uboot/fs/btrfs/btrfs_tree.h
<<
>>
Prefs
   1/*
   2 * From linux/include/uapi/linux/btrfs_tree.h
   3 *
   4 * SPDX-License-Identifier:     GPL-2.0+
   5 */
   6
   7#ifndef __BTRFS_BTRFS_TREE_H__
   8#define __BTRFS_BTRFS_TREE_H__
   9
  10#include <common.h>
  11
  12#define BTRFS_VOL_NAME_MAX 255
  13#define BTRFS_NAME_MAX 255
  14#define BTRFS_LABEL_SIZE 256
  15#define BTRFS_FSID_SIZE 16
  16#define BTRFS_UUID_SIZE 16
  17
  18/*
  19 * This header contains the structure definitions and constants used
  20 * by file system objects that can be retrieved using
  21 * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that
  22 * is needed to describe a leaf node's key or item contents.
  23 */
  24
  25/* holds pointers to all of the tree roots */
  26#define BTRFS_ROOT_TREE_OBJECTID 1ULL
  27
  28/* stores information about which extents are in use, and reference counts */
  29#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
  30
  31/*
  32 * chunk tree stores translations from logical -> physical block numbering
  33 * the super block points to the chunk tree
  34 */
  35#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
  36
  37/*
  38 * stores information about which areas of a given device are in use.
  39 * one per device.  The tree of tree roots points to the device tree
  40 */
  41#define BTRFS_DEV_TREE_OBJECTID 4ULL
  42
  43/* one per subvolume, storing files and directories */
  44#define BTRFS_FS_TREE_OBJECTID 5ULL
  45
  46/* directory objectid inside the root tree */
  47#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
  48
  49/* holds checksums of all the data extents */
  50#define BTRFS_CSUM_TREE_OBJECTID 7ULL
  51
  52/* holds quota configuration and tracking */
  53#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
  54
  55/* for storing items that use the BTRFS_UUID_KEY* types */
  56#define BTRFS_UUID_TREE_OBJECTID 9ULL
  57
  58/* tracks free space in block groups. */
  59#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
  60
  61/* device stats in the device tree */
  62#define BTRFS_DEV_STATS_OBJECTID 0ULL
  63
  64/* for storing balance parameters in the root tree */
  65#define BTRFS_BALANCE_OBJECTID -4ULL
  66
  67/* orhpan objectid for tracking unlinked/truncated files */
  68#define BTRFS_ORPHAN_OBJECTID -5ULL
  69
  70/* does write ahead logging to speed up fsyncs */
  71#define BTRFS_TREE_LOG_OBJECTID -6ULL
  72#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
  73
  74/* for space balancing */
  75#define BTRFS_TREE_RELOC_OBJECTID -8ULL
  76#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
  77
  78/*
  79 * extent checksums all have this objectid
  80 * this allows them to share the logging tree
  81 * for fsyncs
  82 */
  83#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
  84
  85/* For storing free space cache */
  86#define BTRFS_FREE_SPACE_OBJECTID -11ULL
  87
  88/*
  89 * The inode number assigned to the special inode for storing
  90 * free ino cache
  91 */
  92#define BTRFS_FREE_INO_OBJECTID -12ULL
  93
  94/* dummy objectid represents multiple objectids */
  95#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
  96
  97/*
  98 * All files have objectids in this range.
  99 */
 100#define BTRFS_FIRST_FREE_OBJECTID 256ULL
 101#define BTRFS_LAST_FREE_OBJECTID -256ULL
 102#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
 103
 104
 105/*
 106 * the device items go into the chunk tree.  The key is in the form
 107 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
 108 */
 109#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
 110
 111#define BTRFS_BTREE_INODE_OBJECTID 1
 112
 113#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
 114
 115#define BTRFS_DEV_REPLACE_DEVID 0ULL
 116
 117/*
 118 * inode items have the data typically returned from stat and store other
 119 * info about object characteristics.  There is one for every file and dir in
 120 * the FS
 121 */
 122#define BTRFS_INODE_ITEM_KEY            1
 123#define BTRFS_INODE_REF_KEY             12
 124#define BTRFS_INODE_EXTREF_KEY          13
 125#define BTRFS_XATTR_ITEM_KEY            24
 126#define BTRFS_ORPHAN_ITEM_KEY           48
 127/* reserve 2-15 close to the inode for later flexibility */
 128
 129/*
 130 * dir items are the name -> inode pointers in a directory.  There is one
 131 * for every name in a directory.
 132 */
 133#define BTRFS_DIR_LOG_ITEM_KEY  60
 134#define BTRFS_DIR_LOG_INDEX_KEY 72
 135#define BTRFS_DIR_ITEM_KEY      84
 136#define BTRFS_DIR_INDEX_KEY     96
 137/*
 138 * extent data is for file data
 139 */
 140#define BTRFS_EXTENT_DATA_KEY   108
 141
 142/*
 143 * extent csums are stored in a separate tree and hold csums for
 144 * an entire extent on disk.
 145 */
 146#define BTRFS_EXTENT_CSUM_KEY   128
 147
 148/*
 149 * root items point to tree roots.  They are typically in the root
 150 * tree used by the super block to find all the other trees
 151 */
 152#define BTRFS_ROOT_ITEM_KEY     132
 153
 154/*
 155 * root backrefs tie subvols and snapshots to the directory entries that
 156 * reference them
 157 */
 158#define BTRFS_ROOT_BACKREF_KEY  144
 159
 160/*
 161 * root refs make a fast index for listing all of the snapshots and
 162 * subvolumes referenced by a given root.  They point directly to the
 163 * directory item in the root that references the subvol
 164 */
 165#define BTRFS_ROOT_REF_KEY      156
 166
 167/*
 168 * extent items are in the extent map tree.  These record which blocks
 169 * are used, and how many references there are to each block
 170 */
 171#define BTRFS_EXTENT_ITEM_KEY   168
 172
 173/*
 174 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
 175 * the length, so we save the level in key->offset instead of the length.
 176 */
 177#define BTRFS_METADATA_ITEM_KEY 169
 178
 179#define BTRFS_TREE_BLOCK_REF_KEY        176
 180
 181#define BTRFS_EXTENT_DATA_REF_KEY       178
 182
 183#define BTRFS_EXTENT_REF_V0_KEY         180
 184
 185#define BTRFS_SHARED_BLOCK_REF_KEY      182
 186
 187#define BTRFS_SHARED_DATA_REF_KEY       184
 188
 189/*
 190 * block groups give us hints into the extent allocation trees.  Which
 191 * blocks are free etc etc
 192 */
 193#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
 194
 195/*
 196 * Every block group is represented in the free space tree by a free space info
 197 * item, which stores some accounting information. It is keyed on
 198 * (block_group_start, FREE_SPACE_INFO, block_group_length).
 199 */
 200#define BTRFS_FREE_SPACE_INFO_KEY 198
 201
 202/*
 203 * A free space extent tracks an extent of space that is free in a block group.
 204 * It is keyed on (start, FREE_SPACE_EXTENT, length).
 205 */
 206#define BTRFS_FREE_SPACE_EXTENT_KEY 199
 207
 208/*
 209 * When a block group becomes very fragmented, we convert it to use bitmaps
 210 * instead of extents. A free space bitmap is keyed on
 211 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
 212 * (length / sectorsize) bits.
 213 */
 214#define BTRFS_FREE_SPACE_BITMAP_KEY 200
 215
 216#define BTRFS_DEV_EXTENT_KEY    204
 217#define BTRFS_DEV_ITEM_KEY      216
 218#define BTRFS_CHUNK_ITEM_KEY    228
 219
 220/*
 221 * Records the overall state of the qgroups.
 222 * There's only one instance of this key present,
 223 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
 224 */
 225#define BTRFS_QGROUP_STATUS_KEY         240
 226/*
 227 * Records the currently used space of the qgroup.
 228 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
 229 */
 230#define BTRFS_QGROUP_INFO_KEY           242
 231/*
 232 * Contains the user configured limits for the qgroup.
 233 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
 234 */
 235#define BTRFS_QGROUP_LIMIT_KEY          244
 236/*
 237 * Records the child-parent relationship of qgroups. For
 238 * each relation, 2 keys are present:
 239 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
 240 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
 241 */
 242#define BTRFS_QGROUP_RELATION_KEY       246
 243
 244/*
 245 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
 246 */
 247#define BTRFS_BALANCE_ITEM_KEY  248
 248
 249/*
 250 * The key type for tree items that are stored persistently, but do not need to
 251 * exist for extended period of time. The items can exist in any tree.
 252 *
 253 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
 254 *
 255 * Existing items:
 256 *
 257 * - balance status item
 258 *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
 259 */
 260#define BTRFS_TEMPORARY_ITEM_KEY        248
 261
 262/*
 263 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
 264 */
 265#define BTRFS_DEV_STATS_KEY             249
 266
 267/*
 268 * The key type for tree items that are stored persistently and usually exist
 269 * for a long period, eg. filesystem lifetime. The item kinds can be status
 270 * information, stats or preference values. The item can exist in any tree.
 271 *
 272 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
 273 *
 274 * Existing items:
 275 *
 276 * - device statistics, store IO stats in the device tree, one key for all
 277 *   stats
 278 *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
 279 */
 280#define BTRFS_PERSISTENT_ITEM_KEY       249
 281
 282/*
 283 * Persistantly stores the device replace state in the device tree.
 284 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
 285 */
 286#define BTRFS_DEV_REPLACE_KEY   250
 287
 288/*
 289 * Stores items that allow to quickly map UUIDs to something else.
 290 * These items are part of the filesystem UUID tree.
 291 * The key is built like this:
 292 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
 293 */
 294#if BTRFS_UUID_SIZE != 16
 295#error "UUID items require BTRFS_UUID_SIZE == 16!"
 296#endif
 297#define BTRFS_UUID_KEY_SUBVOL   251     /* for UUIDs assigned to subvols */
 298#define BTRFS_UUID_KEY_RECEIVED_SUBVOL  252     /* for UUIDs assigned to
 299                                                 * received subvols */
 300
 301/*
 302 * string items are for debugging.  They just store a short string of
 303 * data in the FS
 304 */
 305#define BTRFS_STRING_ITEM_KEY   253
 306
 307
 308
 309/* 32 bytes in various csum fields */
 310#define BTRFS_CSUM_SIZE 32
 311
 312/* csum types */
 313#define BTRFS_CSUM_TYPE_CRC32   0
 314
 315/*
 316 * flags definitions for directory entry item type
 317 *
 318 * Used by:
 319 * struct btrfs_dir_item.type
 320 */
 321#define BTRFS_FT_UNKNOWN        0
 322#define BTRFS_FT_REG_FILE       1
 323#define BTRFS_FT_DIR            2
 324#define BTRFS_FT_CHRDEV         3
 325#define BTRFS_FT_BLKDEV         4
 326#define BTRFS_FT_FIFO           5
 327#define BTRFS_FT_SOCK           6
 328#define BTRFS_FT_SYMLINK        7
 329#define BTRFS_FT_XATTR          8
 330#define BTRFS_FT_MAX            9
 331
 332/*
 333 * The key defines the order in the tree, and so it also defines (optimal)
 334 * block layout.
 335 *
 336 * objectid corresponds to the inode number.
 337 *
 338 * type tells us things about the object, and is a kind of stream selector.
 339 * so for a given inode, keys with type of 1 might refer to the inode data,
 340 * type of 2 may point to file data in the btree and type == 3 may point to
 341 * extents.
 342 *
 343 * offset is the starting byte offset for this key in the stream.
 344 */
 345
 346struct btrfs_key {
 347        __u64 objectid;
 348        __u8 type;
 349        __u64 offset;
 350} __attribute__ ((__packed__));
 351
 352struct btrfs_dev_item {
 353        /* the internal btrfs device id */
 354        __u64 devid;
 355
 356        /* size of the device */
 357        __u64 total_bytes;
 358
 359        /* bytes used */
 360        __u64 bytes_used;
 361
 362        /* optimal io alignment for this device */
 363        __u32 io_align;
 364
 365        /* optimal io width for this device */
 366        __u32 io_width;
 367
 368        /* minimal io size for this device */
 369        __u32 sector_size;
 370
 371        /* type and info about this device */
 372        __u64 type;
 373
 374        /* expected generation for this device */
 375        __u64 generation;
 376
 377        /*
 378         * starting byte of this partition on the device,
 379         * to allow for stripe alignment in the future
 380         */
 381        __u64 start_offset;
 382
 383        /* grouping information for allocation decisions */
 384        __u32 dev_group;
 385
 386        /* seek speed 0-100 where 100 is fastest */
 387        __u8 seek_speed;
 388
 389        /* bandwidth 0-100 where 100 is fastest */
 390        __u8 bandwidth;
 391
 392        /* btrfs generated uuid for this device */
 393        __u8 uuid[BTRFS_UUID_SIZE];
 394
 395        /* uuid of FS who owns this device */
 396        __u8 fsid[BTRFS_UUID_SIZE];
 397} __attribute__ ((__packed__));
 398
 399struct btrfs_stripe {
 400        __u64 devid;
 401        __u64 offset;
 402        __u8 dev_uuid[BTRFS_UUID_SIZE];
 403} __attribute__ ((__packed__));
 404
 405struct btrfs_chunk {
 406        /* size of this chunk in bytes */
 407        __u64 length;
 408
 409        /* objectid of the root referencing this chunk */
 410        __u64 owner;
 411
 412        __u64 stripe_len;
 413        __u64 type;
 414
 415        /* optimal io alignment for this chunk */
 416        __u32 io_align;
 417
 418        /* optimal io width for this chunk */
 419        __u32 io_width;
 420
 421        /* minimal io size for this chunk */
 422        __u32 sector_size;
 423
 424        /* 2^16 stripes is quite a lot, a second limit is the size of a single
 425         * item in the btree
 426         */
 427        __u16 num_stripes;
 428
 429        /* sub stripes only matter for raid10 */
 430        __u16 sub_stripes;
 431        struct btrfs_stripe stripe;
 432        /* additional stripes go here */
 433} __attribute__ ((__packed__));
 434
 435#define BTRFS_FREE_SPACE_EXTENT 1
 436#define BTRFS_FREE_SPACE_BITMAP 2
 437
 438struct btrfs_free_space_entry {
 439        __u64 offset;
 440        __u64 bytes;
 441        __u8 type;
 442} __attribute__ ((__packed__));
 443
 444struct btrfs_free_space_header {
 445        struct btrfs_key location;
 446        __u64 generation;
 447        __u64 num_entries;
 448        __u64 num_bitmaps;
 449} __attribute__ ((__packed__));
 450
 451#define BTRFS_HEADER_FLAG_WRITTEN       (1ULL << 0)
 452#define BTRFS_HEADER_FLAG_RELOC         (1ULL << 1)
 453
 454/* Super block flags */
 455/* Errors detected */
 456#define BTRFS_SUPER_FLAG_ERROR          (1ULL << 2)
 457
 458#define BTRFS_SUPER_FLAG_SEEDING        (1ULL << 32)
 459#define BTRFS_SUPER_FLAG_METADUMP       (1ULL << 33)
 460
 461
 462/*
 463 * items in the extent btree are used to record the objectid of the
 464 * owner of the block and the number of references
 465 */
 466
 467struct btrfs_extent_item {
 468        __u64 refs;
 469        __u64 generation;
 470        __u64 flags;
 471} __attribute__ ((__packed__));
 472
 473
 474#define BTRFS_EXTENT_FLAG_DATA          (1ULL << 0)
 475#define BTRFS_EXTENT_FLAG_TREE_BLOCK    (1ULL << 1)
 476
 477/* following flags only apply to tree blocks */
 478
 479/* use full backrefs for extent pointers in the block */
 480#define BTRFS_BLOCK_FLAG_FULL_BACKREF   (1ULL << 8)
 481
 482/*
 483 * this flag is only used internally by scrub and may be changed at any time
 484 * it is only declared here to avoid collisions
 485 */
 486#define BTRFS_EXTENT_FLAG_SUPER         (1ULL << 48)
 487
 488struct btrfs_tree_block_info {
 489        struct btrfs_key key;
 490        __u8 level;
 491} __attribute__ ((__packed__));
 492
 493struct btrfs_extent_data_ref {
 494        __u64 root;
 495        __u64 objectid;
 496        __u64 offset;
 497        __u32 count;
 498} __attribute__ ((__packed__));
 499
 500struct btrfs_shared_data_ref {
 501        __u32 count;
 502} __attribute__ ((__packed__));
 503
 504struct btrfs_extent_inline_ref {
 505        __u8 type;
 506        __u64 offset;
 507} __attribute__ ((__packed__));
 508
 509/* dev extents record free space on individual devices.  The owner
 510 * field points back to the chunk allocation mapping tree that allocated
 511 * the extent.  The chunk tree uuid field is a way to double check the owner
 512 */
 513struct btrfs_dev_extent {
 514        __u64 chunk_tree;
 515        __u64 chunk_objectid;
 516        __u64 chunk_offset;
 517        __u64 length;
 518        __u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
 519} __attribute__ ((__packed__));
 520
 521struct btrfs_inode_ref {
 522        __u64 index;
 523        __u16 name_len;
 524        /* name goes here */
 525} __attribute__ ((__packed__));
 526
 527struct btrfs_inode_extref {
 528        __u64 parent_objectid;
 529        __u64 index;
 530        __u16 name_len;
 531        __u8   name[0];
 532        /* name goes here */
 533} __attribute__ ((__packed__));
 534
 535struct btrfs_timespec {
 536        __u64 sec;
 537        __u32 nsec;
 538} __attribute__ ((__packed__));
 539
 540struct btrfs_inode_item {
 541        /* nfs style generation number */
 542        __u64 generation;
 543        /* transid that last touched this inode */
 544        __u64 transid;
 545        __u64 size;
 546        __u64 nbytes;
 547        __u64 block_group;
 548        __u32 nlink;
 549        __u32 uid;
 550        __u32 gid;
 551        __u32 mode;
 552        __u64 rdev;
 553        __u64 flags;
 554
 555        /* modification sequence number for NFS */
 556        __u64 sequence;
 557
 558        /*
 559         * a little future expansion, for more than this we can
 560         * just grow the inode item and version it
 561         */
 562        __u64 reserved[4];
 563        struct btrfs_timespec atime;
 564        struct btrfs_timespec ctime;
 565        struct btrfs_timespec mtime;
 566        struct btrfs_timespec otime;
 567} __attribute__ ((__packed__));
 568
 569struct btrfs_dir_log_item {
 570        __u64 end;
 571} __attribute__ ((__packed__));
 572
 573struct btrfs_dir_item {
 574        struct btrfs_key location;
 575        __u64 transid;
 576        __u16 data_len;
 577        __u16 name_len;
 578        __u8 type;
 579} __attribute__ ((__packed__));
 580
 581#define BTRFS_ROOT_SUBVOL_RDONLY        (1ULL << 0)
 582
 583/*
 584 * Internal in-memory flag that a subvolume has been marked for deletion but
 585 * still visible as a directory
 586 */
 587#define BTRFS_ROOT_SUBVOL_DEAD          (1ULL << 48)
 588
 589struct btrfs_root_item {
 590        struct btrfs_inode_item inode;
 591        __u64 generation;
 592        __u64 root_dirid;
 593        __u64 bytenr;
 594        __u64 byte_limit;
 595        __u64 bytes_used;
 596        __u64 last_snapshot;
 597        __u64 flags;
 598        __u32 refs;
 599        struct btrfs_key drop_progress;
 600        __u8 drop_level;
 601        __u8 level;
 602
 603        /*
 604         * The following fields appear after subvol_uuids+subvol_times
 605         * were introduced.
 606         */
 607
 608        /*
 609         * This generation number is used to test if the new fields are valid
 610         * and up to date while reading the root item. Every time the root item
 611         * is written out, the "generation" field is copied into this field. If
 612         * anyone ever mounted the fs with an older kernel, we will have
 613         * mismatching generation values here and thus must invalidate the
 614         * new fields. See btrfs_update_root and btrfs_find_last_root for
 615         * details.
 616         * the offset of generation_v2 is also used as the start for the memset
 617         * when invalidating the fields.
 618         */
 619        __u64 generation_v2;
 620        __u8 uuid[BTRFS_UUID_SIZE];
 621        __u8 parent_uuid[BTRFS_UUID_SIZE];
 622        __u8 received_uuid[BTRFS_UUID_SIZE];
 623        __u64 ctransid; /* updated when an inode changes */
 624        __u64 otransid; /* trans when created */
 625        __u64 stransid; /* trans when sent. non-zero for received subvol */
 626        __u64 rtransid; /* trans when received. non-zero for received subvol */
 627        struct btrfs_timespec ctime;
 628        struct btrfs_timespec otime;
 629        struct btrfs_timespec stime;
 630        struct btrfs_timespec rtime;
 631        __u64 reserved[8]; /* for future */
 632} __attribute__ ((__packed__));
 633
 634/*
 635 * this is used for both forward and backward root refs
 636 */
 637struct btrfs_root_ref {
 638        __u64 dirid;
 639        __u64 sequence;
 640        __u16 name_len;
 641} __attribute__ ((__packed__));
 642
 643#define BTRFS_FILE_EXTENT_INLINE 0
 644#define BTRFS_FILE_EXTENT_REG 1
 645#define BTRFS_FILE_EXTENT_PREALLOC 2
 646
 647enum btrfs_compression_type {
 648        BTRFS_COMPRESS_NONE  = 0,
 649        BTRFS_COMPRESS_ZLIB  = 1,
 650        BTRFS_COMPRESS_LZO   = 2,
 651        BTRFS_COMPRESS_TYPES = 2,
 652        BTRFS_COMPRESS_LAST  = 3,
 653};
 654
 655struct btrfs_file_extent_item {
 656        /*
 657         * transaction id that created this extent
 658         */
 659        __u64 generation;
 660        /*
 661         * max number of bytes to hold this extent in ram
 662         * when we split a compressed extent we can't know how big
 663         * each of the resulting pieces will be.  So, this is
 664         * an upper limit on the size of the extent in ram instead of
 665         * an exact limit.
 666         */
 667        __u64 ram_bytes;
 668
 669        /*
 670         * 32 bits for the various ways we might encode the data,
 671         * including compression and encryption.  If any of these
 672         * are set to something a given disk format doesn't understand
 673         * it is treated like an incompat flag for reading and writing,
 674         * but not for stat.
 675         */
 676        __u8 compression;
 677        __u8 encryption;
 678        __u16 other_encoding; /* spare for later use */
 679
 680        /* are we inline data or a real extent? */
 681        __u8 type;
 682
 683        /*
 684         * disk space consumed by the extent, checksum blocks are included
 685         * in these numbers
 686         *
 687         * At this offset in the structure, the inline extent data start.
 688         */
 689        __u64 disk_bytenr;
 690        __u64 disk_num_bytes;
 691        /*
 692         * the logical offset in file blocks (no csums)
 693         * this extent record is for.  This allows a file extent to point
 694         * into the middle of an existing extent on disk, sharing it
 695         * between two snapshots (useful if some bytes in the middle of the
 696         * extent have changed
 697         */
 698        __u64 offset;
 699        /*
 700         * the logical number of file blocks (no csums included).  This
 701         * always reflects the size uncompressed and without encoding.
 702         */
 703        __u64 num_bytes;
 704
 705} __attribute__ ((__packed__));
 706
 707struct btrfs_csum_item {
 708        __u8 csum;
 709} __attribute__ ((__packed__));
 710
 711/* different types of block groups (and chunks) */
 712#define BTRFS_BLOCK_GROUP_DATA          (1ULL << 0)
 713#define BTRFS_BLOCK_GROUP_SYSTEM        (1ULL << 1)
 714#define BTRFS_BLOCK_GROUP_METADATA      (1ULL << 2)
 715#define BTRFS_BLOCK_GROUP_RAID0         (1ULL << 3)
 716#define BTRFS_BLOCK_GROUP_RAID1         (1ULL << 4)
 717#define BTRFS_BLOCK_GROUP_DUP           (1ULL << 5)
 718#define BTRFS_BLOCK_GROUP_RAID10        (1ULL << 6)
 719#define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
 720#define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
 721#define BTRFS_BLOCK_GROUP_RESERVED      (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
 722                                         BTRFS_SPACE_INFO_GLOBAL_RSV)
 723
 724enum btrfs_raid_types {
 725        BTRFS_RAID_RAID10,
 726        BTRFS_RAID_RAID1,
 727        BTRFS_RAID_DUP,
 728        BTRFS_RAID_RAID0,
 729        BTRFS_RAID_SINGLE,
 730        BTRFS_RAID_RAID5,
 731        BTRFS_RAID_RAID6,
 732        BTRFS_NR_RAID_TYPES
 733};
 734
 735#define BTRFS_BLOCK_GROUP_TYPE_MASK     (BTRFS_BLOCK_GROUP_DATA |    \
 736                                         BTRFS_BLOCK_GROUP_SYSTEM |  \
 737                                         BTRFS_BLOCK_GROUP_METADATA)
 738
 739#define BTRFS_BLOCK_GROUP_PROFILE_MASK  (BTRFS_BLOCK_GROUP_RAID0 |   \
 740                                         BTRFS_BLOCK_GROUP_RAID1 |   \
 741                                         BTRFS_BLOCK_GROUP_RAID5 |   \
 742                                         BTRFS_BLOCK_GROUP_RAID6 |   \
 743                                         BTRFS_BLOCK_GROUP_DUP |     \
 744                                         BTRFS_BLOCK_GROUP_RAID10)
 745#define BTRFS_BLOCK_GROUP_RAID56_MASK   (BTRFS_BLOCK_GROUP_RAID5 |   \
 746                                         BTRFS_BLOCK_GROUP_RAID6)
 747
 748/*
 749 * We need a bit for restriper to be able to tell when chunks of type
 750 * SINGLE are available.  This "extended" profile format is used in
 751 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
 752 * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
 753 * to avoid remappings between two formats in future.
 754 */
 755#define BTRFS_AVAIL_ALLOC_BIT_SINGLE    (1ULL << 48)
 756
 757/*
 758 * A fake block group type that is used to communicate global block reserve
 759 * size to userspace via the SPACE_INFO ioctl.
 760 */
 761#define BTRFS_SPACE_INFO_GLOBAL_RSV     (1ULL << 49)
 762
 763#define BTRFS_EXTENDED_PROFILE_MASK     (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
 764                                         BTRFS_AVAIL_ALLOC_BIT_SINGLE)
 765
 766#endif /* __BTRFS_BTRFS_TREE_H__ */
 767