL);
1316        if (!ai->aeb_slab_cache) {
1317                kfree(ai);
1318                ai = NULL;
1319        }
1320
1321        return ai;
1322}
1323
1324#ifdef CONFIG_MTD_UBI_FASTMAP
1325
1326/**
1327 * scan_fastmap - try to find a fastmap and attach from it.
1328 * @ubi: UBI device description object
1329 * @ai: attach info object
1330 *
1331 * Returns 0 on success, negative return values indicate an internal
1332 * error.
1333 * UBI_NO_FASTMAP denotes that no fastmap was found.
1334 * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1335 */
1336static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info **ai)
1337{
1338        int err, pnum, fm_anchor = -1;
1339        unsigned long long max_sqnum = 0;
1340
1341        err = -ENOMEM;
1342
1343        ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1344        if (!ech)
1345                goto out;
1346
1347        vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1348        if (!vidh)
1349                goto out_ech;
1350
1351        for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
1352                int vol_id = -1;
1353                unsigned long long sqnum = -1;
1354                cond_resched();
1355
1356                dbg_gen("process PEB %d", pnum);
1357                err = scan_peb(ubi, *ai, pnum, &vol_id, &sqnum);
1358                if (err < 0)
1359                        goto out_vidh;
1360
1361                if (vol_id == UBI_FM_SB_VOLUME_ID && sqnum > max_sqnum) {
1362                        max_sqnum = sqnum;
1363                        fm_anchor = pnum;
1364                }
1365        }
1366
1367        ubi_free_vid_hdr(ubi, vidh);
1368        kfree(ech);
1369
1370        if (fm_anchor < 0)
1371                return UBI_NO_FASTMAP;
1372
1373        destroy_ai(*ai);
1374        *ai = alloc_ai();
1375        if (!*ai)
1376                return -ENOMEM;
1377
1378        return ubi_scan_fastmap(ubi, *ai, fm_anchor);
1379
1380out_vidh:
1381        ubi_free_vid_hdr(ubi, vidh);
1382out_ech:
1383        kfree(ech);
1384out:
1385        return err;
1386}
1387
1388#endif
1389
1390/**
1391 * ubi_attach - attach an MTD device.
1392 * @ubi: UBI device descriptor
1393 * @force_scan: if set to non-zero attach by scanning
1394 *
1395 * This function returns zero in case of success and a negative error code in
1396 * case of failure.
1397 */
1398int ubi_attach(struct ubi_device *ubi, int force_scan)
1399{
1400        int err;
1401        struct ubi_attach_info *ai;
1402
1403        ai = alloc_ai();
1404        if (!ai)
1405                return -ENOMEM;
1406
1407#ifdef CONFIG_MTD_UBI_FASTMAP
1408        /* On small flash devices we disable fastmap in any case. */
1409        if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1410                ubi->fm_disabled = 1;
1411                force_scan = 1;
1412        }
1413
1414        if (force_scan)
1415                err = scan_all(ubi, ai, 0);
1416        else {
1417                err = scan_fast(ubi, &ai);
1418                if (err > 0 || mtd_is_eccerr(err)) {
1419                        if (err != UBI_NO_FASTMAP) {
1420                                destroy_ai(ai);
1421                                ai = alloc_ai();
1422                                if (!ai)
1423                                        return -ENOMEM;
1424
1425                                err = scan_all(ubi, ai, 0);
1426                        } else {
1427                                err = scan_all(ubi, ai, UBI_FM_MAX_START);
1428                        }
1429                }
1430        }
1431#else
1432        err = scan_all(ubi, ai, 0);
1433#endif
1434        if (err)
1435                goto out_ai;
1436
1437        ubi->bad_peb_count = ai->bad_peb_count;
1438        ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1439        ubi->corr_peb_count = ai->corr_peb_count;
1440        ubi->max_ec = ai->max_ec;
1441        ubi->mean_ec = ai->mean_ec;
1442        dbg_gen("max. sequence number:       %llu", ai->max_sqnum);
1443
1444        err = ubi_read_volume_table(ubi, ai);
1445        if (err)
1446                goto out_ai;
1447
1448        err = ubi_wl_init(ubi, ai);
1449        if (err)
1450                goto out_vtbl;
1451
1452        err = ubi_eba_init(ubi, ai);
1453        if (err)
1454                goto out_wl;
1455
1456#ifdef CONFIG_MTD_UBI_FASTMAP
1457        if (ubi->fm && ubi_dbg_chk_fastmap(ubi)) {
1458                struct ubi_attach_info *scan_ai;
1459
1460                scan_ai = alloc_ai();
1461                if (!scan_ai) {
1462                        err = -ENOMEM;
1463                        goto out_wl;
1464                }
1465
1466                err = scan_all(ubi, scan_ai, 0);
1467                if (err) {
1468                        destroy_ai(scan_ai);
1469                        goto out_wl;
1470                }
1471
1472                err = self_check_eba(ubi, ai, scan_ai);
1473                destroy_ai(scan_ai);
1474
1475                if (err)
1476                        goto out_wl;
1477        }
1478#endif
1479
1480        destroy_ai(ai);
1481        return 0;
1482
1483out_wl:
1484        ubi_wl_close(ubi);
1485out_vtbl:
1486        ubi_free_internal_volumes(ubi);
1487        vfree(ubi->vtbl);
1488out_ai:
1489        destroy_ai(ai);
1490        return err;
1491}
1492
1493/**
1494 * self_check_ai - check the attaching information.
1495 * @ubi: UBI device description object
1496 * @ai: attaching information
1497 *
1498 * This function returns zero if the attaching information is all right, and a
1499 * negative error code if not or if an error occurred.
1500 */
1501static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1502{
1503        int pnum, err, vols_found = 0;
1504        struct rb_node *rb1, *rb2;
1505        struct ubi_ainf_volume *av;
1506        struct ubi_ainf_peb *aeb, *last_aeb;
1507        uint8_t *buf;
1508
1509        if (!ubi_dbg_chk_gen(ubi))
1510                return 0;
1511
1512        /*
1513         * At first, check that attaching information is OK.
1514         */
1515        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1516                int leb_count = 0;
1517
1518                cond_resched();
1519
1520                vols_found += 1;
1521
1522                if (ai->is_empty) {
1523                        ubi_err(ubi, "bad is_empty flag");
1524                        goto bad_av;
1525                }
1526
1527                if (av->vol_id < 0 || av->highest_lnum < 0 ||
1528                    av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1529                    av->data_pad < 0 || av->last_data_size < 0) {
1530                        ubi_err(ubi, "negative values");
1531                        goto bad_av;
1532                }
1533
1534                if (av->vol_id >= UBI_MAX_VOLUMES &&
1535                    av->vol_id < UBI_INTERNAL_VOL_START) {
1536                        ubi_err(ubi, "bad vol_id");
1537                        goto bad_av;
1538                }
1539
1540                if (av->vol_id > ai->highest_vol_id) {
1541                        ubi_err(ubi, "highest_vol_id is %d, but vol_id %d is there",
1542                                ai->highest_vol_id, av->vol_id);
1543                        goto out;
1544                }
1545
1546                if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1547                    av->vol_type != UBI_STATIC_VOLUME) {
1548                        ubi_err(ubi, "bad vol_type");
1549                        goto bad_av;
1550                }
1551
1552                if (av->data_pad > ubi->leb_size / 2) {
1553                        ubi_err(ubi, "bad data_pad");
1554                        goto bad_av;
1555                }
1556
1557                last_aeb = NULL;
1558                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1559                        cond_resched();
1560
1561                        last_aeb = aeb;
1562                        leb_count += 1;
1563
1564                        if (aeb->pnum < 0 || aeb->ec < 0) {
1565                                ubi_err(ubi, "negative values");
1566                                goto bad_aeb;
1567                        }
1568
1569                        if (aeb->ec < ai->min_ec) {
1570                                ubi_err(ubi, "bad ai->min_ec (%d), %d found",
1571                                        ai->min_ec, aeb->ec);
1572                                goto bad_aeb;
1573                        }
1574
1575                        if (aeb->ec > ai->max_ec) {
1576                                ubi_err(ubi, "bad ai->max_ec (%d), %d found",
1577                                        ai->max_ec, aeb->ec);
1578                                goto bad_aeb;
1579                        }
1580
1581                        if (aeb->pnum >= ubi->peb_count) {
1582                                ubi_err(ubi, "too high PEB number %d, total PEBs %d",
1583                                        aeb->pnum, ubi->peb_count);
1584                                goto bad_aeb;
1585                        }
1586
1587                        if (av->vol_type == UBI_STATIC_VOLUME) {
1588                                if (aeb->lnum >= av->used_ebs) {
1589                                        ubi_err(ubi, "bad lnum or used_ebs");
1590                                        goto bad_aeb;
1591                                }
1592                        } else {
1593                                if (av->used_ebs != 0) {
1594                                        ubi_err(ubi, "non-zero used_ebs");
1595                                        goto bad_aeb;
1596                                }
1597                        }
1598
1599                        if (aeb->lnum > av->highest_lnum) {
1600                                ubi_err(ubi, "incorrect highest_lnum or lnum");
1601                                goto bad_aeb;
1602                        }
1603                }
1604
1605                if (av->leb_count != leb_count) {
1606                        ubi_err(ubi, "bad leb_count, %d objects in the tree",
1607                                leb_count);
1608                        goto bad_av;
1609                }
1610
1611                if (!last_aeb)
1612                        continue;
1613
1614                aeb = last_aeb;
1615
1616                if (aeb->lnum != av->highest_lnum) {
1617                        ubi_err(ubi, "bad highest_lnum");
1618                        goto bad_aeb;
1619                }
1620        }
1621
1622        if (vols_found != ai->vols_found) {
1623                ubi_err(ubi, "bad ai->vols_found %d, should be %d",
1624                        ai->vols_found, vols_found);
1625                goto out;
1626        }
1627
1628        /* Check that attaching information is correct */
1629        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1630                last_aeb = NULL;
1631                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1632                        int vol_type;
1633
1634                        cond_resched();
1635
1636                        last_aeb = aeb;
1637
1638                        err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
1639                        if (err && err != UBI_IO_BITFLIPS) {
1640                                ubi_err(ubi, "VID header is not OK (%d)",
1641                                        err);
1642                                if (err > 0)
1643                                        err = -EIO;
1644                                return err;
1645                        }
1646
1647                        vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1648                                   UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1649                        if (av->vol_type != vol_type) {
1650                                ubi_err(ubi, "bad vol_type");
1651                                goto bad_vid_hdr;
1652                        }
1653
1654                        if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1655                                ubi_err(ubi, "bad sqnum %llu", aeb->sqnum);
1656                                goto bad_vid_hdr;
1657                        }
1658
1659                        if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1660                                ubi_err(ubi, "bad vol_id %d", av->vol_id);
1661                                goto bad_vid_hdr;
1662                        }
1663
1664                        if (av->compat != vidh->compat) {
1665                                ubi_err(ubi, "bad compat %d", vidh->compat);
1666                                goto bad_vid_hdr;
1667                        }
1668
1669                        if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1670                                ubi_err(ubi, "bad lnum %d", aeb->lnum);
1671                                goto bad_vid_hdr;
1672                        }
1673
1674                        if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1675                                ubi_err(ubi, "bad used_ebs %d", av->used_ebs);
1676                                goto bad_vid_hdr;
1677                        }
1678
1679                        if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1680                                ubi_err(ubi, "bad data_pad %d", av->data_pad);
1681                                goto bad_vid_hdr;
1682                        }
1683                }
1684
1685                if (!last_aeb)
1686                        continue;
1687
1688                if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1689                        ubi_err(ubi, "bad highest_lnum %d", av->highest_lnum);
1690                        goto bad_vid_hdr;
1691                }
1692
1693                if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1694                        ubi_err(ubi, "bad last_data_size %d",
1695                                av->last_data_size);
1696                        goto bad_vid_hdr;
1697                }
1698        }
1699
1700        /*
1701         * Make sure that all the physical eraseblocks are in one of the lists
1702         * or trees.
1703         */
1704        buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1705        if (!buf)
1706                return -ENOMEM;
1707
1708        for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1709                err = ubi_io_is_bad(ubi, pnum);
1710                if (err < 0) {
1711                        kfree(buf);
1712                        return err;
1713                } else if (err)
1714                        buf[pnum] = 1;
1715        }
1716
1717        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1718                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1719                        buf[aeb->pnum] = 1;
1720
1721        list_for_each_entry(aeb, &ai->free, u.list)
1722                buf[aeb->pnum] = 1;
1723
1724        list_for_each_entry(aeb, &ai->corr, u.list)
1725                buf[aeb->pnum] = 1;
1726
1727        list_for_each_entry(aeb, &ai->erase, u.list)
1728                buf[aeb->pnum] = 1;
1729
1730        list_for_each_entry(aeb, &ai->alien, u.list)
1731                buf[aeb->pnum] = 1;
1732
1733        err = 0;
1734        for (pnum = 0; pnum < ubi->peb_count; pnum++)
1735                if (!buf[pnum]) {
1736                        ubi_err(ubi, "PEB %d is not referred", pnum);
1737                        err = 1;
1738                }
1739
1740        kfree(buf);
1741        if (err)
1742                goto out;
1743        return 0;
1744
1745bad_aeb:
1746        ubi_err(ubi, "bad attaching information about LEB %d", aeb->lnum);
1747        ubi_dump_aeb(aeb, 0);
1748        ubi_dump_av(av);
1749        goto out;
1750
1751bad_av:
1752        ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1753        ubi_dump_av(av);
1754        goto out;
1755
1756bad_vid_hdr:
1757        ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1758        ubi_dump_av(av);
1759        ubi_dump_vid_hdr(vidh);
1760
1761out:
1762        dump_stack();
1763        return -EINVAL;
1764}
1765