uboot/drivers/mtd/nand/nand_base.c
<<
>>
Prefs
   1/*
   2 *  Overview:
   3 *   This is the generic MTD driver for NAND flash devices. It should be
   4 *   capable of working with almost all NAND chips currently available.
   5 *
   6 *      Additional technical information is available on
   7 *      http://www.linux-mtd.infradead.org/doc/nand.html
   8 *
   9 *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
  10 *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
  11 *
  12 *  Credits:
  13 *      David Woodhouse for adding multichip support
  14 *
  15 *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
  16 *      rework for 2K page size chips
  17 *
  18 *  TODO:
  19 *      Enable cached programming for 2k page size chips
  20 *      Check, if mtd->ecctype should be set to MTD_ECC_HW
  21 *      if we have HW ECC support.
  22 *      BBT table is not serialized, has to be fixed
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License version 2 as
  26 * published by the Free Software Foundation.
  27 *
  28 */
  29
  30#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  31#include <common.h>
  32#if CONFIG_IS_ENABLED(OF_CONTROL)
  33#include <fdtdec.h>
  34#endif
  35#include <malloc.h>
  36#include <watchdog.h>
  37#include <linux/err.h>
  38#include <linux/compat.h>
  39#include <linux/mtd/mtd.h>
  40#include <linux/mtd/nand.h>
  41#include <linux/mtd/nand_ecc.h>
  42#include <linux/mtd/nand_bch.h>
  43#ifdef CONFIG_MTD_PARTITIONS
  44#include <linux/mtd/partitions.h>
  45#endif
  46#include <asm/io.h>
  47#include <linux/errno.h>
  48
  49/* Define default oob placement schemes for large and small page devices */
  50static struct nand_ecclayout nand_oob_8 = {
  51        .eccbytes = 3,
  52        .eccpos = {0, 1, 2},
  53        .oobfree = {
  54                {.offset = 3,
  55                 .length = 2},
  56                {.offset = 6,
  57                 .length = 2} }
  58};
  59
  60static struct nand_ecclayout nand_oob_16 = {
  61        .eccbytes = 6,
  62        .eccpos = {0, 1, 2, 3, 6, 7},
  63        .oobfree = {
  64                {.offset = 8,
  65                 . length = 8} }
  66};
  67
  68static struct nand_ecclayout nand_oob_64 = {
  69        .eccbytes = 24,
  70        .eccpos = {
  71                   40, 41, 42, 43, 44, 45, 46, 47,
  72                   48, 49, 50, 51, 52, 53, 54, 55,
  73                   56, 57, 58, 59, 60, 61, 62, 63},
  74        .oobfree = {
  75                {.offset = 2,
  76                 .length = 38} }
  77};
  78
  79static struct nand_ecclayout nand_oob_128 = {
  80        .eccbytes = 48,
  81        .eccpos = {
  82                   80, 81, 82, 83, 84, 85, 86, 87,
  83                   88, 89, 90, 91, 92, 93, 94, 95,
  84                   96, 97, 98, 99, 100, 101, 102, 103,
  85                   104, 105, 106, 107, 108, 109, 110, 111,
  86                   112, 113, 114, 115, 116, 117, 118, 119,
  87                   120, 121, 122, 123, 124, 125, 126, 127},
  88        .oobfree = {
  89                {.offset = 2,
  90                 .length = 78} }
  91};
  92
  93static int nand_get_device(struct mtd_info *mtd, int new_state);
  94
  95static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
  96                             struct mtd_oob_ops *ops);
  97
  98/*
  99 * For devices which display every fart in the system on a separate LED. Is
 100 * compiled away when LED support is disabled.
 101 */
 102DEFINE_LED_TRIGGER(nand_led_trigger);
 103
 104static int check_offs_len(struct mtd_info *mtd,
 105                                        loff_t ofs, uint64_t len)
 106{
 107        struct nand_chip *chip = mtd_to_nand(mtd);
 108        int ret = 0;
 109
 110        /* Start address must align on block boundary */
 111        if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
 112                pr_debug("%s: unaligned address\n", __func__);
 113                ret = -EINVAL;
 114        }
 115
 116        /* Length must align on block boundary */
 117        if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
 118                pr_debug("%s: length not block aligned\n", __func__);
 119                ret = -EINVAL;
 120        }
 121
 122        return ret;
 123}
 124
 125/**
 126 * nand_release_device - [GENERIC] release chip
 127 * @mtd: MTD device structure
 128 *
 129 * Release chip lock and wake up anyone waiting on the device.
 130 */
 131static void nand_release_device(struct mtd_info *mtd)
 132{
 133        struct nand_chip *chip = mtd_to_nand(mtd);
 134
 135        /* De-select the NAND device */
 136        chip->select_chip(mtd, -1);
 137}
 138
 139/**
 140 * nand_read_byte - [DEFAULT] read one byte from the chip
 141 * @mtd: MTD device structure
 142 *
 143 * Default read function for 8bit buswidth
 144 */
 145uint8_t nand_read_byte(struct mtd_info *mtd)
 146{
 147        struct nand_chip *chip = mtd_to_nand(mtd);
 148        return readb(chip->IO_ADDR_R);
 149}
 150
 151/**
 152 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
 153 * @mtd: MTD device structure
 154 *
 155 * Default read function for 16bit buswidth with endianness conversion.
 156 *
 157 */
 158static uint8_t nand_read_byte16(struct mtd_info *mtd)
 159{
 160        struct nand_chip *chip = mtd_to_nand(mtd);
 161        return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
 162}
 163
 164/**
 165 * nand_read_word - [DEFAULT] read one word from the chip
 166 * @mtd: MTD device structure
 167 *
 168 * Default read function for 16bit buswidth without endianness conversion.
 169 */
 170static u16 nand_read_word(struct mtd_info *mtd)
 171{
 172        struct nand_chip *chip = mtd_to_nand(mtd);
 173        return readw(chip->IO_ADDR_R);
 174}
 175
 176/**
 177 * nand_select_chip - [DEFAULT] control CE line
 178 * @mtd: MTD device structure
 179 * @chipnr: chipnumber to select, -1 for deselect
 180 *
 181 * Default select function for 1 chip devices.
 182 */
 183static void nand_select_chip(struct mtd_info *mtd, int chipnr)
 184{
 185        struct nand_chip *chip = mtd_to_nand(mtd);
 186
 187        switch (chipnr) {
 188        case -1:
 189                chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
 190                break;
 191        case 0:
 192                break;
 193
 194        default:
 195                BUG();
 196        }
 197}
 198
 199/**
 200 * nand_write_byte - [DEFAULT] write single byte to chip
 201 * @mtd: MTD device structure
 202 * @byte: value to write
 203 *
 204 * Default function to write a byte to I/O[7:0]
 205 */
 206static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
 207{
 208        struct nand_chip *chip = mtd_to_nand(mtd);
 209
 210        chip->write_buf(mtd, &byte, 1);
 211}
 212
 213/**
 214 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
 215 * @mtd: MTD device structure
 216 * @byte: value to write
 217 *
 218 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
 219 */
 220static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
 221{
 222        struct nand_chip *chip = mtd_to_nand(mtd);
 223        uint16_t word = byte;
 224
 225        /*
 226         * It's not entirely clear what should happen to I/O[15:8] when writing
 227         * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
 228         *
 229         *    When the host supports a 16-bit bus width, only data is
 230         *    transferred at the 16-bit width. All address and command line
 231         *    transfers shall use only the lower 8-bits of the data bus. During
 232         *    command transfers, the host may place any value on the upper
 233         *    8-bits of the data bus. During address transfers, the host shall
 234         *    set the upper 8-bits of the data bus to 00h.
 235         *
 236         * One user of the write_byte callback is nand_onfi_set_features. The
 237         * four parameters are specified to be written to I/O[7:0], but this is
 238         * neither an address nor a command transfer. Let's assume a 0 on the
 239         * upper I/O lines is OK.
 240         */
 241        chip->write_buf(mtd, (uint8_t *)&word, 2);
 242}
 243
 244#if !defined(CONFIG_BLACKFIN)
 245static void iowrite8_rep(void *addr, const uint8_t *buf, int len)
 246{
 247        int i;
 248
 249        for (i = 0; i < len; i++)
 250                writeb(buf[i], addr);
 251}
 252static void ioread8_rep(void *addr, uint8_t *buf, int len)
 253{
 254        int i;
 255
 256        for (i = 0; i < len; i++)
 257                buf[i] = readb(addr);
 258}
 259
 260static void ioread16_rep(void *addr, void *buf, int len)
 261{
 262        int i;
 263        u16 *p = (u16 *) buf;
 264
 265        for (i = 0; i < len; i++)
 266                p[i] = readw(addr);
 267}
 268
 269static void iowrite16_rep(void *addr, void *buf, int len)
 270{
 271        int i;
 272        u16 *p = (u16 *) buf;
 273
 274        for (i = 0; i < len; i++)
 275                writew(p[i], addr);
 276}
 277#endif
 278
 279/**
 280 * nand_write_buf - [DEFAULT] write buffer to chip
 281 * @mtd: MTD device structure
 282 * @buf: data buffer
 283 * @len: number of bytes to write
 284 *
 285 * Default write function for 8bit buswidth.
 286 */
 287void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 288{
 289        struct nand_chip *chip = mtd_to_nand(mtd);
 290
 291        iowrite8_rep(chip->IO_ADDR_W, buf, len);
 292}
 293
 294/**
 295 * nand_read_buf - [DEFAULT] read chip data into buffer
 296 * @mtd: MTD device structure
 297 * @buf: buffer to store date
 298 * @len: number of bytes to read
 299 *
 300 * Default read function for 8bit buswidth.
 301 */
 302void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 303{
 304        struct nand_chip *chip = mtd_to_nand(mtd);
 305
 306        ioread8_rep(chip->IO_ADDR_R, buf, len);
 307}
 308
 309/**
 310 * nand_write_buf16 - [DEFAULT] write buffer to chip
 311 * @mtd: MTD device structure
 312 * @buf: data buffer
 313 * @len: number of bytes to write
 314 *
 315 * Default write function for 16bit buswidth.
 316 */
 317void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
 318{
 319        struct nand_chip *chip = mtd_to_nand(mtd);
 320        u16 *p = (u16 *) buf;
 321
 322        iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
 323}
 324
 325/**
 326 * nand_read_buf16 - [DEFAULT] read chip data into buffer
 327 * @mtd: MTD device structure
 328 * @buf: buffer to store date
 329 * @len: number of bytes to read
 330 *
 331 * Default read function for 16bit buswidth.
 332 */
 333void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
 334{
 335        struct nand_chip *chip = mtd_to_nand(mtd);
 336        u16 *p = (u16 *) buf;
 337
 338        ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
 339}
 340
 341/**
 342 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
 343 * @mtd: MTD device structure
 344 * @ofs: offset from device start
 345 *
 346 * Check, if the block is bad.
 347 */
 348static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
 349{
 350        int page, res = 0, i = 0;
 351        struct nand_chip *chip = mtd_to_nand(mtd);
 352        u16 bad;
 353
 354        if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
 355                ofs += mtd->erasesize - mtd->writesize;
 356
 357        page = (int)(ofs >> chip->page_shift) & chip->pagemask;
 358
 359        do {
 360                if (chip->options & NAND_BUSWIDTH_16) {
 361                        chip->cmdfunc(mtd, NAND_CMD_READOOB,
 362                                        chip->badblockpos & 0xFE, page);
 363                        bad = cpu_to_le16(chip->read_word(mtd));
 364                        if (chip->badblockpos & 0x1)
 365                                bad >>= 8;
 366                        else
 367                                bad &= 0xFF;
 368                } else {
 369                        chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
 370                                        page);
 371                        bad = chip->read_byte(mtd);
 372                }
 373
 374                if (likely(chip->badblockbits == 8))
 375                        res = bad != 0xFF;
 376                else
 377                        res = hweight8(bad) < chip->badblockbits;
 378                ofs += mtd->writesize;
 379                page = (int)(ofs >> chip->page_shift) & chip->pagemask;
 380                i++;
 381        } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
 382
 383        return res;
 384}
 385
 386/**
 387 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
 388 * @mtd: MTD device structure
 389 * @ofs: offset from device start
 390 *
 391 * This is the default implementation, which can be overridden by a hardware
 392 * specific driver. It provides the details for writing a bad block marker to a
 393 * block.
 394 */
 395static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
 396{
 397        struct nand_chip *chip = mtd_to_nand(mtd);
 398        struct mtd_oob_ops ops;
 399        uint8_t buf[2] = { 0, 0 };
 400        int ret = 0, res, i = 0;
 401
 402        memset(&ops, 0, sizeof(ops));
 403        ops.oobbuf = buf;
 404        ops.ooboffs = chip->badblockpos;
 405        if (chip->options & NAND_BUSWIDTH_16) {
 406                ops.ooboffs &= ~0x01;
 407                ops.len = ops.ooblen = 2;
 408        } else {
 409                ops.len = ops.ooblen = 1;
 410        }
 411        ops.mode = MTD_OPS_PLACE_OOB;
 412
 413        /* Write to first/last page(s) if necessary */
 414        if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
 415                ofs += mtd->erasesize - mtd->writesize;
 416        do {
 417                res = nand_do_write_oob(mtd, ofs, &ops);
 418                if (!ret)
 419                        ret = res;
 420
 421                i++;
 422                ofs += mtd->writesize;
 423        } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
 424
 425        return ret;
 426}
 427
 428/**
 429 * nand_block_markbad_lowlevel - mark a block bad
 430 * @mtd: MTD device structure
 431 * @ofs: offset from device start
 432 *
 433 * This function performs the generic NAND bad block marking steps (i.e., bad
 434 * block table(s) and/or marker(s)). We only allow the hardware driver to
 435 * specify how to write bad block markers to OOB (chip->block_markbad).
 436 *
 437 * We try operations in the following order:
 438 *  (1) erase the affected block, to allow OOB marker to be written cleanly
 439 *  (2) write bad block marker to OOB area of affected block (unless flag
 440 *      NAND_BBT_NO_OOB_BBM is present)
 441 *  (3) update the BBT
 442 * Note that we retain the first error encountered in (2) or (3), finish the
 443 * procedures, and dump the error in the end.
 444*/
 445static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
 446{
 447        struct nand_chip *chip = mtd_to_nand(mtd);
 448        int res, ret = 0;
 449
 450        if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
 451                struct erase_info einfo;
 452
 453                /* Attempt erase before marking OOB */
 454                memset(&einfo, 0, sizeof(einfo));
 455                einfo.mtd = mtd;
 456                einfo.addr = ofs;
 457                einfo.len = 1ULL << chip->phys_erase_shift;
 458                nand_erase_nand(mtd, &einfo, 0);
 459
 460                /* Write bad block marker to OOB */
 461                nand_get_device(mtd, FL_WRITING);
 462                ret = chip->block_markbad(mtd, ofs);
 463                nand_release_device(mtd);
 464        }
 465
 466        /* Mark block bad in BBT */
 467        if (chip->bbt) {
 468                res = nand_markbad_bbt(mtd, ofs);
 469                if (!ret)
 470                        ret = res;
 471        }
 472
 473        if (!ret)
 474                mtd->ecc_stats.badblocks++;
 475
 476        return ret;
 477}
 478
 479/**
 480 * nand_check_wp - [GENERIC] check if the chip is write protected
 481 * @mtd: MTD device structure
 482 *
 483 * Check, if the device is write protected. The function expects, that the
 484 * device is already selected.
 485 */
 486static int nand_check_wp(struct mtd_info *mtd)
 487{
 488        struct nand_chip *chip = mtd_to_nand(mtd);
 489
 490        /* Broken xD cards report WP despite being writable */
 491        if (chip->options & NAND_BROKEN_XD)
 492                return 0;
 493
 494        /* Check the WP bit */
 495        chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
 496        return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
 497}
 498
 499/**
 500 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
 501 * @mtd: MTD device structure
 502 * @ofs: offset from device start
 503 *
 504 * Check if the block is marked as reserved.
 505 */
 506static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
 507{
 508        struct nand_chip *chip = mtd_to_nand(mtd);
 509
 510        if (!chip->bbt)
 511                return 0;
 512        /* Return info from the table */
 513        return nand_isreserved_bbt(mtd, ofs);
 514}
 515
 516/**
 517 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
 518 * @mtd: MTD device structure
 519 * @ofs: offset from device start
 520 * @allowbbt: 1, if its allowed to access the bbt area
 521 *
 522 * Check, if the block is bad. Either by reading the bad block table or
 523 * calling of the scan function.
 524 */
 525static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
 526{
 527        struct nand_chip *chip = mtd_to_nand(mtd);
 528
 529        if (!(chip->options & NAND_SKIP_BBTSCAN) &&
 530            !(chip->options & NAND_BBT_SCANNED)) {
 531                chip->options |= NAND_BBT_SCANNED;
 532                chip->scan_bbt(mtd);
 533        }
 534
 535        if (!chip->bbt)
 536                return chip->block_bad(mtd, ofs);
 537
 538        /* Return info from the table */
 539        return nand_isbad_bbt(mtd, ofs, allowbbt);
 540}
 541
 542/**
 543 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
 544 * @mtd: MTD device structure
 545 *
 546 * Wait for the ready pin after a command, and warn if a timeout occurs.
 547 */
 548void nand_wait_ready(struct mtd_info *mtd)
 549{
 550        struct nand_chip *chip = mtd_to_nand(mtd);
 551        u32 timeo = (CONFIG_SYS_HZ * 400) / 1000;
 552        u32 time_start;
 553
 554        time_start = get_timer(0);
 555        /* Wait until command is processed or timeout occurs */
 556        while (get_timer(time_start) < timeo) {
 557                if (chip->dev_ready)
 558                        if (chip->dev_ready(mtd))
 559                                break;
 560        }
 561
 562        if (!chip->dev_ready(mtd))
 563                pr_warn("timeout while waiting for chip to become ready\n");
 564}
 565EXPORT_SYMBOL_GPL(nand_wait_ready);
 566
 567/**
 568 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
 569 * @mtd: MTD device structure
 570 * @timeo: Timeout in ms
 571 *
 572 * Wait for status ready (i.e. command done) or timeout.
 573 */
 574static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
 575{
 576        register struct nand_chip *chip = mtd_to_nand(mtd);
 577        u32 time_start;
 578
 579        timeo = (CONFIG_SYS_HZ * timeo) / 1000;
 580        time_start = get_timer(0);
 581        while (get_timer(time_start) < timeo) {
 582                if ((chip->read_byte(mtd) & NAND_STATUS_READY))
 583                        break;
 584                WATCHDOG_RESET();
 585        }
 586};
 587
 588/**
 589 * nand_command - [DEFAULT] Send command to NAND device
 590 * @mtd: MTD device structure
 591 * @command: the command to be sent
 592 * @column: the column address for this command, -1 if none
 593 * @page_addr: the page address for this command, -1 if none
 594 *
 595 * Send command to NAND device. This function is used for small page devices
 596 * (512 Bytes per page).
 597 */
 598static void nand_command(struct mtd_info *mtd, unsigned int command,
 599                         int column, int page_addr)
 600{
 601        register struct nand_chip *chip = mtd_to_nand(mtd);
 602        int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
 603
 604        /* Write out the command to the device */
 605        if (command == NAND_CMD_SEQIN) {
 606                int readcmd;
 607
 608                if (column >= mtd->writesize) {
 609                        /* OOB area */
 610                        column -= mtd->writesize;
 611                        readcmd = NAND_CMD_READOOB;
 612                } else if (column < 256) {
 613                        /* First 256 bytes --> READ0 */
 614                        readcmd = NAND_CMD_READ0;
 615                } else {
 616                        column -= 256;
 617                        readcmd = NAND_CMD_READ1;
 618                }
 619                chip->cmd_ctrl(mtd, readcmd, ctrl);
 620                ctrl &= ~NAND_CTRL_CHANGE;
 621        }
 622        chip->cmd_ctrl(mtd, command, ctrl);
 623
 624        /* Address cycle, when necessary */
 625        ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
 626        /* Serially input address */
 627        if (column != -1) {
 628                /* Adjust columns for 16 bit buswidth */
 629                if (chip->options & NAND_BUSWIDTH_16 &&
 630                                !nand_opcode_8bits(command))
 631                        column >>= 1;
 632                chip->cmd_ctrl(mtd, column, ctrl);
 633                ctrl &= ~NAND_CTRL_CHANGE;
 634        }
 635        if (page_addr != -1) {
 636                chip->cmd_ctrl(mtd, page_addr, ctrl);
 637                ctrl &= ~NAND_CTRL_CHANGE;
 638                chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
 639                /* One more address cycle for devices > 32MiB */
 640                if (chip->chipsize > (32 << 20))
 641                        chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
 642        }
 643        chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 644
 645        /*
 646         * Program and erase have their own busy handlers status and sequential
 647         * in needs no delay
 648         */
 649        switch (command) {
 650
 651        case NAND_CMD_PAGEPROG:
 652        case NAND_CMD_ERASE1:
 653        case NAND_CMD_ERASE2:
 654        case NAND_CMD_SEQIN:
 655        case NAND_CMD_STATUS:
 656                return;
 657
 658        case NAND_CMD_RESET:
 659                if (chip->dev_ready)
 660                        break;
 661                udelay(chip->chip_delay);
 662                chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
 663                               NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 664                chip->cmd_ctrl(mtd,
 665                               NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 666                /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
 667                nand_wait_status_ready(mtd, 250);
 668                return;
 669
 670                /* This applies to read commands */
 671        default:
 672                /*
 673                 * If we don't have access to the busy pin, we apply the given
 674                 * command delay
 675                 */
 676                if (!chip->dev_ready) {
 677                        udelay(chip->chip_delay);
 678                        return;
 679                }
 680        }
 681        /*
 682         * Apply this short delay always to ensure that we do wait tWB in
 683         * any case on any machine.
 684         */
 685        ndelay(100);
 686
 687        nand_wait_ready(mtd);
 688}
 689
 690/**
 691 * nand_command_lp - [DEFAULT] Send command to NAND large page device
 692 * @mtd: MTD device structure
 693 * @command: the command to be sent
 694 * @column: the column address for this command, -1 if none
 695 * @page_addr: the page address for this command, -1 if none
 696 *
 697 * Send command to NAND device. This is the version for the new large page
 698 * devices. We don't have the separate regions as we have in the small page
 699 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
 700 */
 701static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
 702                            int column, int page_addr)
 703{
 704        register struct nand_chip *chip = mtd_to_nand(mtd);
 705
 706        /* Emulate NAND_CMD_READOOB */
 707        if (command == NAND_CMD_READOOB) {
 708                column += mtd->writesize;
 709                command = NAND_CMD_READ0;
 710        }
 711
 712        /* Command latch cycle */
 713        chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 714
 715        if (column != -1 || page_addr != -1) {
 716                int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
 717
 718                /* Serially input address */
 719                if (column != -1) {
 720                        /* Adjust columns for 16 bit buswidth */
 721                        if (chip->options & NAND_BUSWIDTH_16 &&
 722                                        !nand_opcode_8bits(command))
 723                                column >>= 1;
 724                        chip->cmd_ctrl(mtd, column, ctrl);
 725                        ctrl &= ~NAND_CTRL_CHANGE;
 726                        chip->cmd_ctrl(mtd, column >> 8, ctrl);
 727                }
 728                if (page_addr != -1) {
 729                        chip->cmd_ctrl(mtd, page_addr, ctrl);
 730                        chip->cmd_ctrl(mtd, page_addr >> 8,
 731                                       NAND_NCE | NAND_ALE);
 732                        /* One more address cycle for devices > 128MiB */
 733                        if (chip->chipsize > (128 << 20))
 734                                chip->cmd_ctrl(mtd, page_addr >> 16,
 735                                               NAND_NCE | NAND_ALE);
 736                }
 737        }
 738        chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 739
 740        /*
 741         * Program and erase have their own busy handlers status, sequential
 742         * in and status need no delay.
 743         */
 744        switch (command) {
 745
 746        case NAND_CMD_CACHEDPROG:
 747        case NAND_CMD_PAGEPROG:
 748        case NAND_CMD_ERASE1:
 749        case NAND_CMD_ERASE2:
 750        case NAND_CMD_SEQIN:
 751        case NAND_CMD_RNDIN:
 752        case NAND_CMD_STATUS:
 753                return;
 754
 755        case NAND_CMD_RESET:
 756                if (chip->dev_ready)
 757                        break;
 758                udelay(chip->chip_delay);
 759                chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
 760                               NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 761                chip->cmd_ctrl(mtd, NAND_CMD_NONE,
 762                               NAND_NCE | NAND_CTRL_CHANGE);
 763                /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
 764                nand_wait_status_ready(mtd, 250);
 765                return;
 766
 767        case NAND_CMD_RNDOUT:
 768                /* No ready / busy check necessary */
 769                chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
 770                               NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 771                chip->cmd_ctrl(mtd, NAND_CMD_NONE,
 772                               NAND_NCE | NAND_CTRL_CHANGE);
 773                return;
 774
 775        case NAND_CMD_READ0:
 776                chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
 777                               NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 778                chip->cmd_ctrl(mtd, NAND_CMD_NONE,
 779                               NAND_NCE | NAND_CTRL_CHANGE);
 780
 781                /* This applies to read commands */
 782        default:
 783                /*
 784                 * If we don't have access to the busy pin, we apply the given
 785                 * command delay.
 786                 */
 787                if (!chip->dev_ready) {
 788                        udelay(chip->chip_delay);
 789                        return;
 790                }
 791        }
 792
 793        /*
 794         * Apply this short delay always to ensure that we do wait tWB in
 795         * any case on any machine.
 796         */
 797        ndelay(100);
 798
 799        nand_wait_ready(mtd);
 800}
 801
 802/**
 803 * panic_nand_get_device - [GENERIC] Get chip for selected access
 804 * @chip: the nand chip descriptor
 805 * @mtd: MTD device structure
 806 * @new_state: the state which is requested
 807 *
 808 * Used when in panic, no locks are taken.
 809 */
 810static void panic_nand_get_device(struct nand_chip *chip,
 811                      struct mtd_info *mtd, int new_state)
 812{
 813        /* Hardware controller shared among independent devices */
 814        chip->controller->active = chip;
 815        chip->state = new_state;
 816}
 817
 818/**
 819 * nand_get_device - [GENERIC] Get chip for selected access
 820 * @mtd: MTD device structure
 821 * @new_state: the state which is requested
 822 *
 823 * Get the device and lock it for exclusive access
 824 */
 825static int
 826nand_get_device(struct mtd_info *mtd, int new_state)
 827{
 828        struct nand_chip *chip = mtd_to_nand(mtd);
 829        chip->state = new_state;
 830        return 0;
 831}
 832
 833/**
 834 * panic_nand_wait - [GENERIC] wait until the command is done
 835 * @mtd: MTD device structure
 836 * @chip: NAND chip structure
 837 * @timeo: timeout
 838 *
 839 * Wait for command done. This is a helper function for nand_wait used when
 840 * we are in interrupt context. May happen when in panic and trying to write
 841 * an oops through mtdoops.
 842 */
 843static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
 844                            unsigned long timeo)
 845{
 846        int i;
 847        for (i = 0; i < timeo; i++) {
 848                if (chip->dev_ready) {
 849                        if (chip->dev_ready(mtd))
 850                                break;
 851                } else {
 852                        if (chip->read_byte(mtd) & NAND_STATUS_READY)
 853                                break;
 854                }
 855                mdelay(1);
 856        }
 857}
 858
 859/**
 860 * nand_wait - [DEFAULT] wait until the command is done
 861 * @mtd: MTD device structure
 862 * @chip: NAND chip structure
 863 *
 864 * Wait for command done. This applies to erase and program only.
 865 */
 866static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
 867{
 868        int status;
 869        unsigned long timeo = 400;
 870
 871        led_trigger_event(nand_led_trigger, LED_FULL);
 872
 873        /*
 874         * Apply this short delay always to ensure that we do wait tWB in any
 875         * case on any machine.
 876         */
 877        ndelay(100);
 878
 879        chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
 880
 881        u32 timer = (CONFIG_SYS_HZ * timeo) / 1000;
 882        u32 time_start;
 883 
 884        time_start = get_timer(0);
 885        while (get_timer(time_start) < timer) {
 886                if (chip->dev_ready) {
 887                        if (chip->dev_ready(mtd))
 888                                break;
 889                } else {
 890                        if (chip->read_byte(mtd) & NAND_STATUS_READY)
 891                                break;
 892                }
 893        }
 894        led_trigger_event(nand_led_trigger, LED_OFF);
 895
 896        status = (int)chip->read_byte(mtd);
 897        /* This can happen if in case of timeout or buggy dev_ready */
 898        WARN_ON(!(status & NAND_STATUS_READY));
 899        return status;
 900}
 901
 902#define BITS_PER_BYTE 8
 903
 904/**
 905 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
 906 * @buf: buffer to test
 907 * @len: buffer length
 908 * @bitflips_threshold: maximum number of bitflips
 909 *
 910 * Check if a buffer contains only 0xff, which means the underlying region
 911 * has been erased and is ready to be programmed.
 912 * The bitflips_threshold specify the maximum number of bitflips before
 913 * considering the region is not erased.
 914 * Note: The logic of this function has been extracted from the memweight
 915 * implementation, except that nand_check_erased_buf function exit before
 916 * testing the whole buffer if the number of bitflips exceed the
 917 * bitflips_threshold value.
 918 *
 919 * Returns a positive number of bitflips less than or equal to
 920 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
 921 * threshold.
 922 */
 923static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
 924{
 925        const unsigned char *bitmap = buf;
 926        int bitflips = 0;
 927        int weight;
 928
 929        for (; len && ((uintptr_t)bitmap) % sizeof(long);
 930             len--, bitmap++) {
 931                weight = hweight8(*bitmap);
 932                bitflips += BITS_PER_BYTE - weight;
 933                if (unlikely(bitflips > bitflips_threshold))
 934                        return -EBADMSG;
 935        }
 936
 937        for (; len >= 4; len -= 4, bitmap += 4) {
 938                weight = hweight32(*((u32 *)bitmap));
 939                bitflips += 32 - weight;
 940                if (unlikely(bitflips > bitflips_threshold))
 941                        return -EBADMSG;
 942        }
 943
 944        for (; len > 0; len--, bitmap++) {
 945                weight = hweight8(*bitmap);
 946                bitflips += BITS_PER_BYTE - weight;
 947                if (unlikely(bitflips > bitflips_threshold))
 948                        return -EBADMSG;
 949        }
 950
 951        return bitflips;
 952}
 953
 954/**
 955 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
 956 *                               0xff data
 957 * @data: data buffer to test
 958 * @datalen: data length
 959 * @ecc: ECC buffer
 960 * @ecclen: ECC length
 961 * @extraoob: extra OOB buffer
 962 * @extraooblen: extra OOB length
 963 * @bitflips_threshold: maximum number of bitflips
 964 *
 965 * Check if a data buffer and its associated ECC and OOB data contains only
 966 * 0xff pattern, which means the underlying region has been erased and is
 967 * ready to be programmed.
 968 * The bitflips_threshold specify the maximum number of bitflips before
 969 * considering the region as not erased.
 970 *
 971 * Note:
 972 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
 973 *    different from the NAND page size. When fixing bitflips, ECC engines will
 974 *    report the number of errors per chunk, and the NAND core infrastructure
 975 *    expect you to return the maximum number of bitflips for the whole page.
 976 *    This is why you should always use this function on a single chunk and
 977 *    not on the whole page. After checking each chunk you should update your
 978 *    max_bitflips value accordingly.
 979 * 2/ When checking for bitflips in erased pages you should not only check
 980 *    the payload data but also their associated ECC data, because a user might
 981 *    have programmed almost all bits to 1 but a few. In this case, we
 982 *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
 983 *    this case.
 984 * 3/ The extraoob argument is optional, and should be used if some of your OOB
 985 *    data are protected by the ECC engine.
 986 *    It could also be used if you support subpages and want to attach some
 987 *    extra OOB data to an ECC chunk.
 988 *
 989 * Returns a positive number of bitflips less than or equal to
 990 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
 991 * threshold. In case of success, the passed buffers are filled with 0xff.
 992 */
 993int nand_check_erased_ecc_chunk(void *data, int datalen,
 994                                void *ecc, int ecclen,
 995                                void *extraoob, int extraooblen,
 996                                int bitflips_threshold)
 997{
 998        int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
 999
1000        data_bitflips = nand_check_erased_buf(data, datalen,
1001                                              bitflips_threshold);
1002        if (data_bitflips < 0)
1003                return data_bitflips;
1004
1005        bitflips_threshold -= data_bitflips;
1006
1007        ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
1008        if (ecc_bitflips < 0)
1009                return ecc_bitflips;
1010
1011        bitflips_threshold -= ecc_bitflips;
1012
1013        extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
1014                                                  bitflips_threshold);
1015        if (extraoob_bitflips < 0)
1016                return extraoob_bitflips;
1017
1018        if (data_bitflips)
1019                memset(data, 0xff, datalen);
1020
1021        if (ecc_bitflips)
1022                memset(ecc, 0xff, ecclen);
1023
1024        if (extraoob_bitflips)
1025                memset(extraoob, 0xff, extraooblen);
1026
1027        return data_bitflips + ecc_bitflips + extraoob_bitflips;
1028}
1029EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
1030
1031/**
1032 * nand_read_page_raw - [INTERN] read raw page data without ecc
1033 * @mtd: mtd info structure
1034 * @chip: nand chip info structure
1035 * @buf: buffer to store read data
1036 * @oob_required: caller requires OOB data read to chip->oob_poi
1037 * @page: page number to read
1038 *
1039 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1040 */
1041static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1042                              uint8_t *buf, int oob_required, int page)
1043{
1044        chip->read_buf(mtd, buf, mtd->writesize);
1045        if (oob_required)
1046                chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1047        return 0;
1048}
1049
1050/**
1051 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1052 * @mtd: mtd info structure
1053 * @chip: nand chip info structure
1054 * @buf: buffer to store read data
1055 * @oob_required: caller requires OOB data read to chip->oob_poi
1056 * @page: page number to read
1057 *
1058 * We need a special oob layout and handling even when OOB isn't used.
1059 */
1060static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1061                                       struct nand_chip *chip, uint8_t *buf,
1062                                       int oob_required, int page)
1063{
1064        int eccsize = chip->ecc.size;
1065        int eccbytes = chip->ecc.bytes;
1066        uint8_t *oob = chip->oob_poi;
1067        int steps, size;
1068
1069        for (steps = chip->ecc.steps; steps > 0; steps--) {
1070                chip->read_buf(mtd, buf, eccsize);
1071                buf += eccsize;
1072
1073                if (chip->ecc.prepad) {
1074                        chip->read_buf(mtd, oob, chip->ecc.prepad);
1075                        oob += chip->ecc.prepad;
1076                }
1077
1078                chip->read_buf(mtd, oob, eccbytes);
1079                oob += eccbytes;
1080
1081                if (chip->ecc.postpad) {
1082                        chip->read_buf(mtd, oob, chip->ecc.postpad);
1083                        oob += chip->ecc.postpad;
1084                }
1085        }
1086
1087        size = mtd->oobsize - (oob - chip->oob_poi);
1088        if (size)
1089                chip->read_buf(mtd, oob, size);
1090
1091        return 0;
1092}
1093
1094/**
1095 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1096 * @mtd: mtd info structure
1097 * @chip: nand chip info structure
1098 * @buf: buffer to store read data
1099 * @oob_required: caller requires OOB data read to chip->oob_poi
1100 * @page: page number to read
1101 */
1102static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1103                                uint8_t *buf, int oob_required, int page)
1104{
1105        int i, eccsize = chip->ecc.size;
1106        int eccbytes = chip->ecc.bytes;
1107        int eccsteps = chip->ecc.steps;
1108        uint8_t *p = buf;
1109        uint8_t *ecc_calc = chip->buffers->ecccalc;
1110        uint8_t *ecc_code = chip->buffers->ecccode;
1111        uint32_t *eccpos = chip->ecc.layout->eccpos;
1112        unsigned int max_bitflips = 0;
1113
1114        chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1115
1116        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1117                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1118
1119        for (i = 0; i < chip->ecc.total; i++)
1120                ecc_code[i] = chip->oob_poi[eccpos[i]];
1121
1122        eccsteps = chip->ecc.steps;
1123        p = buf;
1124
1125        for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1126                int stat;
1127
1128                stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1129                if (stat < 0) {
1130                        mtd->ecc_stats.failed++;
1131                } else {
1132                        mtd->ecc_stats.corrected += stat;
1133                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
1134                }
1135        }
1136        return max_bitflips;
1137}
1138
1139/**
1140 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1141 * @mtd: mtd info structure
1142 * @chip: nand chip info structure
1143 * @data_offs: offset of requested data within the page
1144 * @readlen: data length
1145 * @bufpoi: buffer to store read data
1146 * @page: page number to read
1147 */
1148static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1149                        uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1150                        int page)
1151{
1152        int start_step, end_step, num_steps;
1153        uint32_t *eccpos = chip->ecc.layout->eccpos;
1154        uint8_t *p;
1155        int data_col_addr, i, gaps = 0;
1156        int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1157        int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1158        int index;
1159        unsigned int max_bitflips = 0;
1160
1161        /* Column address within the page aligned to ECC size (256bytes) */
1162        start_step = data_offs / chip->ecc.size;
1163        end_step = (data_offs + readlen - 1) / chip->ecc.size;
1164        num_steps = end_step - start_step + 1;
1165        index = start_step * chip->ecc.bytes;
1166
1167        /* Data size aligned to ECC ecc.size */
1168        datafrag_len = num_steps * chip->ecc.size;
1169        eccfrag_len = num_steps * chip->ecc.bytes;
1170
1171        data_col_addr = start_step * chip->ecc.size;
1172        /* If we read not a page aligned data */
1173        if (data_col_addr != 0)
1174                chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1175
1176        p = bufpoi + data_col_addr;
1177        chip->read_buf(mtd, p, datafrag_len);
1178
1179        /* Calculate ECC */
1180        for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1181                chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1182
1183        /*
1184         * The performance is faster if we position offsets according to
1185         * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1186         */
1187        for (i = 0; i < eccfrag_len - 1; i++) {
1188                if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
1189                        gaps = 1;
1190                        break;
1191                }
1192        }
1193        if (gaps) {
1194                chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1195                chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1196        } else {
1197                /*
1198                 * Send the command to read the particular ECC bytes take care
1199                 * about buswidth alignment in read_buf.
1200                 */
1201                aligned_pos = eccpos[index] & ~(busw - 1);
1202                aligned_len = eccfrag_len;
1203                if (eccpos[index] & (busw - 1))
1204                        aligned_len++;
1205                if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1206                        aligned_len++;
1207
1208                chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1209                                        mtd->writesize + aligned_pos, -1);
1210                chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1211        }
1212
1213        for (i = 0; i < eccfrag_len; i++)
1214                chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1215
1216        p = bufpoi + data_col_addr;
1217        for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1218                int stat;
1219
1220                stat = chip->ecc.correct(mtd, p,
1221                        &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1222                if (stat == -EBADMSG &&
1223                    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1224                        /* check for empty pages with bitflips */
1225                        stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1226                                                &chip->buffers->ecccode[i],
1227                                                chip->ecc.bytes,
1228                                                NULL, 0,
1229                                                chip->ecc.strength);
1230                }
1231
1232                if (stat < 0) {
1233                        mtd->ecc_stats.failed++;
1234                } else {
1235                        mtd->ecc_stats.corrected += stat;
1236                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
1237                }
1238        }
1239        return max_bitflips;
1240}
1241
1242/**
1243 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1244 * @mtd: mtd info structure
1245 * @chip: nand chip info structure
1246 * @buf: buffer to store read data
1247 * @oob_required: caller requires OOB data read to chip->oob_poi
1248 * @page: page number to read
1249 *
1250 * Not for syndrome calculating ECC controllers which need a special oob layout.
1251 */
1252static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1253                                uint8_t *buf, int oob_required, int page)
1254{
1255        int i, eccsize = chip->ecc.size;
1256        int eccbytes = chip->ecc.bytes;
1257        int eccsteps = chip->ecc.steps;
1258        uint8_t *p = buf;
1259        uint8_t *ecc_calc = chip->buffers->ecccalc;
1260        uint8_t *ecc_code = chip->buffers->ecccode;
1261        uint32_t *eccpos = chip->ecc.layout->eccpos;
1262        unsigned int max_bitflips = 0;
1263
1264        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1265                chip->ecc.hwctl(mtd, NAND_ECC_READ);
1266                chip->read_buf(mtd, p, eccsize);
1267                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1268        }
1269        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1270
1271        for (i = 0; i < chip->ecc.total; i++)
1272                ecc_code[i] = chip->oob_poi[eccpos[i]];
1273
1274        eccsteps = chip->ecc.steps;
1275        p = buf;
1276
1277        for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1278                int stat;
1279
1280                stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1281                if (stat == -EBADMSG &&
1282                    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1283                        /* check for empty pages with bitflips */
1284                        stat = nand_check_erased_ecc_chunk(p, eccsize,
1285                                                &ecc_code[i], eccbytes,
1286                                                NULL, 0,
1287                                                chip->ecc.strength);
1288                }
1289
1290                if (stat < 0) {
1291                        mtd->ecc_stats.failed++;
1292                } else {
1293                        mtd->ecc_stats.corrected += stat;
1294                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
1295                }
1296        }
1297        return max_bitflips;
1298}
1299
1300/**
1301 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1302 * @mtd: mtd info structure
1303 * @chip: nand chip info structure
1304 * @buf: buffer to store read data
1305 * @oob_required: caller requires OOB data read to chip->oob_poi
1306 * @page: page number to read
1307 *
1308 * Hardware ECC for large page chips, require OOB to be read first. For this
1309 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1310 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1311 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1312 * the data area, by overwriting the NAND manufacturer bad block markings.
1313 */
1314static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1315        struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1316{
1317        int i, eccsize = chip->ecc.size;
1318        int eccbytes = chip->ecc.bytes;
1319        int eccsteps = chip->ecc.steps;
1320        uint8_t *p = buf;
1321        uint8_t *ecc_code = chip->buffers->ecccode;
1322        uint32_t *eccpos = chip->ecc.layout->eccpos;
1323        uint8_t *ecc_calc = chip->buffers->ecccalc;
1324        unsigned int max_bitflips = 0;
1325
1326        /* Read the OOB area first */
1327        chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1328        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1329        chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1330
1331        for (i = 0; i < chip->ecc.total; i++)
1332                ecc_code[i] = chip->oob_poi[eccpos[i]];
1333
1334        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1335                int stat;
1336
1337                chip->ecc.hwctl(mtd, NAND_ECC_READ);
1338                chip->read_buf(mtd, p, eccsize);
1339                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1340
1341                stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1342                if (stat == -EBADMSG &&
1343                    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1344                        /* check for empty pages with bitflips */
1345                        stat = nand_check_erased_ecc_chunk(p, eccsize,
1346                                                &ecc_code[i], eccbytes,
1347                                                NULL, 0,
1348                                                chip->ecc.strength);
1349                }
1350
1351                if (stat < 0) {
1352                        mtd->ecc_stats.failed++;
1353                } else {
1354                        mtd->ecc_stats.corrected += stat;
1355                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
1356                }
1357        }
1358        return max_bitflips;
1359}
1360
1361/**
1362 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1363 * @mtd: mtd info structure
1364 * @chip: nand chip info structure
1365 * @buf: buffer to store read data
1366 * @oob_required: caller requires OOB data read to chip->oob_poi
1367 * @page: page number to read
1368 *
1369 * The hw generator calculates the error syndrome automatically. Therefore we
1370 * need a special oob layout and handling.
1371 */
1372static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1373                                   uint8_t *buf, int oob_required, int page)
1374{
1375        int i, eccsize = chip->ecc.size;
1376        int eccbytes = chip->ecc.bytes;
1377        int eccsteps = chip->ecc.steps;
1378        int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
1379        uint8_t *p = buf;
1380        uint8_t *oob = chip->oob_poi;
1381        unsigned int max_bitflips = 0;
1382
1383        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1384                int stat;
1385
1386                chip->ecc.hwctl(mtd, NAND_ECC_READ);
1387                chip->read_buf(mtd, p, eccsize);
1388
1389                if (chip->ecc.prepad) {
1390                        chip->read_buf(mtd, oob, chip->ecc.prepad);
1391                        oob += chip->ecc.prepad;
1392                }
1393
1394                chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1395                chip->read_buf(mtd, oob, eccbytes);
1396                stat = chip->ecc.correct(mtd, p, oob, NULL);
1397
1398                oob += eccbytes;
1399
1400                if (chip->ecc.postpad) {
1401                        chip->read_buf(mtd, oob, chip->ecc.postpad);
1402                        oob += chip->ecc.postpad;
1403                }
1404
1405                if (stat == -EBADMSG &&
1406                    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1407                        /* check for empty pages with bitflips */
1408                        stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1409                                                           oob - eccpadbytes,
1410                                                           eccpadbytes,
1411                                                           NULL, 0,
1412                                                           chip->ecc.strength);
1413                }
1414
1415                if (stat < 0) {
1416                        mtd->ecc_stats.failed++;
1417                } else {
1418                        mtd->ecc_stats.corrected += stat;
1419                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
1420                }
1421        }
1422
1423        /* Calculate remaining oob bytes */
1424        i = mtd->oobsize - (oob - chip->oob_poi);
1425        if (i)
1426                chip->read_buf(mtd, oob, i);
1427
1428        return max_bitflips;
1429}
1430
1431/**
1432 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1433 * @chip: nand chip structure
1434 * @oob: oob destination address
1435 * @ops: oob ops structure
1436 * @len: size of oob to transfer
1437 */
1438static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1439                                  struct mtd_oob_ops *ops, size_t len)
1440{
1441        switch (ops->mode) {
1442
1443        case MTD_OPS_PLACE_OOB:
1444        case MTD_OPS_RAW:
1445                memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1446                return oob + len;
1447
1448        case MTD_OPS_AUTO_OOB: {
1449                struct nand_oobfree *free = chip->ecc.layout->oobfree;
1450                uint32_t boffs = 0, roffs = ops->ooboffs;
1451                size_t bytes = 0;
1452
1453                for (; free->length && len; free++, len -= bytes) {
1454                        /* Read request not from offset 0? */
1455                        if (unlikely(roffs)) {
1456                                if (roffs >= free->length) {
1457                                        roffs -= free->length;
1458                                        continue;
1459                                }
1460                                boffs = free->offset + roffs;
1461                                bytes = min_t(size_t, len,
1462                                              (free->length - roffs));
1463                                roffs = 0;
1464                        } else {
1465                                bytes = min_t(size_t, len, free->length);
1466                                boffs = free->offset;
1467                        }
1468                        memcpy(oob, chip->oob_poi + boffs, bytes);
1469                        oob += bytes;
1470                }
1471                return oob;
1472        }
1473        default:
1474                BUG();
1475        }
1476        return NULL;
1477}
1478
1479/**
1480 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1481 * @mtd: MTD device structure
1482 * @retry_mode: the retry mode to use
1483 *
1484 * Some vendors supply a special command to shift the Vt threshold, to be used
1485 * when there are too many bitflips in a page (i.e., ECC error). After setting
1486 * a new threshold, the host should retry reading the page.
1487 */
1488static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1489{
1490        struct nand_chip *chip = mtd_to_nand(mtd);
1491
1492        pr_debug("setting READ RETRY mode %d\n", retry_mode);
1493
1494        if (retry_mode >= chip->read_retries)
1495                return -EINVAL;
1496
1497        if (!chip->setup_read_retry)
1498                return -EOPNOTSUPP;
1499
1500        return chip->setup_read_retry(mtd, retry_mode);
1501}
1502
1503/**
1504 * nand_do_read_ops - [INTERN] Read data with ECC
1505 * @mtd: MTD device structure
1506 * @from: offset to read from
1507 * @ops: oob ops structure
1508 *
1509 * Internal function. Called with chip held.
1510 */
1511static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1512                            struct mtd_oob_ops *ops)
1513{
1514        int chipnr, page, realpage, col, bytes, aligned, oob_required;
1515        struct nand_chip *chip = mtd_to_nand(mtd);
1516        int ret = 0;
1517        uint32_t readlen = ops->len;
1518        uint32_t oobreadlen = ops->ooblen;
1519        uint32_t max_oobsize = mtd_oobavail(mtd, ops);
1520
1521        uint8_t *bufpoi, *oob, *buf;
1522        int use_bufpoi;
1523        unsigned int max_bitflips = 0;
1524        int retry_mode = 0;
1525        bool ecc_fail = false;
1526
1527        chipnr = (int)(from >> chip->chip_shift);
1528        chip->select_chip(mtd, chipnr);
1529
1530        realpage = (int)(from >> chip->page_shift);
1531        page = realpage & chip->pagemask;
1532
1533        col = (int)(from & (mtd->writesize - 1));
1534
1535        buf = ops->datbuf;
1536        oob = ops->oobbuf;
1537        oob_required = oob ? 1 : 0;
1538
1539        while (1) {
1540                unsigned int ecc_failures = mtd->ecc_stats.failed;
1541
1542                WATCHDOG_RESET();
1543                bytes = min(mtd->writesize - col, readlen);
1544                aligned = (bytes == mtd->writesize);
1545
1546                if (!aligned)
1547                        use_bufpoi = 1;
1548                else
1549                        use_bufpoi = 0;
1550
1551                /* Is the current page in the buffer? */
1552                if (realpage != chip->pagebuf || oob) {
1553                        bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1554
1555                        if (use_bufpoi && aligned)
1556                                pr_debug("%s: using read bounce buffer for buf@%p\n",
1557                                                 __func__, buf);
1558
1559read_retry:
1560                        chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1561
1562                        /*
1563                         * Now read the page into the buffer.  Absent an error,
1564                         * the read methods return max bitflips per ecc step.
1565                         */
1566                        if (unlikely(ops->mode == MTD_OPS_RAW))
1567                                ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1568                                                              oob_required,
1569                                                              page);
1570                        else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1571                                 !oob)
1572                                ret = chip->ecc.read_subpage(mtd, chip,
1573                                                        col, bytes, bufpoi,
1574                                                        page);
1575                        else
1576                                ret = chip->ecc.read_page(mtd, chip, bufpoi,
1577                                                          oob_required, page);
1578                        if (ret < 0) {
1579                                if (use_bufpoi)
1580                                        /* Invalidate page cache */
1581                                        chip->pagebuf = -1;
1582                                break;
1583                        }
1584
1585                        max_bitflips = max_t(unsigned int, max_bitflips, ret);
1586
1587                        /* Transfer not aligned data */
1588                        if (use_bufpoi) {
1589                                if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1590                                    !(mtd->ecc_stats.failed - ecc_failures) &&
1591                                    (ops->mode != MTD_OPS_RAW)) {
1592                                        chip->pagebuf = realpage;
1593                                        chip->pagebuf_bitflips = ret;
1594                                } else {
1595                                        /* Invalidate page cache */
1596                                        chip->pagebuf = -1;
1597                                }
1598                                memcpy(buf, chip->buffers->databuf + col, bytes);
1599                        }
1600
1601                        if (unlikely(oob)) {
1602                                int toread = min(oobreadlen, max_oobsize);
1603
1604                                if (toread) {
1605                                        oob = nand_transfer_oob(chip,
1606                                                oob, ops, toread);
1607                                        oobreadlen -= toread;
1608                                }
1609                        }
1610
1611                        if (chip->options & NAND_NEED_READRDY) {
1612                                /* Apply delay or wait for ready/busy pin */
1613                                if (!chip->dev_ready)
1614                                        udelay(chip->chip_delay);
1615                                else
1616                                        nand_wait_ready(mtd);
1617                        }
1618
1619                        if (mtd->ecc_stats.failed - ecc_failures) {
1620                                if (retry_mode + 1 < chip->read_retries) {
1621                                        retry_mode++;
1622                                        ret = nand_setup_read_retry(mtd,
1623                                                        retry_mode);
1624                                        if (ret < 0)
1625                                                break;
1626
1627                                        /* Reset failures; retry */
1628                                        mtd->ecc_stats.failed = ecc_failures;
1629                                        goto read_retry;
1630                                } else {
1631                                        /* No more retry modes; real failure */
1632                                        ecc_fail = true;
1633                                }
1634                        }
1635
1636                        buf += bytes;
1637                } else {
1638                        memcpy(buf, chip->buffers->databuf + col, bytes);
1639                        buf += bytes;
1640                        max_bitflips = max_t(unsigned int, max_bitflips,
1641                                             chip->pagebuf_bitflips);
1642                }
1643
1644                readlen -= bytes;
1645
1646                /* Reset to retry mode 0 */
1647                if (retry_mode) {
1648                        ret = nand_setup_read_retry(mtd, 0);
1649                        if (ret < 0)
1650                                break;
1651                        retry_mode = 0;
1652                }
1653
1654                if (!readlen)
1655                        break;
1656
1657                /* For subsequent reads align to page boundary */
1658                col = 0;
1659                /* Increment page address */
1660                realpage++;
1661
1662                page = realpage & chip->pagemask;
1663                /* Check, if we cross a chip boundary */
1664                if (!page) {
1665                        chipnr++;
1666                        chip->select_chip(mtd, -1);
1667                        chip->select_chip(mtd, chipnr);
1668                }
1669        }
1670        chip->select_chip(mtd, -1);
1671
1672        ops->retlen = ops->len - (size_t) readlen;
1673        if (oob)
1674                ops->oobretlen = ops->ooblen - oobreadlen;
1675
1676        if (ret < 0)
1677                return ret;
1678
1679        if (ecc_fail)
1680                return -EBADMSG;
1681
1682        return max_bitflips;
1683}
1684
1685/**
1686 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1687 * @mtd: MTD device structure
1688 * @from: offset to read from
1689 * @len: number of bytes to read
1690 * @retlen: pointer to variable to store the number of read bytes
1691 * @buf: the databuffer to put data
1692 *
1693 * Get hold of the chip and call nand_do_read.
1694 */
1695static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1696                     size_t *retlen, uint8_t *buf)
1697{
1698        struct mtd_oob_ops ops;
1699        int ret;
1700
1701        nand_get_device(mtd, FL_READING);
1702        memset(&ops, 0, sizeof(ops));
1703        ops.len = len;
1704        ops.datbuf = buf;
1705        ops.mode = MTD_OPS_PLACE_OOB;
1706        ret = nand_do_read_ops(mtd, from, &ops);
1707        *retlen = ops.retlen;
1708        nand_release_device(mtd);
1709        return ret;
1710}
1711
1712/**
1713 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1714 * @mtd: mtd info structure
1715 * @chip: nand chip info structure
1716 * @page: page number to read
1717 */
1718static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1719                             int page)
1720{
1721        chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1722        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1723        return 0;
1724}
1725
1726/**
1727 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1728 *                          with syndromes
1729 * @mtd: mtd info structure
1730 * @chip: nand chip info structure
1731 * @page: page number to read
1732 */
1733static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1734                                  int page)
1735{
1736        int length = mtd->oobsize;
1737        int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1738        int eccsize = chip->ecc.size;
1739        uint8_t *bufpoi = chip->oob_poi;
1740        int i, toread, sndrnd = 0, pos;
1741
1742        chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1743        for (i = 0; i < chip->ecc.steps; i++) {
1744                if (sndrnd) {
1745                        pos = eccsize + i * (eccsize + chunk);
1746                        if (mtd->writesize > 512)
1747                                chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1748                        else
1749                                chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1750                } else
1751                        sndrnd = 1;
1752                toread = min_t(int, length, chunk);
1753                chip->read_buf(mtd, bufpoi, toread);
1754                bufpoi += toread;
1755                length -= toread;
1756        }
1757        if (length > 0)
1758                chip->read_buf(mtd, bufpoi, length);
1759
1760        return 0;
1761}
1762
1763/**
1764 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1765 * @mtd: mtd info structure
1766 * @chip: nand chip info structure
1767 * @page: page number to write
1768 */
1769static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1770                              int page)
1771{
1772        int status = 0;
1773        const uint8_t *buf = chip->oob_poi;
1774        int length = mtd->oobsize;
1775
1776        chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1777        chip->write_buf(mtd, buf, length);
1778        /* Send command to program the OOB data */
1779        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1780
1781        status = chip->waitfunc(mtd, chip);
1782
1783        return status & NAND_STATUS_FAIL ? -EIO : 0;
1784}
1785
1786/**
1787 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1788 *                           with syndrome - only for large page flash
1789 * @mtd: mtd info structure
1790 * @chip: nand chip info structure
1791 * @page: page number to write
1792 */
1793static int nand_write_oob_syndrome(struct mtd_info *mtd,
1794                                   struct nand_chip *chip, int page)
1795{
1796        int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1797        int eccsize = chip->ecc.size, length = mtd->oobsize;
1798        int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1799        const uint8_t *bufpoi = chip->oob_poi;
1800
1801        /*
1802         * data-ecc-data-ecc ... ecc-oob
1803         * or
1804         * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1805         */
1806        if (!chip->ecc.prepad && !chip->ecc.postpad) {
1807                pos = steps * (eccsize + chunk);
1808                steps = 0;
1809        } else
1810                pos = eccsize;
1811
1812        chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1813        for (i = 0; i < steps; i++) {
1814                if (sndcmd) {
1815                        if (mtd->writesize <= 512) {
1816                                uint32_t fill = 0xFFFFFFFF;
1817
1818                                len = eccsize;
1819                                while (len > 0) {
1820                                        int num = min_t(int, len, 4);
1821                                        chip->write_buf(mtd, (uint8_t *)&fill,
1822                                                        num);
1823                                        len -= num;
1824                                }
1825                        } else {
1826                                pos = eccsize + i * (eccsize + chunk);
1827                                chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1828                        }
1829                } else
1830                        sndcmd = 1;
1831                len = min_t(int, length, chunk);
1832                chip->write_buf(mtd, bufpoi, len);
1833                bufpoi += len;
1834                length -= len;
1835        }
1836        if (length > 0)
1837                chip->write_buf(mtd, bufpoi, length);
1838
1839        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1840        status = chip->waitfunc(mtd, chip);
1841
1842        return status & NAND_STATUS_FAIL ? -EIO : 0;
1843}
1844
1845/**
1846 * nand_do_read_oob - [INTERN] NAND read out-of-band
1847 * @mtd: MTD device structure
1848 * @from: offset to read from
1849 * @ops: oob operations description structure
1850 *
1851 * NAND read out-of-band data from the spare area.
1852 */
1853static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1854                            struct mtd_oob_ops *ops)
1855{
1856        int page, realpage, chipnr;
1857        struct nand_chip *chip = mtd_to_nand(mtd);
1858        struct mtd_ecc_stats stats;
1859        int readlen = ops->ooblen;
1860        int len;
1861        uint8_t *buf = ops->oobbuf;
1862        int ret = 0;
1863
1864        pr_debug("%s: from = 0x%08Lx, len = %i\n",
1865                        __func__, (unsigned long long)from, readlen);
1866
1867        stats = mtd->ecc_stats;
1868
1869        len = mtd_oobavail(mtd, ops);
1870
1871        if (unlikely(ops->ooboffs >= len)) {
1872                pr_debug("%s: attempt to start read outside oob\n",
1873                                __func__);
1874                return -EINVAL;
1875        }
1876
1877        /* Do not allow reads past end of device */
1878        if (unlikely(from >= mtd->size ||
1879                     ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1880                                        (from >> chip->page_shift)) * len)) {
1881                pr_debug("%s: attempt to read beyond end of device\n",
1882                                __func__);
1883                return -EINVAL;
1884        }
1885
1886        chipnr = (int)(from >> chip->chip_shift);
1887        chip->select_chip(mtd, chipnr);
1888
1889        /* Shift to get page */
1890        realpage = (int)(from >> chip->page_shift);
1891        page = realpage & chip->pagemask;
1892
1893        while (1) {
1894                WATCHDOG_RESET();
1895
1896                if (ops->mode == MTD_OPS_RAW)
1897                        ret = chip->ecc.read_oob_raw(mtd, chip, page);
1898                else
1899                        ret = chip->ecc.read_oob(mtd, chip, page);
1900
1901                if (ret < 0)
1902                        break;
1903
1904                len = min(len, readlen);
1905                buf = nand_transfer_oob(chip, buf, ops, len);
1906
1907                if (chip->options & NAND_NEED_READRDY) {
1908                        /* Apply delay or wait for ready/busy pin */
1909                        if (!chip->dev_ready)
1910                                udelay(chip->chip_delay);
1911                        else
1912                                nand_wait_ready(mtd);
1913                }
1914
1915                readlen -= len;
1916                if (!readlen)
1917                        break;
1918
1919                /* Increment page address */
1920                realpage++;
1921
1922                page = realpage & chip->pagemask;
1923                /* Check, if we cross a chip boundary */
1924                if (!page) {
1925                        chipnr++;
1926                        chip->select_chip(mtd, -1);
1927                        chip->select_chip(mtd, chipnr);
1928                }
1929        }
1930        chip->select_chip(mtd, -1);
1931
1932        ops->oobretlen = ops->ooblen - readlen;
1933
1934        if (ret < 0)
1935                return ret;
1936
1937        if (mtd->ecc_stats.failed - stats.failed)
1938                return -EBADMSG;
1939
1940        return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1941}
1942
1943/**
1944 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1945 * @mtd: MTD device structure
1946 * @from: offset to read from
1947 * @ops: oob operation description structure
1948 *
1949 * NAND read data and/or out-of-band data.
1950 */
1951static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1952                         struct mtd_oob_ops *ops)
1953{
1954        int ret = -ENOTSUPP;
1955
1956        ops->retlen = 0;
1957
1958        /* Do not allow reads past end of device */
1959        if (ops->datbuf && (from + ops->len) > mtd->size) {
1960                pr_debug("%s: attempt to read beyond end of device\n",
1961                                __func__);
1962                return -EINVAL;
1963        }
1964
1965        nand_get_device(mtd, FL_READING);
1966
1967        switch (ops->mode) {
1968        case MTD_OPS_PLACE_OOB:
1969        case MTD_OPS_AUTO_OOB:
1970        case MTD_OPS_RAW:
1971                break;
1972
1973        default:
1974                goto out;
1975        }
1976
1977        if (!ops->datbuf)
1978                ret = nand_do_read_oob(mtd, from, ops);
1979        else
1980                ret = nand_do_read_ops(mtd, from, ops);
1981
1982out:
1983        nand_release_device(mtd);
1984        return ret;
1985}
1986
1987
1988/**
1989 * nand_write_page_raw - [INTERN] raw page write function
1990 * @mtd: mtd info structure
1991 * @chip: nand chip info structure
1992 * @buf: data buffer
1993 * @oob_required: must write chip->oob_poi to OOB
1994 * @page: page number to write
1995 *
1996 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1997 */
1998static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1999                               const uint8_t *buf, int oob_required, int page)
2000{
2001        chip->write_buf(mtd, buf, mtd->writesize);
2002        if (oob_required)
2003                chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2004
2005        return 0;
2006}
2007
2008/**
2009 * nand_write_page_raw_syndrome - [INTERN] raw page write function
2010 * @mtd: mtd info structure
2011 * @chip: nand chip info structure
2012 * @buf: data buffer
2013 * @oob_required: must write chip->oob_poi to OOB
2014 * @page: page number to write
2015 *
2016 * We need a special oob layout and handling even when ECC isn't checked.
2017 */
2018static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2019                                        struct nand_chip *chip,
2020                                        const uint8_t *buf, int oob_required,
2021                                        int page)
2022{
2023        int eccsize = chip->ecc.size;
2024        int eccbytes = chip->ecc.bytes;
2025        uint8_t *oob = chip->oob_poi;
2026        int steps, size;
2027
2028        for (steps = chip->ecc.steps; steps > 0; steps--) {
2029                chip->write_buf(mtd, buf, eccsize);
2030                buf += eccsize;
2031
2032                if (chip->ecc.prepad) {
2033                        chip->write_buf(mtd, oob, chip->ecc.prepad);
2034                        oob += chip->ecc.prepad;
2035                }
2036
2037                chip->write_buf(mtd, oob, eccbytes);
2038                oob += eccbytes;
2039
2040                if (chip->ecc.postpad) {
2041                        chip->write_buf(mtd, oob, chip->ecc.postpad);
2042                        oob += chip->ecc.postpad;
2043                }
2044        }
2045
2046        size = mtd->oobsize - (oob - chip->oob_poi);
2047        if (size)
2048                chip->write_buf(mtd, oob, size);
2049
2050        return 0;
2051}
2052/**
2053 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2054 * @mtd: mtd info structure
2055 * @chip: nand chip info structure
2056 * @buf: data buffer
2057 * @oob_required: must write chip->oob_poi to OOB
2058 * @page: page number to write
2059 */
2060static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2061                                 const uint8_t *buf, int oob_required,
2062                                 int page)
2063{
2064        int i, eccsize = chip->ecc.size;
2065        int eccbytes = chip->ecc.bytes;
2066        int eccsteps = chip->ecc.steps;
2067        uint8_t *ecc_calc = chip->buffers->ecccalc;
2068        const uint8_t *p = buf;
2069        uint32_t *eccpos = chip->ecc.layout->eccpos;
2070
2071        /* Software ECC calculation */
2072        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2073                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2074
2075        for (i = 0; i < chip->ecc.total; i++)
2076                chip->oob_poi[eccpos[i]] = ecc_calc[i];
2077
2078        return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
2079}
2080
2081/**
2082 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2083 * @mtd: mtd info structure
2084 * @chip: nand chip info structure
2085 * @buf: data buffer
2086 * @oob_required: must write chip->oob_poi to OOB
2087 * @page: page number to write
2088 */
2089static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2090                                  const uint8_t *buf, int oob_required,
2091                                  int page)
2092{
2093        int i, eccsize = chip->ecc.size;
2094        int eccbytes = chip->ecc.bytes;
2095        int eccsteps = chip->ecc.steps;
2096        uint8_t *ecc_calc = chip->buffers->ecccalc;
2097        const uint8_t *p = buf;
2098        uint32_t *eccpos = chip->ecc.layout->eccpos;
2099
2100        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2101                chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2102                chip->write_buf(mtd, p, eccsize);
2103                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2104        }
2105
2106        for (i = 0; i < chip->ecc.total; i++)
2107                chip->oob_poi[eccpos[i]] = ecc_calc[i];
2108
2109        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2110
2111        return 0;
2112}
2113
2114
2115/**
2116 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
2117 * @mtd:        mtd info structure
2118 * @chip:       nand chip info structure
2119 * @offset:     column address of subpage within the page
2120 * @data_len:   data length
2121 * @buf:        data buffer
2122 * @oob_required: must write chip->oob_poi to OOB
2123 * @page: page number to write
2124 */
2125static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2126                                struct nand_chip *chip, uint32_t offset,
2127                                uint32_t data_len, const uint8_t *buf,
2128                                int oob_required, int page)
2129{
2130        uint8_t *oob_buf  = chip->oob_poi;
2131        uint8_t *ecc_calc = chip->buffers->ecccalc;
2132        int ecc_size      = chip->ecc.size;
2133        int ecc_bytes     = chip->ecc.bytes;
2134        int ecc_steps     = chip->ecc.steps;
2135        uint32_t *eccpos  = chip->ecc.layout->eccpos;
2136        uint32_t start_step = offset / ecc_size;
2137        uint32_t end_step   = (offset + data_len - 1) / ecc_size;
2138        int oob_bytes       = mtd->oobsize / ecc_steps;
2139        int step, i;
2140
2141        for (step = 0; step < ecc_steps; step++) {
2142                /* configure controller for WRITE access */
2143                chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2144
2145                /* write data (untouched subpages already masked by 0xFF) */
2146                chip->write_buf(mtd, buf, ecc_size);
2147
2148                /* mask ECC of un-touched subpages by padding 0xFF */
2149                if ((step < start_step) || (step > end_step))
2150                        memset(ecc_calc, 0xff, ecc_bytes);
2151                else
2152                        chip->ecc.calculate(mtd, buf, ecc_calc);
2153
2154                /* mask OOB of un-touched subpages by padding 0xFF */
2155                /* if oob_required, preserve OOB metadata of written subpage */
2156                if (!oob_required || (step < start_step) || (step > end_step))
2157                        memset(oob_buf, 0xff, oob_bytes);
2158
2159                buf += ecc_size;
2160                ecc_calc += ecc_bytes;
2161                oob_buf  += oob_bytes;
2162        }
2163
2164        /* copy calculated ECC for whole page to chip->buffer->oob */
2165        /* this include masked-value(0xFF) for unwritten subpages */
2166        ecc_calc = chip->buffers->ecccalc;
2167        for (i = 0; i < chip->ecc.total; i++)
2168                chip->oob_poi[eccpos[i]] = ecc_calc[i];
2169
2170        /* write OOB buffer to NAND device */
2171        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2172
2173        return 0;
2174}
2175
2176
2177/**
2178 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2179 * @mtd: mtd info structure
2180 * @chip: nand chip info structure
2181 * @buf: data buffer
2182 * @oob_required: must write chip->oob_poi to OOB
2183 * @page: page number to write
2184 *
2185 * The hw generator calculates the error syndrome automatically. Therefore we
2186 * need a special oob layout and handling.
2187 */
2188static int nand_write_page_syndrome(struct mtd_info *mtd,
2189                                    struct nand_chip *chip,
2190                                    const uint8_t *buf, int oob_required,
2191                                    int page)
2192{
2193        int i, eccsize = chip->ecc.size;
2194        int eccbytes = chip->ecc.bytes;
2195        int eccsteps = chip->ecc.steps;
2196        const uint8_t *p = buf;
2197        uint8_t *oob = chip->oob_poi;
2198
2199        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2200
2201                chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2202                chip->write_buf(mtd, p, eccsize);
2203
2204                if (chip->ecc.prepad) {
2205                        chip->write_buf(mtd, oob, chip->ecc.prepad);
2206                        oob += chip->ecc.prepad;
2207                }
2208
2209                chip->ecc.calculate(mtd, p, oob);
2210                chip->write_buf(mtd, oob, eccbytes);
2211                oob += eccbytes;
2212
2213                if (chip->ecc.postpad) {
2214                        chip->write_buf(mtd, oob, chip->ecc.postpad);
2215                        oob += chip->ecc.postpad;
2216                }
2217        }
2218
2219        /* Calculate remaining oob bytes */
2220        i = mtd->oobsize - (oob - chip->oob_poi);
2221        if (i)
2222                chip->write_buf(mtd, oob, i);
2223
2224        return 0;
2225}
2226
2227/**
2228 * nand_write_page - [REPLACEABLE] write one page
2229 * @mtd: MTD device structure
2230 * @chip: NAND chip descriptor
2231 * @offset: address offset within the page
2232 * @data_len: length of actual data to be written
2233 * @buf: the data to write
2234 * @oob_required: must write chip->oob_poi to OOB
2235 * @page: page number to write
2236 * @cached: cached programming
2237 * @raw: use _raw version of write_page
2238 */
2239static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2240                uint32_t offset, int data_len, const uint8_t *buf,
2241                int oob_required, int page, int cached, int raw)
2242{
2243        int status, subpage;
2244
2245        if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2246                chip->ecc.write_subpage)
2247                subpage = offset || (data_len < mtd->writesize);
2248        else
2249                subpage = 0;
2250
2251        chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2252
2253        if (unlikely(raw))
2254                status = chip->ecc.write_page_raw(mtd, chip, buf,
2255                                                  oob_required, page);
2256        else if (subpage)
2257                status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2258                                                 buf, oob_required, page);
2259        else
2260                status = chip->ecc.write_page(mtd, chip, buf, oob_required,
2261                                              page);
2262
2263        if (status < 0)
2264                return status;
2265
2266        /*
2267         * Cached progamming disabled for now. Not sure if it's worth the
2268         * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2269         */
2270        cached = 0;
2271
2272        if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2273
2274                chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2275                status = chip->waitfunc(mtd, chip);
2276                /*
2277                 * See if operation failed and additional status checks are
2278                 * available.
2279                 */
2280                if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2281                        status = chip->errstat(mtd, chip, FL_WRITING, status,
2282                                               page);
2283
2284                if (status & NAND_STATUS_FAIL)
2285                        return -EIO;
2286        } else {
2287                chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2288                status = chip->waitfunc(mtd, chip);
2289        }
2290
2291        return 0;
2292}
2293
2294/**
2295 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2296 * @mtd: MTD device structure
2297 * @oob: oob data buffer
2298 * @len: oob data write length
2299 * @ops: oob ops structure
2300 */
2301static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2302                              struct mtd_oob_ops *ops)
2303{
2304        struct nand_chip *chip = mtd_to_nand(mtd);
2305
2306        /*
2307         * Initialise to all 0xFF, to avoid the possibility of left over OOB
2308         * data from a previous OOB read.
2309         */
2310        memset(chip->oob_poi, 0xff, mtd->oobsize);
2311
2312        switch (ops->mode) {
2313
2314        case MTD_OPS_PLACE_OOB:
2315        case MTD_OPS_RAW:
2316                memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2317                return oob + len;
2318
2319        case MTD_OPS_AUTO_OOB: {
2320                struct nand_oobfree *free = chip->ecc.layout->oobfree;
2321                uint32_t boffs = 0, woffs = ops->ooboffs;
2322                size_t bytes = 0;
2323
2324                for (; free->length && len; free++, len -= bytes) {
2325                        /* Write request not from offset 0? */
2326                        if (unlikely(woffs)) {
2327                                if (woffs >= free->length) {
2328                                        woffs -= free->length;
2329                                        continue;
2330                                }
2331                                boffs = free->offset + woffs;
2332                                bytes = min_t(size_t, len,
2333                                              (free->length - woffs));
2334                                woffs = 0;
2335                        } else {
2336                                bytes = min_t(size_t, len, free->length);
2337                                boffs = free->offset;
2338                        }
2339                        memcpy(chip->oob_poi + boffs, oob, bytes);
2340                        oob += bytes;
2341                }
2342                return oob;
2343        }
2344        default:
2345                BUG();
2346        }
2347        return NULL;
2348}
2349
2350#define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
2351
2352/**
2353 * nand_do_write_ops - [INTERN] NAND write with ECC
2354 * @mtd: MTD device structure
2355 * @to: offset to write to
2356 * @ops: oob operations description structure
2357 *
2358 * NAND write with ECC.
2359 */
2360static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2361                             struct mtd_oob_ops *ops)
2362{
2363        int chipnr, realpage, page, blockmask, column;
2364        struct nand_chip *chip = mtd_to_nand(mtd);
2365        uint32_t writelen = ops->len;
2366
2367        uint32_t oobwritelen = ops->ooblen;
2368        uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
2369
2370        uint8_t *oob = ops->oobbuf;
2371        uint8_t *buf = ops->datbuf;
2372        int ret;
2373        int oob_required = oob ? 1 : 0;
2374
2375        ops->retlen = 0;
2376        if (!writelen)
2377                return 0;
2378
2379        /* Reject writes, which are not page aligned */
2380        if (NOTALIGNED(to)) {
2381                pr_notice("%s: attempt to write non page aligned data\n",
2382                           __func__);
2383                return -EINVAL;
2384        }
2385
2386        column = to & (mtd->writesize - 1);
2387
2388        chipnr = (int)(to >> chip->chip_shift);
2389        chip->select_chip(mtd, chipnr);
2390
2391        /* Check, if it is write protected */
2392        if (nand_check_wp(mtd)) {
2393                ret = -EIO;
2394                goto err_out;
2395        }
2396
2397        realpage = (int)(to >> chip->page_shift);
2398        page = realpage & chip->pagemask;
2399        blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2400
2401        /* Invalidate the page cache, when we write to the cached page */
2402        if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2403            ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
2404                chip->pagebuf = -1;
2405
2406        /* Don't allow multipage oob writes with offset */
2407        if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2408                ret = -EINVAL;
2409                goto err_out;
2410        }
2411
2412        while (1) {
2413                int bytes = mtd->writesize;
2414                int cached = writelen > bytes && page != blockmask;
2415                uint8_t *wbuf = buf;
2416                int use_bufpoi;
2417                int part_pagewr = (column || writelen < mtd->writesize);
2418
2419                if (part_pagewr)
2420                        use_bufpoi = 1;
2421                else
2422                        use_bufpoi = 0;
2423
2424                WATCHDOG_RESET();
2425                /* Partial page write?, or need to use bounce buffer */
2426                if (use_bufpoi) {
2427                        pr_debug("%s: using write bounce buffer for buf@%p\n",
2428                                         __func__, buf);
2429                        cached = 0;
2430                        if (part_pagewr)
2431                                bytes = min_t(int, bytes - column, writelen);
2432                        chip->pagebuf = -1;
2433                        memset(chip->buffers->databuf, 0xff, mtd->writesize);
2434                        memcpy(&chip->buffers->databuf[column], buf, bytes);
2435                        wbuf = chip->buffers->databuf;
2436                }
2437
2438                if (unlikely(oob)) {
2439                        size_t len = min(oobwritelen, oobmaxlen);
2440                        oob = nand_fill_oob(mtd, oob, len, ops);
2441                        oobwritelen -= len;
2442                } else {
2443                        /* We still need to erase leftover OOB data */
2444                        memset(chip->oob_poi, 0xff, mtd->oobsize);
2445                }
2446                ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2447                                        oob_required, page, cached,
2448                                        (ops->mode == MTD_OPS_RAW));
2449                if (ret)
2450                        break;
2451
2452                writelen -= bytes;
2453                if (!writelen)
2454                        break;
2455
2456                column = 0;
2457                buf += bytes;
2458                realpage++;
2459
2460                page = realpage & chip->pagemask;
2461                /* Check, if we cross a chip boundary */
2462                if (!page) {
2463                        chipnr++;
2464                        chip->select_chip(mtd, -1);
2465                        chip->select_chip(mtd, chipnr);
2466                }
2467        }
2468
2469        ops->retlen = ops->len - writelen;
2470        if (unlikely(oob))
2471                ops->oobretlen = ops->ooblen;
2472
2473err_out:
2474        chip->select_chip(mtd, -1);
2475        return ret;
2476}
2477
2478/**
2479 * panic_nand_write - [MTD Interface] NAND write with ECC
2480 * @mtd: MTD device structure
2481 * @to: offset to write to
2482 * @len: number of bytes to write
2483 * @retlen: pointer to variable to store the number of written bytes
2484 * @buf: the data to write
2485 *
2486 * NAND write with ECC. Used when performing writes in interrupt context, this
2487 * may for example be called by mtdoops when writing an oops while in panic.
2488 */
2489static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2490                            size_t *retlen, const uint8_t *buf)
2491{
2492        struct nand_chip *chip = mtd_to_nand(mtd);
2493        struct mtd_oob_ops ops;
2494        int ret;
2495
2496        /* Wait for the device to get ready */
2497        panic_nand_wait(mtd, chip, 400);
2498
2499        /* Grab the device */
2500        panic_nand_get_device(chip, mtd, FL_WRITING);
2501
2502        memset(&ops, 0, sizeof(ops));
2503        ops.len = len;
2504        ops.datbuf = (uint8_t *)buf;
2505        ops.mode = MTD_OPS_PLACE_OOB;
2506
2507        ret = nand_do_write_ops(mtd, to, &ops);
2508
2509        *retlen = ops.retlen;
2510        return ret;
2511}
2512
2513/**
2514 * nand_write - [MTD Interface] NAND write with ECC
2515 * @mtd: MTD device structure
2516 * @to: offset to write to
2517 * @len: number of bytes to write
2518 * @retlen: pointer to variable to store the number of written bytes
2519 * @buf: the data to write
2520 *
2521 * NAND write with ECC.
2522 */
2523static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2524                          size_t *retlen, const uint8_t *buf)
2525{
2526        struct mtd_oob_ops ops;
2527        int ret;
2528
2529        nand_get_device(mtd, FL_WRITING);
2530        memset(&ops, 0, sizeof(ops));
2531        ops.len = len;
2532        ops.datbuf = (uint8_t *)buf;
2533        ops.mode = MTD_OPS_PLACE_OOB;
2534        ret = nand_do_write_ops(mtd, to, &ops);
2535        *retlen = ops.retlen;
2536        nand_release_device(mtd);
2537        return ret;
2538}
2539
2540/**
2541 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2542 * @mtd: MTD device structure
2543 * @to: offset to write to
2544 * @ops: oob operation description structure
2545 *
2546 * NAND write out-of-band.
2547 */
2548static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2549                             struct mtd_oob_ops *ops)
2550{
2551        int chipnr, page, status, len;
2552        struct nand_chip *chip = mtd_to_nand(mtd);
2553
2554        pr_debug("%s: to = 0x%08x, len = %i\n",
2555                         __func__, (unsigned int)to, (int)ops->ooblen);
2556
2557        len = mtd_oobavail(mtd, ops);
2558
2559        /* Do not allow write past end of page */
2560        if ((ops->ooboffs + ops->ooblen) > len) {
2561                pr_debug("%s: attempt to write past end of page\n",
2562                                __func__);
2563                return -EINVAL;
2564        }
2565
2566        if (unlikely(ops->ooboffs >= len)) {
2567                pr_debug("%s: attempt to start write outside oob\n",
2568                                __func__);
2569                return -EINVAL;
2570        }
2571
2572        /* Do not allow write past end of device */
2573        if (unlikely(to >= mtd->size ||
2574                     ops->ooboffs + ops->ooblen >
2575                        ((mtd->size >> chip->page_shift) -
2576                         (to >> chip->page_shift)) * len)) {
2577                pr_debug("%s: attempt to write beyond end of device\n",
2578                                __func__);
2579                return -EINVAL;
2580        }
2581
2582        chipnr = (int)(to >> chip->chip_shift);
2583        chip->select_chip(mtd, chipnr);
2584
2585        /* Shift to get page */
2586        page = (int)(to >> chip->page_shift);
2587
2588        /*
2589         * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2590         * of my DiskOnChip 2000 test units) will clear the whole data page too
2591         * if we don't do this. I have no clue why, but I seem to have 'fixed'
2592         * it in the doc2000 driver in August 1999.  dwmw2.
2593         */
2594        chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2595
2596        /* Check, if it is write protected */
2597        if (nand_check_wp(mtd)) {
2598                chip->select_chip(mtd, -1);
2599                return -EROFS;
2600        }
2601
2602        /* Invalidate the page cache, if we write to the cached page */
2603        if (page == chip->pagebuf)
2604                chip->pagebuf = -1;
2605
2606        nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2607
2608        if (ops->mode == MTD_OPS_RAW)
2609                status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2610        else
2611                status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2612
2613        chip->select_chip(mtd, -1);
2614
2615        if (status)
2616                return status;
2617
2618        ops->oobretlen = ops->ooblen;
2619
2620        return 0;
2621}
2622
2623/**
2624 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2625 * @mtd: MTD device structure
2626 * @to: offset to write to
2627 * @ops: oob operation description structure
2628 */
2629static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2630                          struct mtd_oob_ops *ops)
2631{
2632        int ret = -ENOTSUPP;
2633
2634        ops->retlen = 0;
2635
2636        /* Do not allow writes past end of device */
2637        if (ops->datbuf && (to + ops->len) > mtd->size) {
2638                pr_debug("%s: attempt to write beyond end of device\n",
2639                                __func__);
2640                return -EINVAL;
2641        }
2642
2643        nand_get_device(mtd, FL_WRITING);
2644
2645        switch (ops->mode) {
2646        case MTD_OPS_PLACE_OOB:
2647        case MTD_OPS_AUTO_OOB:
2648        case MTD_OPS_RAW:
2649                break;
2650
2651        default:
2652                goto out;
2653        }
2654
2655        if (!ops->datbuf)
2656                ret = nand_do_write_oob(mtd, to, ops);
2657        else
2658                ret = nand_do_write_ops(mtd, to, ops);
2659
2660out:
2661        nand_release_device(mtd);
2662        return ret;
2663}
2664
2665/**
2666 * single_erase - [GENERIC] NAND standard block erase command function
2667 * @mtd: MTD device structure
2668 * @page: the page address of the block which will be erased
2669 *
2670 * Standard erase command for NAND chips. Returns NAND status.
2671 */
2672static int single_erase(struct mtd_info *mtd, int page)
2673{
2674        struct nand_chip *chip = mtd_to_nand(mtd);
2675        /* Send commands to erase a block */
2676        chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2677        chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2678
2679        return chip->waitfunc(mtd, chip);
2680}
2681
2682/**
2683 * nand_erase - [MTD Interface] erase block(s)
2684 * @mtd: MTD device structure
2685 * @instr: erase instruction
2686 *
2687 * Erase one ore more blocks.
2688 */
2689static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2690{
2691        return nand_erase_nand(mtd, instr, 0);
2692}
2693
2694/**
2695 * nand_erase_nand - [INTERN] erase block(s)
2696 * @mtd: MTD device structure
2697 * @instr: erase instruction
2698 * @allowbbt: allow erasing the bbt area
2699 *
2700 * Erase one ore more blocks.
2701 */
2702int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2703                    int allowbbt)
2704{
2705        int page, status, pages_per_block, ret, chipnr;
2706        struct nand_chip *chip = mtd_to_nand(mtd);
2707        loff_t len;
2708
2709        pr_debug("%s: start = 0x%012llx, len = %llu\n",
2710                        __func__, (unsigned long long)instr->addr,
2711                        (unsigned long long)instr->len);
2712
2713        if (check_offs_len(mtd, instr->addr, instr->len))
2714                return -EINVAL;
2715
2716        /* Grab the lock and see if the device is available */
2717        nand_get_device(mtd, FL_ERASING);
2718
2719        /* Shift to get first page */
2720        page = (int)(instr->addr >> chip->page_shift);
2721        chipnr = (int)(instr->addr >> chip->chip_shift);
2722
2723        /* Calculate pages in each block */
2724        pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2725
2726        /* Select the NAND device */
2727        chip->select_chip(mtd, chipnr);
2728
2729        /* Check, if it is write protected */
2730        if (nand_check_wp(mtd)) {
2731                pr_debug("%s: device is write protected!\n",
2732                                __func__);
2733                instr->state = MTD_ERASE_FAILED;
2734                goto erase_exit;
2735        }
2736
2737        /* Loop through the pages */
2738        len = instr->len;
2739
2740        instr->state = MTD_ERASING;
2741
2742        while (len) {
2743                WATCHDOG_RESET();
2744
2745                /* Check if we have a bad block, we do not erase bad blocks! */
2746                if (!instr->scrub && nand_block_checkbad(mtd, ((loff_t) page) <<
2747                                        chip->page_shift, allowbbt)) {
2748                        pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2749                                    __func__, page);
2750                        instr->state = MTD_ERASE_FAILED;
2751                        goto erase_exit;
2752                }
2753
2754                /*
2755                 * Invalidate the page cache, if we erase the block which
2756                 * contains the current cached page.
2757                 */
2758                if (page <= chip->pagebuf && chip->pagebuf <
2759                    (page + pages_per_block))
2760                        chip->pagebuf = -1;
2761
2762                status = chip->erase(mtd, page & chip->pagemask);
2763
2764                /*
2765                 * See if operation failed and additional status checks are
2766                 * available
2767                 */
2768                if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2769                        status = chip->errstat(mtd, chip, FL_ERASING,
2770                                               status, page);
2771
2772                /* See if block erase succeeded */
2773                if (status & NAND_STATUS_FAIL) {
2774                        pr_debug("%s: failed erase, page 0x%08x\n",
2775                                        __func__, page);
2776                        instr->state = MTD_ERASE_FAILED;
2777                        instr->fail_addr =
2778                                ((loff_t)page << chip->page_shift);
2779                        goto erase_exit;
2780                }
2781
2782                /* Increment page address and decrement length */
2783                len -= (1ULL << chip->phys_erase_shift);
2784                page += pages_per_block;
2785
2786                /* Check, if we cross a chip boundary */
2787                if (len && !(page & chip->pagemask)) {
2788                        chipnr++;
2789                        chip->select_chip(mtd, -1);
2790                        chip->select_chip(mtd, chipnr);
2791                }
2792        }
2793        instr->state = MTD_ERASE_DONE;
2794
2795erase_exit:
2796
2797        ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2798
2799        /* Deselect and wake up anyone waiting on the device */
2800        chip->select_chip(mtd, -1);
2801        nand_release_device(mtd);
2802
2803        /* Do call back function */
2804        if (!ret)
2805                mtd_erase_callback(instr);
2806
2807        /* Return more or less happy */
2808        return ret;
2809}
2810
2811/**
2812 * nand_sync - [MTD Interface] sync
2813 * @mtd: MTD device structure
2814 *
2815 * Sync is actually a wait for chip ready function.
2816 */
2817static void nand_sync(struct mtd_info *mtd)
2818{
2819        pr_debug("%s: called\n", __func__);
2820
2821        /* Grab the lock and see if the device is available */
2822        nand_get_device(mtd, FL_SYNCING);
2823        /* Release it and go back */
2824        nand_release_device(mtd);
2825}
2826
2827/**
2828 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2829 * @mtd: MTD device structure
2830 * @offs: offset relative to mtd start
2831 */
2832static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2833{
2834        struct nand_chip *chip = mtd_to_nand(mtd);
2835        int chipnr = (int)(offs >> chip->chip_shift);
2836        int ret;
2837
2838        /* Select the NAND device */
2839        nand_get_device(mtd, FL_READING);
2840        chip->select_chip(mtd, chipnr);
2841
2842        ret = nand_block_checkbad(mtd, offs, 0);
2843
2844        chip->select_chip(mtd, -1);
2845        nand_release_device(mtd);
2846
2847        return ret;
2848}
2849
2850/**
2851 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2852 * @mtd: MTD device structure
2853 * @ofs: offset relative to mtd start
2854 */
2855static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2856{
2857        int ret;
2858
2859        ret = nand_block_isbad(mtd, ofs);
2860        if (ret) {
2861                /* If it was bad already, return success and do nothing */
2862                if (ret > 0)
2863                        return 0;
2864                return ret;
2865        }
2866
2867        return nand_block_markbad_lowlevel(mtd, ofs);
2868}
2869
2870/**
2871 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2872 * @mtd: MTD device structure
2873 * @chip: nand chip info structure
2874 * @addr: feature address.
2875 * @subfeature_param: the subfeature parameters, a four bytes array.
2876 */
2877static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2878                        int addr, uint8_t *subfeature_param)
2879{
2880        int status;
2881        int i;
2882
2883#ifdef CONFIG_SYS_NAND_ONFI_DETECTION
2884        if (!chip->onfi_version ||
2885            !(le16_to_cpu(chip->onfi_params.opt_cmd)
2886              & ONFI_OPT_CMD_SET_GET_FEATURES))
2887                return -EINVAL;
2888#endif
2889
2890        chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
2891        for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2892                chip->write_byte(mtd, subfeature_param[i]);
2893
2894        status = chip->waitfunc(mtd, chip);
2895        if (status & NAND_STATUS_FAIL)
2896                return -EIO;
2897        return 0;
2898}
2899
2900/**
2901 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2902 * @mtd: MTD device structure
2903 * @chip: nand chip info structure
2904 * @addr: feature address.
2905 * @subfeature_param: the subfeature parameters, a four bytes array.
2906 */
2907static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
2908                        int addr, uint8_t *subfeature_param)
2909{
2910        int i;
2911
2912#ifdef CONFIG_SYS_NAND_ONFI_DETECTION
2913        if (!chip->onfi_version ||
2914            !(le16_to_cpu(chip->onfi_params.opt_cmd)
2915              & ONFI_OPT_CMD_SET_GET_FEATURES))
2916                return -EINVAL;
2917#endif
2918
2919        chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
2920        for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2921                *subfeature_param++ = chip->read_byte(mtd);
2922        return 0;
2923}
2924
2925/* Set default functions */
2926static void nand_set_defaults(struct nand_chip *chip, int busw)
2927{
2928        /* check for proper chip_delay setup, set 20us if not */
2929        if (!chip->chip_delay)
2930                chip->chip_delay = 20;
2931
2932        /* check, if a user supplied command function given */
2933        if (chip->cmdfunc == NULL)
2934                chip->cmdfunc = nand_command;
2935
2936        /* check, if a user supplied wait function given */
2937        if (chip->waitfunc == NULL)
2938                chip->waitfunc = nand_wait;
2939
2940        if (!chip->select_chip)
2941                chip->select_chip = nand_select_chip;
2942
2943        /* set for ONFI nand */
2944        if (!chip->onfi_set_features)
2945                chip->onfi_set_features = nand_onfi_set_features;
2946        if (!chip->onfi_get_features)
2947                chip->onfi_get_features = nand_onfi_get_features;
2948
2949        /* If called twice, pointers that depend on busw may need to be reset */
2950        if (!chip->read_byte || chip->read_byte == nand_read_byte)
2951                chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2952        if (!chip->read_word)
2953                chip->read_word = nand_read_word;
2954        if (!chip->block_bad)
2955                chip->block_bad = nand_block_bad;
2956        if (!chip->block_markbad)
2957                chip->block_markbad = nand_default_block_markbad;
2958        if (!chip->write_buf || chip->write_buf == nand_write_buf)
2959                chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2960        if (!chip->write_byte || chip->write_byte == nand_write_byte)
2961                chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
2962        if (!chip->read_buf || chip->read_buf == nand_read_buf)
2963                chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2964        if (!chip->scan_bbt)
2965                chip->scan_bbt = nand_default_bbt;
2966
2967        if (!chip->controller) {
2968                chip->controller = &chip->hwcontrol;
2969                spin_lock_init(&chip->controller->lock);
2970                init_waitqueue_head(&chip->controller->wq);
2971        }
2972
2973}
2974
2975/* Sanitize ONFI strings so we can safely print them */
2976static void sanitize_string(char *s, size_t len)
2977{
2978        ssize_t i;
2979
2980        /* Null terminate */
2981        s[len - 1] = 0;
2982
2983        /* Remove non printable chars */
2984        for (i = 0; i < len - 1; i++) {
2985                if (s[i] < ' ' || s[i] > 127)
2986                        s[i] = '?';
2987        }
2988
2989        /* Remove trailing spaces */
2990        strim(s);
2991}
2992
2993static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2994{
2995        int i;
2996        while (len--) {
2997                crc ^= *p++ << 8;
2998                for (i = 0; i < 8; i++)
2999                        crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3000        }
3001
3002        return crc;
3003}
3004
3005#ifdef CONFIG_SYS_NAND_ONFI_DETECTION
3006/* Parse the Extended Parameter Page. */
3007static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3008                struct nand_chip *chip, struct nand_onfi_params *p)
3009{
3010        struct onfi_ext_param_page *ep;
3011        struct onfi_ext_section *s;
3012        struct onfi_ext_ecc_info *ecc;
3013        uint8_t *cursor;
3014        int ret = -EINVAL;
3015        int len;
3016        int i;
3017
3018        len = le16_to_cpu(p->ext_param_page_length) * 16;
3019        ep = kmalloc(len, GFP_KERNEL);
3020        if (!ep)
3021                return -ENOMEM;
3022
3023        /* Send our own NAND_CMD_PARAM. */
3024        chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3025
3026        /* Use the Change Read Column command to skip the ONFI param pages. */
3027        chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3028                        sizeof(*p) * p->num_of_param_pages , -1);
3029
3030        /* Read out the Extended Parameter Page. */
3031        chip->read_buf(mtd, (uint8_t *)ep, len);
3032        if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3033                != le16_to_cpu(ep->crc))) {
3034                pr_debug("fail in the CRC.\n");
3035                goto ext_out;
3036        }
3037
3038        /*
3039         * Check the signature.
3040         * Do not strictly follow the ONFI spec, maybe changed in future.
3041         */
3042        if (strncmp((char *)ep->sig, "EPPS", 4)) {
3043                pr_debug("The signature is invalid.\n");
3044                goto ext_out;
3045        }
3046
3047        /* find the ECC section. */
3048        cursor = (uint8_t *)(ep + 1);
3049        for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3050                s = ep->sections + i;
3051                if (s->type == ONFI_SECTION_TYPE_2)
3052                        break;
3053                cursor += s->length * 16;
3054        }
3055        if (i == ONFI_EXT_SECTION_MAX) {
3056                pr_debug("We can not find the ECC section.\n");
3057                goto ext_out;
3058        }
3059
3060        /* get the info we want. */
3061        ecc = (struct onfi_ext_ecc_info *)cursor;
3062
3063        if (!ecc->codeword_size) {
3064                pr_debug("Invalid codeword size\n");
3065                goto ext_out;
3066        }
3067
3068        chip->ecc_strength_ds = ecc->ecc_bits;
3069        chip->ecc_step_ds = 1 << ecc->codeword_size;
3070        ret = 0;
3071
3072ext_out:
3073        kfree(ep);
3074        return ret;
3075}
3076
3077static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3078{
3079        struct nand_chip *chip = mtd_to_nand(mtd);
3080        uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3081
3082        return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3083                        feature);
3084}
3085
3086/*
3087 * Configure chip properties from Micron vendor-specific ONFI table
3088 */
3089static void nand_onfi_detect_micron(struct nand_chip *chip,
3090                struct nand_onfi_params *p)
3091{
3092        struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3093
3094        if (le16_to_cpu(p->vendor_revision) < 1)
3095                return;
3096
3097        chip->read_retries = micron->read_retry_options;
3098        chip->setup_read_retry = nand_setup_read_retry_micron;
3099}
3100
3101/*
3102 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3103 */
3104static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3105                                        int *busw)
3106{
3107        struct nand_onfi_params *p = &chip->onfi_params;
3108        int i, j;
3109        int val;
3110
3111        /* Try ONFI for unknown chip or LP */
3112        chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3113        if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3114                chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3115                return 0;
3116
3117        chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3118        for (i = 0; i < 3; i++) {
3119                for (j = 0; j < sizeof(*p); j++)
3120                        ((uint8_t *)p)[j] = chip->read_byte(mtd);
3121                if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3122                                le16_to_cpu(p->crc)) {
3123                        break;
3124                }
3125        }
3126
3127        if (i == 3) {
3128                pr_err("Could not find valid ONFI parameter page; aborting\n");
3129                return 0;
3130        }
3131
3132        /* Check version */
3133        val = le16_to_cpu(p->revision);
3134        if (val & (1 << 5))
3135                chip->onfi_version = 23;
3136        else if (val & (1 << 4))
3137                chip->onfi_version = 22;
3138        else if (val & (1 << 3))
3139                chip->onfi_version = 21;
3140        else if (val & (1 << 2))
3141                chip->onfi_version = 20;
3142        else if (val & (1 << 1))
3143                chip->onfi_version = 10;
3144
3145        if (!chip->onfi_version) {
3146                pr_info("unsupported ONFI version: %d\n", val);
3147                return 0;
3148        }
3149
3150        sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3151        sanitize_string(p->model, sizeof(p->model));
3152        if (!mtd->name)
3153                mtd->name = p->model;
3154
3155        mtd->writesize = le32_to_cpu(p->byte_per_page);
3156
3157        /*
3158         * pages_per_block and blocks_per_lun may not be a power-of-2 size
3159         * (don't ask me who thought of this...). MTD assumes that these
3160         * dimensions will be power-of-2, so just truncate the remaining area.
3161         */
3162        mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3163        mtd->erasesize *= mtd->writesize;
3164
3165        mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3166
3167        /* See erasesize comment */
3168        chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3169        chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3170        chip->bits_per_cell = p->bits_per_cell;
3171
3172        if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3173                *busw = NAND_BUSWIDTH_16;
3174        else
3175                *busw = 0;
3176
3177        if (p->ecc_bits != 0xff) {
3178                chip->ecc_strength_ds = p->ecc_bits;
3179                chip->ecc_step_ds = 512;
3180        } else if (chip->onfi_version >= 21 &&
3181                (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3182
3183                /*
3184                 * The nand_flash_detect_ext_param_page() uses the
3185                 * Change Read Column command which maybe not supported
3186                 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3187                 * now. We do not replace user supplied command function.
3188                 */
3189                if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3190                        chip->cmdfunc = nand_command_lp;
3191
3192                /* The Extended Parameter Page is supported since ONFI 2.1. */
3193                if (nand_flash_detect_ext_param_page(mtd, chip, p))
3194                        pr_warn("Failed to detect ONFI extended param page\n");
3195        } else {
3196                pr_warn("Could not retrieve ONFI ECC requirements\n");
3197        }
3198
3199        if (p->jedec_id == NAND_MFR_MICRON)
3200                nand_onfi_detect_micron(chip, p);
3201
3202        return 1;
3203}
3204#else
3205static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3206                                        int *busw)
3207{
3208        return 0;
3209}
3210#endif
3211
3212/*
3213 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3214 */
3215static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3216                                        int *busw)
3217{
3218        struct nand_jedec_params *p = &chip->jedec_params;
3219        struct jedec_ecc_info *ecc;
3220        int val;
3221        int i, j;
3222
3223        /* Try JEDEC for unknown chip or LP */
3224        chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3225        if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3226                chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3227                chip->read_byte(mtd) != 'C')
3228                return 0;
3229
3230        chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3231        for (i = 0; i < 3; i++) {
3232                for (j = 0; j < sizeof(*p); j++)
3233                        ((uint8_t *)p)[j] = chip->read_byte(mtd);
3234
3235                if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3236                                le16_to_cpu(p->crc))
3237                        break;
3238        }
3239
3240        if (i == 3) {
3241                pr_err("Could not find valid JEDEC parameter page; aborting\n");
3242                return 0;
3243        }
3244
3245        /* Check version */
3246        val = le16_to_cpu(p->revision);
3247        if (val & (1 << 2))
3248                chip->jedec_version = 10;
3249        else if (val & (1 << 1))
3250                chip->jedec_version = 1; /* vendor specific version */
3251
3252        if (!chip->jedec_version) {
3253                pr_info("unsupported JEDEC version: %d\n", val);
3254                return 0;
3255        }
3256
3257        sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3258        sanitize_string(p->model, sizeof(p->model));
3259        if (!mtd->name)
3260                mtd->name = p->model;
3261
3262        mtd->writesize = le32_to_cpu(p->byte_per_page);
3263
3264        /* Please reference to the comment for nand_flash_detect_onfi. */
3265        mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3266        mtd->erasesize *= mtd->writesize;
3267
3268        mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3269
3270        /* Please reference to the comment for nand_flash_detect_onfi. */
3271        chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3272        chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3273        chip->bits_per_cell = p->bits_per_cell;
3274
3275        if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3276                *busw = NAND_BUSWIDTH_16;
3277        else
3278                *busw = 0;
3279
3280        /* ECC info */
3281        ecc = &p->ecc_info[0];
3282
3283        if (ecc->codeword_size >= 9) {
3284                chip->ecc_strength_ds = ecc->ecc_bits;
3285                chip->ecc_step_ds = 1 << ecc->codeword_size;
3286        } else {
3287                pr_warn("Invalid codeword size\n");
3288        }
3289
3290        return 1;
3291}
3292
3293/*
3294 * nand_id_has_period - Check if an ID string has a given wraparound period
3295 * @id_data: the ID string
3296 * @arrlen: the length of the @id_data array
3297 * @period: the period of repitition
3298 *
3299 * Check if an ID string is repeated within a given sequence of bytes at
3300 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3301 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3302 * if the repetition has a period of @period; otherwise, returns zero.
3303 */
3304static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3305{
3306        int i, j;
3307        for (i = 0; i < period; i++)
3308                for (j = i + period; j < arrlen; j += period)
3309                        if (id_data[i] != id_data[j])
3310                                return 0;
3311        return 1;
3312}
3313
3314/*
3315 * nand_id_len - Get the length of an ID string returned by CMD_READID
3316 * @id_data: the ID string
3317 * @arrlen: the length of the @id_data array
3318
3319 * Returns the length of the ID string, according to known wraparound/trailing
3320 * zero patterns. If no pattern exists, returns the length of the array.
3321 */
3322static int nand_id_len(u8 *id_data, int arrlen)
3323{
3324        int last_nonzero, period;
3325
3326        /* Find last non-zero byte */
3327        for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3328                if (id_data[last_nonzero])
3329                        break;
3330
3331        /* All zeros */
3332        if (last_nonzero < 0)
3333                return 0;
3334
3335        /* Calculate wraparound period */
3336        for (period = 1; period < arrlen; period++)
3337                if (nand_id_has_period(id_data, arrlen, period))
3338                        break;
3339
3340        /* There's a repeated pattern */
3341        if (period < arrlen)
3342                return period;
3343
3344        /* There are trailing zeros */
3345        if (last_nonzero < arrlen - 1)
3346                return last_nonzero + 1;
3347
3348        /* No pattern detected */
3349        return arrlen;
3350}
3351
3352/* Extract the bits of per cell from the 3rd byte of the extended ID */
3353static int nand_get_bits_per_cell(u8 cellinfo)
3354{
3355        int bits;
3356
3357        bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3358        bits >>= NAND_CI_CELLTYPE_SHIFT;
3359        return bits + 1;
3360}
3361
3362/*
3363 * Many new NAND share similar device ID codes, which represent the size of the
3364 * chip. The rest of the parameters must be decoded according to generic or
3365 * manufacturer-specific "extended ID" decoding patterns.
3366 */
3367static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3368                                u8 id_data[8], int *busw)
3369{
3370        int extid, id_len;
3371        /* The 3rd id byte holds MLC / multichip data */
3372        chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3373        /* The 4th id byte is the important one */
3374        extid = id_data[3];
3375
3376        id_len = nand_id_len(id_data, 8);
3377
3378        /*
3379         * Field definitions are in the following datasheets:
3380         * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3381         * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3382         * Hynix MLC   (6 byte ID): Hynix H27UBG8T2B (p.22)
3383         *
3384         * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3385         * ID to decide what to do.
3386         */
3387        if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3388                        !nand_is_slc(chip) && id_data[5] != 0x00) {
3389                /* Calc pagesize */
3390                mtd->writesize = 2048 << (extid & 0x03);
3391                extid >>= 2;
3392                /* Calc oobsize */
3393                switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3394                case 1:
3395                        mtd->oobsize = 128;
3396                        break;
3397                case 2:
3398                        mtd->oobsize = 218;
3399                        break;
3400                case 3:
3401                        mtd->oobsize = 400;
3402                        break;
3403                case 4:
3404                        mtd->oobsize = 436;
3405                        break;
3406                case 5:
3407                        mtd->oobsize = 512;
3408                        break;
3409                case 6:
3410                        mtd->oobsize = 640;
3411                        break;
3412                case 7:
3413                default: /* Other cases are "reserved" (unknown) */
3414                        mtd->oobsize = 1024;
3415                        break;
3416                }
3417                extid >>= 2;
3418                /* Calc blocksize */
3419                mtd->erasesize = (128 * 1024) <<
3420                        (((extid >> 1) & 0x04) | (extid & 0x03));
3421                *busw = 0;
3422        } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3423                        !nand_is_slc(chip)) {
3424                unsigned int tmp;
3425
3426                /* Calc pagesize */
3427                mtd->writesize = 2048 << (extid & 0x03);
3428                extid >>= 2;
3429                /* Calc oobsize */
3430                switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3431                case 0:
3432                        mtd->oobsize = 128;
3433                        break;
3434                case 1:
3435                        mtd->oobsize = 224;
3436                        break;
3437                case 2:
3438                        mtd->oobsize = 448;
3439                        break;
3440                case 3:
3441                        mtd->oobsize = 64;
3442                        break;
3443                case 4:
3444                        mtd->oobsize = 32;
3445                        break;
3446                case 5:
3447                        mtd->oobsize = 16;
3448                        break;
3449                default:
3450                        mtd->oobsize = 640;
3451                        break;
3452                }
3453                extid >>= 2;
3454                /* Calc blocksize */
3455                tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3456                if (tmp < 0x03)
3457                        mtd->erasesize = (128 * 1024) << tmp;
3458                else if (tmp == 0x03)
3459                        mtd->erasesize = 768 * 1024;
3460                else
3461                        mtd->erasesize = (64 * 1024) << tmp;
3462                *busw = 0;
3463        } else {
3464                /* Calc pagesize */
3465                mtd->writesize = 1024 << (extid & 0x03);
3466                extid >>= 2;
3467                /* Calc oobsize */
3468                mtd->oobsize = (8 << (extid & 0x01)) *
3469                        (mtd->writesize >> 9);
3470                extid >>= 2;
3471                /* Calc blocksize. Blocksize is multiples of 64KiB */
3472                mtd->erasesize = (64 * 1024) << (extid & 0x03);
3473                extid >>= 2;
3474                /* Get buswidth information */
3475                *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3476
3477                /*
3478                 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3479                 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3480                 * follows:
3481                 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3482                 *                         110b -> 24nm
3483                 * - ID byte 5, bit[7]:    1 -> BENAND, 0 -> raw SLC
3484                 */
3485                if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3486                                nand_is_slc(chip) &&
3487                                (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3488                                !(id_data[4] & 0x80) /* !BENAND */) {
3489                        mtd->oobsize = 32 * mtd->writesize >> 9;
3490                }
3491
3492        }
3493}
3494
3495/*
3496 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3497 * decodes a matching ID table entry and assigns the MTD size parameters for
3498 * the chip.
3499 */
3500static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3501                                struct nand_flash_dev *type, u8 id_data[8],
3502                                int *busw)
3503{
3504        int maf_id = id_data[0];
3505
3506        mtd->erasesize = type->erasesize;
3507        mtd->writesize = type->pagesize;
3508        mtd->oobsize = mtd->writesize / 32;
3509        *busw = type->options & NAND_BUSWIDTH_16;
3510
3511        /* All legacy ID NAND are small-page, SLC */
3512        chip->bits_per_cell = 1;
3513
3514        /*
3515         * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3516         * some Spansion chips have erasesize that conflicts with size
3517         * listed in nand_ids table.
3518         * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3519         */
3520        if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3521                        && id_data[6] == 0x00 && id_data[7] == 0x00
3522                        && mtd->writesize == 512) {
3523                mtd->erasesize = 128 * 1024;
3524                mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3525        }
3526}
3527
3528/*
3529 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3530 * heuristic patterns using various detected parameters (e.g., manufacturer,
3531 * page size, cell-type information).
3532 */
3533static void nand_decode_bbm_options(struct mtd_info *mtd,
3534                                    struct nand_chip *chip, u8 id_data[8])
3535{
3536        int maf_id = id_data[0];
3537
3538        /* Set the bad block position */
3539        if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3540                chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3541        else
3542                chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3543
3544        /*
3545         * Bad block marker is stored in the last page of each block on Samsung
3546         * and Hynix MLC devices; stored in first two pages of each block on
3547         * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3548         * AMD/Spansion, and Macronix.  All others scan only the first page.
3549         */
3550        if (!nand_is_slc(chip) &&
3551                        (maf_id == NAND_MFR_SAMSUNG ||
3552                         maf_id == NAND_MFR_HYNIX))
3553                chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3554        else if ((nand_is_slc(chip) &&
3555                                (maf_id == NAND_MFR_SAMSUNG ||
3556                                 maf_id == NAND_MFR_HYNIX ||
3557                                 maf_id == NAND_MFR_TOSHIBA ||
3558                                 maf_id == NAND_MFR_AMD ||
3559                                 maf_id == NAND_MFR_MACRONIX)) ||
3560                        (mtd->writesize == 2048 &&
3561                         maf_id == NAND_MFR_MICRON))
3562                chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3563}
3564
3565static inline bool is_full_id_nand(struct nand_flash_dev *type)
3566{
3567        return type->id_len;
3568}
3569
3570static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3571                   struct nand_flash_dev *type, u8 *id_data, int *busw)
3572{
3573        if (!strncmp((char *)type->id, (char *)id_data, type->id_len)) {
3574                mtd->writesize = type->pagesize;
3575                mtd->erasesize = type->erasesize;
3576                mtd->oobsize = type->oobsize;
3577
3578                chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3579                chip->chipsize = (uint64_t)type->chipsize << 20;
3580                chip->options |= type->options;
3581                chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3582                chip->ecc_step_ds = NAND_ECC_STEP(type);
3583                chip->onfi_timing_mode_default =
3584                                        type->onfi_timing_mode_default;
3585
3586                *busw = type->options & NAND_BUSWIDTH_16;
3587
3588                if (!mtd->name)
3589                        mtd->name = type->name;
3590
3591                return true;
3592        }
3593        return false;
3594}
3595
3596/*
3597 * Get the flash and manufacturer id and lookup if the type is supported.
3598 */
3599static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3600                                                  struct nand_chip *chip,
3601                                                  int *maf_id, int *dev_id,
3602                                                  struct nand_flash_dev *type)
3603{
3604        int busw;
3605        int i, maf_idx;
3606        u8 id_data[8];
3607
3608        /* Select the device */
3609        chip->select_chip(mtd, 0);
3610
3611        /*
3612         * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3613         * after power-up.
3614         */
3615        chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3616
3617        /* Send the command for reading device ID */
3618        chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3619
3620        /* Read manufacturer and device IDs */
3621        *maf_id = chip->read_byte(mtd);
3622        *dev_id = chip->read_byte(mtd);
3623
3624        /*
3625         * Try again to make sure, as some systems the bus-hold or other
3626         * interface concerns can cause random data which looks like a
3627         * possibly credible NAND flash to appear. If the two results do
3628         * not match, ignore the device completely.
3629         */
3630
3631        chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3632
3633        /* Read entire ID string */
3634        for (i = 0; i < 8; i++)
3635                id_data[i] = chip->read_byte(mtd);
3636
3637        if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3638                pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
3639                        *maf_id, *dev_id, id_data[0], id_data[1]);
3640                return ERR_PTR(-ENODEV);
3641        }
3642
3643        if (!type)
3644                type = nand_flash_ids;
3645
3646        for (; type->name != NULL; type++) {
3647                if (is_full_id_nand(type)) {
3648                        if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3649                                goto ident_done;
3650                } else if (*dev_id == type->dev_id) {
3651                        break;
3652                }
3653        }
3654
3655        chip->onfi_version = 0;
3656        if (!type->name || !type->pagesize) {
3657                /* Check if the chip is ONFI compliant */
3658                if (nand_flash_detect_onfi(mtd, chip, &busw))
3659                        goto ident_done;
3660
3661                /* Check if the chip is JEDEC compliant */
3662                if (nand_flash_detect_jedec(mtd, chip, &busw))
3663                        goto ident_done;
3664        }
3665
3666        if (!type->name)
3667                return ERR_PTR(-ENODEV);
3668
3669        if (!mtd->name)
3670                mtd->name = type->name;
3671
3672        chip->chipsize = (uint64_t)type->chipsize << 20;
3673
3674        if (!type->pagesize) {
3675                /* Decode parameters from extended ID */
3676                nand_decode_ext_id(mtd, chip, id_data, &busw);
3677        } else {
3678                nand_decode_id(mtd, chip, type, id_data, &busw);
3679        }
3680        /* Get chip options */
3681        chip->options |= type->options;
3682
3683        /*
3684         * Check if chip is not a Samsung device. Do not clear the
3685         * options for chips which do not have an extended id.
3686         */
3687        if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3688                chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3689ident_done:
3690
3691        /* Try to identify manufacturer */
3692        for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3693                if (nand_manuf_ids[maf_idx].id == *maf_id)
3694                        break;
3695        }
3696
3697        if (chip->options & NAND_BUSWIDTH_AUTO) {
3698                WARN_ON(chip->options & NAND_BUSWIDTH_16);
3699                chip->options |= busw;
3700                nand_set_defaults(chip, busw);
3701        } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3702                /*
3703                 * Check, if buswidth is correct. Hardware drivers should set
3704                 * chip correct!
3705                 */
3706                pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3707                        *maf_id, *dev_id);
3708                pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3709                pr_warn("bus width %d instead %d bit\n",
3710                           (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3711                           busw ? 16 : 8);
3712                return ERR_PTR(-EINVAL);
3713        }
3714
3715        nand_decode_bbm_options(mtd, chip, id_data);
3716
3717        /* Calculate the address shift from the page size */
3718        chip->page_shift = ffs(mtd->writesize) - 1;
3719        /* Convert chipsize to number of pages per chip -1 */
3720        chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3721
3722        chip->bbt_erase_shift = chip->phys_erase_shift =
3723                ffs(mtd->erasesize) - 1;
3724        if (chip->chipsize & 0xffffffff)
3725                chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3726        else {
3727                chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3728                chip->chip_shift += 32 - 1;
3729        }
3730
3731        chip->badblockbits = 8;
3732        chip->erase = single_erase;
3733
3734        /* Do not replace user supplied command function! */
3735        if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3736                chip->cmdfunc = nand_command_lp;
3737
3738        pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3739                *maf_id, *dev_id);
3740
3741#ifdef CONFIG_SYS_NAND_ONFI_DETECTION
3742        if (chip->onfi_version)
3743                pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3744                                chip->onfi_params.model);
3745        else if (chip->jedec_version)
3746                pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3747                                chip->jedec_params.model);
3748        else
3749                pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3750                                type->name);
3751#else
3752        if (chip->jedec_version)
3753                pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3754                                chip->jedec_params.model);
3755        else
3756                pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3757                                type->name);
3758
3759        pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3760                type->name);
3761#endif
3762
3763        pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3764                (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3765                mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
3766        return type;
3767}
3768
3769#if CONFIG_IS_ENABLED(OF_CONTROL)
3770DECLARE_GLOBAL_DATA_PTR;
3771
3772static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip, int node)
3773{
3774        int ret, ecc_mode = -1, ecc_strength, ecc_step;
3775        const void *blob = gd->fdt_blob;
3776        const char *str;
3777
3778        ret = fdtdec_get_int(blob, node, "nand-bus-width", -1);
3779        if (ret == 16)
3780                chip->options |= NAND_BUSWIDTH_16;
3781
3782        if (fdtdec_get_bool(blob, node, "nand-on-flash-bbt"))
3783                chip->bbt_options |= NAND_BBT_USE_FLASH;
3784
3785        str = fdt_getprop(blob, node, "nand-ecc-mode", NULL);
3786        if (str) {
3787                if (!strcmp(str, "none"))
3788                        ecc_mode = NAND_ECC_NONE;
3789                else if (!strcmp(str, "soft"))
3790                        ecc_mode = NAND_ECC_SOFT;
3791                else if (!strcmp(str, "hw"))
3792                        ecc_mode = NAND_ECC_HW;
3793                else if (!strcmp(str, "hw_syndrome"))
3794                        ecc_mode = NAND_ECC_HW_SYNDROME;
3795                else if (!strcmp(str, "hw_oob_first"))
3796                        ecc_mode = NAND_ECC_HW_OOB_FIRST;
3797                else if (!strcmp(str, "soft_bch"))
3798                        ecc_mode = NAND_ECC_SOFT_BCH;
3799        }
3800
3801
3802        ecc_strength = fdtdec_get_int(blob, node, "nand-ecc-strength", -1);
3803        ecc_step = fdtdec_get_int(blob, node, "nand-ecc-step-size", -1);
3804
3805        if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
3806            (!(ecc_step >= 0) && ecc_strength >= 0)) {
3807                pr_err("must set both strength and step size in DT\n");
3808                return -EINVAL;
3809        }
3810
3811        if (ecc_mode >= 0)
3812                chip->ecc.mode = ecc_mode;
3813
3814        if (ecc_strength >= 0)
3815                chip->ecc.strength = ecc_strength;
3816
3817        if (ecc_step > 0)
3818                chip->ecc.size = ecc_step;
3819
3820        return 0;
3821}
3822#else
3823static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip, int node)
3824{
3825        return 0;
3826}
3827#endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
3828
3829/**
3830 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3831 * @mtd: MTD device structure
3832 * @maxchips: number of chips to scan for
3833 * @table: alternative NAND ID table
3834 *
3835 * This is the first phase of the normal nand_scan() function. It reads the
3836 * flash ID and sets up MTD fields accordingly.
3837 *
3838 */
3839int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3840                    struct nand_flash_dev *table)
3841{
3842        int i, nand_maf_id, nand_dev_id;
3843        struct nand_chip *chip = mtd_to_nand(mtd);
3844        struct nand_flash_dev *type;
3845        int ret;
3846
3847        if (chip->flash_node) {
3848                ret = nand_dt_init(mtd, chip, chip->flash_node);
3849                if (ret)
3850                        return ret;
3851        }
3852
3853        /* Set the default functions */
3854        nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
3855
3856        /* Read the flash type */
3857        type = nand_get_flash_type(mtd, chip, &nand_maf_id,
3858                                   &nand_dev_id, table);
3859
3860        if (IS_ERR(type)) {
3861                if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3862                        pr_warn("No NAND device found\n");
3863                chip->select_chip(mtd, -1);
3864                return PTR_ERR(type);
3865        }
3866
3867        chip->select_chip(mtd, -1);
3868
3869        /* Check for a chip array */
3870        for (i = 1; i < maxchips; i++) {
3871                chip->select_chip(mtd, i);
3872                /* See comment in nand_get_flash_type for reset */
3873                chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3874                /* Send the command for reading device ID */
3875                chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3876                /* Read manufacturer and device IDs */
3877                if (nand_maf_id != chip->read_byte(mtd) ||
3878                    nand_dev_id != chip->read_byte(mtd)) {
3879                        chip->select_chip(mtd, -1);
3880                        break;
3881                }
3882                chip->select_chip(mtd, -1);
3883        }
3884
3885#ifdef DEBUG
3886        if (i > 1)
3887                pr_info("%d chips detected\n", i);
3888#endif
3889
3890        /* Store the number of chips and calc total size for mtd */
3891        chip->numchips = i;
3892        mtd->size = i * chip->chipsize;
3893
3894        return 0;
3895}
3896EXPORT_SYMBOL(nand_scan_ident);
3897
3898/*
3899 * Check if the chip configuration meet the datasheet requirements.
3900
3901 * If our configuration corrects A bits per B bytes and the minimum
3902 * required correction level is X bits per Y bytes, then we must ensure
3903 * both of the following are true:
3904 *
3905 * (1) A / B >= X / Y
3906 * (2) A >= X
3907 *
3908 * Requirement (1) ensures we can correct for the required bitflip density.
3909 * Requirement (2) ensures we can correct even when all bitflips are clumped
3910 * in the same sector.
3911 */
3912static bool nand_ecc_strength_good(struct mtd_info *mtd)
3913{
3914        struct nand_chip *chip = mtd_to_nand(mtd);
3915        struct nand_ecc_ctrl *ecc = &chip->ecc;
3916        int corr, ds_corr;
3917
3918        if (ecc->size == 0 || chip->ecc_step_ds == 0)
3919                /* Not enough information */
3920                return true;
3921
3922        /*
3923         * We get the number of corrected bits per page to compare
3924         * the correction density.
3925         */
3926        corr = (mtd->writesize * ecc->strength) / ecc->size;
3927        ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
3928
3929        return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
3930}
3931
3932/**
3933 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3934 * @mtd: MTD device structure
3935 *
3936 * This is the second phase of the normal nand_scan() function. It fills out
3937 * all the uninitialized function pointers with the defaults and scans for a
3938 * bad block table if appropriate.
3939 */
3940int nand_scan_tail(struct mtd_info *mtd)
3941{
3942        int i;
3943        struct nand_chip *chip = mtd_to_nand(mtd);
3944        struct nand_ecc_ctrl *ecc = &chip->ecc;
3945        struct nand_buffers *nbuf;
3946
3947        /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3948        BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3949                        !(chip->bbt_options & NAND_BBT_USE_FLASH));
3950
3951        if (!(chip->options & NAND_OWN_BUFFERS)) {
3952                nbuf = kzalloc(sizeof(struct nand_buffers), GFP_KERNEL);
3953                chip->buffers = nbuf;
3954        } else {
3955                if (!chip->buffers)
3956                        return -ENOMEM;
3957        }
3958
3959        /* Set the internal oob buffer location, just after the page data */
3960        chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3961
3962        /*
3963         * If no default placement scheme is given, select an appropriate one.
3964         */
3965        if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
3966                switch (mtd->oobsize) {
3967                case 8:
3968                        ecc->layout = &nand_oob_8;
3969                        break;
3970                case 16:
3971                        ecc->layout = &nand_oob_16;
3972                        break;
3973                case 64:
3974                        ecc->layout = &nand_oob_64;
3975                        break;
3976                case 128:
3977                        ecc->layout = &nand_oob_128;
3978                        break;
3979                default:
3980                        pr_warn("No oob scheme defined for oobsize %d\n",
3981                                   mtd->oobsize);
3982                        BUG();
3983                }
3984        }
3985
3986        if (!chip->write_page)
3987                chip->write_page = nand_write_page;
3988
3989        /*
3990         * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3991         * selected and we have 256 byte pagesize fallback to software ECC
3992         */
3993
3994        switch (ecc->mode) {
3995        case NAND_ECC_HW_OOB_FIRST:
3996                /* Similar to NAND_ECC_HW, but a separate read_page handle */
3997                if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
3998                        pr_warn("No ECC functions supplied; hardware ECC not possible\n");
3999                        BUG();
4000                }
4001                if (!ecc->read_page)
4002                        ecc->read_page = nand_read_page_hwecc_oob_first;
4003
4004        case NAND_ECC_HW:
4005                /* Use standard hwecc read page function? */
4006                if (!ecc->read_page)
4007                        ecc->read_page = nand_read_page_hwecc;
4008                if (!ecc->write_page)
4009                        ecc->write_page = nand_write_page_hwecc;
4010                if (!ecc->read_page_raw)
4011                        ecc->read_page_raw = nand_read_page_raw;
4012                if (!ecc->write_page_raw)
4013                        ecc->write_page_raw = nand_write_page_raw;
4014                if (!ecc->read_oob)
4015                        ecc->read_oob = nand_read_oob_std;
4016                if (!ecc->write_oob)
4017                        ecc->write_oob = nand_write_oob_std;
4018                if (!ecc->read_subpage)
4019                        ecc->read_subpage = nand_read_subpage;
4020                if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
4021                        ecc->write_subpage = nand_write_subpage_hwecc;
4022
4023        case NAND_ECC_HW_SYNDROME:
4024                if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
4025                    (!ecc->read_page ||
4026                     ecc->read_page == nand_read_page_hwecc ||
4027                     !ecc->write_page ||
4028                     ecc->write_page == nand_write_page_hwecc)) {
4029                        pr_warn("No ECC functions supplied; hardware ECC not possible\n");
4030                        BUG();
4031                }
4032                /* Use standard syndrome read/write page function? */
4033                if (!ecc->read_page)
4034                        ecc->read_page = nand_read_page_syndrome;
4035                if (!ecc->write_page)
4036                        ecc->write_page = nand_write_page_syndrome;
4037                if (!ecc->read_page_raw)
4038                        ecc->read_page_raw = nand_read_page_raw_syndrome;
4039                if (!ecc->write_page_raw)
4040                        ecc->write_page_raw = nand_write_page_raw_syndrome;
4041                if (!ecc->read_oob)
4042                        ecc->read_oob = nand_read_oob_syndrome;
4043                if (!ecc->write_oob)
4044                        ecc->write_oob = nand_write_oob_syndrome;
4045
4046                if (mtd->writesize >= ecc->size) {
4047                        if (!ecc->strength) {
4048                                pr_warn("Driver must set ecc.strength when using hardware ECC\n");
4049                                BUG();
4050                        }
4051                        break;
4052                }
4053                pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
4054                        ecc->size, mtd->writesize);
4055                ecc->mode = NAND_ECC_SOFT;
4056
4057        case NAND_ECC_SOFT:
4058                ecc->calculate = nand_calculate_ecc;
4059                ecc->correct = nand_correct_data;
4060                ecc->read_page = nand_read_page_swecc;
4061                ecc->read_subpage = nand_read_subpage;
4062                ecc->write_page = nand_write_page_swecc;
4063                ecc->read_page_raw = nand_read_page_raw;
4064                ecc->write_page_raw = nand_write_page_raw;
4065                ecc->read_oob = nand_read_oob_std;
4066                ecc->write_oob = nand_write_oob_std;
4067                if (!ecc->size)
4068                        ecc->size = 256;
4069                ecc->bytes = 3;
4070                ecc->strength = 1;
4071                break;
4072
4073        case NAND_ECC_SOFT_BCH:
4074                if (!mtd_nand_has_bch()) {
4075                        pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4076                        BUG();
4077                }
4078                ecc->calculate = nand_bch_calculate_ecc;
4079                ecc->correct = nand_bch_correct_data;
4080                ecc->read_page = nand_read_page_swecc;
4081                ecc->read_subpage = nand_read_subpage;
4082                ecc->write_page = nand_write_page_swecc;
4083                ecc->read_page_raw = nand_read_page_raw;
4084                ecc->write_page_raw = nand_write_page_raw;
4085                ecc->read_oob = nand_read_oob_std;
4086                ecc->write_oob = nand_write_oob_std;
4087                /*
4088                 * Board driver should supply ecc.size and ecc.strength values
4089                 * to select how many bits are correctable. Otherwise, default
4090                 * to 4 bits for large page devices.
4091                 */
4092                if (!ecc->size && (mtd->oobsize >= 64)) {
4093                        ecc->size = 512;
4094                        ecc->strength = 4;
4095                }
4096
4097                /* See nand_bch_init() for details. */
4098                ecc->bytes = 0;
4099                ecc->priv = nand_bch_init(mtd);
4100                if (!ecc->priv) {
4101                        pr_warn("BCH ECC initialization failed!\n");
4102                        BUG();
4103                }
4104                break;
4105
4106        case NAND_ECC_NONE:
4107                pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
4108                ecc->read_page = nand_read_page_raw;
4109                ecc->write_page = nand_write_page_raw;
4110                ecc->read_oob = nand_read_oob_std;
4111                ecc->read_page_raw = nand_read_page_raw;
4112                ecc->write_page_raw = nand_write_page_raw;
4113                ecc->write_oob = nand_write_oob_std;
4114                ecc->size = mtd->writesize;
4115                ecc->bytes = 0;
4116                ecc->strength = 0;
4117                break;
4118
4119        default:
4120                pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
4121                BUG();
4122        }
4123
4124        /* For many systems, the standard OOB write also works for raw */
4125        if (!ecc->read_oob_raw)
4126                ecc->read_oob_raw = ecc->read_oob;
4127        if (!ecc->write_oob_raw)
4128                ecc->write_oob_raw = ecc->write_oob;
4129
4130        /*
4131         * The number of bytes available for a client to place data into
4132         * the out of band area.
4133         */
4134        mtd->oobavail = 0;
4135        if (ecc->layout) {
4136                for (i = 0; ecc->layout->oobfree[i].length; i++)
4137                        mtd->oobavail += ecc->layout->oobfree[i].length;
4138        }
4139
4140        /* ECC sanity check: warn if it's too weak */
4141        if (!nand_ecc_strength_good(mtd))
4142                pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4143                        mtd->name);
4144
4145        /*
4146         * Set the number of read / write steps for one page depending on ECC
4147         * mode.
4148         */
4149        ecc->steps = mtd->writesize / ecc->size;
4150        if (ecc->steps * ecc->size != mtd->writesize) {
4151                pr_warn("Invalid ECC parameters\n");
4152                BUG();
4153        }
4154        ecc->total = ecc->steps * ecc->bytes;
4155
4156        /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4157        if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
4158                switch (ecc->steps) {
4159                case 2:
4160                        mtd->subpage_sft = 1;
4161                        break;
4162                case 4:
4163                case 8:
4164                case 16:
4165                        mtd->subpage_sft = 2;
4166                        break;
4167                }
4168        }
4169        chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4170
4171        /* Initialize state */
4172        chip->state = FL_READY;
4173
4174        /* Invalidate the pagebuffer reference */
4175        chip->pagebuf = -1;
4176
4177        /* Large page NAND with SOFT_ECC should support subpage reads */
4178        switch (ecc->mode) {
4179        case NAND_ECC_SOFT:
4180        case NAND_ECC_SOFT_BCH:
4181                if (chip->page_shift > 9)
4182                        chip->options |= NAND_SUBPAGE_READ;
4183                break;
4184
4185        default:
4186                break;
4187        }
4188
4189        /* Fill in remaining MTD driver data */
4190        mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
4191        mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4192                                                MTD_CAP_NANDFLASH;
4193        mtd->_erase = nand_erase;
4194        mtd->_read = nand_read;
4195        mtd->_write = nand_write;
4196        mtd->_panic_write = panic_nand_write;
4197        mtd->_read_oob = nand_read_oob;
4198        mtd->_write_oob = nand_write_oob;
4199        mtd->_sync = nand_sync;
4200        mtd->_lock = NULL;
4201        mtd->_unlock = NULL;
4202        mtd->_block_isreserved = nand_block_isreserved;
4203        mtd->_block_isbad = nand_block_isbad;
4204        mtd->_block_markbad = nand_block_markbad;
4205        mtd->writebufsize = mtd->writesize;
4206
4207        /* propagate ecc info to mtd_info */
4208        mtd->ecclayout = ecc->layout;
4209        mtd->ecc_strength = ecc->strength;
4210        mtd->ecc_step_size = ecc->size;
4211        /*
4212         * Initialize bitflip_threshold to its default prior scan_bbt() call.
4213         * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4214         * properly set.
4215         */
4216        if (!mtd->bitflip_threshold)
4217                mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
4218
4219        return 0;
4220}
4221EXPORT_SYMBOL(nand_scan_tail);
4222
4223/**
4224 * nand_scan - [NAND Interface] Scan for the NAND device
4225 * @mtd: MTD device structure
4226 * @maxchips: number of chips to scan for
4227 *
4228 * This fills out all the uninitialized function pointers with the defaults.
4229 * The flash ID is read and the mtd/chip structures are filled with the
4230 * appropriate values.
4231 */
4232int nand_scan(struct mtd_info *mtd, int maxchips)
4233{
4234        int ret;
4235
4236        ret = nand_scan_ident(mtd, maxchips, NULL);
4237        if (!ret)
4238                ret = nand_scan_tail(mtd);
4239        return ret;
4240}
4241EXPORT_SYMBOL(nand_scan);
4242
4243MODULE_LICENSE("GPL");
4244MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4245MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4246MODULE_DESCRIPTION("Generic NAND flash driver code");
4247