uboot/fs/ubifs/super.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * SPDX-License-Identifier:     GPL-2.0+
   7 *
   8 * Authors: Artem Bityutskiy (Битюцкий Артём)
   9 *          Adrian Hunter
  10 */
  11
  12/*
  13 * This file implements UBIFS initialization and VFS superblock operations. Some
  14 * initialization stuff which is rather large and complex is placed at
  15 * corresponding subsystems, but most of it is here.
  16 */
  17
  18#ifndef __UBOOT__
  19#include <linux/init.h>
  20#include <linux/slab.h>
  21#include <linux/module.h>
  22#include <linux/ctype.h>
  23#include <linux/kthread.h>
  24#include <linux/parser.h>
  25#include <linux/seq_file.h>
  26#include <linux/mount.h>
  27#include <linux/math64.h>
  28#include <linux/writeback.h>
  29#else
  30
  31#include <common.h>
  32#include <malloc.h>
  33#include <memalign.h>
  34#include <linux/bug.h>
  35#include <linux/log2.h>
  36#include <linux/stat.h>
  37#include <linux/err.h>
  38#include "ubifs.h"
  39#include <ubi_uboot.h>
  40#include <mtd/ubi-user.h>
  41
  42struct dentry;
  43struct file;
  44struct iattr;
  45struct kstat;
  46struct vfsmount;
  47
  48#define INODE_LOCKED_MAX        64
  49
  50struct super_block *ubifs_sb;
  51
  52static struct inode *inodes_locked_down[INODE_LOCKED_MAX];
  53
  54int set_anon_super(struct super_block *s, void *data)
  55{
  56        return 0;
  57}
  58
  59struct inode *iget_locked(struct super_block *sb, unsigned long ino)
  60{
  61        struct inode *inode;
  62
  63        inode = (struct inode *)malloc_cache_aligned(
  64                        sizeof(struct ubifs_inode));
  65        if (inode) {
  66                inode->i_ino = ino;
  67                inode->i_sb = sb;
  68                list_add(&inode->i_sb_list, &sb->s_inodes);
  69                inode->i_state = I_LOCK | I_NEW;
  70        }
  71
  72        return inode;
  73}
  74
  75void iget_failed(struct inode *inode)
  76{
  77}
  78
  79int ubifs_iput(struct inode *inode)
  80{
  81        list_del_init(&inode->i_sb_list);
  82
  83        free(inode);
  84        return 0;
  85}
  86
  87/*
  88 * Lock (save) inode in inode array for readback after recovery
  89 */
  90void iput(struct inode *inode)
  91{
  92        int i;
  93        struct inode *ino;
  94
  95        /*
  96         * Search end of list
  97         */
  98        for (i = 0; i < INODE_LOCKED_MAX; i++) {
  99                if (inodes_locked_down[i] == NULL)
 100                        break;
 101        }
 102
 103        if (i >= INODE_LOCKED_MAX) {
 104                dbg_gen("Error, can't lock (save) more inodes while recovery!!!");
 105                return;
 106        }
 107
 108        /*
 109         * Allocate and use new inode
 110         */
 111        ino = (struct inode *)malloc_cache_aligned(sizeof(struct ubifs_inode));
 112        memcpy(ino, inode, sizeof(struct ubifs_inode));
 113
 114        /*
 115         * Finally save inode in array
 116         */
 117        inodes_locked_down[i] = ino;
 118}
 119
 120/* from fs/inode.c */
 121/**
 122 * clear_nlink - directly zero an inode's link count
 123 * @inode: inode
 124 *
 125 * This is a low-level filesystem helper to replace any
 126 * direct filesystem manipulation of i_nlink.  See
 127 * drop_nlink() for why we care about i_nlink hitting zero.
 128 */
 129void clear_nlink(struct inode *inode)
 130{
 131        if (inode->i_nlink) {
 132                inode->__i_nlink = 0;
 133                atomic_long_inc(&inode->i_sb->s_remove_count);
 134        }
 135}
 136EXPORT_SYMBOL(clear_nlink);
 137
 138/**
 139 * set_nlink - directly set an inode's link count
 140 * @inode: inode
 141 * @nlink: new nlink (should be non-zero)
 142 *
 143 * This is a low-level filesystem helper to replace any
 144 * direct filesystem manipulation of i_nlink.
 145 */
 146void set_nlink(struct inode *inode, unsigned int nlink)
 147{
 148        if (!nlink) {
 149                clear_nlink(inode);
 150        } else {
 151                /* Yes, some filesystems do change nlink from zero to one */
 152                if (inode->i_nlink == 0)
 153                        atomic_long_dec(&inode->i_sb->s_remove_count);
 154
 155                inode->__i_nlink = nlink;
 156        }
 157}
 158EXPORT_SYMBOL(set_nlink);
 159
 160/* from include/linux/fs.h */
 161static inline void i_uid_write(struct inode *inode, uid_t uid)
 162{
 163        inode->i_uid.val = uid;
 164}
 165
 166static inline void i_gid_write(struct inode *inode, gid_t gid)
 167{
 168        inode->i_gid.val = gid;
 169}
 170
 171void unlock_new_inode(struct inode *inode)
 172{
 173        return;
 174}
 175#endif
 176
 177/*
 178 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
 179 * allocating too much.
 180 */
 181#define UBIFS_KMALLOC_OK (128*1024)
 182
 183/* Slab cache for UBIFS inodes */
 184struct kmem_cache *ubifs_inode_slab;
 185
 186#ifndef __UBOOT__
 187/* UBIFS TNC shrinker description */
 188static struct shrinker ubifs_shrinker_info = {
 189        .scan_objects = ubifs_shrink_scan,
 190        .count_objects = ubifs_shrink_count,
 191        .seeks = DEFAULT_SEEKS,
 192};
 193#endif
 194
 195/**
 196 * validate_inode - validate inode.
 197 * @c: UBIFS file-system description object
 198 * @inode: the inode to validate
 199 *
 200 * This is a helper function for 'ubifs_iget()' which validates various fields
 201 * of a newly built inode to make sure they contain sane values and prevent
 202 * possible vulnerabilities. Returns zero if the inode is all right and
 203 * a non-zero error code if not.
 204 */
 205static int validate_inode(struct ubifs_info *c, const struct inode *inode)
 206{
 207        int err;
 208        const struct ubifs_inode *ui = ubifs_inode(inode);
 209
 210        if (inode->i_size > c->max_inode_sz) {
 211                ubifs_err(c, "inode is too large (%lld)",
 212                          (long long)inode->i_size);
 213                return 1;
 214        }
 215
 216        if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
 217                ubifs_err(c, "unknown compression type %d", ui->compr_type);
 218                return 2;
 219        }
 220
 221        if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
 222                return 3;
 223
 224        if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
 225                return 4;
 226
 227        if (ui->xattr && !S_ISREG(inode->i_mode))
 228                return 5;
 229
 230        if (!ubifs_compr_present(ui->compr_type)) {
 231                ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
 232                           inode->i_ino, ubifs_compr_name(ui->compr_type));
 233        }
 234
 235        err = dbg_check_dir(c, inode);
 236        return err;
 237}
 238
 239struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
 240{
 241        int err;
 242        union ubifs_key key;
 243        struct ubifs_ino_node *ino;
 244        struct ubifs_info *c = sb->s_fs_info;
 245        struct inode *inode;
 246        struct ubifs_inode *ui;
 247#ifdef __UBOOT__
 248        int i;
 249#endif
 250
 251        dbg_gen("inode %lu", inum);
 252
 253#ifdef __UBOOT__
 254        /*
 255         * U-Boot special handling of locked down inodes via recovery
 256         * e.g. ubifs_recover_size()
 257         */
 258        for (i = 0; i < INODE_LOCKED_MAX; i++) {
 259                /*
 260                 * Exit on last entry (NULL), inode not found in list
 261                 */
 262                if (inodes_locked_down[i] == NULL)
 263                        break;
 264
 265                if (inodes_locked_down[i]->i_ino == inum) {
 266                        /*
 267                         * We found the locked down inode in our array,
 268                         * so just return this pointer instead of creating
 269                         * a new one.
 270                         */
 271                        return inodes_locked_down[i];
 272                }
 273        }
 274#endif
 275
 276        inode = iget_locked(sb, inum);
 277        if (!inode)
 278                return ERR_PTR(-ENOMEM);
 279        if (!(inode->i_state & I_NEW))
 280                return inode;
 281        ui = ubifs_inode(inode);
 282
 283        ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
 284        if (!ino) {
 285                err = -ENOMEM;
 286                goto out;
 287        }
 288
 289        ino_key_init(c, &key, inode->i_ino);
 290
 291        err = ubifs_tnc_lookup(c, &key, ino);
 292        if (err)
 293                goto out_ino;
 294
 295        inode->i_flags |= (S_NOCMTIME | S_NOATIME);
 296        set_nlink(inode, le32_to_cpu(ino->nlink));
 297        i_uid_write(inode, le32_to_cpu(ino->uid));
 298        i_gid_write(inode, le32_to_cpu(ino->gid));
 299        inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
 300        inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
 301        inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
 302        inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
 303        inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
 304        inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
 305        inode->i_mode = le32_to_cpu(ino->mode);
 306        inode->i_size = le64_to_cpu(ino->size);
 307
 308        ui->data_len    = le32_to_cpu(ino->data_len);
 309        ui->flags       = le32_to_cpu(ino->flags);
 310        ui->compr_type  = le16_to_cpu(ino->compr_type);
 311        ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
 312        ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
 313        ui->xattr_size  = le32_to_cpu(ino->xattr_size);
 314        ui->xattr_names = le32_to_cpu(ino->xattr_names);
 315        ui->synced_i_size = ui->ui_size = inode->i_size;
 316
 317        ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
 318
 319        err = validate_inode(c, inode);
 320        if (err)
 321                goto out_invalid;
 322
 323#ifndef __UBOOT__
 324        switch (inode->i_mode & S_IFMT) {
 325        case S_IFREG:
 326                inode->i_mapping->a_ops = &ubifs_file_address_operations;
 327                inode->i_op = &ubifs_file_inode_operations;
 328                inode->i_fop = &ubifs_file_operations;
 329                if (ui->xattr) {
 330                        ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
 331                        if (!ui->data) {
 332                                err = -ENOMEM;
 333                                goto out_ino;
 334                        }
 335                        memcpy(ui->data, ino->data, ui->data_len);
 336                        ((char *)ui->data)[ui->data_len] = '\0';
 337                } else if (ui->data_len != 0) {
 338                        err = 10;
 339                        goto out_invalid;
 340                }
 341                break;
 342        case S_IFDIR:
 343                inode->i_op  = &ubifs_dir_inode_operations;
 344                inode->i_fop = &ubifs_dir_operations;
 345                if (ui->data_len != 0) {
 346                        err = 11;
 347                        goto out_invalid;
 348                }
 349                break;
 350        case S_IFLNK:
 351                inode->i_op = &ubifs_symlink_inode_operations;
 352                if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
 353                        err = 12;
 354                        goto out_invalid;
 355                }
 356                ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
 357                if (!ui->data) {
 358                        err = -ENOMEM;
 359                        goto out_ino;
 360                }
 361                memcpy(ui->data, ino->data, ui->data_len);
 362                ((char *)ui->data)[ui->data_len] = '\0';
 363                inode->i_link = ui->data;
 364                break;
 365        case S_IFBLK:
 366        case S_IFCHR:
 367        {
 368                dev_t rdev;
 369                union ubifs_dev_desc *dev;
 370
 371                ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
 372                if (!ui->data) {
 373                        err = -ENOMEM;
 374                        goto out_ino;
 375                }
 376
 377                dev = (union ubifs_dev_desc *)ino->data;
 378                if (ui->data_len == sizeof(dev->new))
 379                        rdev = new_decode_dev(le32_to_cpu(dev->new));
 380                else if (ui->data_len == sizeof(dev->huge))
 381                        rdev = huge_decode_dev(le64_to_cpu(dev->huge));
 382                else {
 383                        err = 13;
 384                        goto out_invalid;
 385                }
 386                memcpy(ui->data, ino->data, ui->data_len);
 387                inode->i_op = &ubifs_file_inode_operations;
 388                init_special_inode(inode, inode->i_mode, rdev);
 389                break;
 390        }
 391        case S_IFSOCK:
 392        case S_IFIFO:
 393                inode->i_op = &ubifs_file_inode_operations;
 394                init_special_inode(inode, inode->i_mode, 0);
 395                if (ui->data_len != 0) {
 396                        err = 14;
 397                        goto out_invalid;
 398                }
 399                break;
 400        default:
 401                err = 15;
 402                goto out_invalid;
 403        }
 404#else
 405        if ((inode->i_mode & S_IFMT) == S_IFLNK) {
 406                if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
 407                        err = 12;
 408                        goto out_invalid;
 409                }
 410                ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
 411                if (!ui->data) {
 412                        err = -ENOMEM;
 413                        goto out_ino;
 414                }
 415                memcpy(ui->data, ino->data, ui->data_len);
 416                ((char *)ui->data)[ui->data_len] = '\0';
 417        }
 418#endif
 419
 420        kfree(ino);
 421#ifndef __UBOOT__
 422        ubifs_set_inode_flags(inode);
 423#endif
 424        unlock_new_inode(inode);
 425        return inode;
 426
 427out_invalid:
 428        ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
 429        ubifs_dump_node(c, ino);
 430        ubifs_dump_inode(c, inode);
 431        err = -EINVAL;
 432out_ino:
 433        kfree(ino);
 434out:
 435        ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
 436        iget_failed(inode);
 437        return ERR_PTR(err);
 438}
 439
 440static struct inode *ubifs_alloc_inode(struct super_block *sb)
 441{
 442        struct ubifs_inode *ui;
 443
 444        ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
 445        if (!ui)
 446                return NULL;
 447
 448        memset((void *)ui + sizeof(struct inode), 0,
 449               sizeof(struct ubifs_inode) - sizeof(struct inode));
 450        mutex_init(&ui->ui_mutex);
 451        spin_lock_init(&ui->ui_lock);
 452        return &ui->vfs_inode;
 453};
 454
 455#ifndef __UBOOT__
 456static void ubifs_i_callback(struct rcu_head *head)
 457{
 458        struct inode *inode = container_of(head, struct inode, i_rcu);
 459        struct ubifs_inode *ui = ubifs_inode(inode);
 460        kmem_cache_free(ubifs_inode_slab, ui);
 461}
 462
 463static void ubifs_destroy_inode(struct inode *inode)
 464{
 465        struct ubifs_inode *ui = ubifs_inode(inode);
 466
 467        kfree(ui->data);
 468        call_rcu(&inode->i_rcu, ubifs_i_callback);
 469}
 470
 471/*
 472 * Note, Linux write-back code calls this without 'i_mutex'.
 473 */
 474static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
 475{
 476        int err = 0;
 477        struct ubifs_info *c = inode->i_sb->s_fs_info;
 478        struct ubifs_inode *ui = ubifs_inode(inode);
 479
 480        ubifs_assert(!ui->xattr);
 481        if (is_bad_inode(inode))
 482                return 0;
 483
 484        mutex_lock(&ui->ui_mutex);
 485        /*
 486         * Due to races between write-back forced by budgeting
 487         * (see 'sync_some_inodes()') and background write-back, the inode may
 488         * have already been synchronized, do not do this again. This might
 489         * also happen if it was synchronized in an VFS operation, e.g.
 490         * 'ubifs_link()'.
 491         */
 492        if (!ui->dirty) {
 493                mutex_unlock(&ui->ui_mutex);
 494                return 0;
 495        }
 496
 497        /*
 498         * As an optimization, do not write orphan inodes to the media just
 499         * because this is not needed.
 500         */
 501        dbg_gen("inode %lu, mode %#x, nlink %u",
 502                inode->i_ino, (int)inode->i_mode, inode->i_nlink);
 503        if (inode->i_nlink) {
 504                err = ubifs_jnl_write_inode(c, inode);
 505                if (err)
 506                        ubifs_err(c, "can't write inode %lu, error %d",
 507                                  inode->i_ino, err);
 508                else
 509                        err = dbg_check_inode_size(c, inode, ui->ui_size);
 510        }
 511
 512        ui->dirty = 0;
 513        mutex_unlock(&ui->ui_mutex);
 514        ubifs_release_dirty_inode_budget(c, ui);
 515        return err;
 516}
 517
 518static void ubifs_evict_inode(struct inode *inode)
 519{
 520        int err;
 521        struct ubifs_info *c = inode->i_sb->s_fs_info;
 522        struct ubifs_inode *ui = ubifs_inode(inode);
 523
 524        if (ui->xattr)
 525                /*
 526                 * Extended attribute inode deletions are fully handled in
 527                 * 'ubifs_removexattr()'. These inodes are special and have
 528                 * limited usage, so there is nothing to do here.
 529                 */
 530                goto out;
 531
 532        dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
 533        ubifs_assert(!atomic_read(&inode->i_count));
 534
 535        truncate_inode_pages_final(&inode->i_data);
 536
 537        if (inode->i_nlink)
 538                goto done;
 539
 540        if (is_bad_inode(inode))
 541                goto out;
 542
 543        ui->ui_size = inode->i_size = 0;
 544        err = ubifs_jnl_delete_inode(c, inode);
 545        if (err)
 546                /*
 547                 * Worst case we have a lost orphan inode wasting space, so a
 548                 * simple error message is OK here.
 549                 */
 550                ubifs_err(c, "can't delete inode %lu, error %d",
 551                          inode->i_ino, err);
 552
 553out:
 554        if (ui->dirty)
 555                ubifs_release_dirty_inode_budget(c, ui);
 556        else {
 557                /* We've deleted something - clean the "no space" flags */
 558                c->bi.nospace = c->bi.nospace_rp = 0;
 559                smp_wmb();
 560        }
 561done:
 562        clear_inode(inode);
 563}
 564#endif
 565
 566static void ubifs_dirty_inode(struct inode *inode, int flags)
 567{
 568        struct ubifs_inode *ui = ubifs_inode(inode);
 569
 570        ubifs_assert(mutex_is_locked(&ui->ui_mutex));
 571        if (!ui->dirty) {
 572                ui->dirty = 1;
 573                dbg_gen("inode %lu",  inode->i_ino);
 574        }
 575}
 576
 577#ifndef __UBOOT__
 578static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
 579{
 580        struct ubifs_info *c = dentry->d_sb->s_fs_info;
 581        unsigned long long free;
 582        __le32 *uuid = (__le32 *)c->uuid;
 583
 584        free = ubifs_get_free_space(c);
 585        dbg_gen("free space %lld bytes (%lld blocks)",
 586                free, free >> UBIFS_BLOCK_SHIFT);
 587
 588        buf->f_type = UBIFS_SUPER_MAGIC;
 589        buf->f_bsize = UBIFS_BLOCK_SIZE;
 590        buf->f_blocks = c->block_cnt;
 591        buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
 592        if (free > c->report_rp_size)
 593                buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
 594        else
 595                buf->f_bavail = 0;
 596        buf->f_files = 0;
 597        buf->f_ffree = 0;
 598        buf->f_namelen = UBIFS_MAX_NLEN;
 599        buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
 600        buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
 601        ubifs_assert(buf->f_bfree <= c->block_cnt);
 602        return 0;
 603}
 604
 605static int ubifs_show_options(struct seq_file *s, struct dentry *root)
 606{
 607        struct ubifs_info *c = root->d_sb->s_fs_info;
 608
 609        if (c->mount_opts.unmount_mode == 2)
 610                seq_puts(s, ",fast_unmount");
 611        else if (c->mount_opts.unmount_mode == 1)
 612                seq_puts(s, ",norm_unmount");
 613
 614        if (c->mount_opts.bulk_read == 2)
 615                seq_puts(s, ",bulk_read");
 616        else if (c->mount_opts.bulk_read == 1)
 617                seq_puts(s, ",no_bulk_read");
 618
 619        if (c->mount_opts.chk_data_crc == 2)
 620                seq_puts(s, ",chk_data_crc");
 621        else if (c->mount_opts.chk_data_crc == 1)
 622                seq_puts(s, ",no_chk_data_crc");
 623
 624        if (c->mount_opts.override_compr) {
 625                seq_printf(s, ",compr=%s",
 626                           ubifs_compr_name(c->mount_opts.compr_type));
 627        }
 628
 629        return 0;
 630}
 631
 632static int ubifs_sync_fs(struct super_block *sb, int wait)
 633{
 634        int i, err;
 635        struct ubifs_info *c = sb->s_fs_info;
 636
 637        /*
 638         * Zero @wait is just an advisory thing to help the file system shove
 639         * lots of data into the queues, and there will be the second
 640         * '->sync_fs()' call, with non-zero @wait.
 641         */
 642        if (!wait)
 643                return 0;
 644
 645        /*
 646         * Synchronize write buffers, because 'ubifs_run_commit()' does not
 647         * do this if it waits for an already running commit.
 648         */
 649        for (i = 0; i < c->jhead_cnt; i++) {
 650                err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
 651                if (err)
 652                        return err;
 653        }
 654
 655        /*
 656         * Strictly speaking, it is not necessary to commit the journal here,
 657         * synchronizing write-buffers would be enough. But committing makes
 658         * UBIFS free space predictions much more accurate, so we want to let
 659         * the user be able to get more accurate results of 'statfs()' after
 660         * they synchronize the file system.
 661         */
 662        err = ubifs_run_commit(c);
 663        if (err)
 664                return err;
 665
 666        return ubi_sync(c->vi.ubi_num);
 667}
 668#endif
 669
 670/**
 671 * init_constants_early - initialize UBIFS constants.
 672 * @c: UBIFS file-system description object
 673 *
 674 * This function initialize UBIFS constants which do not need the superblock to
 675 * be read. It also checks that the UBI volume satisfies basic UBIFS
 676 * requirements. Returns zero in case of success and a negative error code in
 677 * case of failure.
 678 */
 679static int init_constants_early(struct ubifs_info *c)
 680{
 681        if (c->vi.corrupted) {
 682                ubifs_warn(c, "UBI volume is corrupted - read-only mode");
 683                c->ro_media = 1;
 684        }
 685
 686        if (c->di.ro_mode) {
 687                ubifs_msg(c, "read-only UBI device");
 688                c->ro_media = 1;
 689        }
 690
 691        if (c->vi.vol_type == UBI_STATIC_VOLUME) {
 692                ubifs_msg(c, "static UBI volume - read-only mode");
 693                c->ro_media = 1;
 694        }
 695
 696        c->leb_cnt = c->vi.size;
 697        c->leb_size = c->vi.usable_leb_size;
 698        c->leb_start = c->di.leb_start;
 699        c->half_leb_size = c->leb_size / 2;
 700        c->min_io_size = c->di.min_io_size;
 701        c->min_io_shift = fls(c->min_io_size) - 1;
 702        c->max_write_size = c->di.max_write_size;
 703        c->max_write_shift = fls(c->max_write_size) - 1;
 704
 705        if (c->leb_size < UBIFS_MIN_LEB_SZ) {
 706                ubifs_err(c, "too small LEBs (%d bytes), min. is %d bytes",
 707                          c->leb_size, UBIFS_MIN_LEB_SZ);
 708                return -EINVAL;
 709        }
 710
 711        if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
 712                ubifs_err(c, "too few LEBs (%d), min. is %d",
 713                          c->leb_cnt, UBIFS_MIN_LEB_CNT);
 714                return -EINVAL;
 715        }
 716
 717        if (!is_power_of_2(c->min_io_size)) {
 718                ubifs_err(c, "bad min. I/O size %d", c->min_io_size);
 719                return -EINVAL;
 720        }
 721
 722        /*
 723         * Maximum write size has to be greater or equivalent to min. I/O
 724         * size, and be multiple of min. I/O size.
 725         */
 726        if (c->max_write_size < c->min_io_size ||
 727            c->max_write_size % c->min_io_size ||
 728            !is_power_of_2(c->max_write_size)) {
 729                ubifs_err(c, "bad write buffer size %d for %d min. I/O unit",
 730                          c->max_write_size, c->min_io_size);
 731                return -EINVAL;
 732        }
 733
 734        /*
 735         * UBIFS aligns all node to 8-byte boundary, so to make function in
 736         * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
 737         * less than 8.
 738         */
 739        if (c->min_io_size < 8) {
 740                c->min_io_size = 8;
 741                c->min_io_shift = 3;
 742                if (c->max_write_size < c->min_io_size) {
 743                        c->max_write_size = c->min_io_size;
 744                        c->max_write_shift = c->min_io_shift;
 745                }
 746        }
 747
 748        c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
 749        c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
 750
 751        /*
 752         * Initialize node length ranges which are mostly needed for node
 753         * length validation.
 754         */
 755        c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
 756        c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
 757        c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
 758        c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
 759        c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
 760        c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
 761
 762        c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
 763        c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
 764        c->ranges[UBIFS_ORPH_NODE].min_len =
 765                                UBIFS_ORPH_NODE_SZ + sizeof(__le64);
 766        c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
 767        c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
 768        c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
 769        c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
 770        c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
 771        c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
 772        c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
 773        /*
 774         * Minimum indexing node size is amended later when superblock is
 775         * read and the key length is known.
 776         */
 777        c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
 778        /*
 779         * Maximum indexing node size is amended later when superblock is
 780         * read and the fanout is known.
 781         */
 782        c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
 783
 784        /*
 785         * Initialize dead and dark LEB space watermarks. See gc.c for comments
 786         * about these values.
 787         */
 788        c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
 789        c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
 790
 791        /*
 792         * Calculate how many bytes would be wasted at the end of LEB if it was
 793         * fully filled with data nodes of maximum size. This is used in
 794         * calculations when reporting free space.
 795         */
 796        c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
 797
 798        /* Buffer size for bulk-reads */
 799        c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
 800        if (c->max_bu_buf_len > c->leb_size)
 801                c->max_bu_buf_len = c->leb_size;
 802        return 0;
 803}
 804
 805/**
 806 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
 807 * @c: UBIFS file-system description object
 808 * @lnum: LEB the write-buffer was synchronized to
 809 * @free: how many free bytes left in this LEB
 810 * @pad: how many bytes were padded
 811 *
 812 * This is a callback function which is called by the I/O unit when the
 813 * write-buffer is synchronized. We need this to correctly maintain space
 814 * accounting in bud logical eraseblocks. This function returns zero in case of
 815 * success and a negative error code in case of failure.
 816 *
 817 * This function actually belongs to the journal, but we keep it here because
 818 * we want to keep it static.
 819 */
 820static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
 821{
 822        return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
 823}
 824
 825/*
 826 * init_constants_sb - initialize UBIFS constants.
 827 * @c: UBIFS file-system description object
 828 *
 829 * This is a helper function which initializes various UBIFS constants after
 830 * the superblock has been read. It also checks various UBIFS parameters and
 831 * makes sure they are all right. Returns zero in case of success and a
 832 * negative error code in case of failure.
 833 */
 834static int init_constants_sb(struct ubifs_info *c)
 835{
 836        int tmp, err;
 837        long long tmp64;
 838
 839        c->main_bytes = (long long)c->main_lebs * c->leb_size;
 840        c->max_znode_sz = sizeof(struct ubifs_znode) +
 841                                c->fanout * sizeof(struct ubifs_zbranch);
 842
 843        tmp = ubifs_idx_node_sz(c, 1);
 844        c->ranges[UBIFS_IDX_NODE].min_len = tmp;
 845        c->min_idx_node_sz = ALIGN(tmp, 8);
 846
 847        tmp = ubifs_idx_node_sz(c, c->fanout);
 848        c->ranges[UBIFS_IDX_NODE].max_len = tmp;
 849        c->max_idx_node_sz = ALIGN(tmp, 8);
 850
 851        /* Make sure LEB size is large enough to fit full commit */
 852        tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
 853        tmp = ALIGN(tmp, c->min_io_size);
 854        if (tmp > c->leb_size) {
 855                ubifs_err(c, "too small LEB size %d, at least %d needed",
 856                          c->leb_size, tmp);
 857                return -EINVAL;
 858        }
 859
 860        /*
 861         * Make sure that the log is large enough to fit reference nodes for
 862         * all buds plus one reserved LEB.
 863         */
 864        tmp64 = c->max_bud_bytes + c->leb_size - 1;
 865        c->max_bud_cnt = div_u64(tmp64, c->leb_size);
 866        tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
 867        tmp /= c->leb_size;
 868        tmp += 1;
 869        if (c->log_lebs < tmp) {
 870                ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
 871                          c->log_lebs, tmp);
 872                return -EINVAL;
 873        }
 874
 875        /*
 876         * When budgeting we assume worst-case scenarios when the pages are not
 877         * be compressed and direntries are of the maximum size.
 878         *
 879         * Note, data, which may be stored in inodes is budgeted separately, so
 880         * it is not included into 'c->bi.inode_budget'.
 881         */
 882        c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
 883        c->bi.inode_budget = UBIFS_INO_NODE_SZ;
 884        c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
 885
 886        /*
 887         * When the amount of flash space used by buds becomes
 888         * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
 889         * The writers are unblocked when the commit is finished. To avoid
 890         * writers to be blocked UBIFS initiates background commit in advance,
 891         * when number of bud bytes becomes above the limit defined below.
 892         */
 893        c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
 894
 895        /*
 896         * Ensure minimum journal size. All the bytes in the journal heads are
 897         * considered to be used, when calculating the current journal usage.
 898         * Consequently, if the journal is too small, UBIFS will treat it as
 899         * always full.
 900         */
 901        tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
 902        if (c->bg_bud_bytes < tmp64)
 903                c->bg_bud_bytes = tmp64;
 904        if (c->max_bud_bytes < tmp64 + c->leb_size)
 905                c->max_bud_bytes = tmp64 + c->leb_size;
 906
 907        err = ubifs_calc_lpt_geom(c);
 908        if (err)
 909                return err;
 910
 911        /* Initialize effective LEB size used in budgeting calculations */
 912        c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
 913        return 0;
 914}
 915
 916/*
 917 * init_constants_master - initialize UBIFS constants.
 918 * @c: UBIFS file-system description object
 919 *
 920 * This is a helper function which initializes various UBIFS constants after
 921 * the master node has been read. It also checks various UBIFS parameters and
 922 * makes sure they are all right.
 923 */
 924static void init_constants_master(struct ubifs_info *c)
 925{
 926        long long tmp64;
 927
 928        c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 929        c->report_rp_size = ubifs_reported_space(c, c->rp_size);
 930
 931        /*
 932         * Calculate total amount of FS blocks. This number is not used
 933         * internally because it does not make much sense for UBIFS, but it is
 934         * necessary to report something for the 'statfs()' call.
 935         *
 936         * Subtract the LEB reserved for GC, the LEB which is reserved for
 937         * deletions, minimum LEBs for the index, and assume only one journal
 938         * head is available.
 939         */
 940        tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
 941        tmp64 *= (long long)c->leb_size - c->leb_overhead;
 942        tmp64 = ubifs_reported_space(c, tmp64);
 943        c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
 944}
 945
 946/**
 947 * take_gc_lnum - reserve GC LEB.
 948 * @c: UBIFS file-system description object
 949 *
 950 * This function ensures that the LEB reserved for garbage collection is marked
 951 * as "taken" in lprops. We also have to set free space to LEB size and dirty
 952 * space to zero, because lprops may contain out-of-date information if the
 953 * file-system was un-mounted before it has been committed. This function
 954 * returns zero in case of success and a negative error code in case of
 955 * failure.
 956 */
 957static int take_gc_lnum(struct ubifs_info *c)
 958{
 959        int err;
 960
 961        if (c->gc_lnum == -1) {
 962                ubifs_err(c, "no LEB for GC");
 963                return -EINVAL;
 964        }
 965
 966        /* And we have to tell lprops that this LEB is taken */
 967        err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
 968                                  LPROPS_TAKEN, 0, 0);
 969        return err;
 970}
 971
 972/**
 973 * alloc_wbufs - allocate write-buffers.
 974 * @c: UBIFS file-system description object
 975 *
 976 * This helper function allocates and initializes UBIFS write-buffers. Returns
 977 * zero in case of success and %-ENOMEM in case of failure.
 978 */
 979static int alloc_wbufs(struct ubifs_info *c)
 980{
 981        int i, err;
 982
 983        c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
 984                            GFP_KERNEL);
 985        if (!c->jheads)
 986                return -ENOMEM;
 987
 988        /* Initialize journal heads */
 989        for (i = 0; i < c->jhead_cnt; i++) {
 990                INIT_LIST_HEAD(&c->jheads[i].buds_list);
 991                err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
 992                if (err)
 993                        return err;
 994
 995                c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
 996                c->jheads[i].wbuf.jhead = i;
 997                c->jheads[i].grouped = 1;
 998        }
 999
1000        /*
1001         * Garbage Collector head does not need to be synchronized by timer.
1002         * Also GC head nodes are not grouped.
1003         */
1004        c->jheads[GCHD].wbuf.no_timer = 1;
1005        c->jheads[GCHD].grouped = 0;
1006
1007        return 0;
1008}
1009
1010/**
1011 * free_wbufs - free write-buffers.
1012 * @c: UBIFS file-system description object
1013 */
1014static void free_wbufs(struct ubifs_info *c)
1015{
1016        int i;
1017
1018        if (c->jheads) {
1019                for (i = 0; i < c->jhead_cnt; i++) {
1020                        kfree(c->jheads[i].wbuf.buf);
1021                        kfree(c->jheads[i].wbuf.inodes);
1022                }
1023                kfree(c->jheads);
1024                c->jheads = NULL;
1025        }
1026}
1027
1028/**
1029 * free_orphans - free orphans.
1030 * @c: UBIFS file-system description object
1031 */
1032static void free_orphans(struct ubifs_info *c)
1033{
1034        struct ubifs_orphan *orph;
1035
1036        while (c->orph_dnext) {
1037                orph = c->orph_dnext;
1038                c->orph_dnext = orph->dnext;
1039                list_del(&orph->list);
1040                kfree(orph);
1041        }
1042
1043        while (!list_empty(&c->orph_list)) {
1044                orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
1045                list_del(&orph->list);
1046                kfree(orph);
1047                ubifs_err(c, "orphan list not empty at unmount");
1048        }
1049
1050        vfree(c->orph_buf);
1051        c->orph_buf = NULL;
1052}
1053
1054/**
1055 * free_buds - free per-bud objects.
1056 * @c: UBIFS file-system description object
1057 */
1058static void free_buds(struct ubifs_info *c)
1059{
1060        struct ubifs_bud *bud, *n;
1061
1062        rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
1063                kfree(bud);
1064}
1065
1066/**
1067 * check_volume_empty - check if the UBI volume is empty.
1068 * @c: UBIFS file-system description object
1069 *
1070 * This function checks if the UBIFS volume is empty by looking if its LEBs are
1071 * mapped or not. The result of checking is stored in the @c->empty variable.
1072 * Returns zero in case of success and a negative error code in case of
1073 * failure.
1074 */
1075static int check_volume_empty(struct ubifs_info *c)
1076{
1077        int lnum, err;
1078
1079        c->empty = 1;
1080        for (lnum = 0; lnum < c->leb_cnt; lnum++) {
1081                err = ubifs_is_mapped(c, lnum);
1082                if (unlikely(err < 0))
1083                        return err;
1084                if (err == 1) {
1085                        c->empty = 0;
1086                        break;
1087                }
1088
1089                cond_resched();
1090        }
1091
1092        return 0;
1093}
1094
1095/*
1096 * UBIFS mount options.
1097 *
1098 * Opt_fast_unmount: do not run a journal commit before un-mounting
1099 * Opt_norm_unmount: run a journal commit before un-mounting
1100 * Opt_bulk_read: enable bulk-reads
1101 * Opt_no_bulk_read: disable bulk-reads
1102 * Opt_chk_data_crc: check CRCs when reading data nodes
1103 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
1104 * Opt_override_compr: override default compressor
1105 * Opt_err: just end of array marker
1106 */
1107enum {
1108        Opt_fast_unmount,
1109        Opt_norm_unmount,
1110        Opt_bulk_read,
1111        Opt_no_bulk_read,
1112        Opt_chk_data_crc,
1113        Opt_no_chk_data_crc,
1114        Opt_override_compr,
1115        Opt_err,
1116};
1117
1118#ifndef __UBOOT__
1119static const match_table_t tokens = {
1120        {Opt_fast_unmount, "fast_unmount"},
1121        {Opt_norm_unmount, "norm_unmount"},
1122        {Opt_bulk_read, "bulk_read"},
1123        {Opt_no_bulk_read, "no_bulk_read"},
1124        {Opt_chk_data_crc, "chk_data_crc"},
1125        {Opt_no_chk_data_crc, "no_chk_data_crc"},
1126        {Opt_override_compr, "compr=%s"},
1127        {Opt_err, NULL},
1128};
1129
1130/**
1131 * parse_standard_option - parse a standard mount option.
1132 * @option: the option to parse
1133 *
1134 * Normally, standard mount options like "sync" are passed to file-systems as
1135 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
1136 * be present in the options string. This function tries to deal with this
1137 * situation and parse standard options. Returns 0 if the option was not
1138 * recognized, and the corresponding integer flag if it was.
1139 *
1140 * UBIFS is only interested in the "sync" option, so do not check for anything
1141 * else.
1142 */
1143static int parse_standard_option(const char *option)
1144{
1145
1146        pr_notice("UBIFS: parse %s\n", option);
1147        if (!strcmp(option, "sync"))
1148                return MS_SYNCHRONOUS;
1149        return 0;
1150}
1151
1152/**
1153 * ubifs_parse_options - parse mount parameters.
1154 * @c: UBIFS file-system description object
1155 * @options: parameters to parse
1156 * @is_remount: non-zero if this is FS re-mount
1157 *
1158 * This function parses UBIFS mount options and returns zero in case success
1159 * and a negative error code in case of failure.
1160 */
1161static int ubifs_parse_options(struct ubifs_info *c, char *options,
1162                               int is_remount)
1163{
1164        char *p;
1165        substring_t args[MAX_OPT_ARGS];
1166
1167        if (!options)
1168                return 0;
1169
1170        while ((p = strsep(&options, ","))) {
1171                int token;
1172
1173                if (!*p)
1174                        continue;
1175
1176                token = match_token(p, tokens, args);
1177                switch (token) {
1178                /*
1179                 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1180                 * We accept them in order to be backward-compatible. But this
1181                 * should be removed at some point.
1182                 */
1183                case Opt_fast_unmount:
1184                        c->mount_opts.unmount_mode = 2;
1185                        break;
1186                case Opt_norm_unmount:
1187                        c->mount_opts.unmount_mode = 1;
1188                        break;
1189                case Opt_bulk_read:
1190                        c->mount_opts.bulk_read = 2;
1191                        c->bulk_read = 1;
1192                        break;
1193                case Opt_no_bulk_read:
1194                        c->mount_opts.bulk_read = 1;
1195                        c->bulk_read = 0;
1196                        break;
1197                case Opt_chk_data_crc:
1198                        c->mount_opts.chk_data_crc = 2;
1199                        c->no_chk_data_crc = 0;
1200                        break;
1201                case Opt_no_chk_data_crc:
1202                        c->mount_opts.chk_data_crc = 1;
1203                        c->no_chk_data_crc = 1;
1204                        break;
1205                case Opt_override_compr:
1206                {
1207                        char *name = match_strdup(&args[0]);
1208
1209                        if (!name)
1210                                return -ENOMEM;
1211                        if (!strcmp(name, "none"))
1212                                c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1213                        else if (!strcmp(name, "lzo"))
1214                                c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1215                        else if (!strcmp(name, "zlib"))
1216                                c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1217                        else {
1218                                ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1219                                kfree(name);
1220                                return -EINVAL;
1221                        }
1222                        kfree(name);
1223                        c->mount_opts.override_compr = 1;
1224                        c->default_compr = c->mount_opts.compr_type;
1225                        break;
1226                }
1227                default:
1228                {
1229                        unsigned long flag;
1230                        struct super_block *sb = c->vfs_sb;
1231
1232                        flag = parse_standard_option(p);
1233                        if (!flag) {
1234                                ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1235                                          p);
1236                                return -EINVAL;
1237                        }
1238                        sb->s_flags |= flag;
1239                        break;
1240                }
1241                }
1242        }
1243
1244        return 0;
1245}
1246#endif
1247
1248/**
1249 * destroy_journal - destroy journal data structures.
1250 * @c: UBIFS file-system description object
1251 *
1252 * This function destroys journal data structures including those that may have
1253 * been created by recovery functions.
1254 */
1255static void destroy_journal(struct ubifs_info *c)
1256{
1257        while (!list_empty(&c->unclean_leb_list)) {
1258                struct ubifs_unclean_leb *ucleb;
1259
1260                ucleb = list_entry(c->unclean_leb_list.next,
1261                                   struct ubifs_unclean_leb, list);
1262                list_del(&ucleb->list);
1263                kfree(ucleb);
1264        }
1265        while (!list_empty(&c->old_buds)) {
1266                struct ubifs_bud *bud;
1267
1268                bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1269                list_del(&bud->list);
1270                kfree(bud);
1271        }
1272        ubifs_destroy_idx_gc(c);
1273        ubifs_destroy_size_tree(c);
1274        ubifs_tnc_close(c);
1275        free_buds(c);
1276}
1277
1278/**
1279 * bu_init - initialize bulk-read information.
1280 * @c: UBIFS file-system description object
1281 */
1282static void bu_init(struct ubifs_info *c)
1283{
1284        ubifs_assert(c->bulk_read == 1);
1285
1286        if (c->bu.buf)
1287                return; /* Already initialized */
1288
1289again:
1290        c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1291        if (!c->bu.buf) {
1292                if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1293                        c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1294                        goto again;
1295                }
1296
1297                /* Just disable bulk-read */
1298                ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1299                           c->max_bu_buf_len);
1300                c->mount_opts.bulk_read = 1;
1301                c->bulk_read = 0;
1302                return;
1303        }
1304}
1305
1306#ifndef __UBOOT__
1307/**
1308 * check_free_space - check if there is enough free space to mount.
1309 * @c: UBIFS file-system description object
1310 *
1311 * This function makes sure UBIFS has enough free space to be mounted in
1312 * read/write mode. UBIFS must always have some free space to allow deletions.
1313 */
1314static int check_free_space(struct ubifs_info *c)
1315{
1316        ubifs_assert(c->dark_wm > 0);
1317        if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1318                ubifs_err(c, "insufficient free space to mount in R/W mode");
1319                ubifs_dump_budg(c, &c->bi);
1320                ubifs_dump_lprops(c);
1321                return -ENOSPC;
1322        }
1323        return 0;
1324}
1325#endif
1326
1327/**
1328 * mount_ubifs - mount UBIFS file-system.
1329 * @c: UBIFS file-system description object
1330 *
1331 * This function mounts UBIFS file system. Returns zero in case of success and
1332 * a negative error code in case of failure.
1333 */
1334static int mount_ubifs(struct ubifs_info *c)
1335{
1336        int err;
1337        long long x, y;
1338        size_t sz;
1339
1340        c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1341        /* Suppress error messages while probing if MS_SILENT is set */
1342        c->probing = !!(c->vfs_sb->s_flags & MS_SILENT);
1343#ifdef __UBOOT__
1344        if (!c->ro_mount) {
1345                printf("UBIFS: only ro mode in U-Boot allowed.\n");
1346                return -EACCES;
1347        }
1348#endif
1349
1350        err = init_constants_early(c);
1351        if (err)
1352                return err;
1353
1354        err = ubifs_debugging_init(c);
1355        if (err)
1356                return err;
1357
1358        err = check_volume_empty(c);
1359        if (err)
1360                goto out_free;
1361
1362        if (c->empty && (c->ro_mount || c->ro_media)) {
1363                /*
1364                 * This UBI volume is empty, and read-only, or the file system
1365                 * is mounted read-only - we cannot format it.
1366                 */
1367                ubifs_err(c, "can't format empty UBI volume: read-only %s",
1368                          c->ro_media ? "UBI volume" : "mount");
1369                err = -EROFS;
1370                goto out_free;
1371        }
1372
1373        if (c->ro_media && !c->ro_mount) {
1374                ubifs_err(c, "cannot mount read-write - read-only media");
1375                err = -EROFS;
1376                goto out_free;
1377        }
1378
1379        /*
1380         * The requirement for the buffer is that it should fit indexing B-tree
1381         * height amount of integers. We assume the height if the TNC tree will
1382         * never exceed 64.
1383         */
1384        err = -ENOMEM;
1385        c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1386        if (!c->bottom_up_buf)
1387                goto out_free;
1388
1389        c->sbuf = vmalloc(c->leb_size);
1390        if (!c->sbuf)
1391                goto out_free;
1392
1393#ifndef __UBOOT__
1394        if (!c->ro_mount) {
1395                c->ileb_buf = vmalloc(c->leb_size);
1396                if (!c->ileb_buf)
1397                        goto out_free;
1398        }
1399#endif
1400
1401        if (c->bulk_read == 1)
1402                bu_init(c);
1403
1404#ifndef __UBOOT__
1405        if (!c->ro_mount) {
1406                c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
1407                                               GFP_KERNEL);
1408                if (!c->write_reserve_buf)
1409                        goto out_free;
1410        }
1411#endif
1412
1413        c->mounting = 1;
1414
1415        err = ubifs_read_superblock(c);
1416        if (err)
1417                goto out_free;
1418
1419        c->probing = 0;
1420
1421        /*
1422         * Make sure the compressor which is set as default in the superblock
1423         * or overridden by mount options is actually compiled in.
1424         */
1425        if (!ubifs_compr_present(c->default_compr)) {
1426                ubifs_err(c, "'compressor \"%s\" is not compiled in",
1427                          ubifs_compr_name(c->default_compr));
1428                err = -ENOTSUPP;
1429                goto out_free;
1430        }
1431
1432        err = init_constants_sb(c);
1433        if (err)
1434                goto out_free;
1435
1436        sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1437        sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1438        c->cbuf = kmalloc(sz, GFP_NOFS);
1439        if (!c->cbuf) {
1440                err = -ENOMEM;
1441                goto out_free;
1442        }
1443
1444        err = alloc_wbufs(c);
1445        if (err)
1446                goto out_cbuf;
1447
1448        sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1449#ifndef __UBOOT__
1450        if (!c->ro_mount) {
1451                /* Create background thread */
1452                c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1453                if (IS_ERR(c->bgt)) {
1454                        err = PTR_ERR(c->bgt);
1455                        c->bgt = NULL;
1456                        ubifs_err(c, "cannot spawn \"%s\", error %d",
1457                                  c->bgt_name, err);
1458                        goto out_wbufs;
1459                }
1460                wake_up_process(c->bgt);
1461        }
1462#endif
1463
1464        err = ubifs_read_master(c);
1465        if (err)
1466                goto out_master;
1467
1468        init_constants_master(c);
1469
1470        if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1471                ubifs_msg(c, "recovery needed");
1472                c->need_recovery = 1;
1473        }
1474
1475#ifndef __UBOOT__
1476        if (c->need_recovery && !c->ro_mount) {
1477                err = ubifs_recover_inl_heads(c, c->sbuf);
1478                if (err)
1479                        goto out_master;
1480        }
1481#endif
1482
1483        err = ubifs_lpt_init(c, 1, !c->ro_mount);
1484        if (err)
1485                goto out_master;
1486
1487#ifndef __UBOOT__
1488        if (!c->ro_mount && c->space_fixup) {
1489                err = ubifs_fixup_free_space(c);
1490                if (err)
1491                        goto out_lpt;
1492        }
1493
1494        if (!c->ro_mount && !c->need_recovery) {
1495                /*
1496                 * Set the "dirty" flag so that if we reboot uncleanly we
1497                 * will notice this immediately on the next mount.
1498                 */
1499                c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1500                err = ubifs_write_master(c);
1501                if (err)
1502                        goto out_lpt;
1503        }
1504#endif
1505
1506        err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1507        if (err)
1508                goto out_lpt;
1509
1510        err = ubifs_replay_journal(c);
1511        if (err)
1512                goto out_journal;
1513
1514        /* Calculate 'min_idx_lebs' after journal replay */
1515        c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1516
1517        err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1518        if (err)
1519                goto out_orphans;
1520
1521        if (!c->ro_mount) {
1522#ifndef __UBOOT__
1523                int lnum;
1524
1525                err = check_free_space(c);
1526                if (err)
1527                        goto out_orphans;
1528
1529                /* Check for enough log space */
1530                lnum = c->lhead_lnum + 1;
1531                if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1532                        lnum = UBIFS_LOG_LNUM;
1533                if (lnum == c->ltail_lnum) {
1534                        err = ubifs_consolidate_log(c);
1535                        if (err)
1536                                goto out_orphans;
1537                }
1538
1539                if (c->need_recovery) {
1540                        err = ubifs_recover_size(c);
1541                        if (err)
1542                                goto out_orphans;
1543                        err = ubifs_rcvry_gc_commit(c);
1544                        if (err)
1545                                goto out_orphans;
1546                } else {
1547                        err = take_gc_lnum(c);
1548                        if (err)
1549                                goto out_orphans;
1550
1551                        /*
1552                         * GC LEB may contain garbage if there was an unclean
1553                         * reboot, and it should be un-mapped.
1554                         */
1555                        err = ubifs_leb_unmap(c, c->gc_lnum);
1556                        if (err)
1557                                goto out_orphans;
1558                }
1559
1560                err = dbg_check_lprops(c);
1561                if (err)
1562                        goto out_orphans;
1563#endif
1564        } else if (c->need_recovery) {
1565                err = ubifs_recover_size(c);
1566                if (err)
1567                        goto out_orphans;
1568        } else {
1569                /*
1570                 * Even if we mount read-only, we have to set space in GC LEB
1571                 * to proper value because this affects UBIFS free space
1572                 * reporting. We do not want to have a situation when
1573                 * re-mounting from R/O to R/W changes amount of free space.
1574                 */
1575                err = take_gc_lnum(c);
1576                if (err)
1577                        goto out_orphans;
1578        }
1579
1580#ifndef __UBOOT__
1581        spin_lock(&ubifs_infos_lock);
1582        list_add_tail(&c->infos_list, &ubifs_infos);
1583        spin_unlock(&ubifs_infos_lock);
1584#endif
1585
1586        if (c->need_recovery) {
1587                if (c->ro_mount)
1588                        ubifs_msg(c, "recovery deferred");
1589                else {
1590                        c->need_recovery = 0;
1591                        ubifs_msg(c, "recovery completed");
1592                        /*
1593                         * GC LEB has to be empty and taken at this point. But
1594                         * the journal head LEBs may also be accounted as
1595                         * "empty taken" if they are empty.
1596                         */
1597                        ubifs_assert(c->lst.taken_empty_lebs > 0);
1598                }
1599        } else
1600                ubifs_assert(c->lst.taken_empty_lebs > 0);
1601
1602        err = dbg_check_filesystem(c);
1603        if (err)
1604                goto out_infos;
1605
1606        err = dbg_debugfs_init_fs(c);
1607        if (err)
1608                goto out_infos;
1609
1610        c->mounting = 0;
1611
1612        ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1613                  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1614                  c->ro_mount ? ", R/O mode" : "");
1615        x = (long long)c->main_lebs * c->leb_size;
1616        y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1617        ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1618                  c->leb_size, c->leb_size >> 10, c->min_io_size,
1619                  c->max_write_size);
1620        ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1621                  x, x >> 20, c->main_lebs,
1622                  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1623        ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1624                  c->report_rp_size, c->report_rp_size >> 10);
1625        ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1626                  c->fmt_version, c->ro_compat_version,
1627                  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1628                  c->big_lpt ? ", big LPT model" : ", small LPT model");
1629
1630        dbg_gen("default compressor:  %s", ubifs_compr_name(c->default_compr));
1631        dbg_gen("data journal heads:  %d",
1632                c->jhead_cnt - NONDATA_JHEADS_CNT);
1633        dbg_gen("log LEBs:            %d (%d - %d)",
1634                c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1635        dbg_gen("LPT area LEBs:       %d (%d - %d)",
1636                c->lpt_lebs, c->lpt_first, c->lpt_last);
1637        dbg_gen("orphan area LEBs:    %d (%d - %d)",
1638                c->orph_lebs, c->orph_first, c->orph_last);
1639        dbg_gen("main area LEBs:      %d (%d - %d)",
1640                c->main_lebs, c->main_first, c->leb_cnt - 1);
1641        dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1642        dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1643                c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1644                c->bi.old_idx_sz >> 20);
1645        dbg_gen("key hash type:       %d", c->key_hash_type);
1646        dbg_gen("tree fanout:         %d", c->fanout);
1647        dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1648        dbg_gen("max. znode size      %d", c->max_znode_sz);
1649        dbg_gen("max. index node size %d", c->max_idx_node_sz);
1650        dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1651                UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1652        dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1653                UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1654        dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1655                UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1656        dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1657                UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1658                UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1659        dbg_gen("dead watermark:      %d", c->dead_wm);
1660        dbg_gen("dark watermark:      %d", c->dark_wm);
1661        dbg_gen("LEB overhead:        %d", c->leb_overhead);
1662        x = (long long)c->main_lebs * c->dark_wm;
1663        dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1664                x, x >> 10, x >> 20);
1665        dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1666                c->max_bud_bytes, c->max_bud_bytes >> 10,
1667                c->max_bud_bytes >> 20);
1668        dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1669                c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1670                c->bg_bud_bytes >> 20);
1671        dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1672                c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1673        dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1674        dbg_gen("commit number:       %llu", c->cmt_no);
1675
1676        return 0;
1677
1678out_infos:
1679        spin_lock(&ubifs_infos_lock);
1680        list_del(&c->infos_list);
1681        spin_unlock(&ubifs_infos_lock);
1682out_orphans:
1683        free_orphans(c);
1684out_journal:
1685        destroy_journal(c);
1686out_lpt:
1687        ubifs_lpt_free(c, 0);
1688out_master:
1689        kfree(c->mst_node);
1690        kfree(c->rcvrd_mst_node);
1691        if (c->bgt)
1692                kthread_stop(c->bgt);
1693#ifndef __UBOOT__
1694out_wbufs:
1695#endif
1696        free_wbufs(c);
1697out_cbuf:
1698        kfree(c->cbuf);
1699out_free:
1700        kfree(c->write_reserve_buf);
1701        kfree(c->bu.buf);
1702        vfree(c->ileb_buf);
1703        vfree(c->sbuf);
1704        kfree(c->bottom_up_buf);
1705        ubifs_debugging_exit(c);
1706        return err;
1707}
1708
1709/**
1710 * ubifs_umount - un-mount UBIFS file-system.
1711 * @c: UBIFS file-system description object
1712 *
1713 * Note, this function is called to free allocated resourced when un-mounting,
1714 * as well as free resources when an error occurred while we were half way
1715 * through mounting (error path cleanup function). So it has to make sure the
1716 * resource was actually allocated before freeing it.
1717 */
1718#ifndef __UBOOT__
1719static void ubifs_umount(struct ubifs_info *c)
1720#else
1721void ubifs_umount(struct ubifs_info *c)
1722#endif
1723{
1724        dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1725                c->vi.vol_id);
1726
1727        dbg_debugfs_exit_fs(c);
1728        spin_lock(&ubifs_infos_lock);
1729        list_del(&c->infos_list);
1730        spin_unlock(&ubifs_infos_lock);
1731
1732#ifndef __UBOOT__
1733        if (c->bgt)
1734                kthread_stop(c->bgt);
1735
1736        destroy_journal(c);
1737#endif
1738        free_wbufs(c);
1739        free_orphans(c);
1740        ubifs_lpt_free(c, 0);
1741
1742        kfree(c->cbuf);
1743        kfree(c->rcvrd_mst_node);
1744        kfree(c->mst_node);
1745        kfree(c->write_reserve_buf);
1746        kfree(c->bu.buf);
1747        vfree(c->ileb_buf);
1748        vfree(c->sbuf);
1749        kfree(c->bottom_up_buf);
1750        ubifs_debugging_exit(c);
1751#ifdef __UBOOT__
1752        /* Finally free U-Boot's global copy of superblock */
1753        if (ubifs_sb != NULL) {
1754                free(ubifs_sb->s_fs_info);
1755                free(ubifs_sb);
1756        }
1757#endif
1758}
1759
1760#ifndef __UBOOT__
1761/**
1762 * ubifs_remount_rw - re-mount in read-write mode.
1763 * @c: UBIFS file-system description object
1764 *
1765 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1766 * mode. This function allocates the needed resources and re-mounts UBIFS in
1767 * read-write mode.
1768 */
1769static int ubifs_remount_rw(struct ubifs_info *c)
1770{
1771        int err, lnum;
1772
1773        if (c->rw_incompat) {
1774                ubifs_err(c, "the file-system is not R/W-compatible");
1775                ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1776                          c->fmt_version, c->ro_compat_version,
1777                          UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1778                return -EROFS;
1779        }
1780
1781        mutex_lock(&c->umount_mutex);
1782        dbg_save_space_info(c);
1783        c->remounting_rw = 1;
1784        c->ro_mount = 0;
1785
1786        if (c->space_fixup) {
1787                err = ubifs_fixup_free_space(c);
1788                if (err)
1789                        goto out;
1790        }
1791
1792        err = check_free_space(c);
1793        if (err)
1794                goto out;
1795
1796        if (c->old_leb_cnt != c->leb_cnt) {
1797                struct ubifs_sb_node *sup;
1798
1799                sup = ubifs_read_sb_node(c);
1800                if (IS_ERR(sup)) {
1801                        err = PTR_ERR(sup);
1802                        goto out;
1803                }
1804                sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1805                err = ubifs_write_sb_node(c, sup);
1806                kfree(sup);
1807                if (err)
1808                        goto out;
1809        }
1810
1811        if (c->need_recovery) {
1812                ubifs_msg(c, "completing deferred recovery");
1813                err = ubifs_write_rcvrd_mst_node(c);
1814                if (err)
1815                        goto out;
1816                err = ubifs_recover_size(c);
1817                if (err)
1818                        goto out;
1819                err = ubifs_clean_lebs(c, c->sbuf);
1820                if (err)
1821                        goto out;
1822                err = ubifs_recover_inl_heads(c, c->sbuf);
1823                if (err)
1824                        goto out;
1825        } else {
1826                /* A readonly mount is not allowed to have orphans */
1827                ubifs_assert(c->tot_orphans == 0);
1828                err = ubifs_clear_orphans(c);
1829                if (err)
1830                        goto out;
1831        }
1832
1833        if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1834                c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1835                err = ubifs_write_master(c);
1836                if (err)
1837                        goto out;
1838        }
1839
1840        c->ileb_buf = vmalloc(c->leb_size);
1841        if (!c->ileb_buf) {
1842                err = -ENOMEM;
1843                goto out;
1844        }
1845
1846        c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
1847        if (!c->write_reserve_buf) {
1848                err = -ENOMEM;
1849                goto out;
1850        }
1851
1852        err = ubifs_lpt_init(c, 0, 1);
1853        if (err)
1854                goto out;
1855
1856        /* Create background thread */
1857        c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1858        if (IS_ERR(c->bgt)) {
1859                err = PTR_ERR(c->bgt);
1860                c->bgt = NULL;
1861                ubifs_err(c, "cannot spawn \"%s\", error %d",
1862                          c->bgt_name, err);
1863                goto out;
1864        }
1865        wake_up_process(c->bgt);
1866
1867        c->orph_buf = vmalloc(c->leb_size);
1868        if (!c->orph_buf) {
1869                err = -ENOMEM;
1870                goto out;
1871        }
1872
1873        /* Check for enough log space */
1874        lnum = c->lhead_lnum + 1;
1875        if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1876                lnum = UBIFS_LOG_LNUM;
1877        if (lnum == c->ltail_lnum) {
1878                err = ubifs_consolidate_log(c);
1879                if (err)
1880                        goto out;
1881        }
1882
1883        if (c->need_recovery)
1884                err = ubifs_rcvry_gc_commit(c);
1885        else
1886                err = ubifs_leb_unmap(c, c->gc_lnum);
1887        if (err)
1888                goto out;
1889
1890        dbg_gen("re-mounted read-write");
1891        c->remounting_rw = 0;
1892
1893        if (c->need_recovery) {
1894                c->need_recovery = 0;
1895                ubifs_msg(c, "deferred recovery completed");
1896        } else {
1897                /*
1898                 * Do not run the debugging space check if the were doing
1899                 * recovery, because when we saved the information we had the
1900                 * file-system in a state where the TNC and lprops has been
1901                 * modified in memory, but all the I/O operations (including a
1902                 * commit) were deferred. So the file-system was in
1903                 * "non-committed" state. Now the file-system is in committed
1904                 * state, and of course the amount of free space will change
1905                 * because, for example, the old index size was imprecise.
1906                 */
1907                err = dbg_check_space_info(c);
1908        }
1909
1910        mutex_unlock(&c->umount_mutex);
1911        return err;
1912
1913out:
1914        c->ro_mount = 1;
1915        vfree(c->orph_buf);
1916        c->orph_buf = NULL;
1917        if (c->bgt) {
1918                kthread_stop(c->bgt);
1919                c->bgt = NULL;
1920        }
1921        free_wbufs(c);
1922        kfree(c->write_reserve_buf);
1923        c->write_reserve_buf = NULL;
1924        vfree(c->ileb_buf);
1925        c->ileb_buf = NULL;
1926        ubifs_lpt_free(c, 1);
1927        c->remounting_rw = 0;
1928        mutex_unlock(&c->umount_mutex);
1929        return err;
1930}
1931
1932/**
1933 * ubifs_remount_ro - re-mount in read-only mode.
1934 * @c: UBIFS file-system description object
1935 *
1936 * We assume VFS has stopped writing. Possibly the background thread could be
1937 * running a commit, however kthread_stop will wait in that case.
1938 */
1939static void ubifs_remount_ro(struct ubifs_info *c)
1940{
1941        int i, err;
1942
1943        ubifs_assert(!c->need_recovery);
1944        ubifs_assert(!c->ro_mount);
1945
1946        mutex_lock(&c->umount_mutex);
1947        if (c->bgt) {
1948                kthread_stop(c->bgt);
1949                c->bgt = NULL;
1950        }
1951
1952        dbg_save_space_info(c);
1953
1954        for (i = 0; i < c->jhead_cnt; i++)
1955                ubifs_wbuf_sync(&c->jheads[i].wbuf);
1956
1957        c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1958        c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1959        c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1960        err = ubifs_write_master(c);
1961        if (err)
1962                ubifs_ro_mode(c, err);
1963
1964        vfree(c->orph_buf);
1965        c->orph_buf = NULL;
1966        kfree(c->write_reserve_buf);
1967        c->write_reserve_buf = NULL;
1968        vfree(c->ileb_buf);
1969        c->ileb_buf = NULL;
1970        ubifs_lpt_free(c, 1);
1971        c->ro_mount = 1;
1972        err = dbg_check_space_info(c);
1973        if (err)
1974                ubifs_ro_mode(c, err);
1975        mutex_unlock(&c->umount_mutex);
1976}
1977
1978static void ubifs_put_super(struct super_block *sb)
1979{
1980        int i;
1981        struct ubifs_info *c = sb->s_fs_info;
1982
1983        ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1984
1985        /*
1986         * The following asserts are only valid if there has not been a failure
1987         * of the media. For example, there will be dirty inodes if we failed
1988         * to write them back because of I/O errors.
1989         */
1990        if (!c->ro_error) {
1991                ubifs_assert(c->bi.idx_growth == 0);
1992                ubifs_assert(c->bi.dd_growth == 0);
1993                ubifs_assert(c->bi.data_growth == 0);
1994        }
1995
1996        /*
1997         * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1998         * and file system un-mount. Namely, it prevents the shrinker from
1999         * picking this superblock for shrinking - it will be just skipped if
2000         * the mutex is locked.
2001         */
2002        mutex_lock(&c->umount_mutex);
2003        if (!c->ro_mount) {
2004                /*
2005                 * First of all kill the background thread to make sure it does
2006                 * not interfere with un-mounting and freeing resources.
2007                 */
2008                if (c->bgt) {
2009                        kthread_stop(c->bgt);
2010                        c->bgt = NULL;
2011                }
2012
2013                /*
2014                 * On fatal errors c->ro_error is set to 1, in which case we do
2015                 * not write the master node.
2016                 */
2017                if (!c->ro_error) {
2018                        int err;
2019
2020                        /* Synchronize write-buffers */
2021                        for (i = 0; i < c->jhead_cnt; i++)
2022                                ubifs_wbuf_sync(&c->jheads[i].wbuf);
2023
2024                        /*
2025                         * We are being cleanly unmounted which means the
2026                         * orphans were killed - indicate this in the master
2027                         * node. Also save the reserved GC LEB number.
2028                         */
2029                        c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
2030                        c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
2031                        c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
2032                        err = ubifs_write_master(c);
2033                        if (err)
2034                                /*
2035                                 * Recovery will attempt to fix the master area
2036                                 * next mount, so we just print a message and
2037                                 * continue to unmount normally.
2038                                 */
2039                                ubifs_err(c, "failed to write master node, error %d",
2040                                          err);
2041                } else {
2042#ifndef __UBOOT__
2043                        for (i = 0; i < c->jhead_cnt; i++)
2044                                /* Make sure write-buffer timers are canceled */
2045                                hrtimer_cancel(&c->jheads[i].wbuf.timer);
2046#endif
2047                }
2048        }
2049
2050        ubifs_umount(c);
2051#ifndef __UBOOT__
2052        bdi_destroy(&c->bdi);
2053#endif
2054        ubi_close_volume(c->ubi);
2055        mutex_unlock(&c->umount_mutex);
2056}
2057#endif
2058
2059#ifndef __UBOOT__
2060static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
2061{
2062        int err;
2063        struct ubifs_info *c = sb->s_fs_info;
2064
2065        sync_filesystem(sb);
2066        dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
2067
2068        err = ubifs_parse_options(c, data, 1);
2069        if (err) {
2070                ubifs_err(c, "invalid or unknown remount parameter");
2071                return err;
2072        }
2073
2074        if (c->ro_mount && !(*flags & MS_RDONLY)) {
2075                if (c->ro_error) {
2076                        ubifs_msg(c, "cannot re-mount R/W due to prior errors");
2077                        return -EROFS;
2078                }
2079                if (c->ro_media) {
2080                        ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
2081                        return -EROFS;
2082                }
2083                err = ubifs_remount_rw(c);
2084                if (err)
2085                        return err;
2086        } else if (!c->ro_mount && (*flags & MS_RDONLY)) {
2087                if (c->ro_error) {
2088                        ubifs_msg(c, "cannot re-mount R/O due to prior errors");
2089                        return -EROFS;
2090                }
2091                ubifs_remount_ro(c);
2092        }
2093
2094        if (c->bulk_read == 1)
2095                bu_init(c);
2096        else {
2097                dbg_gen("disable bulk-read");
2098                kfree(c->bu.buf);
2099                c->bu.buf = NULL;
2100        }
2101
2102        ubifs_assert(c->lst.taken_empty_lebs > 0);
2103        return 0;
2104}
2105#endif
2106
2107const struct super_operations ubifs_super_operations = {
2108        .alloc_inode   = ubifs_alloc_inode,
2109#ifndef __UBOOT__
2110        .destroy_inode = ubifs_destroy_inode,
2111        .put_super     = ubifs_put_super,
2112        .write_inode   = ubifs_write_inode,
2113        .evict_inode   = ubifs_evict_inode,
2114        .statfs        = ubifs_statfs,
2115#endif
2116        .dirty_inode   = ubifs_dirty_inode,
2117#ifndef __UBOOT__
2118        .remount_fs    = ubifs_remount_fs,
2119        .show_options  = ubifs_show_options,
2120        .sync_fs       = ubifs_sync_fs,
2121#endif
2122};
2123
2124/**
2125 * open_ubi - parse UBI device name string and open the UBI device.
2126 * @name: UBI volume name
2127 * @mode: UBI volume open mode
2128 *
2129 * The primary method of mounting UBIFS is by specifying the UBI volume
2130 * character device node path. However, UBIFS may also be mounted withoug any
2131 * character device node using one of the following methods:
2132 *
2133 * o ubiX_Y    - mount UBI device number X, volume Y;
2134 * o ubiY      - mount UBI device number 0, volume Y;
2135 * o ubiX:NAME - mount UBI device X, volume with name NAME;
2136 * o ubi:NAME  - mount UBI device 0, volume with name NAME.
2137 *
2138 * Alternative '!' separator may be used instead of ':' (because some shells
2139 * like busybox may interpret ':' as an NFS host name separator). This function
2140 * returns UBI volume description object in case of success and a negative
2141 * error code in case of failure.
2142 */
2143static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2144{
2145#ifndef __UBOOT__
2146        struct ubi_volume_desc *ubi;
2147#endif
2148        int dev, vol;
2149        char *endptr;
2150
2151#ifndef __UBOOT__
2152        /* First, try to open using the device node path method */
2153        ubi = ubi_open_volume_path(name, mode);
2154        if (!IS_ERR(ubi))
2155                return ubi;
2156#endif
2157
2158        /* Try the "nodev" method */
2159        if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2160                return ERR_PTR(-EINVAL);
2161
2162        /* ubi:NAME method */
2163        if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2164                return ubi_open_volume_nm(0, name + 4, mode);
2165
2166        if (!isdigit(name[3]))
2167                return ERR_PTR(-EINVAL);
2168
2169        dev = simple_strtoul(name + 3, &endptr, 0);
2170
2171        /* ubiY method */
2172        if (*endptr == '\0')
2173                return ubi_open_volume(0, dev, mode);
2174
2175        /* ubiX_Y method */
2176        if (*endptr == '_' && isdigit(endptr[1])) {
2177                vol = simple_strtoul(endptr + 1, &endptr, 0);
2178                if (*endptr != '\0')
2179                        return ERR_PTR(-EINVAL);
2180                return ubi_open_volume(dev, vol, mode);
2181        }
2182
2183        /* ubiX:NAME method */
2184        if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2185                return ubi_open_volume_nm(dev, ++endptr, mode);
2186
2187        return ERR_PTR(-EINVAL);
2188}
2189
2190static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2191{
2192        struct ubifs_info *c;
2193
2194        c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2195        if (c) {
2196                spin_lock_init(&c->cnt_lock);
2197                spin_lock_init(&c->cs_lock);
2198                spin_lock_init(&c->buds_lock);
2199                spin_lock_init(&c->space_lock);
2200                spin_lock_init(&c->orphan_lock);
2201                init_rwsem(&c->commit_sem);
2202                mutex_init(&c->lp_mutex);
2203                mutex_init(&c->tnc_mutex);
2204                mutex_init(&c->log_mutex);
2205                mutex_init(&c->umount_mutex);
2206                mutex_init(&c->bu_mutex);
2207                mutex_init(&c->write_reserve_mutex);
2208                init_waitqueue_head(&c->cmt_wq);
2209                c->buds = RB_ROOT;
2210                c->old_idx = RB_ROOT;
2211                c->size_tree = RB_ROOT;
2212                c->orph_tree = RB_ROOT;
2213                INIT_LIST_HEAD(&c->infos_list);
2214                INIT_LIST_HEAD(&c->idx_gc);
2215                INIT_LIST_HEAD(&c->replay_list);
2216                INIT_LIST_HEAD(&c->replay_buds);
2217                INIT_LIST_HEAD(&c->uncat_list);
2218                INIT_LIST_HEAD(&c->empty_list);
2219                INIT_LIST_HEAD(&c->freeable_list);
2220                INIT_LIST_HEAD(&c->frdi_idx_list);
2221                INIT_LIST_HEAD(&c->unclean_leb_list);
2222                INIT_LIST_HEAD(&c->old_buds);
2223                INIT_LIST_HEAD(&c->orph_list);
2224                INIT_LIST_HEAD(&c->orph_new);
2225                c->no_chk_data_crc = 1;
2226
2227                c->highest_inum = UBIFS_FIRST_INO;
2228                c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2229
2230                ubi_get_volume_info(ubi, &c->vi);
2231                ubi_get_device_info(c->vi.ubi_num, &c->di);
2232        }
2233        return c;
2234}
2235
2236static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2237{
2238        struct ubifs_info *c = sb->s_fs_info;
2239        struct inode *root;
2240        int err;
2241
2242        c->vfs_sb = sb;
2243#ifndef __UBOOT__
2244        /* Re-open the UBI device in read-write mode */
2245        c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2246#else
2247        /* U-Boot read only mode */
2248        c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READONLY);
2249#endif
2250
2251        if (IS_ERR(c->ubi)) {
2252                err = PTR_ERR(c->ubi);
2253                goto out;
2254        }
2255
2256#ifndef __UBOOT__
2257        /*
2258         * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2259         * UBIFS, I/O is not deferred, it is done immediately in readpage,
2260         * which means the user would have to wait not just for their own I/O
2261         * but the read-ahead I/O as well i.e. completely pointless.
2262         *
2263         * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2264         */
2265        c->bdi.name = "ubifs",
2266        c->bdi.capabilities = 0;
2267        err  = bdi_init(&c->bdi);
2268        if (err)
2269                goto out_close;
2270        err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2271                           c->vi.ubi_num, c->vi.vol_id);
2272        if (err)
2273                goto out_bdi;
2274
2275        err = ubifs_parse_options(c, data, 0);
2276        if (err)
2277                goto out_bdi;
2278
2279        sb->s_bdi = &c->bdi;
2280#endif
2281        sb->s_fs_info = c;
2282        sb->s_magic = UBIFS_SUPER_MAGIC;
2283        sb->s_blocksize = UBIFS_BLOCK_SIZE;
2284        sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2285        sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2286        if (c->max_inode_sz > MAX_LFS_FILESIZE)
2287                sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2288        sb->s_op = &ubifs_super_operations;
2289#ifndef __UBOOT__
2290        sb->s_xattr = ubifs_xattr_handlers;
2291#endif
2292
2293        mutex_lock(&c->umount_mutex);
2294        err = mount_ubifs(c);
2295        if (err) {
2296                ubifs_assert(err < 0);
2297                goto out_unlock;
2298        }
2299
2300        /* Read the root inode */
2301        root = ubifs_iget(sb, UBIFS_ROOT_INO);
2302        if (IS_ERR(root)) {
2303                err = PTR_ERR(root);
2304                goto out_umount;
2305        }
2306
2307#ifndef __UBOOT__
2308        sb->s_root = d_make_root(root);
2309        if (!sb->s_root) {
2310                err = -ENOMEM;
2311                goto out_umount;
2312        }
2313#else
2314        sb->s_root = NULL;
2315#endif
2316
2317        mutex_unlock(&c->umount_mutex);
2318        return 0;
2319
2320out_umount:
2321        ubifs_umount(c);
2322out_unlock:
2323        mutex_unlock(&c->umount_mutex);
2324#ifndef __UBOOT__
2325out_bdi:
2326        bdi_destroy(&c->bdi);
2327out_close:
2328#endif
2329        ubi_close_volume(c->ubi);
2330out:
2331        return err;
2332}
2333
2334static int sb_test(struct super_block *sb, void *data)
2335{
2336        struct ubifs_info *c1 = data;
2337        struct ubifs_info *c = sb->s_fs_info;
2338
2339        return c->vi.cdev == c1->vi.cdev;
2340}
2341
2342static int sb_set(struct super_block *sb, void *data)
2343{
2344        sb->s_fs_info = data;
2345        return set_anon_super(sb, NULL);
2346}
2347
2348static struct super_block *alloc_super(struct file_system_type *type, int flags)
2349{
2350        struct super_block *s;
2351        int err;
2352
2353        s = kzalloc(sizeof(struct super_block),  GFP_USER);
2354        if (!s) {
2355                err = -ENOMEM;
2356                return ERR_PTR(err);
2357        }
2358
2359        INIT_HLIST_NODE(&s->s_instances);
2360        INIT_LIST_HEAD(&s->s_inodes);
2361        s->s_time_gran = 1000000000;
2362        s->s_flags = flags;
2363
2364        return s;
2365}
2366
2367/**
2368 *      sget    -       find or create a superblock
2369 *      @type:  filesystem type superblock should belong to
2370 *      @test:  comparison callback
2371 *      @set:   setup callback
2372 *      @flags: mount flags
2373 *      @data:  argument to each of them
2374 */
2375struct super_block *sget(struct file_system_type *type,
2376                        int (*test)(struct super_block *,void *),
2377                        int (*set)(struct super_block *,void *),
2378                        int flags,
2379                        void *data)
2380{
2381        struct super_block *s = NULL;
2382#ifndef __UBOOT__
2383        struct super_block *old;
2384#endif
2385        int err;
2386
2387#ifndef __UBOOT__
2388retry:
2389        spin_lock(&sb_lock);
2390        if (test) {
2391                hlist_for_each_entry(old, &type->fs_supers, s_instances) {
2392                        if (!test(old, data))
2393                                continue;
2394                        if (!grab_super(old))
2395                                goto retry;
2396                        if (s) {
2397                                up_write(&s->s_umount);
2398                                destroy_super(s);
2399                                s = NULL;
2400                        }
2401                        return old;
2402                }
2403        }
2404#endif
2405        if (!s) {
2406                spin_unlock(&sb_lock);
2407                s = alloc_super(type, flags);
2408                if (!s)
2409                        return ERR_PTR(-ENOMEM);
2410#ifndef __UBOOT__
2411                goto retry;
2412#endif
2413        }
2414                
2415        err = set(s, data);
2416        if (err) {
2417#ifndef __UBOOT__
2418                spin_unlock(&sb_lock);
2419                up_write(&s->s_umount);
2420                destroy_super(s);
2421#endif
2422                return ERR_PTR(err);
2423        }
2424        s->s_type = type;
2425#ifndef __UBOOT__
2426        strlcpy(s->s_id, type->name, sizeof(s->s_id));
2427        list_add_tail(&s->s_list, &super_blocks);
2428#else
2429        strncpy(s->s_id, type->name, sizeof(s->s_id));
2430#endif
2431        hlist_add_head(&s->s_instances, &type->fs_supers);
2432#ifndef __UBOOT__
2433        spin_unlock(&sb_lock);
2434        get_filesystem(type);
2435        register_shrinker(&s->s_shrink);
2436#endif
2437        return s;
2438}
2439
2440EXPORT_SYMBOL(sget);
2441
2442
2443static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2444                        const char *name, void *data)
2445{
2446        struct ubi_volume_desc *ubi;
2447        struct ubifs_info *c;
2448        struct super_block *sb;
2449        int err;
2450
2451        dbg_gen("name %s, flags %#x", name, flags);
2452
2453        /*
2454         * Get UBI device number and volume ID. Mount it read-only so far
2455         * because this might be a new mount point, and UBI allows only one
2456         * read-write user at a time.
2457         */
2458        ubi = open_ubi(name, UBI_READONLY);
2459        if (IS_ERR(ubi)) {
2460                pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2461                       current->pid, name, (int)PTR_ERR(ubi));
2462                return ERR_CAST(ubi);
2463        }
2464
2465        c = alloc_ubifs_info(ubi);
2466        if (!c) {
2467                err = -ENOMEM;
2468                goto out_close;
2469        }
2470
2471        dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2472
2473        sb = sget(fs_type, sb_test, sb_set, flags, c);
2474        if (IS_ERR(sb)) {
2475                err = PTR_ERR(sb);
2476                kfree(c);
2477                goto out_close;
2478        }
2479
2480        if (sb->s_root) {
2481                struct ubifs_info *c1 = sb->s_fs_info;
2482                kfree(c);
2483                /* A new mount point for already mounted UBIFS */
2484                dbg_gen("this ubi volume is already mounted");
2485                if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2486                        err = -EBUSY;
2487                        goto out_deact;
2488                }
2489        } else {
2490                err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2491                if (err)
2492                        goto out_deact;
2493                /* We do not support atime */
2494                sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2495        }
2496
2497        /* 'fill_super()' opens ubi again so we must close it here */
2498        ubi_close_volume(ubi);
2499
2500#ifdef __UBOOT__
2501        ubifs_sb = sb;
2502        return 0;
2503#else
2504        return dget(sb->s_root);
2505#endif
2506
2507out_deact:
2508#ifndef __UBOOT__
2509        deactivate_locked_super(sb);
2510#endif
2511out_close:
2512        ubi_close_volume(ubi);
2513        return ERR_PTR(err);
2514}
2515
2516static void kill_ubifs_super(struct super_block *s)
2517{
2518        struct ubifs_info *c = s->s_fs_info;
2519#ifndef __UBOOT__
2520        kill_anon_super(s);
2521#endif
2522        kfree(c);
2523}
2524
2525static struct file_system_type ubifs_fs_type = {
2526        .name    = "ubifs",
2527        .owner   = THIS_MODULE,
2528        .mount   = ubifs_mount,
2529        .kill_sb = kill_ubifs_super,
2530};
2531#ifndef __UBOOT__
2532MODULE_ALIAS_FS("ubifs");
2533
2534/*
2535 * Inode slab cache constructor.
2536 */
2537static void inode_slab_ctor(void *obj)
2538{
2539        struct ubifs_inode *ui = obj;
2540        inode_init_once(&ui->vfs_inode);
2541}
2542
2543static int __init ubifs_init(void)
2544#else
2545int ubifs_init(void)
2546#endif
2547{
2548        int err;
2549
2550        BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2551
2552        /* Make sure node sizes are 8-byte aligned */
2553        BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2554        BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2555        BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2556        BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2557        BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2558        BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2559        BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2560        BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2561        BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2562        BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2563        BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2564
2565        BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2566        BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2567        BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2568        BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2569        BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2570        BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2571
2572        /* Check min. node size */
2573        BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2574        BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2575        BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2576        BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2577
2578        BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2579        BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2580        BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2581        BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2582
2583        /* Defined node sizes */
2584        BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2585        BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2586        BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2587        BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2588
2589        /*
2590         * We use 2 bit wide bit-fields to store compression type, which should
2591         * be amended if more compressors are added. The bit-fields are:
2592         * @compr_type in 'struct ubifs_inode', @default_compr in
2593         * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2594         */
2595        BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2596
2597        /*
2598         * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2599         * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2600         */
2601        if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2602                pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2603                       current->pid, (unsigned int)PAGE_CACHE_SIZE);
2604                return -EINVAL;
2605        }
2606
2607#ifndef __UBOOT__
2608        ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2609                                sizeof(struct ubifs_inode), 0,
2610                                SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2611                                &inode_slab_ctor);
2612        if (!ubifs_inode_slab)
2613                return -ENOMEM;
2614
2615        err = register_shrinker(&ubifs_shrinker_info);
2616        if (err)
2617                goto out_slab;
2618#endif
2619
2620        err = ubifs_compressors_init();
2621        if (err)
2622                goto out_shrinker;
2623
2624#ifndef __UBOOT__
2625        err = dbg_debugfs_init();
2626        if (err)
2627                goto out_compr;
2628
2629        err = register_filesystem(&ubifs_fs_type);
2630        if (err) {
2631                pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2632                       current->pid, err);
2633                goto out_dbg;
2634        }
2635#endif
2636        return 0;
2637
2638#ifndef __UBOOT__
2639out_dbg:
2640        dbg_debugfs_exit();
2641out_compr:
2642        ubifs_compressors_exit();
2643#endif
2644out_shrinker:
2645#ifndef __UBOOT__
2646        unregister_shrinker(&ubifs_shrinker_info);
2647out_slab:
2648#endif
2649        kmem_cache_destroy(ubifs_inode_slab);
2650        return err;
2651}
2652/* late_initcall to let compressors initialize first */
2653late_initcall(ubifs_init);
2654
2655#ifndef __UBOOT__
2656static void __exit ubifs_exit(void)
2657{
2658        ubifs_assert(list_empty(&ubifs_infos));
2659        ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2660
2661        dbg_debugfs_exit();
2662        ubifs_compressors_exit();
2663        unregister_shrinker(&ubifs_shrinker_info);
2664
2665        /*
2666         * Make sure all delayed rcu free inodes are flushed before we
2667         * destroy cache.
2668         */
2669        rcu_barrier();
2670        kmem_cache_destroy(ubifs_inode_slab);
2671        unregister_filesystem(&ubifs_fs_type);
2672}
2673module_exit(ubifs_exit);
2674
2675MODULE_LICENSE("GPL");
2676MODULE_VERSION(__stringify(UBIFS_VERSION));
2677MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2678MODULE_DESCRIPTION("UBIFS - UBI File System");
2679#else
2680int uboot_ubifs_mount(char *vol_name)
2681{
2682        struct dentry *ret;
2683        int flags;
2684
2685        /*
2686         * First unmount if allready mounted
2687         */
2688        if (ubifs_sb)
2689                ubifs_umount(ubifs_sb->s_fs_info);
2690
2691        /*
2692         * Mount in read-only mode
2693         */
2694        flags = MS_RDONLY;
2695        ret = ubifs_mount(&ubifs_fs_type, flags, vol_name, NULL);
2696        if (IS_ERR(ret)) {
2697                printf("Error reading superblock on volume '%s' " \
2698                        "errno=%d!\n", vol_name, (int)PTR_ERR(ret));
2699                return -1;
2700        }
2701
2702        return 0;
2703}
2704#endif
2705