uboot/arch/arm/mach-keystone/clock.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Keystone2: pll initialization
   4 *
   5 * (C) Copyright 2012-2014
   6 *     Texas Instruments Incorporated, <www.ti.com>
   7 */
   8
   9#include <common.h>
  10#include <asm/arch/clock.h>
  11#include <asm/arch/clock_defs.h>
  12
  13/* DEV and ARM speed definitions as specified in DEVSPEED register */
  14int __weak speeds[DEVSPEED_NUMSPDS] = {
  15        SPD1000,
  16        SPD1200,
  17        SPD1350,
  18        SPD1400,
  19        SPD1500,
  20        SPD1400,
  21        SPD1350,
  22        SPD1200,
  23        SPD1000,
  24        SPD800,
  25};
  26
  27const struct keystone_pll_regs keystone_pll_regs[] = {
  28        [CORE_PLL]      = {KS2_MAINPLLCTL0, KS2_MAINPLLCTL1},
  29        [PASS_PLL]      = {KS2_PASSPLLCTL0, KS2_PASSPLLCTL1},
  30        [TETRIS_PLL]    = {KS2_ARMPLLCTL0, KS2_ARMPLLCTL1},
  31        [DDR3A_PLL]     = {KS2_DDR3APLLCTL0, KS2_DDR3APLLCTL1},
  32        [DDR3B_PLL]     = {KS2_DDR3BPLLCTL0, KS2_DDR3BPLLCTL1},
  33        [UART_PLL]      = {KS2_UARTPLLCTL0, KS2_UARTPLLCTL1},
  34};
  35
  36inline void pll_pa_clk_sel(void)
  37{
  38        setbits_le32(keystone_pll_regs[PASS_PLL].reg1, CFG_PLLCTL1_PAPLL_MASK);
  39}
  40
  41static void wait_for_completion(const struct pll_init_data *data)
  42{
  43        int i;
  44        for (i = 0; i < 100; i++) {
  45                sdelay(450);
  46                if (!(pllctl_reg_read(data->pll, stat) & PLLSTAT_GOSTAT_MASK))
  47                        break;
  48        }
  49}
  50
  51static inline void bypass_main_pll(const struct pll_init_data *data)
  52{
  53        pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLENSRC_MASK |
  54                           PLLCTL_PLLEN_MASK);
  55
  56        /* 4 cycles of reference clock CLKIN*/
  57        sdelay(340);
  58}
  59
  60static void configure_mult_div(const struct pll_init_data *data)
  61{
  62        u32 pllm, plld, bwadj;
  63
  64        pllm = data->pll_m - 1;
  65        plld = (data->pll_d - 1) & CFG_PLLCTL0_PLLD_MASK;
  66
  67        /* Program Multiplier */
  68        if (data->pll == MAIN_PLL)
  69                pllctl_reg_write(data->pll, mult, pllm & PLLM_MULT_LO_MASK);
  70
  71        clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
  72                        CFG_PLLCTL0_PLLM_MASK,
  73                        pllm << CFG_PLLCTL0_PLLM_SHIFT);
  74
  75        /* Program BWADJ */
  76        bwadj = (data->pll_m - 1) >> 1; /* Divide pllm by 2 */
  77        clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
  78                        CFG_PLLCTL0_BWADJ_MASK,
  79                        (bwadj << CFG_PLLCTL0_BWADJ_SHIFT) &
  80                        CFG_PLLCTL0_BWADJ_MASK);
  81        bwadj = bwadj >> CFG_PLLCTL0_BWADJ_BITS;
  82        clrsetbits_le32(keystone_pll_regs[data->pll].reg1,
  83                        CFG_PLLCTL1_BWADJ_MASK, bwadj);
  84
  85        /* Program Divider */
  86        clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
  87                        CFG_PLLCTL0_PLLD_MASK, plld);
  88}
  89
  90void configure_main_pll(const struct pll_init_data *data)
  91{
  92        u32 tmp, pllod, i, alnctl_val = 0;
  93        u32 *offset;
  94
  95        pllod = data->pll_od - 1;
  96
  97        /* 100 micro sec for stabilization */
  98        sdelay(210000);
  99
 100        tmp = pllctl_reg_read(data->pll, secctl);
 101
 102        /* Check for Bypass */
 103        if (tmp & SECCTL_BYPASS_MASK) {
 104                setbits_le32(keystone_pll_regs[data->pll].reg1,
 105                             CFG_PLLCTL1_ENSAT_MASK);
 106
 107                bypass_main_pll(data);
 108
 109                /* Powerdown and powerup Main Pll */
 110                pllctl_reg_setbits(data->pll, secctl, SECCTL_BYPASS_MASK);
 111                pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLPWRDN_MASK);
 112                /* 5 micro sec */
 113                sdelay(21000);
 114
 115                pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLPWRDN_MASK);
 116        } else {
 117                bypass_main_pll(data);
 118        }
 119
 120        configure_mult_div(data);
 121
 122        /* Program Output Divider */
 123        pllctl_reg_rmw(data->pll, secctl, SECCTL_OP_DIV_MASK,
 124                       ((pllod << SECCTL_OP_DIV_SHIFT) & SECCTL_OP_DIV_MASK));
 125
 126        /* Program PLLDIVn */
 127        wait_for_completion(data);
 128        for (i = 0; i < PLLDIV_MAX; i++) {
 129                if (i < 3)
 130                        offset = pllctl_reg(data->pll, div1) + i;
 131                else
 132                        offset = pllctl_reg(data->pll, div4) + (i - 3);
 133
 134                if (divn_val[i] != -1) {
 135                        __raw_writel(divn_val[i] | PLLDIV_ENABLE_MASK, offset);
 136                        alnctl_val |= BIT(i);
 137                }
 138        }
 139
 140        if (alnctl_val) {
 141                pllctl_reg_setbits(data->pll, alnctl, alnctl_val);
 142                /*
 143                 * Set GOSET bit in PLLCMD to initiate the GO operation
 144                 * to change the divide
 145                 */
 146                pllctl_reg_setbits(data->pll, cmd, PLLSTAT_GOSTAT_MASK);
 147                wait_for_completion(data);
 148        }
 149
 150        /* Reset PLL */
 151        pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLRST_MASK);
 152        sdelay(21000);  /* Wait for a minimum of 7 us*/
 153        pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLRST_MASK);
 154        sdelay(105000); /* Wait for PLL Lock time (min 50 us) */
 155
 156        /* Enable PLL */
 157        pllctl_reg_clrbits(data->pll, secctl, SECCTL_BYPASS_MASK);
 158        pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLEN_MASK);
 159}
 160
 161void configure_secondary_pll(const struct pll_init_data *data)
 162{
 163        int pllod = data->pll_od - 1;
 164
 165        /* Enable Glitch free bypass for ARM PLL */
 166        if (cpu_is_k2hk() && data->pll == TETRIS_PLL)
 167                clrbits_le32(KS2_MISC_CTRL, MISC_CTL1_ARM_PLL_EN);
 168
 169        /* Enable Bypass mode */
 170        setbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_ENSAT_MASK);
 171        setbits_le32(keystone_pll_regs[data->pll].reg0,
 172                     CFG_PLLCTL0_BYPASS_MASK);
 173
 174        configure_mult_div(data);
 175
 176        /* Program Output Divider */
 177        clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
 178                        CFG_PLLCTL0_CLKOD_MASK,
 179                        (pllod << CFG_PLLCTL0_CLKOD_SHIFT) &
 180                        CFG_PLLCTL0_CLKOD_MASK);
 181
 182        /* Reset PLL */
 183        setbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_RST_MASK);
 184        /* Wait for 5 micro seconds */
 185        sdelay(21000);
 186
 187        /* Select the Output of PASS PLL as input to PASS */
 188        if (data->pll == PASS_PLL && cpu_is_k2hk())
 189                pll_pa_clk_sel();
 190
 191        clrbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_RST_MASK);
 192        /* Wait for 500 * REFCLK cucles * (PLLD + 1) */
 193        sdelay(105000);
 194
 195        /* Switch to PLL mode */
 196        clrbits_le32(keystone_pll_regs[data->pll].reg0,
 197                     CFG_PLLCTL0_BYPASS_MASK);
 198
 199        /* Select the Output of ARM PLL as input to ARM */
 200        if (cpu_is_k2hk() && data->pll == TETRIS_PLL)
 201                setbits_le32(KS2_MISC_CTRL, MISC_CTL1_ARM_PLL_EN);
 202}
 203
 204void init_pll(const struct pll_init_data *data)
 205{
 206        if (data->pll == MAIN_PLL)
 207                configure_main_pll(data);
 208        else
 209                configure_secondary_pll(data);
 210
 211        /*
 212         * This is required to provide a delay between multiple
 213         * consequent PPL configurations
 214         */
 215        sdelay(210000);
 216}
 217
 218void init_plls(void)
 219{
 220        struct pll_init_data *data;
 221        int pll;
 222
 223        for (pll = MAIN_PLL; pll < MAX_PLL_COUNT; pll++) {
 224                data = get_pll_init_data(pll);
 225                if (data)
 226                        init_pll(data);
 227        }
 228}
 229
 230static int get_max_speed(u32 val, u32 speed_supported, int *spds)
 231{
 232        int speed;
 233
 234        /* Left most setbit gives the speed */
 235        for (speed = DEVSPEED_NUMSPDS; speed >= 0; speed--) {
 236                if ((val & BIT(speed)) & speed_supported)
 237                        return spds[speed];
 238        }
 239
 240        /* If no bit is set, return minimum speed */
 241        if (cpu_is_k2g())
 242                return SPD200;
 243        else
 244                return SPD800;
 245}
 246
 247static inline u32 read_efuse_bootrom(void)
 248{
 249        if (cpu_is_k2hk() && (cpu_revision() <= 1))
 250                return __raw_readl(KS2_REV1_DEVSPEED);
 251        else
 252                return __raw_readl(KS2_EFUSE_BOOTROM);
 253}
 254
 255int get_max_arm_speed(int *spds)
 256{
 257        u32 armspeed = read_efuse_bootrom();
 258
 259        armspeed = (armspeed & DEVSPEED_ARMSPEED_MASK) >>
 260                    DEVSPEED_ARMSPEED_SHIFT;
 261
 262        return get_max_speed(armspeed, ARM_SUPPORTED_SPEEDS, spds);
 263}
 264
 265int get_max_dev_speed(int *spds)
 266{
 267        u32 devspeed = read_efuse_bootrom();
 268
 269        devspeed = (devspeed & DEVSPEED_DEVSPEED_MASK) >>
 270                    DEVSPEED_DEVSPEED_SHIFT;
 271
 272        return get_max_speed(devspeed, DEV_SUPPORTED_SPEEDS, spds);
 273}
 274
 275/**
 276 * pll_freq_get - get pll frequency
 277 * @pll:        pll identifier
 278 */
 279static unsigned long pll_freq_get(int pll)
 280{
 281        unsigned long mult = 1, prediv = 1, output_div = 2;
 282        unsigned long ret;
 283        u32 tmp, reg;
 284
 285        if (pll == MAIN_PLL) {
 286                ret = get_external_clk(sys_clk);
 287                if (pllctl_reg_read(pll, ctl) & PLLCTL_PLLEN_MASK) {
 288                        /* PLL mode */
 289                        tmp = __raw_readl(KS2_MAINPLLCTL0);
 290                        prediv = (tmp & CFG_PLLCTL0_PLLD_MASK) + 1;
 291                        mult = ((tmp & CFG_PLLCTL0_PLLM_HI_MASK) >>
 292                                CFG_PLLCTL0_PLLM_SHIFT |
 293                                (pllctl_reg_read(pll, mult) &
 294                                 PLLM_MULT_LO_MASK)) + 1;
 295                        output_div = ((pllctl_reg_read(pll, secctl) &
 296                                       SECCTL_OP_DIV_MASK) >>
 297                                       SECCTL_OP_DIV_SHIFT) + 1;
 298
 299                        ret = ret / prediv / output_div * mult;
 300                }
 301        } else {
 302                switch (pll) {
 303                case PASS_PLL:
 304                        ret = get_external_clk(pa_clk);
 305                        reg = KS2_PASSPLLCTL0;
 306                        break;
 307                case TETRIS_PLL:
 308                        ret = get_external_clk(tetris_clk);
 309                        reg = KS2_ARMPLLCTL0;
 310                        break;
 311                case DDR3A_PLL:
 312                        ret = get_external_clk(ddr3a_clk);
 313                        reg = KS2_DDR3APLLCTL0;
 314                        break;
 315                case DDR3B_PLL:
 316                        ret = get_external_clk(ddr3b_clk);
 317                        reg = KS2_DDR3BPLLCTL0;
 318                        break;
 319                case UART_PLL:
 320                        ret = get_external_clk(uart_clk);
 321                        reg = KS2_UARTPLLCTL0;
 322                        break;
 323                default:
 324                        return 0;
 325                }
 326
 327                tmp = __raw_readl(reg);
 328
 329                if (!(tmp & CFG_PLLCTL0_BYPASS_MASK)) {
 330                        /* Bypass disabled */
 331                        prediv = (tmp & CFG_PLLCTL0_PLLD_MASK) + 1;
 332                        mult = ((tmp & CFG_PLLCTL0_PLLM_MASK) >>
 333                                CFG_PLLCTL0_PLLM_SHIFT) + 1;
 334                        output_div = ((tmp & CFG_PLLCTL0_CLKOD_MASK) >>
 335                                      CFG_PLLCTL0_CLKOD_SHIFT) + 1;
 336                        ret = ((ret / prediv) * mult) / output_div;
 337                }
 338        }
 339
 340        return ret;
 341}
 342
 343unsigned long ks_clk_get_rate(unsigned int clk)
 344{
 345        unsigned long freq = 0;
 346
 347        switch (clk) {
 348        case core_pll_clk:
 349                freq = pll_freq_get(CORE_PLL);
 350                break;
 351        case pass_pll_clk:
 352                freq = pll_freq_get(PASS_PLL);
 353                break;
 354        case tetris_pll_clk:
 355                if (!cpu_is_k2e())
 356                        freq = pll_freq_get(TETRIS_PLL);
 357                break;
 358        case ddr3a_pll_clk:
 359                freq = pll_freq_get(DDR3A_PLL);
 360                break;
 361        case ddr3b_pll_clk:
 362                if (cpu_is_k2hk())
 363                        freq = pll_freq_get(DDR3B_PLL);
 364                break;
 365        case uart_pll_clk:
 366                if (cpu_is_k2g())
 367                        freq = pll_freq_get(UART_PLL);
 368                break;
 369        case sys_clk0_1_clk:
 370        case sys_clk0_clk:
 371                freq = pll_freq_get(CORE_PLL) / pll0div_read(1);
 372                break;
 373        case sys_clk1_clk:
 374        return pll_freq_get(CORE_PLL) / pll0div_read(2);
 375                break;
 376        case sys_clk2_clk:
 377                freq = pll_freq_get(CORE_PLL) / pll0div_read(3);
 378                break;
 379        case sys_clk3_clk:
 380                freq = pll_freq_get(CORE_PLL) / pll0div_read(4);
 381                break;
 382        case sys_clk0_2_clk:
 383                freq = ks_clk_get_rate(sys_clk0_clk) / 2;
 384                break;
 385        case sys_clk0_3_clk:
 386                freq = ks_clk_get_rate(sys_clk0_clk) / 3;
 387                break;
 388        case sys_clk0_4_clk:
 389                freq = ks_clk_get_rate(sys_clk0_clk) / 4;
 390                break;
 391        case sys_clk0_6_clk:
 392                freq = ks_clk_get_rate(sys_clk0_clk) / 6;
 393                break;
 394        case sys_clk0_8_clk:
 395                freq = ks_clk_get_rate(sys_clk0_clk) / 8;
 396                break;
 397        case sys_clk0_12_clk:
 398                freq = ks_clk_get_rate(sys_clk0_clk) / 12;
 399                break;
 400        case sys_clk0_24_clk:
 401                freq = ks_clk_get_rate(sys_clk0_clk) / 24;
 402                break;
 403        case sys_clk1_3_clk:
 404                freq = ks_clk_get_rate(sys_clk1_clk) / 3;
 405                break;
 406        case sys_clk1_4_clk:
 407                freq = ks_clk_get_rate(sys_clk1_clk) / 4;
 408                break;
 409        case sys_clk1_6_clk:
 410                freq = ks_clk_get_rate(sys_clk1_clk) / 6;
 411                break;
 412        case sys_clk1_12_clk:
 413                freq = ks_clk_get_rate(sys_clk1_clk) / 12;
 414                break;
 415        default:
 416                break;
 417        }
 418
 419        return freq;
 420}
 421