uboot/lib/bch.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Generic binary BCH encoding/decoding library
   4 *
   5 * Copyright © 2011 Parrot S.A.
   6 *
   7 * Author: Ivan Djelic <ivan.djelic@parrot.com>
   8 *
   9 * Description:
  10 *
  11 * This library provides runtime configurable encoding/decoding of binary
  12 * Bose-Chaudhuri-Hocquenghem (BCH) codes.
  13 *
  14 * Call init_bch to get a pointer to a newly allocated bch_control structure for
  15 * the given m (Galois field order), t (error correction capability) and
  16 * (optional) primitive polynomial parameters.
  17 *
  18 * Call encode_bch to compute and store ecc parity bytes to a given buffer.
  19 * Call decode_bch to detect and locate errors in received data.
  20 *
  21 * On systems supporting hw BCH features, intermediate results may be provided
  22 * to decode_bch in order to skip certain steps. See decode_bch() documentation
  23 * for details.
  24 *
  25 * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
  26 * parameters m and t; thus allowing extra compiler optimizations and providing
  27 * better (up to 2x) encoding performance. Using this option makes sense when
  28 * (m,t) are fixed and known in advance, e.g. when using BCH error correction
  29 * on a particular NAND flash device.
  30 *
  31 * Algorithmic details:
  32 *
  33 * Encoding is performed by processing 32 input bits in parallel, using 4
  34 * remainder lookup tables.
  35 *
  36 * The final stage of decoding involves the following internal steps:
  37 * a. Syndrome computation
  38 * b. Error locator polynomial computation using Berlekamp-Massey algorithm
  39 * c. Error locator root finding (by far the most expensive step)
  40 *
  41 * In this implementation, step c is not performed using the usual Chien search.
  42 * Instead, an alternative approach described in [1] is used. It consists in
  43 * factoring the error locator polynomial using the Berlekamp Trace algorithm
  44 * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
  45 * solving techniques [2] are used. The resulting algorithm, called BTZ, yields
  46 * much better performance than Chien search for usual (m,t) values (typically
  47 * m >= 13, t < 32, see [1]).
  48 *
  49 * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
  50 * of characteristic 2, in: Western European Workshop on Research in Cryptology
  51 * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
  52 * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
  53 * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
  54 */
  55
  56#ifndef USE_HOSTCC
  57#include <common.h>
  58#include <ubi_uboot.h>
  59
  60#include <linux/bitops.h>
  61#else
  62#include <errno.h>
  63#if defined(__FreeBSD__)
  64#include <sys/endian.h>
  65#else
  66#include <endian.h>
  67#endif
  68#include <stdint.h>
  69#include <stdlib.h>
  70#include <string.h>
  71
  72#undef cpu_to_be32
  73#define cpu_to_be32 htobe32
  74#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
  75#define kmalloc(size, flags)    malloc(size)
  76#define kzalloc(size, flags)    calloc(1, size)
  77#define kfree free
  78#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
  79#endif
  80
  81#include <asm/byteorder.h>
  82#include <linux/bch.h>
  83
  84#if defined(CONFIG_BCH_CONST_PARAMS)
  85#define GF_M(_p)               (CONFIG_BCH_CONST_M)
  86#define GF_T(_p)               (CONFIG_BCH_CONST_T)
  87#define GF_N(_p)               ((1 << (CONFIG_BCH_CONST_M))-1)
  88#else
  89#define GF_M(_p)               ((_p)->m)
  90#define GF_T(_p)               ((_p)->t)
  91#define GF_N(_p)               ((_p)->n)
  92#endif
  93
  94#define BCH_ECC_WORDS(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
  95#define BCH_ECC_BYTES(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
  96
  97#ifndef dbg
  98#define dbg(_fmt, args...)     do {} while (0)
  99#endif
 100
 101/*
 102 * represent a polynomial over GF(2^m)
 103 */
 104struct gf_poly {
 105        unsigned int deg;    /* polynomial degree */
 106        unsigned int c[0];   /* polynomial terms */
 107};
 108
 109/* given its degree, compute a polynomial size in bytes */
 110#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
 111
 112/* polynomial of degree 1 */
 113struct gf_poly_deg1 {
 114        struct gf_poly poly;
 115        unsigned int   c[2];
 116};
 117
 118#ifdef USE_HOSTCC
 119#if !defined(__DragonFly__) && !defined(__FreeBSD__)
 120static int fls(int x)
 121{
 122        int r = 32;
 123
 124        if (!x)
 125                return 0;
 126        if (!(x & 0xffff0000u)) {
 127                x <<= 16;
 128                r -= 16;
 129        }
 130        if (!(x & 0xff000000u)) {
 131                x <<= 8;
 132                r -= 8;
 133        }
 134        if (!(x & 0xf0000000u)) {
 135                x <<= 4;
 136                r -= 4;
 137        }
 138        if (!(x & 0xc0000000u)) {
 139                x <<= 2;
 140                r -= 2;
 141        }
 142        if (!(x & 0x80000000u)) {
 143                x <<= 1;
 144                r -= 1;
 145        }
 146        return r;
 147}
 148#endif
 149#endif
 150
 151/*
 152 * same as encode_bch(), but process input data one byte at a time
 153 */
 154static void encode_bch_unaligned(struct bch_control *bch,
 155                                 const unsigned char *data, unsigned int len,
 156                                 uint32_t *ecc)
 157{
 158        int i;
 159        const uint32_t *p;
 160        const int l = BCH_ECC_WORDS(bch)-1;
 161
 162        while (len--) {
 163                p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff);
 164
 165                for (i = 0; i < l; i++)
 166                        ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
 167
 168                ecc[l] = (ecc[l] << 8)^(*p);
 169        }
 170}
 171
 172/*
 173 * convert ecc bytes to aligned, zero-padded 32-bit ecc words
 174 */
 175static void load_ecc8(struct bch_control *bch, uint32_t *dst,
 176                      const uint8_t *src)
 177{
 178        uint8_t pad[4] = {0, 0, 0, 0};
 179        unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
 180
 181        for (i = 0; i < nwords; i++, src += 4)
 182                dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3];
 183
 184        memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
 185        dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3];
 186}
 187
 188/*
 189 * convert 32-bit ecc words to ecc bytes
 190 */
 191static void store_ecc8(struct bch_control *bch, uint8_t *dst,
 192                       const uint32_t *src)
 193{
 194        uint8_t pad[4];
 195        unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
 196
 197        for (i = 0; i < nwords; i++) {
 198                *dst++ = (src[i] >> 24);
 199                *dst++ = (src[i] >> 16) & 0xff;
 200                *dst++ = (src[i] >>  8) & 0xff;
 201                *dst++ = (src[i] >>  0) & 0xff;
 202        }
 203        pad[0] = (src[nwords] >> 24);
 204        pad[1] = (src[nwords] >> 16) & 0xff;
 205        pad[2] = (src[nwords] >>  8) & 0xff;
 206        pad[3] = (src[nwords] >>  0) & 0xff;
 207        memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
 208}
 209
 210/**
 211 * encode_bch - calculate BCH ecc parity of data
 212 * @bch:   BCH control structure
 213 * @data:  data to encode
 214 * @len:   data length in bytes
 215 * @ecc:   ecc parity data, must be initialized by caller
 216 *
 217 * The @ecc parity array is used both as input and output parameter, in order to
 218 * allow incremental computations. It should be of the size indicated by member
 219 * @ecc_bytes of @bch, and should be initialized to 0 before the first call.
 220 *
 221 * The exact number of computed ecc parity bits is given by member @ecc_bits of
 222 * @bch; it may be less than m*t for large values of t.
 223 */
 224void encode_bch(struct bch_control *bch, const uint8_t *data,
 225                unsigned int len, uint8_t *ecc)
 226{
 227        const unsigned int l = BCH_ECC_WORDS(bch)-1;
 228        unsigned int i, mlen;
 229        unsigned long m;
 230        uint32_t w, r[l+1];
 231        const uint32_t * const tab0 = bch->mod8_tab;
 232        const uint32_t * const tab1 = tab0 + 256*(l+1);
 233        const uint32_t * const tab2 = tab1 + 256*(l+1);
 234        const uint32_t * const tab3 = tab2 + 256*(l+1);
 235        const uint32_t *pdata, *p0, *p1, *p2, *p3;
 236
 237        if (ecc) {
 238                /* load ecc parity bytes into internal 32-bit buffer */
 239                load_ecc8(bch, bch->ecc_buf, ecc);
 240        } else {
 241                memset(bch->ecc_buf, 0, sizeof(r));
 242        }
 243
 244        /* process first unaligned data bytes */
 245        m = ((unsigned long)data) & 3;
 246        if (m) {
 247                mlen = (len < (4-m)) ? len : 4-m;
 248                encode_bch_unaligned(bch, data, mlen, bch->ecc_buf);
 249                data += mlen;
 250                len  -= mlen;
 251        }
 252
 253        /* process 32-bit aligned data words */
 254        pdata = (uint32_t *)data;
 255        mlen  = len/4;
 256        data += 4*mlen;
 257        len  -= 4*mlen;
 258        memcpy(r, bch->ecc_buf, sizeof(r));
 259
 260        /*
 261         * split each 32-bit word into 4 polynomials of weight 8 as follows:
 262         *
 263         * 31 ...24  23 ...16  15 ... 8  7 ... 0
 264         * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt
 265         *                               tttttttt  mod g = r0 (precomputed)
 266         *                     zzzzzzzz  00000000  mod g = r1 (precomputed)
 267         *           yyyyyyyy  00000000  00000000  mod g = r2 (precomputed)
 268         * xxxxxxxx  00000000  00000000  00000000  mod g = r3 (precomputed)
 269         * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt  mod g = r0^r1^r2^r3
 270         */
 271        while (mlen--) {
 272                /* input data is read in big-endian format */
 273                w = r[0]^cpu_to_be32(*pdata++);
 274                p0 = tab0 + (l+1)*((w >>  0) & 0xff);
 275                p1 = tab1 + (l+1)*((w >>  8) & 0xff);
 276                p2 = tab2 + (l+1)*((w >> 16) & 0xff);
 277                p3 = tab3 + (l+1)*((w >> 24) & 0xff);
 278
 279                for (i = 0; i < l; i++)
 280                        r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
 281
 282                r[l] = p0[l]^p1[l]^p2[l]^p3[l];
 283        }
 284        memcpy(bch->ecc_buf, r, sizeof(r));
 285
 286        /* process last unaligned bytes */
 287        if (len)
 288                encode_bch_unaligned(bch, data, len, bch->ecc_buf);
 289
 290        /* store ecc parity bytes into original parity buffer */
 291        if (ecc)
 292                store_ecc8(bch, ecc, bch->ecc_buf);
 293}
 294
 295static inline int modulo(struct bch_control *bch, unsigned int v)
 296{
 297        const unsigned int n = GF_N(bch);
 298        while (v >= n) {
 299                v -= n;
 300                v = (v & n) + (v >> GF_M(bch));
 301        }
 302        return v;
 303}
 304
 305/*
 306 * shorter and faster modulo function, only works when v < 2N.
 307 */
 308static inline int mod_s(struct bch_control *bch, unsigned int v)
 309{
 310        const unsigned int n = GF_N(bch);
 311        return (v < n) ? v : v-n;
 312}
 313
 314static inline int deg(unsigned int poly)
 315{
 316        /* polynomial degree is the most-significant bit index */
 317        return fls(poly)-1;
 318}
 319
 320static inline int parity(unsigned int x)
 321{
 322        /*
 323         * public domain code snippet, lifted from
 324         * http://www-graphics.stanford.edu/~seander/bithacks.html
 325         */
 326        x ^= x >> 1;
 327        x ^= x >> 2;
 328        x = (x & 0x11111111U) * 0x11111111U;
 329        return (x >> 28) & 1;
 330}
 331
 332/* Galois field basic operations: multiply, divide, inverse, etc. */
 333
 334static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
 335                                  unsigned int b)
 336{
 337        return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
 338                                               bch->a_log_tab[b])] : 0;
 339}
 340
 341static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
 342{
 343        return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
 344}
 345
 346static inline unsigned int gf_div(struct bch_control *bch, unsigned int a,
 347                                  unsigned int b)
 348{
 349        return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
 350                                        GF_N(bch)-bch->a_log_tab[b])] : 0;
 351}
 352
 353static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a)
 354{
 355        return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]];
 356}
 357
 358static inline unsigned int a_pow(struct bch_control *bch, int i)
 359{
 360        return bch->a_pow_tab[modulo(bch, i)];
 361}
 362
 363static inline int a_log(struct bch_control *bch, unsigned int x)
 364{
 365        return bch->a_log_tab[x];
 366}
 367
 368static inline int a_ilog(struct bch_control *bch, unsigned int x)
 369{
 370        return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]);
 371}
 372
 373/*
 374 * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
 375 */
 376static void compute_syndromes(struct bch_control *bch, uint32_t *ecc,
 377                              unsigned int *syn)
 378{
 379        int i, j, s;
 380        unsigned int m;
 381        uint32_t poly;
 382        const int t = GF_T(bch);
 383
 384        s = bch->ecc_bits;
 385
 386        /* make sure extra bits in last ecc word are cleared */
 387        m = ((unsigned int)s) & 31;
 388        if (m)
 389                ecc[s/32] &= ~((1u << (32-m))-1);
 390        memset(syn, 0, 2*t*sizeof(*syn));
 391
 392        /* compute v(a^j) for j=1 .. 2t-1 */
 393        do {
 394                poly = *ecc++;
 395                s -= 32;
 396                while (poly) {
 397                        i = deg(poly);
 398                        for (j = 0; j < 2*t; j += 2)
 399                                syn[j] ^= a_pow(bch, (j+1)*(i+s));
 400
 401                        poly ^= (1 << i);
 402                }
 403        } while (s > 0);
 404
 405        /* v(a^(2j)) = v(a^j)^2 */
 406        for (j = 0; j < t; j++)
 407                syn[2*j+1] = gf_sqr(bch, syn[j]);
 408}
 409
 410static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src)
 411{
 412        memcpy(dst, src, GF_POLY_SZ(src->deg));
 413}
 414
 415static int compute_error_locator_polynomial(struct bch_control *bch,
 416                                            const unsigned int *syn)
 417{
 418        const unsigned int t = GF_T(bch);
 419        const unsigned int n = GF_N(bch);
 420        unsigned int i, j, tmp, l, pd = 1, d = syn[0];
 421        struct gf_poly *elp = bch->elp;
 422        struct gf_poly *pelp = bch->poly_2t[0];
 423        struct gf_poly *elp_copy = bch->poly_2t[1];
 424        int k, pp = -1;
 425
 426        memset(pelp, 0, GF_POLY_SZ(2*t));
 427        memset(elp, 0, GF_POLY_SZ(2*t));
 428
 429        pelp->deg = 0;
 430        pelp->c[0] = 1;
 431        elp->deg = 0;
 432        elp->c[0] = 1;
 433
 434        /* use simplified binary Berlekamp-Massey algorithm */
 435        for (i = 0; (i < t) && (elp->deg <= t); i++) {
 436                if (d) {
 437                        k = 2*i-pp;
 438                        gf_poly_copy(elp_copy, elp);
 439                        /* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */
 440                        tmp = a_log(bch, d)+n-a_log(bch, pd);
 441                        for (j = 0; j <= pelp->deg; j++) {
 442                                if (pelp->c[j]) {
 443                                        l = a_log(bch, pelp->c[j]);
 444                                        elp->c[j+k] ^= a_pow(bch, tmp+l);
 445                                }
 446                        }
 447                        /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */
 448                        tmp = pelp->deg+k;
 449                        if (tmp > elp->deg) {
 450                                elp->deg = tmp;
 451                                gf_poly_copy(pelp, elp_copy);
 452                                pd = d;
 453                                pp = 2*i;
 454                        }
 455                }
 456                /* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */
 457                if (i < t-1) {
 458                        d = syn[2*i+2];
 459                        for (j = 1; j <= elp->deg; j++)
 460                                d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]);
 461                }
 462        }
 463        dbg("elp=%s\n", gf_poly_str(elp));
 464        return (elp->deg > t) ? -1 : (int)elp->deg;
 465}
 466
 467/*
 468 * solve a m x m linear system in GF(2) with an expected number of solutions,
 469 * and return the number of found solutions
 470 */
 471static int solve_linear_system(struct bch_control *bch, unsigned int *rows,
 472                               unsigned int *sol, int nsol)
 473{
 474        const int m = GF_M(bch);
 475        unsigned int tmp, mask;
 476        int rem, c, r, p, k, param[m];
 477
 478        k = 0;
 479        mask = 1 << m;
 480
 481        /* Gaussian elimination */
 482        for (c = 0; c < m; c++) {
 483                rem = 0;
 484                p = c-k;
 485                /* find suitable row for elimination */
 486                for (r = p; r < m; r++) {
 487                        if (rows[r] & mask) {
 488                                if (r != p) {
 489                                        tmp = rows[r];
 490                                        rows[r] = rows[p];
 491                                        rows[p] = tmp;
 492                                }
 493                                rem = r+1;
 494                                break;
 495                        }
 496                }
 497                if (rem) {
 498                        /* perform elimination on remaining rows */
 499                        tmp = rows[p];
 500                        for (r = rem; r < m; r++) {
 501                                if (rows[r] & mask)
 502                                        rows[r] ^= tmp;
 503                        }
 504                } else {
 505                        /* elimination not needed, store defective row index */
 506                        param[k++] = c;
 507                }
 508                mask >>= 1;
 509        }
 510        /* rewrite system, inserting fake parameter rows */
 511        if (k > 0) {
 512                p = k;
 513                for (r = m-1; r >= 0; r--) {
 514                        if ((r > m-1-k) && rows[r])
 515                                /* system has no solution */
 516                                return 0;
 517
 518                        rows[r] = (p && (r == param[p-1])) ?
 519                                p--, 1u << (m-r) : rows[r-p];
 520                }
 521        }
 522
 523        if (nsol != (1 << k))
 524                /* unexpected number of solutions */
 525                return 0;
 526
 527        for (p = 0; p < nsol; p++) {
 528                /* set parameters for p-th solution */
 529                for (c = 0; c < k; c++)
 530                        rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1);
 531
 532                /* compute unique solution */
 533                tmp = 0;
 534                for (r = m-1; r >= 0; r--) {
 535                        mask = rows[r] & (tmp|1);
 536                        tmp |= parity(mask) << (m-r);
 537                }
 538                sol[p] = tmp >> 1;
 539        }
 540        return nsol;
 541}
 542
 543/*
 544 * this function builds and solves a linear system for finding roots of a degree
 545 * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m).
 546 */
 547static int find_affine4_roots(struct bch_control *bch, unsigned int a,
 548                              unsigned int b, unsigned int c,
 549                              unsigned int *roots)
 550{
 551        int i, j, k;
 552        const int m = GF_M(bch);
 553        unsigned int mask = 0xff, t, rows[16] = {0,};
 554
 555        j = a_log(bch, b);
 556        k = a_log(bch, a);
 557        rows[0] = c;
 558
 559        /* buid linear system to solve X^4+aX^2+bX+c = 0 */
 560        for (i = 0; i < m; i++) {
 561                rows[i+1] = bch->a_pow_tab[4*i]^
 562                        (a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^
 563                        (b ? bch->a_pow_tab[mod_s(bch, j)] : 0);
 564                j++;
 565                k += 2;
 566        }
 567        /*
 568         * transpose 16x16 matrix before passing it to linear solver
 569         * warning: this code assumes m < 16
 570         */
 571        for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) {
 572                for (k = 0; k < 16; k = (k+j+1) & ~j) {
 573                        t = ((rows[k] >> j)^rows[k+j]) & mask;
 574                        rows[k] ^= (t << j);
 575                        rows[k+j] ^= t;
 576                }
 577        }
 578        return solve_linear_system(bch, rows, roots, 4);
 579}
 580
 581/*
 582 * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
 583 */
 584static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly,
 585                                unsigned int *roots)
 586{
 587        int n = 0;
 588
 589        if (poly->c[0])
 590                /* poly[X] = bX+c with c!=0, root=c/b */
 591                roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+
 592                                   bch->a_log_tab[poly->c[1]]);
 593        return n;
 594}
 595
 596/*
 597 * compute roots of a degree 2 polynomial over GF(2^m)
 598 */
 599static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly,
 600                                unsigned int *roots)
 601{
 602        int n = 0, i, l0, l1, l2;
 603        unsigned int u, v, r;
 604
 605        if (poly->c[0] && poly->c[1]) {
 606
 607                l0 = bch->a_log_tab[poly->c[0]];
 608                l1 = bch->a_log_tab[poly->c[1]];
 609                l2 = bch->a_log_tab[poly->c[2]];
 610
 611                /* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */
 612                u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1));
 613                /*
 614                 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi):
 615                 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) =
 616                 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u)
 617                 * i.e. r and r+1 are roots iff Tr(u)=0
 618                 */
 619                r = 0;
 620                v = u;
 621                while (v) {
 622                        i = deg(v);
 623                        r ^= bch->xi_tab[i];
 624                        v ^= (1 << i);
 625                }
 626                /* verify root */
 627                if ((gf_sqr(bch, r)^r) == u) {
 628                        /* reverse z=a/bX transformation and compute log(1/r) */
 629                        roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
 630                                            bch->a_log_tab[r]+l2);
 631                        roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
 632                                            bch->a_log_tab[r^1]+l2);
 633                }
 634        }
 635        return n;
 636}
 637
 638/*
 639 * compute roots of a degree 3 polynomial over GF(2^m)
 640 */
 641static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly,
 642                                unsigned int *roots)
 643{
 644        int i, n = 0;
 645        unsigned int a, b, c, a2, b2, c2, e3, tmp[4];
 646
 647        if (poly->c[0]) {
 648                /* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */
 649                e3 = poly->c[3];
 650                c2 = gf_div(bch, poly->c[0], e3);
 651                b2 = gf_div(bch, poly->c[1], e3);
 652                a2 = gf_div(bch, poly->c[2], e3);
 653
 654                /* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */
 655                c = gf_mul(bch, a2, c2);           /* c = a2c2      */
 656                b = gf_mul(bch, a2, b2)^c2;        /* b = a2b2 + c2 */
 657                a = gf_sqr(bch, a2)^b2;            /* a = a2^2 + b2 */
 658
 659                /* find the 4 roots of this affine polynomial */
 660                if (find_affine4_roots(bch, a, b, c, tmp) == 4) {
 661                        /* remove a2 from final list of roots */
 662                        for (i = 0; i < 4; i++) {
 663                                if (tmp[i] != a2)
 664                                        roots[n++] = a_ilog(bch, tmp[i]);
 665                        }
 666                }
 667        }
 668        return n;
 669}
 670
 671/*
 672 * compute roots of a degree 4 polynomial over GF(2^m)
 673 */
 674static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly,
 675                                unsigned int *roots)
 676{
 677        int i, l, n = 0;
 678        unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4;
 679
 680        if (poly->c[0] == 0)
 681                return 0;
 682
 683        /* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */
 684        e4 = poly->c[4];
 685        d = gf_div(bch, poly->c[0], e4);
 686        c = gf_div(bch, poly->c[1], e4);
 687        b = gf_div(bch, poly->c[2], e4);
 688        a = gf_div(bch, poly->c[3], e4);
 689
 690        /* use Y=1/X transformation to get an affine polynomial */
 691        if (a) {
 692                /* first, eliminate cX by using z=X+e with ae^2+c=0 */
 693                if (c) {
 694                        /* compute e such that e^2 = c/a */
 695                        f = gf_div(bch, c, a);
 696                        l = a_log(bch, f);
 697                        l += (l & 1) ? GF_N(bch) : 0;
 698                        e = a_pow(bch, l/2);
 699                        /*
 700                         * use transformation z=X+e:
 701                         * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d
 702                         * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d
 703                         * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d
 704                         * z^4 + az^3 +     b'z^2 + d'
 705                         */
 706                        d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d;
 707                        b = gf_mul(bch, a, e)^b;
 708                }
 709                /* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */
 710                if (d == 0)
 711                        /* assume all roots have multiplicity 1 */
 712                        return 0;
 713
 714                c2 = gf_inv(bch, d);
 715                b2 = gf_div(bch, a, d);
 716                a2 = gf_div(bch, b, d);
 717        } else {
 718                /* polynomial is already affine */
 719                c2 = d;
 720                b2 = c;
 721                a2 = b;
 722        }
 723        /* find the 4 roots of this affine polynomial */
 724        if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) {
 725                for (i = 0; i < 4; i++) {
 726                        /* post-process roots (reverse transformations) */
 727                        f = a ? gf_inv(bch, roots[i]) : roots[i];
 728                        roots[i] = a_ilog(bch, f^e);
 729                }
 730                n = 4;
 731        }
 732        return n;
 733}
 734
 735/*
 736 * build monic, log-based representation of a polynomial
 737 */
 738static void gf_poly_logrep(struct bch_control *bch,
 739                           const struct gf_poly *a, int *rep)
 740{
 741        int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]);
 742
 743        /* represent 0 values with -1; warning, rep[d] is not set to 1 */
 744        for (i = 0; i < d; i++)
 745                rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1;
 746}
 747
 748/*
 749 * compute polynomial Euclidean division remainder in GF(2^m)[X]
 750 */
 751static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a,
 752                        const struct gf_poly *b, int *rep)
 753{
 754        int la, p, m;
 755        unsigned int i, j, *c = a->c;
 756        const unsigned int d = b->deg;
 757
 758        if (a->deg < d)
 759                return;
 760
 761        /* reuse or compute log representation of denominator */
 762        if (!rep) {
 763                rep = bch->cache;
 764                gf_poly_logrep(bch, b, rep);
 765        }
 766
 767        for (j = a->deg; j >= d; j--) {
 768                if (c[j]) {
 769                        la = a_log(bch, c[j]);
 770                        p = j-d;
 771                        for (i = 0; i < d; i++, p++) {
 772                                m = rep[i];
 773                                if (m >= 0)
 774                                        c[p] ^= bch->a_pow_tab[mod_s(bch,
 775                                                                     m+la)];
 776                        }
 777                }
 778        }
 779        a->deg = d-1;
 780        while (!c[a->deg] && a->deg)
 781                a->deg--;
 782}
 783
 784/*
 785 * compute polynomial Euclidean division quotient in GF(2^m)[X]
 786 */
 787static void gf_poly_div(struct bch_control *bch, struct gf_poly *a,
 788                        const struct gf_poly *b, struct gf_poly *q)
 789{
 790        if (a->deg >= b->deg) {
 791                q->deg = a->deg-b->deg;
 792                /* compute a mod b (modifies a) */
 793                gf_poly_mod(bch, a, b, NULL);
 794                /* quotient is stored in upper part of polynomial a */
 795                memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int));
 796        } else {
 797                q->deg = 0;
 798                q->c[0] = 0;
 799        }
 800}
 801
 802/*
 803 * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
 804 */
 805static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a,
 806                                   struct gf_poly *b)
 807{
 808        struct gf_poly *tmp;
 809
 810        dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b));
 811
 812        if (a->deg < b->deg) {
 813                tmp = b;
 814                b = a;
 815                a = tmp;
 816        }
 817
 818        while (b->deg > 0) {
 819                gf_poly_mod(bch, a, b, NULL);
 820                tmp = b;
 821                b = a;
 822                a = tmp;
 823        }
 824
 825        dbg("%s\n", gf_poly_str(a));
 826
 827        return a;
 828}
 829
 830/*
 831 * Given a polynomial f and an integer k, compute Tr(a^kX) mod f
 832 * This is used in Berlekamp Trace algorithm for splitting polynomials
 833 */
 834static void compute_trace_bk_mod(struct bch_control *bch, int k,
 835                                 const struct gf_poly *f, struct gf_poly *z,
 836                                 struct gf_poly *out)
 837{
 838        const int m = GF_M(bch);
 839        int i, j;
 840
 841        /* z contains z^2j mod f */
 842        z->deg = 1;
 843        z->c[0] = 0;
 844        z->c[1] = bch->a_pow_tab[k];
 845
 846        out->deg = 0;
 847        memset(out, 0, GF_POLY_SZ(f->deg));
 848
 849        /* compute f log representation only once */
 850        gf_poly_logrep(bch, f, bch->cache);
 851
 852        for (i = 0; i < m; i++) {
 853                /* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */
 854                for (j = z->deg; j >= 0; j--) {
 855                        out->c[j] ^= z->c[j];
 856                        z->c[2*j] = gf_sqr(bch, z->c[j]);
 857                        z->c[2*j+1] = 0;
 858                }
 859                if (z->deg > out->deg)
 860                        out->deg = z->deg;
 861
 862                if (i < m-1) {
 863                        z->deg *= 2;
 864                        /* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */
 865                        gf_poly_mod(bch, z, f, bch->cache);
 866                }
 867        }
 868        while (!out->c[out->deg] && out->deg)
 869                out->deg--;
 870
 871        dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out));
 872}
 873
 874/*
 875 * factor a polynomial using Berlekamp Trace algorithm (BTA)
 876 */
 877static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f,
 878                              struct gf_poly **g, struct gf_poly **h)
 879{
 880        struct gf_poly *f2 = bch->poly_2t[0];
 881        struct gf_poly *q  = bch->poly_2t[1];
 882        struct gf_poly *tk = bch->poly_2t[2];
 883        struct gf_poly *z  = bch->poly_2t[3];
 884        struct gf_poly *gcd;
 885
 886        dbg("factoring %s...\n", gf_poly_str(f));
 887
 888        *g = f;
 889        *h = NULL;
 890
 891        /* tk = Tr(a^k.X) mod f */
 892        compute_trace_bk_mod(bch, k, f, z, tk);
 893
 894        if (tk->deg > 0) {
 895                /* compute g = gcd(f, tk) (destructive operation) */
 896                gf_poly_copy(f2, f);
 897                gcd = gf_poly_gcd(bch, f2, tk);
 898                if (gcd->deg < f->deg) {
 899                        /* compute h=f/gcd(f,tk); this will modify f and q */
 900                        gf_poly_div(bch, f, gcd, q);
 901                        /* store g and h in-place (clobbering f) */
 902                        *h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly;
 903                        gf_poly_copy(*g, gcd);
 904                        gf_poly_copy(*h, q);
 905                }
 906        }
 907}
 908
 909/*
 910 * find roots of a polynomial, using BTZ algorithm; see the beginning of this
 911 * file for details
 912 */
 913static int find_poly_roots(struct bch_control *bch, unsigned int k,
 914                           struct gf_poly *poly, unsigned int *roots)
 915{
 916        int cnt;
 917        struct gf_poly *f1, *f2;
 918
 919        switch (poly->deg) {
 920                /* handle low degree polynomials with ad hoc techniques */
 921        case 1:
 922                cnt = find_poly_deg1_roots(bch, poly, roots);
 923                break;
 924        case 2:
 925                cnt = find_poly_deg2_roots(bch, poly, roots);
 926                break;
 927        case 3:
 928                cnt = find_poly_deg3_roots(bch, poly, roots);
 929                break;
 930        case 4:
 931                cnt = find_poly_deg4_roots(bch, poly, roots);
 932                break;
 933        default:
 934                /* factor polynomial using Berlekamp Trace Algorithm (BTA) */
 935                cnt = 0;
 936                if (poly->deg && (k <= GF_M(bch))) {
 937                        factor_polynomial(bch, k, poly, &f1, &f2);
 938                        if (f1)
 939                                cnt += find_poly_roots(bch, k+1, f1, roots);
 940                        if (f2)
 941                                cnt += find_poly_roots(bch, k+1, f2, roots+cnt);
 942                }
 943                break;
 944        }
 945        return cnt;
 946}
 947
 948#if defined(USE_CHIEN_SEARCH)
 949/*
 950 * exhaustive root search (Chien) implementation - not used, included only for
 951 * reference/comparison tests
 952 */
 953static int chien_search(struct bch_control *bch, unsigned int len,
 954                        struct gf_poly *p, unsigned int *roots)
 955{
 956        int m;
 957        unsigned int i, j, syn, syn0, count = 0;
 958        const unsigned int k = 8*len+bch->ecc_bits;
 959
 960        /* use a log-based representation of polynomial */
 961        gf_poly_logrep(bch, p, bch->cache);
 962        bch->cache[p->deg] = 0;
 963        syn0 = gf_div(bch, p->c[0], p->c[p->deg]);
 964
 965        for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) {
 966                /* compute elp(a^i) */
 967                for (j = 1, syn = syn0; j <= p->deg; j++) {
 968                        m = bch->cache[j];
 969                        if (m >= 0)
 970                                syn ^= a_pow(bch, m+j*i);
 971                }
 972                if (syn == 0) {
 973                        roots[count++] = GF_N(bch)-i;
 974                        if (count == p->deg)
 975                                break;
 976                }
 977        }
 978        return (count == p->deg) ? count : 0;
 979}
 980#define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
 981#endif /* USE_CHIEN_SEARCH */
 982
 983/**
 984 * decode_bch - decode received codeword and find bit error locations
 985 * @bch:      BCH control structure
 986 * @data:     received data, ignored if @calc_ecc is provided
 987 * @len:      data length in bytes, must always be provided
 988 * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc
 989 * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data
 990 * @syn:      hw computed syndrome data (if NULL, syndrome is calculated)
 991 * @errloc:   output array of error locations
 992 *
 993 * Returns:
 994 *  The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if
 995 *  invalid parameters were provided
 996 *
 997 * Depending on the available hw BCH support and the need to compute @calc_ecc
 998 * separately (using encode_bch()), this function should be called with one of
 999 * the following parameter configurations -
1000 *
1001 * by providing @data and @recv_ecc only:
1002 *   decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc)
1003 *
1004 * by providing @recv_ecc and @calc_ecc:
1005 *   decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc)
1006 *
1007 * by providing ecc = recv_ecc XOR calc_ecc:
1008 *   decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc)
1009 *
1010 * by providing syndrome results @syn:
1011 *   decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc)
1012 *
1013 * Once decode_bch() has successfully returned with a positive value, error
1014 * locations returned in array @errloc should be interpreted as follows -
1015 *
1016 * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for
1017 * data correction)
1018 *
1019 * if (errloc[n] < 8*len), then n-th error is located in data and can be
1020 * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8);
1021 *
1022 * Note that this function does not perform any data correction by itself, it
1023 * merely indicates error locations.
1024 */
1025int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len,
1026               const uint8_t *recv_ecc, const uint8_t *calc_ecc,
1027               const unsigned int *syn, unsigned int *errloc)
1028{
1029        const unsigned int ecc_words = BCH_ECC_WORDS(bch);
1030        unsigned int nbits;
1031        int i, err, nroots;
1032        uint32_t sum;
1033
1034        /* sanity check: make sure data length can be handled */
1035        if (8*len > (bch->n-bch->ecc_bits))
1036                return -EINVAL;
1037
1038        /* if caller does not provide syndromes, compute them */
1039        if (!syn) {
1040                if (!calc_ecc) {
1041                        /* compute received data ecc into an internal buffer */
1042                        if (!data || !recv_ecc)
1043                                return -EINVAL;
1044                        encode_bch(bch, data, len, NULL);
1045                } else {
1046                        /* load provided calculated ecc */
1047                        load_ecc8(bch, bch->ecc_buf, calc_ecc);
1048                }
1049                /* load received ecc or assume it was XORed in calc_ecc */
1050                if (recv_ecc) {
1051                        load_ecc8(bch, bch->ecc_buf2, recv_ecc);
1052                        /* XOR received and calculated ecc */
1053                        for (i = 0, sum = 0; i < (int)ecc_words; i++) {
1054                                bch->ecc_buf[i] ^= bch->ecc_buf2[i];
1055                                sum |= bch->ecc_buf[i];
1056                        }
1057                        if (!sum)
1058                                /* no error found */
1059                                return 0;
1060                }
1061                compute_syndromes(bch, bch->ecc_buf, bch->syn);
1062                syn = bch->syn;
1063        }
1064
1065        err = compute_error_locator_polynomial(bch, syn);
1066        if (err > 0) {
1067                nroots = find_poly_roots(bch, 1, bch->elp, errloc);
1068                if (err != nroots)
1069                        err = -1;
1070        }
1071        if (err > 0) {
1072                /* post-process raw error locations for easier correction */
1073                nbits = (len*8)+bch->ecc_bits;
1074                for (i = 0; i < err; i++) {
1075                        if (errloc[i] >= nbits) {
1076                                err = -1;
1077                                break;
1078                        }
1079                        errloc[i] = nbits-1-errloc[i];
1080                        errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7));
1081                }
1082        }
1083        return (err >= 0) ? err : -EBADMSG;
1084}
1085
1086/*
1087 * generate Galois field lookup tables
1088 */
1089static int build_gf_tables(struct bch_control *bch, unsigned int poly)
1090{
1091        unsigned int i, x = 1;
1092        const unsigned int k = 1 << deg(poly);
1093
1094        /* primitive polynomial must be of degree m */
1095        if (k != (1u << GF_M(bch)))
1096                return -1;
1097
1098        for (i = 0; i < GF_N(bch); i++) {
1099                bch->a_pow_tab[i] = x;
1100                bch->a_log_tab[x] = i;
1101                if (i && (x == 1))
1102                        /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1103                        return -1;
1104                x <<= 1;
1105                if (x & k)
1106                        x ^= poly;
1107        }
1108        bch->a_pow_tab[GF_N(bch)] = 1;
1109        bch->a_log_tab[0] = 0;
1110
1111        return 0;
1112}
1113
1114/*
1115 * compute generator polynomial remainder tables for fast encoding
1116 */
1117static void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
1118{
1119        int i, j, b, d;
1120        uint32_t data, hi, lo, *tab;
1121        const int l = BCH_ECC_WORDS(bch);
1122        const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
1123        const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
1124
1125        memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
1126
1127        for (i = 0; i < 256; i++) {
1128                /* p(X)=i is a small polynomial of weight <= 8 */
1129                for (b = 0; b < 4; b++) {
1130                        /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
1131                        tab = bch->mod8_tab + (b*256+i)*l;
1132                        data = i << (8*b);
1133                        while (data) {
1134                                d = deg(data);
1135                                /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
1136                                data ^= g[0] >> (31-d);
1137                                for (j = 0; j < ecclen; j++) {
1138                                        hi = (d < 31) ? g[j] << (d+1) : 0;
1139                                        lo = (j+1 < plen) ?
1140                                                g[j+1] >> (31-d) : 0;
1141                                        tab[j] ^= hi|lo;
1142                                }
1143                        }
1144                }
1145        }
1146}
1147
1148/*
1149 * build a base for factoring degree 2 polynomials
1150 */
1151static int build_deg2_base(struct bch_control *bch)
1152{
1153        const int m = GF_M(bch);
1154        int i, j, r;
1155        unsigned int sum, x, y, remaining, ak = 0, xi[m];
1156
1157        /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
1158        for (i = 0; i < m; i++) {
1159                for (j = 0, sum = 0; j < m; j++)
1160                        sum ^= a_pow(bch, i*(1 << j));
1161
1162                if (sum) {
1163                        ak = bch->a_pow_tab[i];
1164                        break;
1165                }
1166        }
1167        /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
1168        remaining = m;
1169        memset(xi, 0, sizeof(xi));
1170
1171        for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
1172                y = gf_sqr(bch, x)^x;
1173                for (i = 0; i < 2; i++) {
1174                        r = a_log(bch, y);
1175                        if (y && (r < m) && !xi[r]) {
1176                                bch->xi_tab[r] = x;
1177                                xi[r] = 1;
1178                                remaining--;
1179                                dbg("x%d = %x\n", r, x);
1180                                break;
1181                        }
1182                        y ^= ak;
1183                }
1184        }
1185        /* should not happen but check anyway */
1186        return remaining ? -1 : 0;
1187}
1188
1189static void *bch_alloc(size_t size, int *err)
1190{
1191        void *ptr;
1192
1193        ptr = kmalloc(size, GFP_KERNEL);
1194        if (ptr == NULL)
1195                *err = 1;
1196        return ptr;
1197}
1198
1199/*
1200 * compute generator polynomial for given (m,t) parameters.
1201 */
1202static uint32_t *compute_generator_polynomial(struct bch_control *bch)
1203{
1204        const unsigned int m = GF_M(bch);
1205        const unsigned int t = GF_T(bch);
1206        int n, err = 0;
1207        unsigned int i, j, nbits, r, word, *roots;
1208        struct gf_poly *g;
1209        uint32_t *genpoly;
1210
1211        g = bch_alloc(GF_POLY_SZ(m*t), &err);
1212        roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
1213        genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
1214
1215        if (err) {
1216                kfree(genpoly);
1217                genpoly = NULL;
1218                goto finish;
1219        }
1220
1221        /* enumerate all roots of g(X) */
1222        memset(roots , 0, (bch->n+1)*sizeof(*roots));
1223        for (i = 0; i < t; i++) {
1224                for (j = 0, r = 2*i+1; j < m; j++) {
1225                        roots[r] = 1;
1226                        r = mod_s(bch, 2*r);
1227                }
1228        }
1229        /* build generator polynomial g(X) */
1230        g->deg = 0;
1231        g->c[0] = 1;
1232        for (i = 0; i < GF_N(bch); i++) {
1233                if (roots[i]) {
1234                        /* multiply g(X) by (X+root) */
1235                        r = bch->a_pow_tab[i];
1236                        g->c[g->deg+1] = 1;
1237                        for (j = g->deg; j > 0; j--)
1238                                g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
1239
1240                        g->c[0] = gf_mul(bch, g->c[0], r);
1241                        g->deg++;
1242                }
1243        }
1244        /* store left-justified binary representation of g(X) */
1245        n = g->deg+1;
1246        i = 0;
1247
1248        while (n > 0) {
1249                nbits = (n > 32) ? 32 : n;
1250                for (j = 0, word = 0; j < nbits; j++) {
1251                        if (g->c[n-1-j])
1252                                word |= 1u << (31-j);
1253                }
1254                genpoly[i++] = word;
1255                n -= nbits;
1256        }
1257        bch->ecc_bits = g->deg;
1258
1259finish:
1260        kfree(g);
1261        kfree(roots);
1262
1263        return genpoly;
1264}
1265
1266/**
1267 * init_bch - initialize a BCH encoder/decoder
1268 * @m:          Galois field order, should be in the range 5-15
1269 * @t:          maximum error correction capability, in bits
1270 * @prim_poly:  user-provided primitive polynomial (or 0 to use default)
1271 *
1272 * Returns:
1273 *  a newly allocated BCH control structure if successful, NULL otherwise
1274 *
1275 * This initialization can take some time, as lookup tables are built for fast
1276 * encoding/decoding; make sure not to call this function from a time critical
1277 * path. Usually, init_bch() should be called on module/driver init and
1278 * free_bch() should be called to release memory on exit.
1279 *
1280 * You may provide your own primitive polynomial of degree @m in argument
1281 * @prim_poly, or let init_bch() use its default polynomial.
1282 *
1283 * Once init_bch() has successfully returned a pointer to a newly allocated
1284 * BCH control structure, ecc length in bytes is given by member @ecc_bytes of
1285 * the structure.
1286 */
1287struct bch_control *init_bch(int m, int t, unsigned int prim_poly)
1288{
1289        int err = 0;
1290        unsigned int i, words;
1291        uint32_t *genpoly;
1292        struct bch_control *bch = NULL;
1293
1294        const int min_m = 5;
1295        const int max_m = 15;
1296
1297        /* default primitive polynomials */
1298        static const unsigned int prim_poly_tab[] = {
1299                0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
1300                0x402b, 0x8003,
1301        };
1302
1303#if defined(CONFIG_BCH_CONST_PARAMS)
1304        if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
1305                printk(KERN_ERR "bch encoder/decoder was configured to support "
1306                       "parameters m=%d, t=%d only!\n",
1307                       CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
1308                goto fail;
1309        }
1310#endif
1311        if ((m < min_m) || (m > max_m))
1312                /*
1313                 * values of m greater than 15 are not currently supported;
1314                 * supporting m > 15 would require changing table base type
1315                 * (uint16_t) and a small patch in matrix transposition
1316                 */
1317                goto fail;
1318
1319        /* sanity checks */
1320        if ((t < 1) || (m*t >= ((1 << m)-1)))
1321                /* invalid t value */
1322                goto fail;
1323
1324        /* select a primitive polynomial for generating GF(2^m) */
1325        if (prim_poly == 0)
1326                prim_poly = prim_poly_tab[m-min_m];
1327
1328        bch = kzalloc(sizeof(*bch), GFP_KERNEL);
1329        if (bch == NULL)
1330                goto fail;
1331
1332        bch->m = m;
1333        bch->t = t;
1334        bch->n = (1 << m)-1;
1335        words  = DIV_ROUND_UP(m*t, 32);
1336        bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
1337        bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
1338        bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
1339        bch->mod8_tab  = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
1340        bch->ecc_buf   = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
1341        bch->ecc_buf2  = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
1342        bch->xi_tab    = bch_alloc(m*sizeof(*bch->xi_tab), &err);
1343        bch->syn       = bch_alloc(2*t*sizeof(*bch->syn), &err);
1344        bch->cache     = bch_alloc(2*t*sizeof(*bch->cache), &err);
1345        bch->elp       = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
1346
1347        for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1348                bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
1349
1350        if (err)
1351                goto fail;
1352
1353        err = build_gf_tables(bch, prim_poly);
1354        if (err)
1355                goto fail;
1356
1357        /* use generator polynomial for computing encoding tables */
1358        genpoly = compute_generator_polynomial(bch);
1359        if (genpoly == NULL)
1360                goto fail;
1361
1362        build_mod8_tables(bch, genpoly);
1363        kfree(genpoly);
1364
1365        err = build_deg2_base(bch);
1366        if (err)
1367                goto fail;
1368
1369        return bch;
1370
1371fail:
1372        free_bch(bch);
1373        return NULL;
1374}
1375
1376/**
1377 *  free_bch - free the BCH control structure
1378 *  @bch:    BCH control structure to release
1379 */
1380void free_bch(struct bch_control *bch)
1381{
1382        unsigned int i;
1383
1384        if (bch) {
1385                kfree(bch->a_pow_tab);
1386                kfree(bch->a_log_tab);
1387                kfree(bch->mod8_tab);
1388                kfree(bch->ecc_buf);
1389                kfree(bch->ecc_buf2);
1390                kfree(bch->xi_tab);
1391                kfree(bch->syn);
1392                kfree(bch->cache);
1393                kfree(bch->elp);
1394
1395                for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1396                        kfree(bch->poly_2t[i]);
1397
1398                kfree(bch);
1399        }
1400}
1401