uboot/include/dm/device.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0+ */
   2/*
   3 * Copyright (c) 2013 Google, Inc
   4 *
   5 * (C) Copyright 2012
   6 * Pavel Herrmann <morpheus.ibis@gmail.com>
   7 * Marek Vasut <marex@denx.de>
   8 */
   9
  10#ifndef _DM_DEVICE_H
  11#define _DM_DEVICE_H
  12
  13#include <dm/ofnode.h>
  14#include <dm/uclass-id.h>
  15#include <fdtdec.h>
  16#include <linker_lists.h>
  17#include <linux/compat.h>
  18#include <linux/kernel.h>
  19#include <linux/list.h>
  20#include <linux/printk.h>
  21
  22struct driver_info;
  23
  24/* Driver is active (probed). Cleared when it is removed */
  25#define DM_FLAG_ACTIVATED               (1 << 0)
  26
  27/* DM is responsible for allocating and freeing platdata */
  28#define DM_FLAG_ALLOC_PDATA             (1 << 1)
  29
  30/* DM should init this device prior to relocation */
  31#define DM_FLAG_PRE_RELOC               (1 << 2)
  32
  33/* DM is responsible for allocating and freeing parent_platdata */
  34#define DM_FLAG_ALLOC_PARENT_PDATA      (1 << 3)
  35
  36/* DM is responsible for allocating and freeing uclass_platdata */
  37#define DM_FLAG_ALLOC_UCLASS_PDATA      (1 << 4)
  38
  39/* Allocate driver private data on a DMA boundary */
  40#define DM_FLAG_ALLOC_PRIV_DMA          (1 << 5)
  41
  42/* Device is bound */
  43#define DM_FLAG_BOUND                   (1 << 6)
  44
  45/* Device name is allocated and should be freed on unbind() */
  46#define DM_FLAG_NAME_ALLOCED            (1 << 7)
  47
  48#define DM_FLAG_OF_PLATDATA             (1 << 8)
  49
  50/*
  51 * Call driver remove function to stop currently active DMA transfers or
  52 * give DMA buffers back to the HW / controller. This may be needed for
  53 * some drivers to do some final stage cleanup before the OS is called
  54 * (U-Boot exit)
  55 */
  56#define DM_FLAG_ACTIVE_DMA              (1 << 9)
  57
  58/*
  59 * Call driver remove function to do some final configuration, before
  60 * U-Boot exits and the OS is started
  61 */
  62#define DM_FLAG_OS_PREPARE              (1 << 10)
  63
  64/*
  65 * One or multiple of these flags are passed to device_remove() so that
  66 * a selective device removal as specified by the remove-stage and the
  67 * driver flags can be done.
  68 */
  69enum {
  70        /* Normal remove, remove all devices */
  71        DM_REMOVE_NORMAL     = 1 << 0,
  72
  73        /* Remove devices with active DMA */
  74        DM_REMOVE_ACTIVE_DMA = DM_FLAG_ACTIVE_DMA,
  75
  76        /* Remove devices which need some final OS preparation steps */
  77        DM_REMOVE_OS_PREPARE = DM_FLAG_OS_PREPARE,
  78
  79        /* Add more use cases here */
  80
  81        /* Remove devices with any active flag */
  82        DM_REMOVE_ACTIVE_ALL = DM_REMOVE_ACTIVE_DMA | DM_REMOVE_OS_PREPARE,
  83};
  84
  85/**
  86 * struct udevice - An instance of a driver
  87 *
  88 * This holds information about a device, which is a driver bound to a
  89 * particular port or peripheral (essentially a driver instance).
  90 *
  91 * A device will come into existence through a 'bind' call, either due to
  92 * a U_BOOT_DEVICE() macro (in which case platdata is non-NULL) or a node
  93 * in the device tree (in which case of_offset is >= 0). In the latter case
  94 * we translate the device tree information into platdata in a function
  95 * implemented by the driver ofdata_to_platdata method (called just before the
  96 * probe method if the device has a device tree node.
  97 *
  98 * All three of platdata, priv and uclass_priv can be allocated by the
  99 * driver, or you can use the auto_alloc_size members of struct driver and
 100 * struct uclass_driver to have driver model do this automatically.
 101 *
 102 * @driver: The driver used by this device
 103 * @name: Name of device, typically the FDT node name
 104 * @platdata: Configuration data for this device
 105 * @parent_platdata: The parent bus's configuration data for this device
 106 * @uclass_platdata: The uclass's configuration data for this device
 107 * @node: Reference to device tree node for this device
 108 * @driver_data: Driver data word for the entry that matched this device with
 109 *              its driver
 110 * @parent: Parent of this device, or NULL for the top level device
 111 * @priv: Private data for this device
 112 * @uclass: Pointer to uclass for this device
 113 * @uclass_priv: The uclass's private data for this device
 114 * @parent_priv: The parent's private data for this device
 115 * @uclass_node: Used by uclass to link its devices
 116 * @child_head: List of children of this device
 117 * @sibling_node: Next device in list of all devices
 118 * @flags: Flags for this device DM_FLAG_...
 119 * @req_seq: Requested sequence number for this device (-1 = any)
 120 * @seq: Allocated sequence number for this device (-1 = none). This is set up
 121 * when the device is probed and will be unique within the device's uclass.
 122 * @devres_head: List of memory allocations associated with this device.
 123 *              When CONFIG_DEVRES is enabled, devm_kmalloc() and friends will
 124 *              add to this list. Memory so-allocated will be freed
 125 *              automatically when the device is removed / unbound
 126 */
 127struct udevice {
 128        const struct driver *driver;
 129        const char *name;
 130        void *platdata;
 131        void *parent_platdata;
 132        void *uclass_platdata;
 133        ofnode node;
 134        ulong driver_data;
 135        struct udevice *parent;
 136        void *priv;
 137        struct uclass *uclass;
 138        void *uclass_priv;
 139        void *parent_priv;
 140        struct list_head uclass_node;
 141        struct list_head child_head;
 142        struct list_head sibling_node;
 143        uint32_t flags;
 144        int req_seq;
 145        int seq;
 146#ifdef CONFIG_DEVRES
 147        struct list_head devres_head;
 148#endif
 149};
 150
 151/* Maximum sequence number supported */
 152#define DM_MAX_SEQ      999
 153
 154/* Returns the operations for a device */
 155#define device_get_ops(dev)     (dev->driver->ops)
 156
 157/* Returns non-zero if the device is active (probed and not removed) */
 158#define device_active(dev)      ((dev)->flags & DM_FLAG_ACTIVATED)
 159
 160static inline int dev_of_offset(const struct udevice *dev)
 161{
 162        return ofnode_to_offset(dev->node);
 163}
 164
 165static inline void dev_set_of_offset(struct udevice *dev, int of_offset)
 166{
 167        dev->node = offset_to_ofnode(of_offset);
 168}
 169
 170static inline bool dev_has_of_node(struct udevice *dev)
 171{
 172        return ofnode_valid(dev->node);
 173}
 174
 175/**
 176 * struct udevice_id - Lists the compatible strings supported by a driver
 177 * @compatible: Compatible string
 178 * @data: Data for this compatible string
 179 */
 180struct udevice_id {
 181        const char *compatible;
 182        ulong data;
 183};
 184
 185#if CONFIG_IS_ENABLED(OF_CONTROL)
 186#define of_match_ptr(_ptr)      (_ptr)
 187#else
 188#define of_match_ptr(_ptr)      NULL
 189#endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
 190
 191/**
 192 * struct driver - A driver for a feature or peripheral
 193 *
 194 * This holds methods for setting up a new device, and also removing it.
 195 * The device needs information to set itself up - this is provided either
 196 * by platdata or a device tree node (which we find by looking up
 197 * matching compatible strings with of_match).
 198 *
 199 * Drivers all belong to a uclass, representing a class of devices of the
 200 * same type. Common elements of the drivers can be implemented in the uclass,
 201 * or the uclass can provide a consistent interface to the drivers within
 202 * it.
 203 *
 204 * @name: Device name
 205 * @id: Identifies the uclass we belong to
 206 * @of_match: List of compatible strings to match, and any identifying data
 207 * for each.
 208 * @bind: Called to bind a device to its driver
 209 * @probe: Called to probe a device, i.e. activate it
 210 * @remove: Called to remove a device, i.e. de-activate it
 211 * @unbind: Called to unbind a device from its driver
 212 * @ofdata_to_platdata: Called before probe to decode device tree data
 213 * @child_post_bind: Called after a new child has been bound
 214 * @child_pre_probe: Called before a child device is probed. The device has
 215 * memory allocated but it has not yet been probed.
 216 * @child_post_remove: Called after a child device is removed. The device
 217 * has memory allocated but its device_remove() method has been called.
 218 * @priv_auto_alloc_size: If non-zero this is the size of the private data
 219 * to be allocated in the device's ->priv pointer. If zero, then the driver
 220 * is responsible for allocating any data required.
 221 * @platdata_auto_alloc_size: If non-zero this is the size of the
 222 * platform data to be allocated in the device's ->platdata pointer.
 223 * This is typically only useful for device-tree-aware drivers (those with
 224 * an of_match), since drivers which use platdata will have the data
 225 * provided in the U_BOOT_DEVICE() instantiation.
 226 * @per_child_auto_alloc_size: Each device can hold private data owned by
 227 * its parent. If required this will be automatically allocated if this
 228 * value is non-zero.
 229 * @per_child_platdata_auto_alloc_size: A bus likes to store information about
 230 * its children. If non-zero this is the size of this data, to be allocated
 231 * in the child's parent_platdata pointer.
 232 * @ops: Driver-specific operations. This is typically a list of function
 233 * pointers defined by the driver, to implement driver functions required by
 234 * the uclass.
 235 * @flags: driver flags - see DM_FLAGS_...
 236 */
 237struct driver {
 238        char *name;
 239        enum uclass_id id;
 240        const struct udevice_id *of_match;
 241        int (*bind)(struct udevice *dev);
 242        int (*probe)(struct udevice *dev);
 243        int (*remove)(struct udevice *dev);
 244        int (*unbind)(struct udevice *dev);
 245        int (*ofdata_to_platdata)(struct udevice *dev);
 246        int (*child_post_bind)(struct udevice *dev);
 247        int (*child_pre_probe)(struct udevice *dev);
 248        int (*child_post_remove)(struct udevice *dev);
 249        int priv_auto_alloc_size;
 250        int platdata_auto_alloc_size;
 251        int per_child_auto_alloc_size;
 252        int per_child_platdata_auto_alloc_size;
 253        const void *ops;        /* driver-specific operations */
 254        uint32_t flags;
 255};
 256
 257/* Declare a new U-Boot driver */
 258#define U_BOOT_DRIVER(__name)                                           \
 259        ll_entry_declare(struct driver, __name, driver)
 260
 261/* Get a pointer to a given driver */
 262#define DM_GET_DRIVER(__name)                                           \
 263        ll_entry_get(struct driver, __name, driver)
 264
 265/**
 266 * dev_get_platdata() - Get the platform data for a device
 267 *
 268 * This checks that dev is not NULL, but no other checks for now
 269 *
 270 * @dev         Device to check
 271 * @return platform data, or NULL if none
 272 */
 273void *dev_get_platdata(const struct udevice *dev);
 274
 275/**
 276 * dev_get_parent_platdata() - Get the parent platform data for a device
 277 *
 278 * This checks that dev is not NULL, but no other checks for now
 279 *
 280 * @dev         Device to check
 281 * @return parent's platform data, or NULL if none
 282 */
 283void *dev_get_parent_platdata(const struct udevice *dev);
 284
 285/**
 286 * dev_get_uclass_platdata() - Get the uclass platform data for a device
 287 *
 288 * This checks that dev is not NULL, but no other checks for now
 289 *
 290 * @dev         Device to check
 291 * @return uclass's platform data, or NULL if none
 292 */
 293void *dev_get_uclass_platdata(const struct udevice *dev);
 294
 295/**
 296 * dev_get_priv() - Get the private data for a device
 297 *
 298 * This checks that dev is not NULL, but no other checks for now
 299 *
 300 * @dev         Device to check
 301 * @return private data, or NULL if none
 302 */
 303void *dev_get_priv(const struct udevice *dev);
 304
 305/**
 306 * dev_get_parent_priv() - Get the parent private data for a device
 307 *
 308 * The parent private data is data stored in the device but owned by the
 309 * parent. For example, a USB device may have parent data which contains
 310 * information about how to talk to the device over USB.
 311 *
 312 * This checks that dev is not NULL, but no other checks for now
 313 *
 314 * @dev         Device to check
 315 * @return parent data, or NULL if none
 316 */
 317void *dev_get_parent_priv(const struct udevice *dev);
 318
 319/**
 320 * dev_get_uclass_priv() - Get the private uclass data for a device
 321 *
 322 * This checks that dev is not NULL, but no other checks for now
 323 *
 324 * @dev         Device to check
 325 * @return private uclass data for this device, or NULL if none
 326 */
 327void *dev_get_uclass_priv(const struct udevice *dev);
 328
 329/**
 330 * struct dev_get_parent() - Get the parent of a device
 331 *
 332 * @child:      Child to check
 333 * @return parent of child, or NULL if this is the root device
 334 */
 335struct udevice *dev_get_parent(const struct udevice *child);
 336
 337/**
 338 * dev_get_driver_data() - get the driver data used to bind a device
 339 *
 340 * When a device is bound using a device tree node, it matches a
 341 * particular compatible string in struct udevice_id. This function
 342 * returns the associated data value for that compatible string. This is
 343 * the 'data' field in struct udevice_id.
 344 *
 345 * As an example, consider this structure:
 346 * static const struct udevice_id tegra_i2c_ids[] = {
 347 *      { .compatible = "nvidia,tegra114-i2c", .data = TYPE_114 },
 348 *      { .compatible = "nvidia,tegra20-i2c", .data = TYPE_STD },
 349 *      { .compatible = "nvidia,tegra20-i2c-dvc", .data = TYPE_DVC },
 350 *      { }
 351 * };
 352 *
 353 * When driver model finds a driver for this it will store the 'data' value
 354 * corresponding to the compatible string it matches. This function returns
 355 * that value. This allows the driver to handle several variants of a device.
 356 *
 357 * For USB devices, this is the driver_info field in struct usb_device_id.
 358 *
 359 * @dev:        Device to check
 360 * @return driver data (0 if none is provided)
 361 */
 362ulong dev_get_driver_data(const struct udevice *dev);
 363
 364/**
 365 * dev_get_driver_ops() - get the device's driver's operations
 366 *
 367 * This checks that dev is not NULL, and returns the pointer to device's
 368 * driver's operations.
 369 *
 370 * @dev:        Device to check
 371 * @return void pointer to driver's operations or NULL for NULL-dev or NULL-ops
 372 */
 373const void *dev_get_driver_ops(const struct udevice *dev);
 374
 375/**
 376 * device_get_uclass_id() - return the uclass ID of a device
 377 *
 378 * @dev:        Device to check
 379 * @return uclass ID for the device
 380 */
 381enum uclass_id device_get_uclass_id(const struct udevice *dev);
 382
 383/**
 384 * dev_get_uclass_name() - return the uclass name of a device
 385 *
 386 * This checks that dev is not NULL.
 387 *
 388 * @dev:        Device to check
 389 * @return  pointer to the uclass name for the device
 390 */
 391const char *dev_get_uclass_name(const struct udevice *dev);
 392
 393/**
 394 * device_get_child() - Get the child of a device by index
 395 *
 396 * Returns the numbered child, 0 being the first. This does not use
 397 * sequence numbers, only the natural order.
 398 *
 399 * @dev:        Parent device to check
 400 * @index:      Child index
 401 * @devp:       Returns pointer to device
 402 * @return 0 if OK, -ENODEV if no such device, other error if the device fails
 403 *         to probe
 404 */
 405int device_get_child(struct udevice *parent, int index, struct udevice **devp);
 406
 407/**
 408 * device_find_child_by_seq() - Find a child device based on a sequence
 409 *
 410 * This searches for a device with the given seq or req_seq.
 411 *
 412 * For seq, if an active device has this sequence it will be returned.
 413 * If there is no such device then this will return -ENODEV.
 414 *
 415 * For req_seq, if a device (whether activated or not) has this req_seq
 416 * value, that device will be returned. This is a strong indication that
 417 * the device will receive that sequence when activated.
 418 *
 419 * @parent: Parent device
 420 * @seq_or_req_seq: Sequence number to find (0=first)
 421 * @find_req_seq: true to find req_seq, false to find seq
 422 * @devp: Returns pointer to device (there is only one per for each seq).
 423 * Set to NULL if none is found
 424 * @return 0 if OK, -ve on error
 425 */
 426int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq,
 427                             bool find_req_seq, struct udevice **devp);
 428
 429/**
 430 * device_get_child_by_seq() - Get a child device based on a sequence
 431 *
 432 * If an active device has this sequence it will be returned. If there is no
 433 * such device then this will check for a device that is requesting this
 434 * sequence.
 435 *
 436 * The device is probed to activate it ready for use.
 437 *
 438 * @parent: Parent device
 439 * @seq: Sequence number to find (0=first)
 440 * @devp: Returns pointer to device (there is only one per for each seq)
 441 * Set to NULL if none is found
 442 * @return 0 if OK, -ve on error
 443 */
 444int device_get_child_by_seq(struct udevice *parent, int seq,
 445                            struct udevice **devp);
 446
 447/**
 448 * device_find_child_by_of_offset() - Find a child device based on FDT offset
 449 *
 450 * Locates a child device by its device tree offset.
 451 *
 452 * @parent: Parent device
 453 * @of_offset: Device tree offset to find
 454 * @devp: Returns pointer to device if found, otherwise this is set to NULL
 455 * @return 0 if OK, -ve on error
 456 */
 457int device_find_child_by_of_offset(struct udevice *parent, int of_offset,
 458                                   struct udevice **devp);
 459
 460/**
 461 * device_get_child_by_of_offset() - Get a child device based on FDT offset
 462 *
 463 * Locates a child device by its device tree offset.
 464 *
 465 * The device is probed to activate it ready for use.
 466 *
 467 * @parent: Parent device
 468 * @of_offset: Device tree offset to find
 469 * @devp: Returns pointer to device if found, otherwise this is set to NULL
 470 * @return 0 if OK, -ve on error
 471 */
 472int device_get_child_by_of_offset(struct udevice *parent, int of_offset,
 473                                  struct udevice **devp);
 474
 475/**
 476 * device_find_global_by_ofnode() - Get a device based on ofnode
 477 *
 478 * Locates a device by its device tree ofnode, searching globally throughout
 479 * the all driver model devices.
 480 *
 481 * The device is NOT probed
 482 *
 483 * @node: Device tree ofnode to find
 484 * @devp: Returns pointer to device if found, otherwise this is set to NULL
 485 * @return 0 if OK, -ve on error
 486 */
 487
 488int device_find_global_by_ofnode(ofnode node, struct udevice **devp);
 489
 490/**
 491 * device_get_global_by_ofnode() - Get a device based on ofnode
 492 *
 493 * Locates a device by its device tree ofnode, searching globally throughout
 494 * the all driver model devices.
 495 *
 496 * The device is probed to activate it ready for use.
 497 *
 498 * @node: Device tree ofnode to find
 499 * @devp: Returns pointer to device if found, otherwise this is set to NULL
 500 * @return 0 if OK, -ve on error
 501 */
 502int device_get_global_by_ofnode(ofnode node, struct udevice **devp);
 503
 504/**
 505 * device_find_first_child() - Find the first child of a device
 506 *
 507 * @parent: Parent device to search
 508 * @devp: Returns first child device, or NULL if none
 509 * @return 0
 510 */
 511int device_find_first_child(struct udevice *parent, struct udevice **devp);
 512
 513/**
 514 * device_find_next_child() - Find the next child of a device
 515 *
 516 * @devp: Pointer to previous child device on entry. Returns pointer to next
 517 *              child device, or NULL if none
 518 * @return 0
 519 */
 520int device_find_next_child(struct udevice **devp);
 521
 522/**
 523 * device_find_first_inactive_child() - Find the first inactive child
 524 *
 525 * This is used to locate an existing child of a device which is of a given
 526 * uclass.
 527 *
 528 * The device is NOT probed
 529 *
 530 * @parent:     Parent device to search
 531 * @uclass_id:  Uclass to look for
 532 * @devp:       Returns device found, if any
 533 * @return 0 if found, else -ENODEV
 534 */
 535int device_find_first_inactive_child(struct udevice *parent,
 536                                     enum uclass_id uclass_id,
 537                                     struct udevice **devp);
 538
 539/**
 540 * device_find_first_child_by_uclass() - Find the first child of a device in uc
 541 *
 542 * @parent: Parent device to search
 543 * @uclass_id:  Uclass to look for
 544 * @devp: Returns first child device in that uclass, if any
 545 * @return 0 if found, else -ENODEV
 546 */
 547int device_find_first_child_by_uclass(struct udevice *parent,
 548                                      enum uclass_id uclass_id,
 549                                      struct udevice **devp);
 550
 551/**
 552 * device_find_child_by_name() - Find a child by device name
 553 *
 554 * @parent:     Parent device to search
 555 * @name:       Name to look for
 556 * @devp:       Returns device found, if any
 557 * @return 0 if found, else -ENODEV
 558 */
 559int device_find_child_by_name(struct udevice *parent, const char *name,
 560                              struct udevice **devp);
 561
 562/**
 563 * device_has_children() - check if a device has any children
 564 *
 565 * @dev:        Device to check
 566 * @return true if the device has one or more children
 567 */
 568bool device_has_children(const struct udevice *dev);
 569
 570/**
 571 * device_has_active_children() - check if a device has any active children
 572 *
 573 * @dev:        Device to check
 574 * @return true if the device has one or more children and at least one of
 575 * them is active (probed).
 576 */
 577bool device_has_active_children(struct udevice *dev);
 578
 579/**
 580 * device_is_last_sibling() - check if a device is the last sibling
 581 *
 582 * This function can be useful for display purposes, when special action needs
 583 * to be taken when displaying the last sibling. This can happen when a tree
 584 * view of devices is being displayed.
 585 *
 586 * @dev:        Device to check
 587 * @return true if there are no more siblings after this one - i.e. is it
 588 * last in the list.
 589 */
 590bool device_is_last_sibling(struct udevice *dev);
 591
 592/**
 593 * device_set_name() - set the name of a device
 594 *
 595 * This must be called in the device's bind() method and no later. Normally
 596 * this is unnecessary but for probed devices which don't get a useful name
 597 * this function can be helpful.
 598 *
 599 * The name is allocated and will be freed automatically when the device is
 600 * unbound.
 601 *
 602 * @dev:        Device to update
 603 * @name:       New name (this string is allocated new memory and attached to
 604 *              the device)
 605 * @return 0 if OK, -ENOMEM if there is not enough memory to allocate the
 606 * string
 607 */
 608int device_set_name(struct udevice *dev, const char *name);
 609
 610/**
 611 * device_set_name_alloced() - note that a device name is allocated
 612 *
 613 * This sets the DM_FLAG_NAME_ALLOCED flag for the device, so that when it is
 614 * unbound the name will be freed. This avoids memory leaks.
 615 *
 616 * @dev:        Device to update
 617 */
 618void device_set_name_alloced(struct udevice *dev);
 619
 620/**
 621 * device_is_compatible() - check if the device is compatible with the compat
 622 *
 623 * This allows to check whether the device is comaptible with the compat.
 624 *
 625 * @dev:        udevice pointer for which compatible needs to be verified.
 626 * @compat:     Compatible string which needs to verified in the given
 627 *              device
 628 * @return true if OK, false if the compatible is not found
 629 */
 630bool device_is_compatible(struct udevice *dev, const char *compat);
 631
 632/**
 633 * of_machine_is_compatible() - check if the machine is compatible with
 634 *                              the compat
 635 *
 636 * This allows to check whether the machine is comaptible with the compat.
 637 *
 638 * @compat:     Compatible string which needs to verified
 639 * @return true if OK, false if the compatible is not found
 640 */
 641bool of_machine_is_compatible(const char *compat);
 642
 643/**
 644 * dev_disable_by_path() - Disable a device given its device tree path
 645 *
 646 * @path:       The device tree path identifying the device to be disabled
 647 * @return 0 on success, -ve on error
 648 */
 649int dev_disable_by_path(const char *path);
 650
 651/**
 652 * dev_enable_by_path() - Enable a device given its device tree path
 653 *
 654 * @path:       The device tree path identifying the device to be enabled
 655 * @return 0 on success, -ve on error
 656 */
 657int dev_enable_by_path(const char *path);
 658
 659/**
 660 * device_is_on_pci_bus - Test if a device is on a PCI bus
 661 *
 662 * @dev:        device to test
 663 * @return:     true if it is on a PCI bus, false otherwise
 664 */
 665static inline bool device_is_on_pci_bus(struct udevice *dev)
 666{
 667        return device_get_uclass_id(dev->parent) == UCLASS_PCI;
 668}
 669
 670/**
 671 * device_foreach_child_safe() - iterate through child devices safely
 672 *
 673 * This allows the @pos child to be removed in the loop if required.
 674 *
 675 * @pos: struct udevice * for the current device
 676 * @next: struct udevice * for the next device
 677 * @parent: parent device to scan
 678 */
 679#define device_foreach_child_safe(pos, next, parent)    \
 680        list_for_each_entry_safe(pos, next, &parent->child_head, sibling_node)
 681
 682/**
 683 * dm_scan_fdt_dev() - Bind child device in a the device tree
 684 *
 685 * This handles device which have sub-nodes in the device tree. It scans all
 686 * sub-nodes and binds drivers for each node where a driver can be found.
 687 *
 688 * If this is called prior to relocation, only pre-relocation devices will be
 689 * bound (those marked with u-boot,dm-pre-reloc in the device tree, or where
 690 * the driver has the DM_FLAG_PRE_RELOC flag set). Otherwise, all devices will
 691 * be bound.
 692 *
 693 * @dev:        Device to scan
 694 * @return 0 if OK, -ve on error
 695 */
 696int dm_scan_fdt_dev(struct udevice *dev);
 697
 698/* device resource management */
 699typedef void (*dr_release_t)(struct udevice *dev, void *res);
 700typedef int (*dr_match_t)(struct udevice *dev, void *res, void *match_data);
 701
 702#ifdef CONFIG_DEVRES
 703
 704#ifdef CONFIG_DEBUG_DEVRES
 705void *__devres_alloc(dr_release_t release, size_t size, gfp_t gfp,
 706                     const char *name);
 707#define _devres_alloc(release, size, gfp) \
 708        __devres_alloc(release, size, gfp, #release)
 709#else
 710void *_devres_alloc(dr_release_t release, size_t size, gfp_t gfp);
 711#endif
 712
 713/**
 714 * devres_alloc() - Allocate device resource data
 715 * @release: Release function devres will be associated with
 716 * @size: Allocation size
 717 * @gfp: Allocation flags
 718 *
 719 * Allocate devres of @size bytes.  The allocated area is associated
 720 * with @release.  The returned pointer can be passed to
 721 * other devres_*() functions.
 722 *
 723 * RETURNS:
 724 * Pointer to allocated devres on success, NULL on failure.
 725 */
 726#define devres_alloc(release, size, gfp) \
 727        _devres_alloc(release, size, gfp | __GFP_ZERO)
 728
 729/**
 730 * devres_free() - Free device resource data
 731 * @res: Pointer to devres data to free
 732 *
 733 * Free devres created with devres_alloc().
 734 */
 735void devres_free(void *res);
 736
 737/**
 738 * devres_add() - Register device resource
 739 * @dev: Device to add resource to
 740 * @res: Resource to register
 741 *
 742 * Register devres @res to @dev.  @res should have been allocated
 743 * using devres_alloc().  On driver detach, the associated release
 744 * function will be invoked and devres will be freed automatically.
 745 */
 746void devres_add(struct udevice *dev, void *res);
 747
 748/**
 749 * devres_find() - Find device resource
 750 * @dev: Device to lookup resource from
 751 * @release: Look for resources associated with this release function
 752 * @match: Match function (optional)
 753 * @match_data: Data for the match function
 754 *
 755 * Find the latest devres of @dev which is associated with @release
 756 * and for which @match returns 1.  If @match is NULL, it's considered
 757 * to match all.
 758 *
 759 * @return pointer to found devres, NULL if not found.
 760 */
 761void *devres_find(struct udevice *dev, dr_release_t release,
 762                  dr_match_t match, void *match_data);
 763
 764/**
 765 * devres_get() - Find devres, if non-existent, add one atomically
 766 * @dev: Device to lookup or add devres for
 767 * @new_res: Pointer to new initialized devres to add if not found
 768 * @match: Match function (optional)
 769 * @match_data: Data for the match function
 770 *
 771 * Find the latest devres of @dev which has the same release function
 772 * as @new_res and for which @match return 1.  If found, @new_res is
 773 * freed; otherwise, @new_res is added atomically.
 774 *
 775 * @return ointer to found or added devres.
 776 */
 777void *devres_get(struct udevice *dev, void *new_res,
 778                 dr_match_t match, void *match_data);
 779
 780/**
 781 * devres_remove() - Find a device resource and remove it
 782 * @dev: Device to find resource from
 783 * @release: Look for resources associated with this release function
 784 * @match: Match function (optional)
 785 * @match_data: Data for the match function
 786 *
 787 * Find the latest devres of @dev associated with @release and for
 788 * which @match returns 1.  If @match is NULL, it's considered to
 789 * match all.  If found, the resource is removed atomically and
 790 * returned.
 791 *
 792 * @return ointer to removed devres on success, NULL if not found.
 793 */
 794void *devres_remove(struct udevice *dev, dr_release_t release,
 795                    dr_match_t match, void *match_data);
 796
 797/**
 798 * devres_destroy() - Find a device resource and destroy it
 799 * @dev: Device to find resource from
 800 * @release: Look for resources associated with this release function
 801 * @match: Match function (optional)
 802 * @match_data: Data for the match function
 803 *
 804 * Find the latest devres of @dev associated with @release and for
 805 * which @match returns 1.  If @match is NULL, it's considered to
 806 * match all.  If found, the resource is removed atomically and freed.
 807 *
 808 * Note that the release function for the resource will not be called,
 809 * only the devres-allocated data will be freed.  The caller becomes
 810 * responsible for freeing any other data.
 811 *
 812 * @return 0 if devres is found and freed, -ENOENT if not found.
 813 */
 814int devres_destroy(struct udevice *dev, dr_release_t release,
 815                   dr_match_t match, void *match_data);
 816
 817/**
 818 * devres_release() - Find a device resource and destroy it, calling release
 819 * @dev: Device to find resource from
 820 * @release: Look for resources associated with this release function
 821 * @match: Match function (optional)
 822 * @match_data: Data for the match function
 823 *
 824 * Find the latest devres of @dev associated with @release and for
 825 * which @match returns 1.  If @match is NULL, it's considered to
 826 * match all.  If found, the resource is removed atomically, the
 827 * release function called and the resource freed.
 828 *
 829 * @return 0 if devres is found and freed, -ENOENT if not found.
 830 */
 831int devres_release(struct udevice *dev, dr_release_t release,
 832                   dr_match_t match, void *match_data);
 833
 834/* managed devm_k.alloc/kfree for device drivers */
 835/**
 836 * devm_kmalloc() - Resource-managed kmalloc
 837 * @dev: Device to allocate memory for
 838 * @size: Allocation size
 839 * @gfp: Allocation gfp flags
 840 *
 841 * Managed kmalloc.  Memory allocated with this function is
 842 * automatically freed on driver detach.  Like all other devres
 843 * resources, guaranteed alignment is unsigned long long.
 844 *
 845 * @return pointer to allocated memory on success, NULL on failure.
 846 */
 847void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp);
 848static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
 849{
 850        return devm_kmalloc(dev, size, gfp | __GFP_ZERO);
 851}
 852static inline void *devm_kmalloc_array(struct udevice *dev,
 853                                       size_t n, size_t size, gfp_t flags)
 854{
 855        if (size != 0 && n > SIZE_MAX / size)
 856                return NULL;
 857        return devm_kmalloc(dev, n * size, flags);
 858}
 859static inline void *devm_kcalloc(struct udevice *dev,
 860                                 size_t n, size_t size, gfp_t flags)
 861{
 862        return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO);
 863}
 864
 865/**
 866 * devm_kfree() - Resource-managed kfree
 867 * @dev: Device this memory belongs to
 868 * @ptr: Memory to free
 869 *
 870 * Free memory allocated with devm_kmalloc().
 871 */
 872void devm_kfree(struct udevice *dev, void *ptr);
 873
 874#else /* ! CONFIG_DEVRES */
 875
 876static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp)
 877{
 878        return kzalloc(size, gfp);
 879}
 880
 881static inline void devres_free(void *res)
 882{
 883        kfree(res);
 884}
 885
 886static inline void devres_add(struct udevice *dev, void *res)
 887{
 888}
 889
 890static inline void *devres_find(struct udevice *dev, dr_release_t release,
 891                                dr_match_t match, void *match_data)
 892{
 893        return NULL;
 894}
 895
 896static inline void *devres_get(struct udevice *dev, void *new_res,
 897                               dr_match_t match, void *match_data)
 898{
 899        return NULL;
 900}
 901
 902static inline void *devres_remove(struct udevice *dev, dr_release_t release,
 903                                  dr_match_t match, void *match_data)
 904{
 905        return NULL;
 906}
 907
 908static inline int devres_destroy(struct udevice *dev, dr_release_t release,
 909                                 dr_match_t match, void *match_data)
 910{
 911        return 0;
 912}
 913
 914static inline int devres_release(struct udevice *dev, dr_release_t release,
 915                                 dr_match_t match, void *match_data)
 916{
 917        return 0;
 918}
 919
 920static inline void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp)
 921{
 922        return kmalloc(size, gfp);
 923}
 924
 925static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
 926{
 927        return kzalloc(size, gfp);
 928}
 929
 930static inline void *devm_kmaloc_array(struct udevice *dev,
 931                                      size_t n, size_t size, gfp_t flags)
 932{
 933        /* TODO: add kmalloc_array() to linux/compat.h */
 934        if (size != 0 && n > SIZE_MAX / size)
 935                return NULL;
 936        return kmalloc(n * size, flags);
 937}
 938
 939static inline void *devm_kcalloc(struct udevice *dev,
 940                                 size_t n, size_t size, gfp_t flags)
 941{
 942        /* TODO: add kcalloc() to linux/compat.h */
 943        return kmalloc(n * size, flags | __GFP_ZERO);
 944}
 945
 946static inline void devm_kfree(struct udevice *dev, void *ptr)
 947{
 948        kfree(ptr);
 949}
 950
 951#endif /* ! CONFIG_DEVRES */
 952
 953/*
 954 * REVISIT:
 955 * remove the following after resolving conflicts with <linux/compat.h>
 956 */
 957#ifdef dev_dbg
 958#undef dev_dbg
 959#endif
 960#ifdef dev_vdbg
 961#undef dev_vdbg
 962#endif
 963#ifdef dev_info
 964#undef dev_info
 965#endif
 966#ifdef dev_err
 967#undef dev_err
 968#endif
 969#ifdef dev_warn
 970#undef dev_warn
 971#endif
 972
 973/*
 974 * REVISIT:
 975 * print device name like Linux
 976 */
 977#define dev_printk(dev, fmt, ...)                               \
 978({                                                              \
 979        printk(fmt, ##__VA_ARGS__);                             \
 980})
 981
 982#define __dev_printk(level, dev, fmt, ...)                      \
 983({                                                              \
 984        if (level < CONFIG_VAL(LOGLEVEL))                       \
 985                dev_printk(dev, fmt, ##__VA_ARGS__);            \
 986})
 987
 988#define dev_emerg(dev, fmt, ...) \
 989        __dev_printk(0, dev, fmt, ##__VA_ARGS__)
 990#define dev_alert(dev, fmt, ...) \
 991        __dev_printk(1, dev, fmt, ##__VA_ARGS__)
 992#define dev_crit(dev, fmt, ...) \
 993        __dev_printk(2, dev, fmt, ##__VA_ARGS__)
 994#define dev_err(dev, fmt, ...) \
 995        __dev_printk(3, dev, fmt, ##__VA_ARGS__)
 996#define dev_warn(dev, fmt, ...) \
 997        __dev_printk(4, dev, fmt, ##__VA_ARGS__)
 998#define dev_notice(dev, fmt, ...) \
 999        __dev_printk(5, dev, fmt, ##__VA_ARGS__)
1000#define dev_info(dev, fmt, ...) \
1001        __dev_printk(6, dev, fmt, ##__VA_ARGS__)
1002
1003#ifdef DEBUG
1004#define dev_dbg(dev, fmt, ...) \
1005        __dev_printk(7, dev, fmt, ##__VA_ARGS__)
1006#else
1007#define dev_dbg(dev, fmt, ...)                                  \
1008({                                                              \
1009        if (0)                                                  \
1010                __dev_printk(7, dev, fmt, ##__VA_ARGS__);       \
1011})
1012#endif
1013
1014#ifdef VERBOSE_DEBUG
1015#define dev_vdbg        dev_dbg
1016#else
1017#define dev_vdbg(dev, fmt, ...)                                 \
1018({                                                              \
1019        if (0)                                                  \
1020                __dev_printk(7, dev, fmt, ##__VA_ARGS__);       \
1021})
1022#endif
1023
1024#endif
1025