uboot/drivers/mtd/ubi/attach.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Copyright (c) International Business Machines Corp., 2006
   4 *
   5 * Author: Artem Bityutskiy (Битюцкий Артём)
   6 */
   7
   8/*
   9 * UBI attaching sub-system.
  10 *
  11 * This sub-system is responsible for attaching MTD devices and it also
  12 * implements flash media scanning.
  13 *
  14 * The attaching information is represented by a &struct ubi_attach_info'
  15 * object. Information about volumes is represented by &struct ubi_ainf_volume
  16 * objects which are kept in volume RB-tree with root at the @volumes field.
  17 * The RB-tree is indexed by the volume ID.
  18 *
  19 * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
  20 * objects are kept in per-volume RB-trees with the root at the corresponding
  21 * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
  22 * per-volume objects and each of these objects is the root of RB-tree of
  23 * per-LEB objects.
  24 *
  25 * Corrupted physical eraseblocks are put to the @corr list, free physical
  26 * eraseblocks are put to the @free list and the physical eraseblock to be
  27 * erased are put to the @erase list.
  28 *
  29 * About corruptions
  30 * ~~~~~~~~~~~~~~~~~
  31 *
  32 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
  33 * whether the headers are corrupted or not. Sometimes UBI also protects the
  34 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
  35 * when it moves the contents of a PEB for wear-leveling purposes.
  36 *
  37 * UBI tries to distinguish between 2 types of corruptions.
  38 *
  39 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
  40 * tries to handle them gracefully, without printing too many warnings and
  41 * error messages. The idea is that we do not lose important data in these
  42 * cases - we may lose only the data which were being written to the media just
  43 * before the power cut happened, and the upper layers (e.g., UBIFS) are
  44 * supposed to handle such data losses (e.g., by using the FS journal).
  45 *
  46 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
  47 * the reason is a power cut, UBI puts this PEB to the @erase list, and all
  48 * PEBs in the @erase list are scheduled for erasure later.
  49 *
  50 * 2. Unexpected corruptions which are not caused by power cuts. During
  51 * attaching, such PEBs are put to the @corr list and UBI preserves them.
  52 * Obviously, this lessens the amount of available PEBs, and if at some  point
  53 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
  54 * about such PEBs every time the MTD device is attached.
  55 *
  56 * However, it is difficult to reliably distinguish between these types of
  57 * corruptions and UBI's strategy is as follows (in case of attaching by
  58 * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
  59 * the data area does not contain all 0xFFs, and there were no bit-flips or
  60 * integrity errors (e.g., ECC errors in case of NAND) while reading the data
  61 * area.  Otherwise UBI assumes corruption type 1. So the decision criteria
  62 * are as follows.
  63 *   o If the data area contains only 0xFFs, there are no data, and it is safe
  64 *     to just erase this PEB - this is corruption type 1.
  65 *   o If the data area has bit-flips or data integrity errors (ECC errors on
  66 *     NAND), it is probably a PEB which was being erased when power cut
  67 *     happened, so this is corruption type 1. However, this is just a guess,
  68 *     which might be wrong.
  69 *   o Otherwise this is corruption type 2.
  70 */
  71
  72#ifndef __UBOOT__
  73#include <linux/err.h>
  74#include <linux/slab.h>
  75#include <linux/crc32.h>
  76#include <linux/random.h>
  77#else
  78#include <div64.h>
  79#include <linux/err.h>
  80#endif
  81
  82#include <linux/math64.h>
  83
  84#include <ubi_uboot.h>
  85#include "ubi.h"
  86
  87static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
  88
  89/* Temporary variables used during scanning */
  90static struct ubi_ec_hdr *ech;
  91static struct ubi_vid_hdr *vidh;
  92
  93/**
  94 * add_to_list - add physical eraseblock to a list.
  95 * @ai: attaching information
  96 * @pnum: physical eraseblock number to add
  97 * @vol_id: the last used volume id for the PEB
  98 * @lnum: the last used LEB number for the PEB
  99 * @ec: erase counter of the physical eraseblock
 100 * @to_head: if not zero, add to the head of the list
 101 * @list: the list to add to
 102 *
 103 * This function allocates a 'struct ubi_ainf_peb' object for physical
 104 * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
 105 * It stores the @lnum and @vol_id alongside, which can both be
 106 * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
 107 * If @to_head is not zero, PEB will be added to the head of the list, which
 108 * basically means it will be processed first later. E.g., we add corrupted
 109 * PEBs (corrupted due to power cuts) to the head of the erase list to make
 110 * sure we erase them first and get rid of corruptions ASAP. This function
 111 * returns zero in case of success and a negative error code in case of
 112 * failure.
 113 */
 114static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
 115                       int lnum, int ec, int to_head, struct list_head *list)
 116{
 117        struct ubi_ainf_peb *aeb;
 118
 119        if (list == &ai->free) {
 120                dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
 121        } else if (list == &ai->erase) {
 122                dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
 123        } else if (list == &ai->alien) {
 124                dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
 125                ai->alien_peb_count += 1;
 126        } else
 127                BUG();
 128
 129        aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 130        if (!aeb)
 131                return -ENOMEM;
 132
 133        aeb->pnum = pnum;
 134        aeb->vol_id = vol_id;
 135        aeb->lnum = lnum;
 136        aeb->ec = ec;
 137        if (to_head)
 138                list_add(&aeb->u.list, list);
 139        else
 140                list_add_tail(&aeb->u.list, list);
 141        return 0;
 142}
 143
 144/**
 145 * add_corrupted - add a corrupted physical eraseblock.
 146 * @ai: attaching information
 147 * @pnum: physical eraseblock number to add
 148 * @ec: erase counter of the physical eraseblock
 149 *
 150 * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
 151 * physical eraseblock @pnum and adds it to the 'corr' list.  The corruption
 152 * was presumably not caused by a power cut. Returns zero in case of success
 153 * and a negative error code in case of failure.
 154 */
 155static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
 156{
 157        struct ubi_ainf_peb *aeb;
 158
 159        dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
 160
 161        aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 162        if (!aeb)
 163                return -ENOMEM;
 164
 165        ai->corr_peb_count += 1;
 166        aeb->pnum = pnum;
 167        aeb->ec = ec;
 168        list_add(&aeb->u.list, &ai->corr);
 169        return 0;
 170}
 171
 172/**
 173 * validate_vid_hdr - check volume identifier header.
 174 * @ubi: UBI device description object
 175 * @vid_hdr: the volume identifier header to check
 176 * @av: information about the volume this logical eraseblock belongs to
 177 * @pnum: physical eraseblock number the VID header came from
 178 *
 179 * This function checks that data stored in @vid_hdr is consistent. Returns
 180 * non-zero if an inconsistency was found and zero if not.
 181 *
 182 * Note, UBI does sanity check of everything it reads from the flash media.
 183 * Most of the checks are done in the I/O sub-system. Here we check that the
 184 * information in the VID header is consistent to the information in other VID
 185 * headers of the same volume.
 186 */
 187static int validate_vid_hdr(const struct ubi_device *ubi,
 188                            const struct ubi_vid_hdr *vid_hdr,
 189                            const struct ubi_ainf_volume *av, int pnum)
 190{
 191        int vol_type = vid_hdr->vol_type;
 192        int vol_id = be32_to_cpu(vid_hdr->vol_id);
 193        int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 194        int data_pad = be32_to_cpu(vid_hdr->data_pad);
 195
 196        if (av->leb_count != 0) {
 197                int av_vol_type;
 198
 199                /*
 200                 * This is not the first logical eraseblock belonging to this
 201                 * volume. Ensure that the data in its VID header is consistent
 202                 * to the data in previous logical eraseblock headers.
 203                 */
 204
 205                if (vol_id != av->vol_id) {
 206                        ubi_err(ubi, "inconsistent vol_id");
 207                        goto bad;
 208                }
 209
 210                if (av->vol_type == UBI_STATIC_VOLUME)
 211                        av_vol_type = UBI_VID_STATIC;
 212                else
 213                        av_vol_type = UBI_VID_DYNAMIC;
 214
 215                if (vol_type != av_vol_type) {
 216                        ubi_err(ubi, "inconsistent vol_type");
 217                        goto bad;
 218                }
 219
 220                if (used_ebs != av->used_ebs) {
 221                        ubi_err(ubi, "inconsistent used_ebs");
 222                        goto bad;
 223                }
 224
 225                if (data_pad != av->data_pad) {
 226                        ubi_err(ubi, "inconsistent data_pad");
 227                        goto bad;
 228                }
 229        }
 230
 231        return 0;
 232
 233bad:
 234        ubi_err(ubi, "inconsistent VID header at PEB %d", pnum);
 235        ubi_dump_vid_hdr(vid_hdr);
 236        ubi_dump_av(av);
 237        return -EINVAL;
 238}
 239
 240/**
 241 * add_volume - add volume to the attaching information.
 242 * @ai: attaching information
 243 * @vol_id: ID of the volume to add
 244 * @pnum: physical eraseblock number
 245 * @vid_hdr: volume identifier header
 246 *
 247 * If the volume corresponding to the @vid_hdr logical eraseblock is already
 248 * present in the attaching information, this function does nothing. Otherwise
 249 * it adds corresponding volume to the attaching information. Returns a pointer
 250 * to the allocated "av" object in case of success and a negative error code in
 251 * case of failure.
 252 */
 253static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
 254                                          int vol_id, int pnum,
 255                                          const struct ubi_vid_hdr *vid_hdr)
 256{
 257        struct ubi_ainf_volume *av;
 258        struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
 259
 260        ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
 261
 262        /* Walk the volume RB-tree to look if this volume is already present */
 263        while (*p) {
 264                parent = *p;
 265                av = rb_entry(parent, struct ubi_ainf_volume, rb);
 266
 267                if (vol_id == av->vol_id)
 268                        return av;
 269
 270                if (vol_id > av->vol_id)
 271                        p = &(*p)->rb_left;
 272                else
 273                        p = &(*p)->rb_right;
 274        }
 275
 276        /* The volume is absent - add it */
 277        av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
 278        if (!av)
 279                return ERR_PTR(-ENOMEM);
 280
 281        av->highest_lnum = av->leb_count = 0;
 282        av->vol_id = vol_id;
 283        av->root = RB_ROOT;
 284        av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 285        av->data_pad = be32_to_cpu(vid_hdr->data_pad);
 286        av->compat = vid_hdr->compat;
 287        av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
 288                                                            : UBI_STATIC_VOLUME;
 289        if (vol_id > ai->highest_vol_id)
 290                ai->highest_vol_id = vol_id;
 291
 292        rb_link_node(&av->rb, parent, p);
 293        rb_insert_color(&av->rb, &ai->volumes);
 294        ai->vols_found += 1;
 295        dbg_bld("added volume %d", vol_id);
 296        return av;
 297}
 298
 299/**
 300 * ubi_compare_lebs - find out which logical eraseblock is newer.
 301 * @ubi: UBI device description object
 302 * @aeb: first logical eraseblock to compare
 303 * @pnum: physical eraseblock number of the second logical eraseblock to
 304 * compare
 305 * @vid_hdr: volume identifier header of the second logical eraseblock
 306 *
 307 * This function compares 2 copies of a LEB and informs which one is newer. In
 308 * case of success this function returns a positive value, in case of failure, a
 309 * negative error code is returned. The success return codes use the following
 310 * bits:
 311 *     o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
 312 *       second PEB (described by @pnum and @vid_hdr);
 313 *     o bit 0 is set: the second PEB is newer;
 314 *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
 315 *     o bit 1 is set: bit-flips were detected in the newer LEB;
 316 *     o bit 2 is cleared: the older LEB is not corrupted;
 317 *     o bit 2 is set: the older LEB is corrupted.
 318 */
 319int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
 320                        int pnum, const struct ubi_vid_hdr *vid_hdr)
 321{
 322        int len, err, second_is_newer, bitflips = 0, corrupted = 0;
 323        uint32_t data_crc, crc;
 324        struct ubi_vid_hdr *vh = NULL;
 325        unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
 326
 327        if (sqnum2 == aeb->sqnum) {
 328                /*
 329                 * This must be a really ancient UBI image which has been
 330                 * created before sequence numbers support has been added. At
 331                 * that times we used 32-bit LEB versions stored in logical
 332                 * eraseblocks. That was before UBI got into mainline. We do not
 333                 * support these images anymore. Well, those images still work,
 334                 * but only if no unclean reboots happened.
 335                 */
 336                ubi_err(ubi, "unsupported on-flash UBI format");
 337                return -EINVAL;
 338        }
 339
 340        /* Obviously the LEB with lower sequence counter is older */
 341        second_is_newer = (sqnum2 > aeb->sqnum);
 342
 343        /*
 344         * Now we know which copy is newer. If the copy flag of the PEB with
 345         * newer version is not set, then we just return, otherwise we have to
 346         * check data CRC. For the second PEB we already have the VID header,
 347         * for the first one - we'll need to re-read it from flash.
 348         *
 349         * Note: this may be optimized so that we wouldn't read twice.
 350         */
 351
 352        if (second_is_newer) {
 353                if (!vid_hdr->copy_flag) {
 354                        /* It is not a copy, so it is newer */
 355                        dbg_bld("second PEB %d is newer, copy_flag is unset",
 356                                pnum);
 357                        return 1;
 358                }
 359        } else {
 360                if (!aeb->copy_flag) {
 361                        /* It is not a copy, so it is newer */
 362                        dbg_bld("first PEB %d is newer, copy_flag is unset",
 363                                pnum);
 364                        return bitflips << 1;
 365                }
 366
 367                vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
 368                if (!vh)
 369                        return -ENOMEM;
 370
 371                pnum = aeb->pnum;
 372                err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
 373                if (err) {
 374                        if (err == UBI_IO_BITFLIPS)
 375                                bitflips = 1;
 376                        else {
 377                                ubi_err(ubi, "VID of PEB %d header is bad, but it was OK earlier, err %d",
 378                                        pnum, err);
 379                                if (err > 0)
 380                                        err = -EIO;
 381
 382                                goto out_free_vidh;
 383                        }
 384                }
 385
 386                vid_hdr = vh;
 387        }
 388
 389        /* Read the data of the copy and check the CRC */
 390
 391        len = be32_to_cpu(vid_hdr->data_size);
 392
 393        mutex_lock(&ubi->buf_mutex);
 394        err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
 395        if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
 396                goto out_unlock;
 397
 398        data_crc = be32_to_cpu(vid_hdr->data_crc);
 399        crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
 400        if (crc != data_crc) {
 401                dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
 402                        pnum, crc, data_crc);
 403                corrupted = 1;
 404                bitflips = 0;
 405                second_is_newer = !second_is_newer;
 406        } else {
 407                dbg_bld("PEB %d CRC is OK", pnum);
 408                bitflips |= !!err;
 409        }
 410        mutex_unlock(&ubi->buf_mutex);
 411
 412        ubi_free_vid_hdr(ubi, vh);
 413
 414        if (second_is_newer)
 415                dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
 416        else
 417                dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
 418
 419        return second_is_newer | (bitflips << 1) | (corrupted << 2);
 420
 421out_unlock:
 422        mutex_unlock(&ubi->buf_mutex);
 423out_free_vidh:
 424        ubi_free_vid_hdr(ubi, vh);
 425        return err;
 426}
 427
 428/**
 429 * ubi_add_to_av - add used physical eraseblock to the attaching information.
 430 * @ubi: UBI device description object
 431 * @ai: attaching information
 432 * @pnum: the physical eraseblock number
 433 * @ec: erase counter
 434 * @vid_hdr: the volume identifier header
 435 * @bitflips: if bit-flips were detected when this physical eraseblock was read
 436 *
 437 * This function adds information about a used physical eraseblock to the
 438 * 'used' tree of the corresponding volume. The function is rather complex
 439 * because it has to handle cases when this is not the first physical
 440 * eraseblock belonging to the same logical eraseblock, and the newer one has
 441 * to be picked, while the older one has to be dropped. This function returns
 442 * zero in case of success and a negative error code in case of failure.
 443 */
 444int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
 445                  int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
 446{
 447        int err, vol_id, lnum;
 448        unsigned long long sqnum;
 449        struct ubi_ainf_volume *av;
 450        struct ubi_ainf_peb *aeb;
 451        struct rb_node **p, *parent = NULL;
 452
 453        vol_id = be32_to_cpu(vid_hdr->vol_id);
 454        lnum = be32_to_cpu(vid_hdr->lnum);
 455        sqnum = be64_to_cpu(vid_hdr->sqnum);
 456
 457        dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
 458                pnum, vol_id, lnum, ec, sqnum, bitflips);
 459
 460        av = add_volume(ai, vol_id, pnum, vid_hdr);
 461        if (IS_ERR(av))
 462                return PTR_ERR(av);
 463
 464        if (ai->max_sqnum < sqnum)
 465                ai->max_sqnum = sqnum;
 466
 467        /*
 468         * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
 469         * if this is the first instance of this logical eraseblock or not.
 470         */
 471        p = &av->root.rb_node;
 472        while (*p) {
 473                int cmp_res;
 474
 475                parent = *p;
 476                aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
 477                if (lnum != aeb->lnum) {
 478                        if (lnum < aeb->lnum)
 479                                p = &(*p)->rb_left;
 480                        else
 481                                p = &(*p)->rb_right;
 482                        continue;
 483                }
 484
 485                /*
 486                 * There is already a physical eraseblock describing the same
 487                 * logical eraseblock present.
 488                 */
 489
 490                dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
 491                        aeb->pnum, aeb->sqnum, aeb->ec);
 492
 493                /*
 494                 * Make sure that the logical eraseblocks have different
 495                 * sequence numbers. Otherwise the image is bad.
 496                 *
 497                 * However, if the sequence number is zero, we assume it must
 498                 * be an ancient UBI image from the era when UBI did not have
 499                 * sequence numbers. We still can attach these images, unless
 500                 * there is a need to distinguish between old and new
 501                 * eraseblocks, in which case we'll refuse the image in
 502                 * 'ubi_compare_lebs()'. In other words, we attach old clean
 503                 * images, but refuse attaching old images with duplicated
 504                 * logical eraseblocks because there was an unclean reboot.
 505                 */
 506                if (aeb->sqnum == sqnum && sqnum != 0) {
 507                        ubi_err(ubi, "two LEBs with same sequence number %llu",
 508                                sqnum);
 509                        ubi_dump_aeb(aeb, 0);
 510                        ubi_dump_vid_hdr(vid_hdr);
 511                        return -EINVAL;
 512                }
 513
 514                /*
 515                 * Now we have to drop the older one and preserve the newer
 516                 * one.
 517                 */
 518                cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
 519                if (cmp_res < 0)
 520                        return cmp_res;
 521
 522                if (cmp_res & 1) {
 523                        /*
 524                         * This logical eraseblock is newer than the one
 525                         * found earlier.
 526                         */
 527                        err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
 528                        if (err)
 529                                return err;
 530
 531                        err = add_to_list(ai, aeb->pnum, aeb->vol_id,
 532                                          aeb->lnum, aeb->ec, cmp_res & 4,
 533                                          &ai->erase);
 534                        if (err)
 535                                return err;
 536
 537                        aeb->ec = ec;
 538                        aeb->pnum = pnum;
 539                        aeb->vol_id = vol_id;
 540                        aeb->lnum = lnum;
 541                        aeb->scrub = ((cmp_res & 2) || bitflips);
 542                        aeb->copy_flag = vid_hdr->copy_flag;
 543                        aeb->sqnum = sqnum;
 544
 545                        if (av->highest_lnum == lnum)
 546                                av->last_data_size =
 547                                        be32_to_cpu(vid_hdr->data_size);
 548
 549                        return 0;
 550                } else {
 551                        /*
 552                         * This logical eraseblock is older than the one found
 553                         * previously.
 554                         */
 555                        return add_to_list(ai, pnum, vol_id, lnum, ec,
 556                                           cmp_res & 4, &ai->erase);
 557                }
 558        }
 559
 560        /*
 561         * We've met this logical eraseblock for the first time, add it to the
 562         * attaching information.
 563         */
 564
 565        err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
 566        if (err)
 567                return err;
 568
 569        aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 570        if (!aeb)
 571                return -ENOMEM;
 572
 573        aeb->ec = ec;
 574        aeb->pnum = pnum;
 575        aeb->vol_id = vol_id;
 576        aeb->lnum = lnum;
 577        aeb->scrub = bitflips;
 578        aeb->copy_flag = vid_hdr->copy_flag;
 579        aeb->sqnum = sqnum;
 580
 581        if (av->highest_lnum <= lnum) {
 582                av->highest_lnum = lnum;
 583                av->last_data_size = be32_to_cpu(vid_hdr->data_size);
 584        }
 585
 586        av->leb_count += 1;
 587        rb_link_node(&aeb->u.rb, parent, p);
 588        rb_insert_color(&aeb->u.rb, &av->root);
 589        return 0;
 590}
 591
 592/**
 593 * ubi_find_av - find volume in the attaching information.
 594 * @ai: attaching information
 595 * @vol_id: the requested volume ID
 596 *
 597 * This function returns a pointer to the volume description or %NULL if there
 598 * are no data about this volume in the attaching information.
 599 */
 600struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
 601                                    int vol_id)
 602{
 603        struct ubi_ainf_volume *av;
 604        struct rb_node *p = ai->volumes.rb_node;
 605
 606        while (p) {
 607                av = rb_entry(p, struct ubi_ainf_volume, rb);
 608
 609                if (vol_id == av->vol_id)
 610                        return av;
 611
 612                if (vol_id > av->vol_id)
 613                        p = p->rb_left;
 614                else
 615                        p = p->rb_right;
 616        }
 617
 618        return NULL;
 619}
 620
 621/**
 622 * ubi_remove_av - delete attaching information about a volume.
 623 * @ai: attaching information
 624 * @av: the volume attaching information to delete
 625 */
 626void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
 627{
 628        struct rb_node *rb;
 629        struct ubi_ainf_peb *aeb;
 630
 631        dbg_bld("remove attaching information about volume %d", av->vol_id);
 632
 633        while ((rb = rb_first(&av->root))) {
 634                aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
 635                rb_erase(&aeb->u.rb, &av->root);
 636                list_add_tail(&aeb->u.list, &ai->erase);
 637        }
 638
 639        rb_erase(&av->rb, &ai->volumes);
 640        kfree(av);
 641        ai->vols_found -= 1;
 642}
 643
 644/**
 645 * early_erase_peb - erase a physical eraseblock.
 646 * @ubi: UBI device description object
 647 * @ai: attaching information
 648 * @pnum: physical eraseblock number to erase;
 649 * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
 650 *
 651 * This function erases physical eraseblock 'pnum', and writes the erase
 652 * counter header to it. This function should only be used on UBI device
 653 * initialization stages, when the EBA sub-system had not been yet initialized.
 654 * This function returns zero in case of success and a negative error code in
 655 * case of failure.
 656 */
 657static int early_erase_peb(struct ubi_device *ubi,
 658                           const struct ubi_attach_info *ai, int pnum, int ec)
 659{
 660        int err;
 661        struct ubi_ec_hdr *ec_hdr;
 662
 663        if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
 664                /*
 665                 * Erase counter overflow. Upgrade UBI and use 64-bit
 666                 * erase counters internally.
 667                 */
 668                ubi_err(ubi, "erase counter overflow at PEB %d, EC %d",
 669                        pnum, ec);
 670                return -EINVAL;
 671        }
 672
 673        ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
 674        if (!ec_hdr)
 675                return -ENOMEM;
 676
 677        ec_hdr->ec = cpu_to_be64(ec);
 678
 679        err = ubi_io_sync_erase(ubi, pnum, 0);
 680        if (err < 0)
 681                goto out_free;
 682
 683        err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
 684
 685out_free:
 686        kfree(ec_hdr);
 687        return err;
 688}
 689
 690/**
 691 * ubi_early_get_peb - get a free physical eraseblock.
 692 * @ubi: UBI device description object
 693 * @ai: attaching information
 694 *
 695 * This function returns a free physical eraseblock. It is supposed to be
 696 * called on the UBI initialization stages when the wear-leveling sub-system is
 697 * not initialized yet. This function picks a physical eraseblocks from one of
 698 * the lists, writes the EC header if it is needed, and removes it from the
 699 * list.
 700 *
 701 * This function returns a pointer to the "aeb" of the found free PEB in case
 702 * of success and an error code in case of failure.
 703 */
 704struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
 705                                       struct ubi_attach_info *ai)
 706{
 707        int err = 0;
 708        struct ubi_ainf_peb *aeb, *tmp_aeb;
 709
 710        if (!list_empty(&ai->free)) {
 711                aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
 712                list_del(&aeb->u.list);
 713                dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
 714                return aeb;
 715        }
 716
 717        /*
 718         * We try to erase the first physical eraseblock from the erase list
 719         * and pick it if we succeed, or try to erase the next one if not. And
 720         * so forth. We don't want to take care about bad eraseblocks here -
 721         * they'll be handled later.
 722         */
 723        list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
 724                if (aeb->ec == UBI_UNKNOWN)
 725                        aeb->ec = ai->mean_ec;
 726
 727                err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
 728                if (err)
 729                        continue;
 730
 731                aeb->ec += 1;
 732                list_del(&aeb->u.list);
 733                dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
 734                return aeb;
 735        }
 736
 737        ubi_err(ubi, "no free eraseblocks");
 738        return ERR_PTR(-ENOSPC);
 739}
 740
 741/**
 742 * check_corruption - check the data area of PEB.
 743 * @ubi: UBI device description object
 744 * @vid_hdr: the (corrupted) VID header of this PEB
 745 * @pnum: the physical eraseblock number to check
 746 *
 747 * This is a helper function which is used to distinguish between VID header
 748 * corruptions caused by power cuts and other reasons. If the PEB contains only
 749 * 0xFF bytes in the data area, the VID header is most probably corrupted
 750 * because of a power cut (%0 is returned in this case). Otherwise, it was
 751 * probably corrupted for some other reasons (%1 is returned in this case). A
 752 * negative error code is returned if a read error occurred.
 753 *
 754 * If the corruption reason was a power cut, UBI can safely erase this PEB.
 755 * Otherwise, it should preserve it to avoid possibly destroying important
 756 * information.
 757 */
 758static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
 759                            int pnum)
 760{
 761        int err;
 762
 763        mutex_lock(&ubi->buf_mutex);
 764        memset(ubi->peb_buf, 0x00, ubi->leb_size);
 765
 766        err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
 767                          ubi->leb_size);
 768        if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
 769                /*
 770                 * Bit-flips or integrity errors while reading the data area.
 771                 * It is difficult to say for sure what type of corruption is
 772                 * this, but presumably a power cut happened while this PEB was
 773                 * erased, so it became unstable and corrupted, and should be
 774                 * erased.
 775                 */
 776                err = 0;
 777                goto out_unlock;
 778        }
 779
 780        if (err)
 781                goto out_unlock;
 782
 783        if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
 784                goto out_unlock;
 785
 786        ubi_err(ubi, "PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
 787                pnum);
 788        ubi_err(ubi, "this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
 789        ubi_dump_vid_hdr(vid_hdr);
 790        pr_err("hexdump of PEB %d offset %d, length %d",
 791               pnum, ubi->leb_start, ubi->leb_size);
 792        ubi_dbg_print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1,
 793                               ubi->peb_buf, ubi->leb_size, 1);
 794        err = 1;
 795
 796out_unlock:
 797        mutex_unlock(&ubi->buf_mutex);
 798        return err;
 799}
 800
 801/**
 802 * scan_peb - scan and process UBI headers of a PEB.
 803 * @ubi: UBI device description object
 804 * @ai: attaching information
 805 * @pnum: the physical eraseblock number
 806 * @vid: The volume ID of the found volume will be stored in this pointer
 807 * @sqnum: The sqnum of the found volume will be stored in this pointer
 808 *
 809 * This function reads UBI headers of PEB @pnum, checks them, and adds
 810 * information about this PEB to the corresponding list or RB-tree in the
 811 * "attaching info" structure. Returns zero if the physical eraseblock was
 812 * successfully handled and a negative error code in case of failure.
 813 */
 814static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
 815                    int pnum, int *vid, unsigned long long *sqnum)
 816{
 817        long long uninitialized_var(ec);
 818        int err, bitflips = 0, vol_id = -1, ec_err = 0;
 819
 820        dbg_bld("scan PEB %d", pnum);
 821
 822        /* Skip bad physical eraseblocks */
 823        err = ubi_io_is_bad(ubi, pnum);
 824        if (err < 0)
 825                return err;
 826        else if (err) {
 827                ai->bad_peb_count += 1;
 828                return 0;
 829        }
 830
 831        err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
 832        if (err < 0)
 833                return err;
 834        switch (err) {
 835        case 0:
 836                break;
 837        case UBI_IO_BITFLIPS:
 838                bitflips = 1;
 839                break;
 840        case UBI_IO_FF:
 841                ai->empty_peb_count += 1;
 842                return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 843                                   UBI_UNKNOWN, 0, &ai->erase);
 844        case UBI_IO_FF_BITFLIPS:
 845                ai->empty_peb_count += 1;
 846                return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 847                                   UBI_UNKNOWN, 1, &ai->erase);
 848        case UBI_IO_BAD_HDR_EBADMSG:
 849        case UBI_IO_BAD_HDR:
 850                /*
 851                 * We have to also look at the VID header, possibly it is not
 852                 * corrupted. Set %bitflips flag in order to make this PEB be
 853                 * moved and EC be re-created.
 854                 */
 855                ec_err = err;
 856                ec = UBI_UNKNOWN;
 857                bitflips = 1;
 858                break;
 859        default:
 860                ubi_err(ubi, "'ubi_io_read_ec_hdr()' returned unknown code %d",
 861                        err);
 862                return -EINVAL;
 863        }
 864
 865        if (!ec_err) {
 866                int image_seq;
 867
 868                /* Make sure UBI version is OK */
 869                if (ech->version != UBI_VERSION) {
 870                        ubi_err(ubi, "this UBI version is %d, image version is %d",
 871                                UBI_VERSION, (int)ech->version);
 872                        return -EINVAL;
 873                }
 874
 875                ec = be64_to_cpu(ech->ec);
 876                if (ec > UBI_MAX_ERASECOUNTER) {
 877                        /*
 878                         * Erase counter overflow. The EC headers have 64 bits
 879                         * reserved, but we anyway make use of only 31 bit
 880                         * values, as this seems to be enough for any existing
 881                         * flash. Upgrade UBI and use 64-bit erase counters
 882                         * internally.
 883                         */
 884                        ubi_err(ubi, "erase counter overflow, max is %d",
 885                                UBI_MAX_ERASECOUNTER);
 886                        ubi_dump_ec_hdr(ech);
 887                        return -EINVAL;
 888                }
 889
 890                /*
 891                 * Make sure that all PEBs have the same image sequence number.
 892                 * This allows us to detect situations when users flash UBI
 893                 * images incorrectly, so that the flash has the new UBI image
 894                 * and leftovers from the old one. This feature was added
 895                 * relatively recently, and the sequence number was always
 896                 * zero, because old UBI implementations always set it to zero.
 897                 * For this reasons, we do not panic if some PEBs have zero
 898                 * sequence number, while other PEBs have non-zero sequence
 899                 * number.
 900                 */
 901                image_seq = be32_to_cpu(ech->image_seq);
 902                if (!ubi->image_seq)
 903                        ubi->image_seq = image_seq;
 904                if (image_seq && ubi->image_seq != image_seq) {
 905                        ubi_err(ubi, "bad image sequence number %d in PEB %d, expected %d",
 906                                image_seq, pnum, ubi->image_seq);
 907                        ubi_dump_ec_hdr(ech);
 908                        return -EINVAL;
 909                }
 910        }
 911
 912        /* OK, we've done with the EC header, let's look at the VID header */
 913
 914        err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
 915        if (err < 0)
 916                return err;
 917        switch (err) {
 918        case 0:
 919                break;
 920        case UBI_IO_BITFLIPS:
 921                bitflips = 1;
 922                break;
 923        case UBI_IO_BAD_HDR_EBADMSG:
 924                if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
 925                        /*
 926                         * Both EC and VID headers are corrupted and were read
 927                         * with data integrity error, probably this is a bad
 928                         * PEB, bit it is not marked as bad yet. This may also
 929                         * be a result of power cut during erasure.
 930                         */
 931                        ai->maybe_bad_peb_count += 1;
 932        case UBI_IO_BAD_HDR:
 933                if (ec_err)
 934                        /*
 935                         * Both headers are corrupted. There is a possibility
 936                         * that this a valid UBI PEB which has corresponding
 937                         * LEB, but the headers are corrupted. However, it is
 938                         * impossible to distinguish it from a PEB which just
 939                         * contains garbage because of a power cut during erase
 940                         * operation. So we just schedule this PEB for erasure.
 941                         *
 942                         * Besides, in case of NOR flash, we deliberately
 943                         * corrupt both headers because NOR flash erasure is
 944                         * slow and can start from the end.
 945                         */
 946                        err = 0;
 947                else
 948                        /*
 949                         * The EC was OK, but the VID header is corrupted. We
 950                         * have to check what is in the data area.
 951                         */
 952                        err = check_corruption(ubi, vidh, pnum);
 953
 954                if (err < 0)
 955                        return err;
 956                else if (!err)
 957                        /* This corruption is caused by a power cut */
 958                        err = add_to_list(ai, pnum, UBI_UNKNOWN,
 959                                          UBI_UNKNOWN, ec, 1, &ai->erase);
 960                else
 961                        /* This is an unexpected corruption */
 962                        err = add_corrupted(ai, pnum, ec);
 963                if (err)
 964                        return err;
 965                goto adjust_mean_ec;
 966        case UBI_IO_FF_BITFLIPS:
 967                err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 968                                  ec, 1, &ai->erase);
 969                if (err)
 970                        return err;
 971                goto adjust_mean_ec;
 972        case UBI_IO_FF:
 973                if (ec_err || bitflips)
 974                        err = add_to_list(ai, pnum, UBI_UNKNOWN,
 975                                          UBI_UNKNOWN, ec, 1, &ai->erase);
 976                else
 977                        err = add_to_list(ai, pnum, UBI_UNKNOWN,
 978                                          UBI_UNKNOWN, ec, 0, &ai->free);
 979                if (err)
 980                        return err;
 981                goto adjust_mean_ec;
 982        default:
 983                ubi_err(ubi, "'ubi_io_read_vid_hdr()' returned unknown code %d",
 984                        err);
 985                return -EINVAL;
 986        }
 987
 988        vol_id = be32_to_cpu(vidh->vol_id);
 989        if (vid)
 990                *vid = vol_id;
 991        if (sqnum)
 992                *sqnum = be64_to_cpu(vidh->sqnum);
 993        if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
 994                int lnum = be32_to_cpu(vidh->lnum);
 995
 996                /* Unsupported internal volume */
 997                switch (vidh->compat) {
 998                case UBI_COMPAT_DELETE:
 999                        if (vol_id != UBI_FM_SB_VOLUME_ID
1000                            && vol_id != UBI_FM_DATA_VOLUME_ID) {
1001                                ubi_msg(ubi, "\"delete\" compatible internal volume %d:%d found, will remove it",
1002                                        vol_id, lnum);
1003                        }
1004                        err = add_to_list(ai, pnum, vol_id, lnum,
1005                                          ec, 1, &ai->erase);
1006                        if (err)
1007                                return err;
1008                        return 0;
1009
1010                case UBI_COMPAT_RO:
1011                        ubi_msg(ubi, "read-only compatible internal volume %d:%d found, switch to read-only mode",
1012                                vol_id, lnum);
1013                        ubi->ro_mode = 1;
1014                        break;
1015
1016                case UBI_COMPAT_PRESERVE:
1017                        ubi_msg(ubi, "\"preserve\" compatible internal volume %d:%d found",
1018                                vol_id, lnum);
1019                        err = add_to_list(ai, pnum, vol_id, lnum,
1020                                          ec, 0, &ai->alien);
1021                        if (err)
1022                                return err;
1023                        return 0;
1024
1025                case UBI_COMPAT_REJECT:
1026                        ubi_err(ubi, "incompatible internal volume %d:%d found",
1027                                vol_id, lnum);
1028                        return -EINVAL;
1029                }
1030        }
1031
1032        if (ec_err)
1033                ubi_warn(ubi, "valid VID header but corrupted EC header at PEB %d",
1034                         pnum);
1035        err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1036        if (err)
1037                return err;
1038
1039adjust_mean_ec:
1040        if (!ec_err) {
1041                ai->ec_sum += ec;
1042                ai->ec_count += 1;
1043                if (ec > ai->max_ec)
1044                        ai->max_ec = ec;
1045                if (ec < ai->min_ec)
1046                        ai->min_ec = ec;
1047        }
1048
1049        return 0;
1050}
1051
1052/**
1053 * late_analysis - analyze the overall situation with PEB.
1054 * @ubi: UBI device description object
1055 * @ai: attaching information
1056 *
1057 * This is a helper function which takes a look what PEBs we have after we
1058 * gather information about all of them ("ai" is compete). It decides whether
1059 * the flash is empty and should be formatted of whether there are too many
1060 * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1061 * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1062 */
1063static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1064{
1065        struct ubi_ainf_peb *aeb;
1066        int max_corr, peb_count;
1067
1068        peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1069        max_corr = peb_count / 20 ?: 8;
1070
1071        /*
1072         * Few corrupted PEBs is not a problem and may be just a result of
1073         * unclean reboots. However, many of them may indicate some problems
1074         * with the flash HW or driver.
1075         */
1076        if (ai->corr_peb_count) {
1077                ubi_err(ubi, "%d PEBs are corrupted and preserved",
1078                        ai->corr_peb_count);
1079                pr_err("Corrupted PEBs are:");
1080                list_for_each_entry(aeb, &ai->corr, u.list)
1081                        pr_cont(" %d", aeb->pnum);
1082                pr_cont("\n");
1083
1084                /*
1085                 * If too many PEBs are corrupted, we refuse attaching,
1086                 * otherwise, only print a warning.
1087                 */
1088                if (ai->corr_peb_count >= max_corr) {
1089                        ubi_err(ubi, "too many corrupted PEBs, refusing");
1090                        return -EINVAL;
1091                }
1092        }
1093
1094        if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1095                /*
1096                 * All PEBs are empty, or almost all - a couple PEBs look like
1097                 * they may be bad PEBs which were not marked as bad yet.
1098                 *
1099                 * This piece of code basically tries to distinguish between
1100                 * the following situations:
1101                 *
1102                 * 1. Flash is empty, but there are few bad PEBs, which are not
1103                 *    marked as bad so far, and which were read with error. We
1104                 *    want to go ahead and format this flash. While formatting,
1105                 *    the faulty PEBs will probably be marked as bad.
1106                 *
1107                 * 2. Flash contains non-UBI data and we do not want to format
1108                 *    it and destroy possibly important information.
1109                 */
1110                if (ai->maybe_bad_peb_count <= 2) {
1111                        ai->is_empty = 1;
1112                        ubi_msg(ubi, "empty MTD device detected");
1113                        get_random_bytes(&ubi->image_seq,
1114                                         sizeof(ubi->image_seq));
1115                } else {
1116                        ubi_err(ubi, "MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
1117                        return -EINVAL;
1118                }
1119
1120        }
1121
1122        return 0;
1123}
1124
1125/**
1126 * destroy_av - free volume attaching information.
1127 * @av: volume attaching information
1128 * @ai: attaching information
1129 *
1130 * This function destroys the volume attaching information.
1131 */
1132static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
1133{
1134        struct ubi_ainf_peb *aeb;
1135        struct rb_node *this = av->root.rb_node;
1136
1137        while (this) {
1138                if (this->rb_left)
1139                        this = this->rb_left;
1140                else if (this->rb_right)
1141                        this = this->rb_right;
1142                else {
1143                        aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1144                        this = rb_parent(this);
1145                        if (this) {
1146                                if (this->rb_left == &aeb->u.rb)
1147                                        this->rb_left = NULL;
1148                                else
1149                                        this->rb_right = NULL;
1150                        }
1151
1152                        kmem_cache_free(ai->aeb_slab_cache, aeb);
1153                }
1154        }
1155        kfree(av);
1156}
1157
1158/**
1159 * destroy_ai - destroy attaching information.
1160 * @ai: attaching information
1161 */
1162static void destroy_ai(struct ubi_attach_info *ai)
1163{
1164        struct ubi_ainf_peb *aeb, *aeb_tmp;
1165        struct ubi_ainf_volume *av;
1166        struct rb_node *rb;
1167
1168        list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1169                list_del(&aeb->u.list);
1170                kmem_cache_free(ai->aeb_slab_cache, aeb);
1171        }
1172        list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1173                list_del(&aeb->u.list);
1174                kmem_cache_free(ai->aeb_slab_cache, aeb);
1175        }
1176        list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1177                list_del(&aeb->u.list);
1178                kmem_cache_free(ai->aeb_slab_cache, aeb);
1179        }
1180        list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1181                list_del(&aeb->u.list);
1182                kmem_cache_free(ai->aeb_slab_cache, aeb);
1183        }
1184
1185        /* Destroy the volume RB-tree */
1186        rb = ai->volumes.rb_node;
1187        while (rb) {
1188                if (rb->rb_left)
1189                        rb = rb->rb_left;
1190                else if (rb->rb_right)
1191                        rb = rb->rb_right;
1192                else {
1193                        av = rb_entry(rb, struct ubi_ainf_volume, rb);
1194
1195                        rb = rb_parent(rb);
1196                        if (rb) {
1197                                if (rb->rb_left == &av->rb)
1198                                        rb->rb_left = NULL;
1199                                else
1200                                        rb->rb_right = NULL;
1201                        }
1202
1203                        destroy_av(ai, av);
1204                }
1205        }
1206
1207        kmem_cache_destroy(ai->aeb_slab_cache);
1208
1209        kfree(ai);
1210}
1211
1212/**
1213 * scan_all - scan entire MTD device.
1214 * @ubi: UBI device description object
1215 * @ai: attach info object
1216 * @start: start scanning at this PEB
1217 *
1218 * This function does full scanning of an MTD device and returns complete
1219 * information about it in form of a "struct ubi_attach_info" object. In case
1220 * of failure, an error code is returned.
1221 */
1222static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1223                    int start)
1224{
1225        int err, pnum;
1226        struct rb_node *rb1, *rb2;
1227        struct ubi_ainf_volume *av;
1228        struct ubi_ainf_peb *aeb;
1229
1230        err = -ENOMEM;
1231
1232        ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1233        if (!ech)
1234                return err;
1235
1236        vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1237        if (!vidh)
1238                goto out_ech;
1239
1240        for (pnum = start; pnum < ubi->peb_count; pnum++) {
1241                cond_resched();
1242
1243                dbg_gen("process PEB %d", pnum);
1244                err = scan_peb(ubi, ai, pnum, NULL, NULL);
1245                if (err < 0)
1246                        goto out_vidh;
1247        }
1248
1249        ubi_msg(ubi, "scanning is finished");
1250
1251        /* Calculate mean erase counter */
1252        if (ai->ec_count)
1253                ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1254
1255        err = late_analysis(ubi, ai);
1256        if (err)
1257                goto out_vidh;
1258
1259        /*
1260         * In case of unknown erase counter we use the mean erase counter
1261         * value.
1262         */
1263        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1264                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1265                        if (aeb->ec == UBI_UNKNOWN)
1266                                aeb->ec = ai->mean_ec;
1267        }
1268
1269        list_for_each_entry(aeb, &ai->free, u.list) {
1270                if (aeb->ec == UBI_UNKNOWN)
1271                        aeb->ec = ai->mean_ec;
1272        }
1273
1274        list_for_each_entry(aeb, &ai->corr, u.list)
1275                if (aeb->ec == UBI_UNKNOWN)
1276                        aeb->ec = ai->mean_ec;
1277
1278        list_for_each_entry(aeb, &ai->erase, u.list)
1279                if (aeb->ec == UBI_UNKNOWN)
1280                        aeb->ec = ai->mean_ec;
1281
1282        err = self_check_ai(ubi, ai);
1283        if (err)
1284                goto out_vidh;
1285
1286        ubi_free_vid_hdr(ubi, vidh);
1287        kfree(ech);
1288
1289        return 0;
1290
1291out_vidh:
1292        ubi_free_vid_hdr(ubi, vidh);
1293out_ech:
1294        kfree(ech);
1295        return err;
1296}
1297
1298static struct ubi_attach_info *alloc_ai(void)
1299{
1300        struct ubi_attach_info *ai;
1301
1302        ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1303        if (!ai)
1304                return ai;
1305
1306        INIT_LIST_HEAD(&ai->corr);
1307        INIT_LIST_HEAD(&ai->free);
1308        INIT_LIST_HEAD(&ai->erase);
1309        INIT_LIST_HEAD(&ai->alien);
1310        ai->volumes = RB_ROOT;
1311        ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache",
1312                                               sizeof(struct ubi_ainf_peb),
1313                                               0, 0, NULL);
1314        if (!ai->aeb_slab_cache) {
1315                kfree(ai);
1316                ai = NULL;
1317        }
1318
1319        return ai;
1320}
1321
1322#ifdef CONFIG_MTD_UBI_FASTMAP
1323
1324/**
1325 * scan_fastmap - try to find a fastmap and attach from it.
1326 * @ubi: UBI device description object
1327 * @ai: attach info object
1328 *
1329 * Returns 0 on success, negative return values indicate an internal
1330 * error.
1331 * UBI_NO_FASTMAP denotes that no fastmap was found.
1332 * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1333 */
1334static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info **ai)
1335{
1336        int err, pnum, fm_anchor = -1;
1337        unsigned long long max_sqnum = 0;
1338
1339        err = -ENOMEM;
1340
1341        ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1342        if (!ech)
1343                goto out;
1344
1345        vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1346        if (!vidh)
1347                goto out_ech;
1348
1349        for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
1350                int vol_id = -1;
1351                unsigned long long sqnum = -1;
1352                cond_resched();
1353
1354                dbg_gen("process PEB %d", pnum);
1355                err = scan_peb(ubi, *ai, pnum, &vol_id, &sqnum);
1356                if (err < 0)
1357                        goto out_vidh;
1358
1359                if (vol_id == UBI_FM_SB_VOLUME_ID && sqnum > max_sqnum) {
1360                        max_sqnum = sqnum;
1361                        fm_anchor = pnum;
1362                }
1363        }
1364
1365        ubi_free_vid_hdr(ubi, vidh);
1366        kfree(ech);
1367
1368        if (fm_anchor < 0)
1369                return UBI_NO_FASTMAP;
1370
1371        destroy_ai(*ai);
1372        *ai = alloc_ai();
1373        if (!*ai)
1374                return -ENOMEM;
1375
1376        return ubi_scan_fastmap(ubi, *ai, fm_anchor);
1377
1378out_vidh:
1379        ubi_free_vid_hdr(ubi, vidh);
1380out_ech:
1381        kfree(ech);
1382out:
1383        return err;
1384}
1385
1386#endif
1387
1388/**
1389 * ubi_attach - attach an MTD device.
1390 * @ubi: UBI device descriptor
1391 * @force_scan: if set to non-zero attach by scanning
1392 *
1393 * This function returns zero in case of success and a negative error code in
1394 * case of failure.
1395 */
1396int ubi_attach(struct ubi_device *ubi, int force_scan)
1397{
1398        int err;
1399        struct ubi_attach_info *ai;
1400
1401        ai = alloc_ai();
1402        if (!ai)
1403                return -ENOMEM;
1404
1405#ifdef CONFIG_MTD_UBI_FASTMAP
1406        /* On small flash devices we disable fastmap in any case. */
1407        if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1408                ubi->fm_disabled = 1;
1409                force_scan = 1;
1410        }
1411
1412        if (force_scan)
1413                err = scan_all(ubi, ai, 0);
1414        else {
1415                err = scan_fast(ubi, &ai);
1416                if (err > 0 || mtd_is_eccerr(err)) {
1417                        if (err != UBI_NO_FASTMAP) {
1418                                destroy_ai(ai);
1419                                ai = alloc_ai();
1420                                if (!ai)
1421                                        return -ENOMEM;
1422
1423                                err = scan_all(ubi, ai, 0);
1424                        } else {
1425                                err = scan_all(ubi, ai, UBI_FM_MAX_START);
1426                        }
1427                }
1428        }
1429#else
1430        err = scan_all(ubi, ai, 0);
1431#endif
1432        if (err)
1433                goto out_ai;
1434
1435        ubi->bad_peb_count = ai->bad_peb_count;
1436        ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1437        ubi->corr_peb_count = ai->corr_peb_count;
1438        ubi->max_ec = ai->max_ec;
1439        ubi->mean_ec = ai->mean_ec;
1440        dbg_gen("max. sequence number:       %llu", ai->max_sqnum);
1441
1442        err = ubi_read_volume_table(ubi, ai);
1443        if (err)
1444                goto out_ai;
1445
1446        err = ubi_wl_init(ubi, ai);
1447        if (err)
1448                goto out_vtbl;
1449
1450        err = ubi_eba_init(ubi, ai);
1451        if (err)
1452                goto out_wl;
1453
1454#ifdef CONFIG_MTD_UBI_FASTMAP
1455        if (ubi->fm && ubi_dbg_chk_fastmap(ubi)) {
1456                struct ubi_attach_info *scan_ai;
1457
1458                scan_ai = alloc_ai();
1459                if (!scan_ai) {
1460                        err = -ENOMEM;
1461                        goto out_wl;
1462                }
1463
1464                err = scan_all(ubi, scan_ai, 0);
1465                if (err) {
1466                        destroy_ai(scan_ai);
1467                        goto out_wl;
1468                }
1469
1470                err = self_check_eba(ubi, ai, scan_ai);
1471                destroy_ai(scan_ai);
1472
1473                if (err)
1474                        goto out_wl;
1475        }
1476#endif
1477
1478        destroy_ai(ai);
1479        return 0;
1480
1481out_wl:
1482        ubi_wl_close(ubi);
1483out_vtbl:
1484        ubi_free_internal_volumes(ubi);
1485        vfree(ubi->vtbl);
1486out_ai:
1487        destroy_ai(ai);
1488        return err;
1489}
1490
1491/**
1492 * self_check_ai - check the attaching information.
1493 * @ubi: UBI device description object
1494 * @ai: attaching information
1495 *
1496 * This function returns zero if the attaching information is all right, and a
1497 * negative error code if not or if an error occurred.
1498 */
1499static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1500{
1501        int pnum, err, vols_found = 0;
1502        struct rb_node *rb1, *rb2;
1503        struct ubi_ainf_volume *av;
1504        struct ubi_ainf_peb *aeb, *last_aeb;
1505        uint8_t *buf;
1506
1507        if (!ubi_dbg_chk_gen(ubi))
1508                return 0;
1509
1510        /*
1511         * At first, check that attaching information is OK.
1512         */
1513        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1514                int leb_count = 0;
1515
1516                cond_resched();
1517
1518                vols_found += 1;
1519
1520                if (ai->is_empty) {
1521                        ubi_err(ubi, "bad is_empty flag");
1522                        goto bad_av;
1523                }
1524
1525                if (av->vol_id < 0 || av->highest_lnum < 0 ||
1526                    av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1527                    av->data_pad < 0 || av->last_data_size < 0) {
1528                        ubi_err(ubi, "negative values");
1529                        goto bad_av;
1530                }
1531
1532                if (av->vol_id >= UBI_MAX_VOLUMES &&
1533                    av->vol_id < UBI_INTERNAL_VOL_START) {
1534                        ubi_err(ubi, "bad vol_id");
1535                        goto bad_av;
1536                }
1537
1538                if (av->vol_id > ai->highest_vol_id) {
1539                        ubi_err(ubi, "highest_vol_id is %d, but vol_id %d is there",
1540                                ai->highest_vol_id, av->vol_id);
1541                        goto out;
1542                }
1543
1544                if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1545                    av->vol_type != UBI_STATIC_VOLUME) {
1546                        ubi_err(ubi, "bad vol_type");
1547                        goto bad_av;
1548                }
1549
1550                if (av->data_pad > ubi->leb_size / 2) {
1551                        ubi_err(ubi, "bad data_pad");
1552                        goto bad_av;
1553                }
1554
1555                last_aeb = NULL;
1556                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1557                        cond_resched();
1558
1559                        last_aeb = aeb;
1560                        leb_count += 1;
1561
1562                        if (aeb->pnum < 0 || aeb->ec < 0) {
1563                                ubi_err(ubi, "negative values");
1564                                goto bad_aeb;
1565                        }
1566
1567                        if (aeb->ec < ai->min_ec) {
1568                                ubi_err(ubi, "bad ai->min_ec (%d), %d found",
1569                                        ai->min_ec, aeb->ec);
1570                                goto bad_aeb;
1571                        }
1572
1573                        if (aeb->ec > ai->max_ec) {
1574                                ubi_err(ubi, "bad ai->max_ec (%d), %d found",
1575                                        ai->max_ec, aeb->ec);
1576                                goto bad_aeb;
1577                        }
1578
1579                        if (aeb->pnum >= ubi->peb_count) {
1580                                ubi_err(ubi, "too high PEB number %d, total PEBs %d",
1581                                        aeb->pnum, ubi->peb_count);
1582                                goto bad_aeb;
1583                        }
1584
1585                        if (av->vol_type == UBI_STATIC_VOLUME) {
1586                                if (aeb->lnum >= av->used_ebs) {
1587                                        ubi_err(ubi, "bad lnum or used_ebs");
1588                                        goto bad_aeb;
1589                                }
1590                        } else {
1591                                if (av->used_ebs != 0) {
1592                                        ubi_err(ubi, "non-zero used_ebs");
1593                                        goto bad_aeb;
1594                                }
1595                        }
1596
1597                        if (aeb->lnum > av->highest_lnum) {
1598                                ubi_err(ubi, "incorrect highest_lnum or lnum");
1599                                goto bad_aeb;
1600                        }
1601                }
1602
1603                if (av->leb_count != leb_count) {
1604                        ubi_err(ubi, "bad leb_count, %d objects in the tree",
1605                                leb_count);
1606                        goto bad_av;
1607                }
1608
1609                if (!last_aeb)
1610                        continue;
1611
1612                aeb = last_aeb;
1613
1614                if (aeb->lnum != av->highest_lnum) {
1615                        ubi_err(ubi, "bad highest_lnum");
1616                        goto bad_aeb;
1617                }
1618        }
1619
1620        if (vols_found != ai->vols_found) {
1621                ubi_err(ubi, "bad ai->vols_found %d, should be %d",
1622                        ai->vols_found, vols_found);
1623                goto out;
1624        }
1625
1626        /* Check that attaching information is correct */
1627        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1628                last_aeb = NULL;
1629                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1630                        int vol_type;
1631
1632                        cond_resched();
1633
1634                        last_aeb = aeb;
1635
1636                        err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
1637                        if (err && err != UBI_IO_BITFLIPS) {
1638                                ubi_err(ubi, "VID header is not OK (%d)",
1639                                        err);
1640                                if (err > 0)
1641                                        err = -EIO;
1642                                return err;
1643                        }
1644
1645                        vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1646                                   UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1647                        if (av->vol_type != vol_type) {
1648                                ubi_err(ubi, "bad vol_type");
1649                                goto bad_vid_hdr;
1650                        }
1651
1652                        if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1653                                ubi_err(ubi, "bad sqnum %llu", aeb->sqnum);
1654                                goto bad_vid_hdr;
1655                        }
1656
1657                        if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1658                                ubi_err(ubi, "bad vol_id %d", av->vol_id);
1659                                goto bad_vid_hdr;
1660                        }
1661
1662                        if (av->compat != vidh->compat) {
1663                                ubi_err(ubi, "bad compat %d", vidh->compat);
1664                                goto bad_vid_hdr;
1665                        }
1666
1667                        if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1668                                ubi_err(ubi, "bad lnum %d", aeb->lnum);
1669                                goto bad_vid_hdr;
1670                        }
1671
1672                        if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1673                                ubi_err(ubi, "bad used_ebs %d", av->used_ebs);
1674                                goto bad_vid_hdr;
1675                        }
1676
1677                        if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1678                                ubi_err(ubi, "bad data_pad %d", av->data_pad);
1679                                goto bad_vid_hdr;
1680                        }
1681                }
1682
1683                if (!last_aeb)
1684                        continue;
1685
1686                if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1687                        ubi_err(ubi, "bad highest_lnum %d", av->highest_lnum);
1688                        goto bad_vid_hdr;
1689                }
1690
1691                if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1692                        ubi_err(ubi, "bad last_data_size %d",
1693                                av->last_data_size);
1694                        goto bad_vid_hdr;
1695                }
1696        }
1697
1698        /*
1699         * Make sure that all the physical eraseblocks are in one of the lists
1700         * or trees.
1701         */
1702        buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1703        if (!buf)
1704                return -ENOMEM;
1705
1706        for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1707                err = ubi_io_is_bad(ubi, pnum);
1708                if (err < 0) {
1709                        kfree(buf);
1710                        return err;
1711                } else if (err)
1712                        buf[pnum] = 1;
1713        }
1714
1715        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1716                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1717                        buf[aeb->pnum] = 1;
1718
1719        list_for_each_entry(aeb, &ai->free, u.list)
1720                buf[aeb->pnum] = 1;
1721
1722        list_for_each_entry(aeb, &ai->corr, u.list)
1723                buf[aeb->pnum] = 1;
1724
1725        list_for_each_entry(aeb, &ai->erase, u.list)
1726                buf[aeb->pnum] = 1;
1727
1728        list_for_each_entry(aeb, &ai->alien, u.list)
1729                buf[aeb->pnum] = 1;
1730
1731        err = 0;
1732        for (pnum = 0; pnum < ubi->peb_count; pnum++)
1733                if (!buf[pnum]) {
1734                        ubi_err(ubi, "PEB %d is not referred", pnum);
1735                        err = 1;
1736                }
1737
1738        kfree(buf);
1739        if (err)
1740                goto out;
1741        return 0;
1742
1743bad_aeb:
1744        ubi_err(ubi, "bad attaching information about LEB %d", aeb->lnum);
1745        ubi_dump_aeb(aeb, 0);
1746        ubi_dump_av(av);
1747        goto out;
1748
1749bad_av:
1750        ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1751        ubi_dump_av(av);
1752        goto out;
1753
1754bad_vid_hdr:
1755        ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1756        ubi_dump_av(av);
1757        ubi_dump_vid_hdr(vidh);
1758
1759out:
1760        dump_stack();
1761        return -EINVAL;
1762}
1763