uboot/lib/bch.c
<<
>>
Prefs
   1/*
   2 * Generic binary BCH encoding/decoding library
   3 *
   4 * SPDX-License-Identifier:     GPL-2.0
   5 *
   6 * Copyright © 2011 Parrot S.A.
   7 *
   8 * Author: Ivan Djelic <ivan.djelic@parrot.com>
   9 *
  10 * Description:
  11 *
  12 * This library provides runtime configurable encoding/decoding of binary
  13 * Bose-Chaudhuri-Hocquenghem (BCH) codes.
  14 *
  15 * Call init_bch to get a pointer to a newly allocated bch_control structure for
  16 * the given m (Galois field order), t (error correction capability) and
  17 * (optional) primitive polynomial parameters.
  18 *
  19 * Call encode_bch to compute and store ecc parity bytes to a given buffer.
  20 * Call decode_bch to detect and locate errors in received data.
  21 *
  22 * On systems supporting hw BCH features, intermediate results may be provided
  23 * to decode_bch in order to skip certain steps. See decode_bch() documentation
  24 * for details.
  25 *
  26 * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
  27 * parameters m and t; thus allowing extra compiler optimizations and providing
  28 * better (up to 2x) encoding performance. Using this option makes sense when
  29 * (m,t) are fixed and known in advance, e.g. when using BCH error correction
  30 * on a particular NAND flash device.
  31 *
  32 * Algorithmic details:
  33 *
  34 * Encoding is performed by processing 32 input bits in parallel, using 4
  35 * remainder lookup tables.
  36 *
  37 * The final stage of decoding involves the following internal steps:
  38 * a. Syndrome computation
  39 * b. Error locator polynomial computation using Berlekamp-Massey algorithm
  40 * c. Error locator root finding (by far the most expensive step)
  41 *
  42 * In this implementation, step c is not performed using the usual Chien search.
  43 * Instead, an alternative approach described in [1] is used. It consists in
  44 * factoring the error locator polynomial using the Berlekamp Trace algorithm
  45 * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
  46 * solving techniques [2] are used. The resulting algorithm, called BTZ, yields
  47 * much better performance than Chien search for usual (m,t) values (typically
  48 * m >= 13, t < 32, see [1]).
  49 *
  50 * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
  51 * of characteristic 2, in: Western European Workshop on Research in Cryptology
  52 * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
  53 * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
  54 * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
  55 */
  56
  57#ifndef USE_HOSTCC
  58#include <common.h>
  59#include <ubi_uboot.h>
  60
  61#include <linux/bitops.h>
  62#else
  63#include <errno.h>
  64#if defined(__FreeBSD__)
  65#include <sys/endian.h>
  66#else
  67#include <endian.h>
  68#endif
  69#include <stdint.h>
  70#include <stdlib.h>
  71#include <string.h>
  72
  73#undef cpu_to_be32
  74#define cpu_to_be32 htobe32
  75#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
  76#define kmalloc(size, flags)    malloc(size)
  77#define kzalloc(size, flags)    calloc(1, size)
  78#define kfree free
  79#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
  80#endif
  81
  82#include <asm/byteorder.h>
  83#include <linux/bch.h>
  84
  85#if defined(CONFIG_BCH_CONST_PARAMS)
  86#define GF_M(_p)               (CONFIG_BCH_CONST_M)
  87#define GF_T(_p)               (CONFIG_BCH_CONST_T)
  88#define GF_N(_p)               ((1 << (CONFIG_BCH_CONST_M))-1)
  89#else
  90#define GF_M(_p)               ((_p)->m)
  91#define GF_T(_p)               ((_p)->t)
  92#define GF_N(_p)               ((_p)->n)
  93#endif
  94
  95#define BCH_ECC_WORDS(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
  96#define BCH_ECC_BYTES(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
  97
  98#ifndef dbg
  99#define dbg(_fmt, args...)     do {} while (0)
 100#endif
 101
 102/*
 103 * represent a polynomial over GF(2^m)
 104 */
 105struct gf_poly {
 106        unsigned int deg;    /* polynomial degree */
 107        unsigned int c[0];   /* polynomial terms */
 108};
 109
 110/* given its degree, compute a polynomial size in bytes */
 111#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
 112
 113/* polynomial of degree 1 */
 114struct gf_poly_deg1 {
 115        struct gf_poly poly;
 116        unsigned int   c[2];
 117};
 118
 119#ifdef USE_HOSTCC
 120#if !defined(__DragonFly__) && !defined(__FreeBSD__)
 121static int fls(int x)
 122{
 123        int r = 32;
 124
 125        if (!x)
 126                return 0;
 127        if (!(x & 0xffff0000u)) {
 128                x <<= 16;
 129                r -= 16;
 130        }
 131        if (!(x & 0xff000000u)) {
 132                x <<= 8;
 133                r -= 8;
 134        }
 135        if (!(x & 0xf0000000u)) {
 136                x <<= 4;
 137                r -= 4;
 138        }
 139        if (!(x & 0xc0000000u)) {
 140                x <<= 2;
 141                r -= 2;
 142        }
 143        if (!(x & 0x80000000u)) {
 144                x <<= 1;
 145                r -= 1;
 146        }
 147        return r;
 148}
 149#endif
 150#endif
 151
 152/*
 153 * same as encode_bch(), but process input data one byte at a time
 154 */
 155static void encode_bch_unaligned(struct bch_control *bch,
 156                                 const unsigned char *data, unsigned int len,
 157                                 uint32_t *ecc)
 158{
 159        int i;
 160        const uint32_t *p;
 161        const int l = BCH_ECC_WORDS(bch)-1;
 162
 163        while (len--) {
 164                p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff);
 165
 166                for (i = 0; i < l; i++)
 167                        ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
 168
 169                ecc[l] = (ecc[l] << 8)^(*p);
 170        }
 171}
 172
 173/*
 174 * convert ecc bytes to aligned, zero-padded 32-bit ecc words
 175 */
 176static void load_ecc8(struct bch_control *bch, uint32_t *dst,
 177                      const uint8_t *src)
 178{
 179        uint8_t pad[4] = {0, 0, 0, 0};
 180        unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
 181
 182        for (i = 0; i < nwords; i++, src += 4)
 183                dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3];
 184
 185        memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
 186        dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3];
 187}
 188
 189/*
 190 * convert 32-bit ecc words to ecc bytes
 191 */
 192static void store_ecc8(struct bch_control *bch, uint8_t *dst,
 193                       const uint32_t *src)
 194{
 195        uint8_t pad[4];
 196        unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
 197
 198        for (i = 0; i < nwords; i++) {
 199                *dst++ = (src[i] >> 24);
 200                *dst++ = (src[i] >> 16) & 0xff;
 201                *dst++ = (src[i] >>  8) & 0xff;
 202                *dst++ = (src[i] >>  0) & 0xff;
 203        }
 204        pad[0] = (src[nwords] >> 24);
 205        pad[1] = (src[nwords] >> 16) & 0xff;
 206        pad[2] = (src[nwords] >>  8) & 0xff;
 207        pad[3] = (src[nwords] >>  0) & 0xff;
 208        memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
 209}
 210
 211/**
 212 * encode_bch - calculate BCH ecc parity of data
 213 * @bch:   BCH control structure
 214 * @data:  data to encode
 215 * @len:   data length in bytes
 216 * @ecc:   ecc parity data, must be initialized by caller
 217 *
 218 * The @ecc parity array is used both as input and output parameter, in order to
 219 * allow incremental computations. It should be of the size indicated by member
 220 * @ecc_bytes of @bch, and should be initialized to 0 before the first call.
 221 *
 222 * The exact number of computed ecc parity bits is given by member @ecc_bits of
 223 * @bch; it may be less than m*t for large values of t.
 224 */
 225void encode_bch(struct bch_control *bch, const uint8_t *data,
 226                unsigned int len, uint8_t *ecc)
 227{
 228        const unsigned int l = BCH_ECC_WORDS(bch)-1;
 229        unsigned int i, mlen;
 230        unsigned long m;
 231        uint32_t w, r[l+1];
 232        const uint32_t * const tab0 = bch->mod8_tab;
 233        const uint32_t * const tab1 = tab0 + 256*(l+1);
 234        const uint32_t * const tab2 = tab1 + 256*(l+1);
 235        const uint32_t * const tab3 = tab2 + 256*(l+1);
 236        const uint32_t *pdata, *p0, *p1, *p2, *p3;
 237
 238        if (ecc) {
 239                /* load ecc parity bytes into internal 32-bit buffer */
 240                load_ecc8(bch, bch->ecc_buf, ecc);
 241        } else {
 242                memset(bch->ecc_buf, 0, sizeof(r));
 243        }
 244
 245        /* process first unaligned data bytes */
 246        m = ((unsigned long)data) & 3;
 247        if (m) {
 248                mlen = (len < (4-m)) ? len : 4-m;
 249                encode_bch_unaligned(bch, data, mlen, bch->ecc_buf);
 250                data += mlen;
 251                len  -= mlen;
 252        }
 253
 254        /* process 32-bit aligned data words */
 255        pdata = (uint32_t *)data;
 256        mlen  = len/4;
 257        data += 4*mlen;
 258        len  -= 4*mlen;
 259        memcpy(r, bch->ecc_buf, sizeof(r));
 260
 261        /*
 262         * split each 32-bit word into 4 polynomials of weight 8 as follows:
 263         *
 264         * 31 ...24  23 ...16  15 ... 8  7 ... 0
 265         * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt
 266         *                               tttttttt  mod g = r0 (precomputed)
 267         *                     zzzzzzzz  00000000  mod g = r1 (precomputed)
 268         *           yyyyyyyy  00000000  00000000  mod g = r2 (precomputed)
 269         * xxxxxxxx  00000000  00000000  00000000  mod g = r3 (precomputed)
 270         * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt  mod g = r0^r1^r2^r3
 271         */
 272        while (mlen--) {
 273                /* input data is read in big-endian format */
 274                w = r[0]^cpu_to_be32(*pdata++);
 275                p0 = tab0 + (l+1)*((w >>  0) & 0xff);
 276                p1 = tab1 + (l+1)*((w >>  8) & 0xff);
 277                p2 = tab2 + (l+1)*((w >> 16) & 0xff);
 278                p3 = tab3 + (l+1)*((w >> 24) & 0xff);
 279
 280                for (i = 0; i < l; i++)
 281                        r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
 282
 283                r[l] = p0[l]^p1[l]^p2[l]^p3[l];
 284        }
 285        memcpy(bch->ecc_buf, r, sizeof(r));
 286
 287        /* process last unaligned bytes */
 288        if (len)
 289                encode_bch_unaligned(bch, data, len, bch->ecc_buf);
 290
 291        /* store ecc parity bytes into original parity buffer */
 292        if (ecc)
 293                store_ecc8(bch, ecc, bch->ecc_buf);
 294}
 295
 296static inline int modulo(struct bch_control *bch, unsigned int v)
 297{
 298        const unsigned int n = GF_N(bch);
 299        while (v >= n) {
 300                v -= n;
 301                v = (v & n) + (v >> GF_M(bch));
 302        }
 303        return v;
 304}
 305
 306/*
 307 * shorter and faster modulo function, only works when v < 2N.
 308 */
 309static inline int mod_s(struct bch_control *bch, unsigned int v)
 310{
 311        const unsigned int n = GF_N(bch);
 312        return (v < n) ? v : v-n;
 313}
 314
 315static inline int deg(unsigned int poly)
 316{
 317        /* polynomial degree is the most-significant bit index */
 318        return fls(poly)-1;
 319}
 320
 321static inline int parity(unsigned int x)
 322{
 323        /*
 324         * public domain code snippet, lifted from
 325         * http://www-graphics.stanford.edu/~seander/bithacks.html
 326         */
 327        x ^= x >> 1;
 328        x ^= x >> 2;
 329        x = (x & 0x11111111U) * 0x11111111U;
 330        return (x >> 28) & 1;
 331}
 332
 333/* Galois field basic operations: multiply, divide, inverse, etc. */
 334
 335static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
 336                                  unsigned int b)
 337{
 338        return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
 339                                               bch->a_log_tab[b])] : 0;
 340}
 341
 342static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
 343{
 344        return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
 345}
 346
 347static inline unsigned int gf_div(struct bch_control *bch, unsigned int a,
 348                                  unsigned int b)
 349{
 350        return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
 351                                        GF_N(bch)-bch->a_log_tab[b])] : 0;
 352}
 353
 354static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a)
 355{
 356        return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]];
 357}
 358
 359static inline unsigned int a_pow(struct bch_control *bch, int i)
 360{
 361        return bch->a_pow_tab[modulo(bch, i)];
 362}
 363
 364static inline int a_log(struct bch_control *bch, unsigned int x)
 365{
 366        return bch->a_log_tab[x];
 367}
 368
 369static inline int a_ilog(struct bch_control *bch, unsigned int x)
 370{
 371        return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]);
 372}
 373
 374/*
 375 * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
 376 */
 377static void compute_syndromes(struct bch_control *bch, uint32_t *ecc,
 378                              unsigned int *syn)
 379{
 380        int i, j, s;
 381        unsigned int m;
 382        uint32_t poly;
 383        const int t = GF_T(bch);
 384
 385        s = bch->ecc_bits;
 386
 387        /* make sure extra bits in last ecc word are cleared */
 388        m = ((unsigned int)s) & 31;
 389        if (m)
 390                ecc[s/32] &= ~((1u << (32-m))-1);
 391        memset(syn, 0, 2*t*sizeof(*syn));
 392
 393        /* compute v(a^j) for j=1 .. 2t-1 */
 394        do {
 395                poly = *ecc++;
 396                s -= 32;
 397                while (poly) {
 398                        i = deg(poly);
 399                        for (j = 0; j < 2*t; j += 2)
 400                                syn[j] ^= a_pow(bch, (j+1)*(i+s));
 401
 402                        poly ^= (1 << i);
 403                }
 404        } while (s > 0);
 405
 406        /* v(a^(2j)) = v(a^j)^2 */
 407        for (j = 0; j < t; j++)
 408                syn[2*j+1] = gf_sqr(bch, syn[j]);
 409}
 410
 411static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src)
 412{
 413        memcpy(dst, src, GF_POLY_SZ(src->deg));
 414}
 415
 416static int compute_error_locator_polynomial(struct bch_control *bch,
 417                                            const unsigned int *syn)
 418{
 419        const unsigned int t = GF_T(bch);
 420        const unsigned int n = GF_N(bch);
 421        unsigned int i, j, tmp, l, pd = 1, d = syn[0];
 422        struct gf_poly *elp = bch->elp;
 423        struct gf_poly *pelp = bch->poly_2t[0];
 424        struct gf_poly *elp_copy = bch->poly_2t[1];
 425        int k, pp = -1;
 426
 427        memset(pelp, 0, GF_POLY_SZ(2*t));
 428        memset(elp, 0, GF_POLY_SZ(2*t));
 429
 430        pelp->deg = 0;
 431        pelp->c[0] = 1;
 432        elp->deg = 0;
 433        elp->c[0] = 1;
 434
 435        /* use simplified binary Berlekamp-Massey algorithm */
 436        for (i = 0; (i < t) && (elp->deg <= t); i++) {
 437                if (d) {
 438                        k = 2*i-pp;
 439                        gf_poly_copy(elp_copy, elp);
 440                        /* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */
 441                        tmp = a_log(bch, d)+n-a_log(bch, pd);
 442                        for (j = 0; j <= pelp->deg; j++) {
 443                                if (pelp->c[j]) {
 444                                        l = a_log(bch, pelp->c[j]);
 445                                        elp->c[j+k] ^= a_pow(bch, tmp+l);
 446                                }
 447                        }
 448                        /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */
 449                        tmp = pelp->deg+k;
 450                        if (tmp > elp->deg) {
 451                                elp->deg = tmp;
 452                                gf_poly_copy(pelp, elp_copy);
 453                                pd = d;
 454                                pp = 2*i;
 455                        }
 456                }
 457                /* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */
 458                if (i < t-1) {
 459                        d = syn[2*i+2];
 460                        for (j = 1; j <= elp->deg; j++)
 461                                d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]);
 462                }
 463        }
 464        dbg("elp=%s\n", gf_poly_str(elp));
 465        return (elp->deg > t) ? -1 : (int)elp->deg;
 466}
 467
 468/*
 469 * solve a m x m linear system in GF(2) with an expected number of solutions,
 470 * and return the number of found solutions
 471 */
 472static int solve_linear_system(struct bch_control *bch, unsigned int *rows,
 473                               unsigned int *sol, int nsol)
 474{
 475        const int m = GF_M(bch);
 476        unsigned int tmp, mask;
 477        int rem, c, r, p, k, param[m];
 478
 479        k = 0;
 480        mask = 1 << m;
 481
 482        /* Gaussian elimination */
 483        for (c = 0; c < m; c++) {
 484                rem = 0;
 485                p = c-k;
 486                /* find suitable row for elimination */
 487                for (r = p; r < m; r++) {
 488                        if (rows[r] & mask) {
 489                                if (r != p) {
 490                                        tmp = rows[r];
 491                                        rows[r] = rows[p];
 492                                        rows[p] = tmp;
 493                                }
 494                                rem = r+1;
 495                                break;
 496                        }
 497                }
 498                if (rem) {
 499                        /* perform elimination on remaining rows */
 500                        tmp = rows[p];
 501                        for (r = rem; r < m; r++) {
 502                                if (rows[r] & mask)
 503                                        rows[r] ^= tmp;
 504                        }
 505                } else {
 506                        /* elimination not needed, store defective row index */
 507                        param[k++] = c;
 508                }
 509                mask >>= 1;
 510        }
 511        /* rewrite system, inserting fake parameter rows */
 512        if (k > 0) {
 513                p = k;
 514                for (r = m-1; r >= 0; r--) {
 515                        if ((r > m-1-k) && rows[r])
 516                                /* system has no solution */
 517                                return 0;
 518
 519                        rows[r] = (p && (r == param[p-1])) ?
 520                                p--, 1u << (m-r) : rows[r-p];
 521                }
 522        }
 523
 524        if (nsol != (1 << k))
 525                /* unexpected number of solutions */
 526                return 0;
 527
 528        for (p = 0; p < nsol; p++) {
 529                /* set parameters for p-th solution */
 530                for (c = 0; c < k; c++)
 531                        rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1);
 532
 533                /* compute unique solution */
 534                tmp = 0;
 535                for (r = m-1; r >= 0; r--) {
 536                        mask = rows[r] & (tmp|1);
 537                        tmp |= parity(mask) << (m-r);
 538                }
 539                sol[p] = tmp >> 1;
 540        }
 541        return nsol;
 542}
 543
 544/*
 545 * this function builds and solves a linear system for finding roots of a degree
 546 * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m).
 547 */
 548static int find_affine4_roots(struct bch_control *bch, unsigned int a,
 549                              unsigned int b, unsigned int c,
 550                              unsigned int *roots)
 551{
 552        int i, j, k;
 553        const int m = GF_M(bch);
 554        unsigned int mask = 0xff, t, rows[16] = {0,};
 555
 556        j = a_log(bch, b);
 557        k = a_log(bch, a);
 558        rows[0] = c;
 559
 560        /* buid linear system to solve X^4+aX^2+bX+c = 0 */
 561        for (i = 0; i < m; i++) {
 562                rows[i+1] = bch->a_pow_tab[4*i]^
 563                        (a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^
 564                        (b ? bch->a_pow_tab[mod_s(bch, j)] : 0);
 565                j++;
 566                k += 2;
 567        }
 568        /*
 569         * transpose 16x16 matrix before passing it to linear solver
 570         * warning: this code assumes m < 16
 571         */
 572        for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) {
 573                for (k = 0; k < 16; k = (k+j+1) & ~j) {
 574                        t = ((rows[k] >> j)^rows[k+j]) & mask;
 575                        rows[k] ^= (t << j);
 576                        rows[k+j] ^= t;
 577                }
 578        }
 579        return solve_linear_system(bch, rows, roots, 4);
 580}
 581
 582/*
 583 * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
 584 */
 585static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly,
 586                                unsigned int *roots)
 587{
 588        int n = 0;
 589
 590        if (poly->c[0])
 591                /* poly[X] = bX+c with c!=0, root=c/b */
 592                roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+
 593                                   bch->a_log_tab[poly->c[1]]);
 594        return n;
 595}
 596
 597/*
 598 * compute roots of a degree 2 polynomial over GF(2^m)
 599 */
 600static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly,
 601                                unsigned int *roots)
 602{
 603        int n = 0, i, l0, l1, l2;
 604        unsigned int u, v, r;
 605
 606        if (poly->c[0] && poly->c[1]) {
 607
 608                l0 = bch->a_log_tab[poly->c[0]];
 609                l1 = bch->a_log_tab[poly->c[1]];
 610                l2 = bch->a_log_tab[poly->c[2]];
 611
 612                /* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */
 613                u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1));
 614                /*
 615                 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi):
 616                 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) =
 617                 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u)
 618                 * i.e. r and r+1 are roots iff Tr(u)=0
 619                 */
 620                r = 0;
 621                v = u;
 622                while (v) {
 623                        i = deg(v);
 624                        r ^= bch->xi_tab[i];
 625                        v ^= (1 << i);
 626                }
 627                /* verify root */
 628                if ((gf_sqr(bch, r)^r) == u) {
 629                        /* reverse z=a/bX transformation and compute log(1/r) */
 630                        roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
 631                                            bch->a_log_tab[r]+l2);
 632                        roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
 633                                            bch->a_log_tab[r^1]+l2);
 634                }
 635        }
 636        return n;
 637}
 638
 639/*
 640 * compute roots of a degree 3 polynomial over GF(2^m)
 641 */
 642static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly,
 643                                unsigned int *roots)
 644{
 645        int i, n = 0;
 646        unsigned int a, b, c, a2, b2, c2, e3, tmp[4];
 647
 648        if (poly->c[0]) {
 649                /* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */
 650                e3 = poly->c[3];
 651                c2 = gf_div(bch, poly->c[0], e3);
 652                b2 = gf_div(bch, poly->c[1], e3);
 653                a2 = gf_div(bch, poly->c[2], e3);
 654
 655                /* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */
 656                c = gf_mul(bch, a2, c2);           /* c = a2c2      */
 657                b = gf_mul(bch, a2, b2)^c2;        /* b = a2b2 + c2 */
 658                a = gf_sqr(bch, a2)^b2;            /* a = a2^2 + b2 */
 659
 660                /* find the 4 roots of this affine polynomial */
 661                if (find_affine4_roots(bch, a, b, c, tmp) == 4) {
 662                        /* remove a2 from final list of roots */
 663                        for (i = 0; i < 4; i++) {
 664                                if (tmp[i] != a2)
 665                                        roots[n++] = a_ilog(bch, tmp[i]);
 666                        }
 667                }
 668        }
 669        return n;
 670}
 671
 672/*
 673 * compute roots of a degree 4 polynomial over GF(2^m)
 674 */
 675static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly,
 676                                unsigned int *roots)
 677{
 678        int i, l, n = 0;
 679        unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4;
 680
 681        if (poly->c[0] == 0)
 682                return 0;
 683
 684        /* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */
 685        e4 = poly->c[4];
 686        d = gf_div(bch, poly->c[0], e4);
 687        c = gf_div(bch, poly->c[1], e4);
 688        b = gf_div(bch, poly->c[2], e4);
 689        a = gf_div(bch, poly->c[3], e4);
 690
 691        /* use Y=1/X transformation to get an affine polynomial */
 692        if (a) {
 693                /* first, eliminate cX by using z=X+e with ae^2+c=0 */
 694                if (c) {
 695                        /* compute e such that e^2 = c/a */
 696                        f = gf_div(bch, c, a);
 697                        l = a_log(bch, f);
 698                        l += (l & 1) ? GF_N(bch) : 0;
 699                        e = a_pow(bch, l/2);
 700                        /*
 701                         * use transformation z=X+e:
 702                         * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d
 703                         * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d
 704                         * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d
 705                         * z^4 + az^3 +     b'z^2 + d'
 706                         */
 707                        d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d;
 708                        b = gf_mul(bch, a, e)^b;
 709                }
 710                /* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */
 711                if (d == 0)
 712                        /* assume all roots have multiplicity 1 */
 713                        return 0;
 714
 715                c2 = gf_inv(bch, d);
 716                b2 = gf_div(bch, a, d);
 717                a2 = gf_div(bch, b, d);
 718        } else {
 719                /* polynomial is already affine */
 720                c2 = d;
 721                b2 = c;
 722                a2 = b;
 723        }
 724        /* find the 4 roots of this affine polynomial */
 725        if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) {
 726                for (i = 0; i < 4; i++) {
 727                        /* post-process roots (reverse transformations) */
 728                        f = a ? gf_inv(bch, roots[i]) : roots[i];
 729                        roots[i] = a_ilog(bch, f^e);
 730                }
 731                n = 4;
 732        }
 733        return n;
 734}
 735
 736/*
 737 * build monic, log-based representation of a polynomial
 738 */
 739static void gf_poly_logrep(struct bch_control *bch,
 740                           const struct gf_poly *a, int *rep)
 741{
 742        int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]);
 743
 744        /* represent 0 values with -1; warning, rep[d] is not set to 1 */
 745        for (i = 0; i < d; i++)
 746                rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1;
 747}
 748
 749/*
 750 * compute polynomial Euclidean division remainder in GF(2^m)[X]
 751 */
 752static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a,
 753                        const struct gf_poly *b, int *rep)
 754{
 755        int la, p, m;
 756        unsigned int i, j, *c = a->c;
 757        const unsigned int d = b->deg;
 758
 759        if (a->deg < d)
 760                return;
 761
 762        /* reuse or compute log representation of denominator */
 763        if (!rep) {
 764                rep = bch->cache;
 765                gf_poly_logrep(bch, b, rep);
 766        }
 767
 768        for (j = a->deg; j >= d; j--) {
 769                if (c[j]) {
 770                        la = a_log(bch, c[j]);
 771                        p = j-d;
 772                        for (i = 0; i < d; i++, p++) {
 773                                m = rep[i];
 774                                if (m >= 0)
 775                                        c[p] ^= bch->a_pow_tab[mod_s(bch,
 776                                                                     m+la)];
 777                        }
 778                }
 779        }
 780        a->deg = d-1;
 781        while (!c[a->deg] && a->deg)
 782                a->deg--;
 783}
 784
 785/*
 786 * compute polynomial Euclidean division quotient in GF(2^m)[X]
 787 */
 788static void gf_poly_div(struct bch_control *bch, struct gf_poly *a,
 789                        const struct gf_poly *b, struct gf_poly *q)
 790{
 791        if (a->deg >= b->deg) {
 792                q->deg = a->deg-b->deg;
 793                /* compute a mod b (modifies a) */
 794                gf_poly_mod(bch, a, b, NULL);
 795                /* quotient is stored in upper part of polynomial a */
 796                memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int));
 797        } else {
 798                q->deg = 0;
 799                q->c[0] = 0;
 800        }
 801}
 802
 803/*
 804 * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
 805 */
 806static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a,
 807                                   struct gf_poly *b)
 808{
 809        struct gf_poly *tmp;
 810
 811        dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b));
 812
 813        if (a->deg < b->deg) {
 814                tmp = b;
 815                b = a;
 816                a = tmp;
 817        }
 818
 819        while (b->deg > 0) {
 820                gf_poly_mod(bch, a, b, NULL);
 821                tmp = b;
 822                b = a;
 823                a = tmp;
 824        }
 825
 826        dbg("%s\n", gf_poly_str(a));
 827
 828        return a;
 829}
 830
 831/*
 832 * Given a polynomial f and an integer k, compute Tr(a^kX) mod f
 833 * This is used in Berlekamp Trace algorithm for splitting polynomials
 834 */
 835static void compute_trace_bk_mod(struct bch_control *bch, int k,
 836                                 const struct gf_poly *f, struct gf_poly *z,
 837                                 struct gf_poly *out)
 838{
 839        const int m = GF_M(bch);
 840        int i, j;
 841
 842        /* z contains z^2j mod f */
 843        z->deg = 1;
 844        z->c[0] = 0;
 845        z->c[1] = bch->a_pow_tab[k];
 846
 847        out->deg = 0;
 848        memset(out, 0, GF_POLY_SZ(f->deg));
 849
 850        /* compute f log representation only once */
 851        gf_poly_logrep(bch, f, bch->cache);
 852
 853        for (i = 0; i < m; i++) {
 854                /* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */
 855                for (j = z->deg; j >= 0; j--) {
 856                        out->c[j] ^= z->c[j];
 857                        z->c[2*j] = gf_sqr(bch, z->c[j]);
 858                        z->c[2*j+1] = 0;
 859                }
 860                if (z->deg > out->deg)
 861                        out->deg = z->deg;
 862
 863                if (i < m-1) {
 864                        z->deg *= 2;
 865                        /* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */
 866                        gf_poly_mod(bch, z, f, bch->cache);
 867                }
 868        }
 869        while (!out->c[out->deg] && out->deg)
 870                out->deg--;
 871
 872        dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out));
 873}
 874
 875/*
 876 * factor a polynomial using Berlekamp Trace algorithm (BTA)
 877 */
 878static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f,
 879                              struct gf_poly **g, struct gf_poly **h)
 880{
 881        struct gf_poly *f2 = bch->poly_2t[0];
 882        struct gf_poly *q  = bch->poly_2t[1];
 883        struct gf_poly *tk = bch->poly_2t[2];
 884        struct gf_poly *z  = bch->poly_2t[3];
 885        struct gf_poly *gcd;
 886
 887        dbg("factoring %s...\n", gf_poly_str(f));
 888
 889        *g = f;
 890        *h = NULL;
 891
 892        /* tk = Tr(a^k.X) mod f */
 893        compute_trace_bk_mod(bch, k, f, z, tk);
 894
 895        if (tk->deg > 0) {
 896                /* compute g = gcd(f, tk) (destructive operation) */
 897                gf_poly_copy(f2, f);
 898                gcd = gf_poly_gcd(bch, f2, tk);
 899                if (gcd->deg < f->deg) {
 900                        /* compute h=f/gcd(f,tk); this will modify f and q */
 901                        gf_poly_div(bch, f, gcd, q);
 902                        /* store g and h in-place (clobbering f) */
 903                        *h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly;
 904                        gf_poly_copy(*g, gcd);
 905                        gf_poly_copy(*h, q);
 906                }
 907        }
 908}
 909
 910/*
 911 * find roots of a polynomial, using BTZ algorithm; see the beginning of this
 912 * file for details
 913 */
 914static int find_poly_roots(struct bch_control *bch, unsigned int k,
 915                           struct gf_poly *poly, unsigned int *roots)
 916{
 917        int cnt;
 918        struct gf_poly *f1, *f2;
 919
 920        switch (poly->deg) {
 921                /* handle low degree polynomials with ad hoc techniques */
 922        case 1:
 923                cnt = find_poly_deg1_roots(bch, poly, roots);
 924                break;
 925        case 2:
 926                cnt = find_poly_deg2_roots(bch, poly, roots);
 927                break;
 928        case 3:
 929                cnt = find_poly_deg3_roots(bch, poly, roots);
 930                break;
 931        case 4:
 932                cnt = find_poly_deg4_roots(bch, poly, roots);
 933                break;
 934        default:
 935                /* factor polynomial using Berlekamp Trace Algorithm (BTA) */
 936                cnt = 0;
 937                if (poly->deg && (k <= GF_M(bch))) {
 938                        factor_polynomial(bch, k, poly, &f1, &f2);
 939                        if (f1)
 940                                cnt += find_poly_roots(bch, k+1, f1, roots);
 941                        if (f2)
 942                                cnt += find_poly_roots(bch, k+1, f2, roots+cnt);
 943                }
 944                break;
 945        }
 946        return cnt;
 947}
 948
 949#if defined(USE_CHIEN_SEARCH)
 950/*
 951 * exhaustive root search (Chien) implementation - not used, included only for
 952 * reference/comparison tests
 953 */
 954static int chien_search(struct bch_control *bch, unsigned int len,
 955                        struct gf_poly *p, unsigned int *roots)
 956{
 957        int m;
 958        unsigned int i, j, syn, syn0, count = 0;
 959        const unsigned int k = 8*len+bch->ecc_bits;
 960
 961        /* use a log-based representation of polynomial */
 962        gf_poly_logrep(bch, p, bch->cache);
 963        bch->cache[p->deg] = 0;
 964        syn0 = gf_div(bch, p->c[0], p->c[p->deg]);
 965
 966        for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) {
 967                /* compute elp(a^i) */
 968                for (j = 1, syn = syn0; j <= p->deg; j++) {
 969                        m = bch->cache[j];
 970                        if (m >= 0)
 971                                syn ^= a_pow(bch, m+j*i);
 972                }
 973                if (syn == 0) {
 974                        roots[count++] = GF_N(bch)-i;
 975                        if (count == p->deg)
 976                                break;
 977                }
 978        }
 979        return (count == p->deg) ? count : 0;
 980}
 981#define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
 982#endif /* USE_CHIEN_SEARCH */
 983
 984/**
 985 * decode_bch - decode received codeword and find bit error locations
 986 * @bch:      BCH control structure
 987 * @data:     received data, ignored if @calc_ecc is provided
 988 * @len:      data length in bytes, must always be provided
 989 * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc
 990 * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data
 991 * @syn:      hw computed syndrome data (if NULL, syndrome is calculated)
 992 * @errloc:   output array of error locations
 993 *
 994 * Returns:
 995 *  The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if
 996 *  invalid parameters were provided
 997 *
 998 * Depending on the available hw BCH support and the need to compute @calc_ecc
 999 * separately (using encode_bch()), this function should be called with one of
1000 * the following parameter configurations -
1001 *
1002 * by providing @data and @recv_ecc only:
1003 *   decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc)
1004 *
1005 * by providing @recv_ecc and @calc_ecc:
1006 *   decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc)
1007 *
1008 * by providing ecc = recv_ecc XOR calc_ecc:
1009 *   decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc)
1010 *
1011 * by providing syndrome results @syn:
1012 *   decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc)
1013 *
1014 * Once decode_bch() has successfully returned with a positive value, error
1015 * locations returned in array @errloc should be interpreted as follows -
1016 *
1017 * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for
1018 * data correction)
1019 *
1020 * if (errloc[n] < 8*len), then n-th error is located in data and can be
1021 * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8);
1022 *
1023 * Note that this function does not perform any data correction by itself, it
1024 * merely indicates error locations.
1025 */
1026int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len,
1027               const uint8_t *recv_ecc, const uint8_t *calc_ecc,
1028               const unsigned int *syn, unsigned int *errloc)
1029{
1030        const unsigned int ecc_words = BCH_ECC_WORDS(bch);
1031        unsigned int nbits;
1032        int i, err, nroots;
1033        uint32_t sum;
1034
1035        /* sanity check: make sure data length can be handled */
1036        if (8*len > (bch->n-bch->ecc_bits))
1037                return -EINVAL;
1038
1039        /* if caller does not provide syndromes, compute them */
1040        if (!syn) {
1041                if (!calc_ecc) {
1042                        /* compute received data ecc into an internal buffer */
1043                        if (!data || !recv_ecc)
1044                                return -EINVAL;
1045                        encode_bch(bch, data, len, NULL);
1046                } else {
1047                        /* load provided calculated ecc */
1048                        load_ecc8(bch, bch->ecc_buf, calc_ecc);
1049                }
1050                /* load received ecc or assume it was XORed in calc_ecc */
1051                if (recv_ecc) {
1052                        load_ecc8(bch, bch->ecc_buf2, recv_ecc);
1053                        /* XOR received and calculated ecc */
1054                        for (i = 0, sum = 0; i < (int)ecc_words; i++) {
1055                                bch->ecc_buf[i] ^= bch->ecc_buf2[i];
1056                                sum |= bch->ecc_buf[i];
1057                        }
1058                        if (!sum)
1059                                /* no error found */
1060                                return 0;
1061                }
1062                compute_syndromes(bch, bch->ecc_buf, bch->syn);
1063                syn = bch->syn;
1064        }
1065
1066        err = compute_error_locator_polynomial(bch, syn);
1067        if (err > 0) {
1068                nroots = find_poly_roots(bch, 1, bch->elp, errloc);
1069                if (err != nroots)
1070                        err = -1;
1071        }
1072        if (err > 0) {
1073                /* post-process raw error locations for easier correction */
1074                nbits = (len*8)+bch->ecc_bits;
1075                for (i = 0; i < err; i++) {
1076                        if (errloc[i] >= nbits) {
1077                                err = -1;
1078                                break;
1079                        }
1080                        errloc[i] = nbits-1-errloc[i];
1081                        errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7));
1082                }
1083        }
1084        return (err >= 0) ? err : -EBADMSG;
1085}
1086
1087/*
1088 * generate Galois field lookup tables
1089 */
1090static int build_gf_tables(struct bch_control *bch, unsigned int poly)
1091{
1092        unsigned int i, x = 1;
1093        const unsigned int k = 1 << deg(poly);
1094
1095        /* primitive polynomial must be of degree m */
1096        if (k != (1u << GF_M(bch)))
1097                return -1;
1098
1099        for (i = 0; i < GF_N(bch); i++) {
1100                bch->a_pow_tab[i] = x;
1101                bch->a_log_tab[x] = i;
1102                if (i && (x == 1))
1103                        /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1104                        return -1;
1105                x <<= 1;
1106                if (x & k)
1107                        x ^= poly;
1108        }
1109        bch->a_pow_tab[GF_N(bch)] = 1;
1110        bch->a_log_tab[0] = 0;
1111
1112        return 0;
1113}
1114
1115/*
1116 * compute generator polynomial remainder tables for fast encoding
1117 */
1118static void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
1119{
1120        int i, j, b, d;
1121        uint32_t data, hi, lo, *tab;
1122        const int l = BCH_ECC_WORDS(bch);
1123        const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
1124        const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
1125
1126        memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
1127
1128        for (i = 0; i < 256; i++) {
1129                /* p(X)=i is a small polynomial of weight <= 8 */
1130                for (b = 0; b < 4; b++) {
1131                        /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
1132                        tab = bch->mod8_tab + (b*256+i)*l;
1133                        data = i << (8*b);
1134                        while (data) {
1135                                d = deg(data);
1136                                /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
1137                                data ^= g[0] >> (31-d);
1138                                for (j = 0; j < ecclen; j++) {
1139                                        hi = (d < 31) ? g[j] << (d+1) : 0;
1140                                        lo = (j+1 < plen) ?
1141                                                g[j+1] >> (31-d) : 0;
1142                                        tab[j] ^= hi|lo;
1143                                }
1144                        }
1145                }
1146        }
1147}
1148
1149/*
1150 * build a base for factoring degree 2 polynomials
1151 */
1152static int build_deg2_base(struct bch_control *bch)
1153{
1154        const int m = GF_M(bch);
1155        int i, j, r;
1156        unsigned int sum, x, y, remaining, ak = 0, xi[m];
1157
1158        /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
1159        for (i = 0; i < m; i++) {
1160                for (j = 0, sum = 0; j < m; j++)
1161                        sum ^= a_pow(bch, i*(1 << j));
1162
1163                if (sum) {
1164                        ak = bch->a_pow_tab[i];
1165                        break;
1166                }
1167        }
1168        /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
1169        remaining = m;
1170        memset(xi, 0, sizeof(xi));
1171
1172        for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
1173                y = gf_sqr(bch, x)^x;
1174                for (i = 0; i < 2; i++) {
1175                        r = a_log(bch, y);
1176                        if (y && (r < m) && !xi[r]) {
1177                                bch->xi_tab[r] = x;
1178                                xi[r] = 1;
1179                                remaining--;
1180                                dbg("x%d = %x\n", r, x);
1181                                break;
1182                        }
1183                        y ^= ak;
1184                }
1185        }
1186        /* should not happen but check anyway */
1187        return remaining ? -1 : 0;
1188}
1189
1190static void *bch_alloc(size_t size, int *err)
1191{
1192        void *ptr;
1193
1194        ptr = kmalloc(size, GFP_KERNEL);
1195        if (ptr == NULL)
1196                *err = 1;
1197        return ptr;
1198}
1199
1200/*
1201 * compute generator polynomial for given (m,t) parameters.
1202 */
1203static uint32_t *compute_generator_polynomial(struct bch_control *bch)
1204{
1205        const unsigned int m = GF_M(bch);
1206        const unsigned int t = GF_T(bch);
1207        int n, err = 0;
1208        unsigned int i, j, nbits, r, word, *roots;
1209        struct gf_poly *g;
1210        uint32_t *genpoly;
1211
1212        g = bch_alloc(GF_POLY_SZ(m*t), &err);
1213        roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
1214        genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
1215
1216        if (err) {
1217                kfree(genpoly);
1218                genpoly = NULL;
1219                goto finish;
1220        }
1221
1222        /* enumerate all roots of g(X) */
1223        memset(roots , 0, (bch->n+1)*sizeof(*roots));
1224        for (i = 0; i < t; i++) {
1225                for (j = 0, r = 2*i+1; j < m; j++) {
1226                        roots[r] = 1;
1227                        r = mod_s(bch, 2*r);
1228                }
1229        }
1230        /* build generator polynomial g(X) */
1231        g->deg = 0;
1232        g->c[0] = 1;
1233        for (i = 0; i < GF_N(bch); i++) {
1234                if (roots[i]) {
1235                        /* multiply g(X) by (X+root) */
1236                        r = bch->a_pow_tab[i];
1237                        g->c[g->deg+1] = 1;
1238                        for (j = g->deg; j > 0; j--)
1239                                g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
1240
1241                        g->c[0] = gf_mul(bch, g->c[0], r);
1242                        g->deg++;
1243                }
1244        }
1245        /* store left-justified binary representation of g(X) */
1246        n = g->deg+1;
1247        i = 0;
1248
1249        while (n > 0) {
1250                nbits = (n > 32) ? 32 : n;
1251                for (j = 0, word = 0; j < nbits; j++) {
1252                        if (g->c[n-1-j])
1253                                word |= 1u << (31-j);
1254                }
1255                genpoly[i++] = word;
1256                n -= nbits;
1257        }
1258        bch->ecc_bits = g->deg;
1259
1260finish:
1261        kfree(g);
1262        kfree(roots);
1263
1264        return genpoly;
1265}
1266
1267/**
1268 * init_bch - initialize a BCH encoder/decoder
1269 * @m:          Galois field order, should be in the range 5-15
1270 * @t:          maximum error correction capability, in bits
1271 * @prim_poly:  user-provided primitive polynomial (or 0 to use default)
1272 *
1273 * Returns:
1274 *  a newly allocated BCH control structure if successful, NULL otherwise
1275 *
1276 * This initialization can take some time, as lookup tables are built for fast
1277 * encoding/decoding; make sure not to call this function from a time critical
1278 * path. Usually, init_bch() should be called on module/driver init and
1279 * free_bch() should be called to release memory on exit.
1280 *
1281 * You may provide your own primitive polynomial of degree @m in argument
1282 * @prim_poly, or let init_bch() use its default polynomial.
1283 *
1284 * Once init_bch() has successfully returned a pointer to a newly allocated
1285 * BCH control structure, ecc length in bytes is given by member @ecc_bytes of
1286 * the structure.
1287 */
1288struct bch_control *init_bch(int m, int t, unsigned int prim_poly)
1289{
1290        int err = 0;
1291        unsigned int i, words;
1292        uint32_t *genpoly;
1293        struct bch_control *bch = NULL;
1294
1295        const int min_m = 5;
1296        const int max_m = 15;
1297
1298        /* default primitive polynomials */
1299        static const unsigned int prim_poly_tab[] = {
1300                0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
1301                0x402b, 0x8003,
1302        };
1303
1304#if defined(CONFIG_BCH_CONST_PARAMS)
1305        if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
1306                printk(KERN_ERR "bch encoder/decoder was configured to support "
1307                       "parameters m=%d, t=%d only!\n",
1308                       CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
1309                goto fail;
1310        }
1311#endif
1312        if ((m < min_m) || (m > max_m))
1313                /*
1314                 * values of m greater than 15 are not currently supported;
1315                 * supporting m > 15 would require changing table base type
1316                 * (uint16_t) and a small patch in matrix transposition
1317                 */
1318                goto fail;
1319
1320        /* sanity checks */
1321        if ((t < 1) || (m*t >= ((1 << m)-1)))
1322                /* invalid t value */
1323                goto fail;
1324
1325        /* select a primitive polynomial for generating GF(2^m) */
1326        if (prim_poly == 0)
1327                prim_poly = prim_poly_tab[m-min_m];
1328
1329        bch = kzalloc(sizeof(*bch), GFP_KERNEL);
1330        if (bch == NULL)
1331                goto fail;
1332
1333        bch->m = m;
1334        bch->t = t;
1335        bch->n = (1 << m)-1;
1336        words  = DIV_ROUND_UP(m*t, 32);
1337        bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
1338        bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
1339        bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
1340        bch->mod8_tab  = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
1341        bch->ecc_buf   = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
1342        bch->ecc_buf2  = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
1343        bch->xi_tab    = bch_alloc(m*sizeof(*bch->xi_tab), &err);
1344        bch->syn       = bch_alloc(2*t*sizeof(*bch->syn), &err);
1345        bch->cache     = bch_alloc(2*t*sizeof(*bch->cache), &err);
1346        bch->elp       = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
1347
1348        for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1349                bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
1350
1351        if (err)
1352                goto fail;
1353
1354        err = build_gf_tables(bch, prim_poly);
1355        if (err)
1356                goto fail;
1357
1358        /* use generator polynomial for computing encoding tables */
1359        genpoly = compute_generator_polynomial(bch);
1360        if (genpoly == NULL)
1361                goto fail;
1362
1363        build_mod8_tables(bch, genpoly);
1364        kfree(genpoly);
1365
1366        err = build_deg2_base(bch);
1367        if (err)
1368                goto fail;
1369
1370        return bch;
1371
1372fail:
1373        free_bch(bch);
1374        return NULL;
1375}
1376
1377/**
1378 *  free_bch - free the BCH control structure
1379 *  @bch:    BCH control structure to release
1380 */
1381void free_bch(struct bch_control *bch)
1382{
1383        unsigned int i;
1384
1385        if (bch) {
1386                kfree(bch->a_pow_tab);
1387                kfree(bch->a_log_tab);
1388                kfree(bch->mod8_tab);
1389                kfree(bch->ecc_buf);
1390                kfree(bch->ecc_buf2);
1391                kfree(bch->xi_tab);
1392                kfree(bch->syn);
1393                kfree(bch->cache);
1394                kfree(bch->elp);
1395
1396                for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1397                        kfree(bch->poly_2t[i]);
1398
1399                kfree(bch);
1400        }
1401}
1402