uboot/arch/arm/mach-omap2/emif-common.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * EMIF programming
   4 *
   5 * (C) Copyright 2010
   6 * Texas Instruments, <www.ti.com>
   7 *
   8 * Aneesh V <aneesh@ti.com>
   9 */
  10
  11#include <common.h>
  12#include <asm/emif.h>
  13#include <asm/arch/clock.h>
  14#include <asm/arch/sys_proto.h>
  15#include <asm/omap_common.h>
  16#include <asm/omap_sec_common.h>
  17#include <asm/utils.h>
  18#include <linux/compiler.h>
  19#include <asm/ti-common/ti-edma3.h>
  20
  21static int emif1_enabled = -1, emif2_enabled = -1;
  22
  23void set_lpmode_selfrefresh(u32 base)
  24{
  25        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
  26        u32 reg;
  27
  28        reg = readl(&emif->emif_pwr_mgmt_ctrl);
  29        reg &= ~EMIF_REG_LP_MODE_MASK;
  30        reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
  31        reg &= ~EMIF_REG_SR_TIM_MASK;
  32        writel(reg, &emif->emif_pwr_mgmt_ctrl);
  33
  34        /* dummy read for the new SR_TIM to be loaded */
  35        readl(&emif->emif_pwr_mgmt_ctrl);
  36}
  37
  38void force_emif_self_refresh()
  39{
  40        set_lpmode_selfrefresh(EMIF1_BASE);
  41        if (!is_dra72x())
  42                set_lpmode_selfrefresh(EMIF2_BASE);
  43}
  44
  45inline u32 emif_num(u32 base)
  46{
  47        if (base == EMIF1_BASE)
  48                return 1;
  49        else if (base == EMIF2_BASE)
  50                return 2;
  51        else
  52                return 0;
  53}
  54
  55static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
  56{
  57        u32 mr;
  58        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
  59
  60        mr_addr |= cs << EMIF_REG_CS_SHIFT;
  61        writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
  62        if (omap_revision() == OMAP4430_ES2_0)
  63                mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
  64        else
  65                mr = readl(&emif->emif_lpddr2_mode_reg_data);
  66        debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
  67              cs, mr_addr, mr);
  68        if (((mr & 0x0000ff00) >>  8) == (mr & 0xff) &&
  69            ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
  70            ((mr & 0xff000000) >> 24) == (mr & 0xff))
  71                return mr & 0xff;
  72        else
  73                return mr;
  74}
  75
  76static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
  77{
  78        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
  79
  80        mr_addr |= cs << EMIF_REG_CS_SHIFT;
  81        writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
  82        writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
  83}
  84
  85void emif_reset_phy(u32 base)
  86{
  87        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
  88        u32 iodft;
  89
  90        iodft = readl(&emif->emif_iodft_tlgc);
  91        iodft |= EMIF_REG_RESET_PHY_MASK;
  92        writel(iodft, &emif->emif_iodft_tlgc);
  93}
  94
  95static void do_lpddr2_init(u32 base, u32 cs)
  96{
  97        u32 mr_addr;
  98        const struct lpddr2_mr_regs *mr_regs;
  99
 100        get_lpddr2_mr_regs(&mr_regs);
 101        /* Wait till device auto initialization is complete */
 102        while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
 103                ;
 104        set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
 105        /*
 106         * tZQINIT = 1 us
 107         * Enough loops assuming a maximum of 2GHz
 108         */
 109
 110        sdelay(2000);
 111
 112        set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
 113        set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
 114
 115        /*
 116         * Enable refresh along with writing MR2
 117         * Encoding of RL in MR2 is (RL - 2)
 118         */
 119        mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
 120        set_mr(base, cs, mr_addr, mr_regs->mr2);
 121
 122        if (mr_regs->mr3 > 0)
 123                set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
 124}
 125
 126static void lpddr2_init(u32 base, const struct emif_regs *regs)
 127{
 128        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
 129
 130        /* Not NVM */
 131        clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
 132
 133        /*
 134         * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
 135         * when EMIF_SDRAM_CONFIG register is written
 136         */
 137        setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
 138
 139        /*
 140         * Set the SDRAM_CONFIG and PHY_CTRL for the
 141         * un-locked frequency & default RL
 142         */
 143        writel(regs->sdram_config_init, &emif->emif_sdram_config);
 144        writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
 145
 146        do_ext_phy_settings(base, regs);
 147
 148        do_lpddr2_init(base, CS0);
 149        if (regs->sdram_config & EMIF_REG_EBANK_MASK)
 150                do_lpddr2_init(base, CS1);
 151
 152        writel(regs->sdram_config, &emif->emif_sdram_config);
 153        writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
 154
 155        /* Enable refresh now */
 156        clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
 157
 158        }
 159
 160__weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
 161{
 162}
 163
 164void emif_update_timings(u32 base, const struct emif_regs *regs)
 165{
 166        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
 167
 168        if (!is_dra7xx())
 169                writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
 170        else
 171                writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl_shdw);
 172
 173        writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
 174        writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
 175        writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
 176        if (omap_revision() == OMAP4430_ES1_0) {
 177                /* ES1 bug EMIF should be in force idle during freq_update */
 178                writel(0, &emif->emif_pwr_mgmt_ctrl);
 179        } else {
 180                writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
 181                writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
 182        }
 183        writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
 184        writel(regs->zq_config, &emif->emif_zq_config);
 185        writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
 186        writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
 187
 188        if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) {
 189                writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
 190                        &emif->emif_l3_config);
 191        } else if (omap_revision() >= OMAP4460_ES1_0) {
 192                writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
 193                        &emif->emif_l3_config);
 194        } else {
 195                writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
 196                        &emif->emif_l3_config);
 197        }
 198}
 199
 200#ifndef CONFIG_OMAP44XX
 201static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
 202{
 203        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
 204
 205        /* keep sdram in self-refresh */
 206        writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
 207                & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
 208        __udelay(130);
 209
 210        /*
 211         * Set invert_clkout (if activated)--DDR_PHYCTRL_1
 212         * Invert clock adds an additional half cycle delay on the
 213         * command interface.  The additional half cycle, is usually
 214         * meant to enable leveling in the situation that DQS is later
 215         * than CK on the board.It also helps provide some additional
 216         * margin for leveling.
 217         */
 218        writel(regs->emif_ddr_phy_ctlr_1,
 219               &emif->emif_ddr_phy_ctrl_1);
 220
 221        writel(regs->emif_ddr_phy_ctlr_1,
 222               &emif->emif_ddr_phy_ctrl_1_shdw);
 223        __udelay(130);
 224
 225        writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
 226               & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
 227
 228        /* Launch Full leveling */
 229        writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
 230
 231        /* Wait till full leveling is complete */
 232        readl(&emif->emif_rd_wr_lvl_ctl);
 233              __udelay(130);
 234
 235        /* Read data eye leveling no of samples */
 236        config_data_eye_leveling_samples(base);
 237
 238        /*
 239         * Launch 8 incremental WR_LVL- to compensate for
 240         * PHY limitation.
 241         */
 242        writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
 243               &emif->emif_rd_wr_lvl_ctl);
 244
 245        __udelay(130);
 246
 247        /* Launch Incremental leveling */
 248        writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
 249               __udelay(130);
 250}
 251
 252static void update_hwleveling_output(u32 base, const struct emif_regs *regs)
 253{
 254        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
 255        u32 *emif_ext_phy_ctrl_reg, *emif_phy_status;
 256        u32 reg, i, phy;
 257
 258        emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[6];
 259        phy = readl(&emif->emif_ddr_phy_ctrl_1);
 260
 261        /* Update PHY_REG_RDDQS_RATIO */
 262        emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_7;
 263        if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVL_MASK_MASK))
 264                for (i = 0; i < PHY_RDDQS_RATIO_REGS; i++) {
 265                        reg = readl(emif_phy_status++);
 266                        writel(reg, emif_ext_phy_ctrl_reg++);
 267                        writel(reg, emif_ext_phy_ctrl_reg++);
 268                }
 269
 270        /* Update PHY_REG_FIFO_WE_SLAVE_RATIO */
 271        emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_2;
 272        emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[11];
 273        if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVLGATE_MASK_MASK))
 274                for (i = 0; i < PHY_FIFO_WE_SLAVE_RATIO_REGS; i++) {
 275                        reg = readl(emif_phy_status++);
 276                        writel(reg, emif_ext_phy_ctrl_reg++);
 277                        writel(reg, emif_ext_phy_ctrl_reg++);
 278                }
 279
 280        /* Update PHY_REG_WR_DQ/DQS_SLAVE_RATIO */
 281        emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_12;
 282        emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[16];
 283        if (!(phy & EMIF_DDR_PHY_CTRL_1_WRLVL_MASK_MASK))
 284                for (i = 0; i < PHY_REG_WR_DQ_SLAVE_RATIO_REGS; i++) {
 285                        reg = readl(emif_phy_status++);
 286                        writel(reg, emif_ext_phy_ctrl_reg++);
 287                        writel(reg, emif_ext_phy_ctrl_reg++);
 288                }
 289
 290        /* Disable Leveling */
 291        writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
 292        writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
 293        writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
 294}
 295
 296static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
 297{
 298        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
 299
 300        /* Clear Error Status */
 301        clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36,
 302                        EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
 303                        EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
 304
 305        clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36_shdw,
 306                        EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
 307                        EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
 308
 309        /* Disable refreshed before leveling */
 310        clrsetbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK,
 311                        EMIF_REG_INITREF_DIS_MASK);
 312
 313        /* Start Full leveling */
 314        writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
 315
 316        __udelay(300);
 317
 318        /* Check for leveling timeout */
 319        if (readl(&emif->emif_status) & EMIF_REG_LEVELING_TO_MASK) {
 320                printf("Leveling timeout on EMIF%d\n", emif_num(base));
 321                return;
 322        }
 323
 324        /* Enable refreshes after leveling */
 325        clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
 326
 327        debug("HW leveling success\n");
 328        /*
 329         * Update slave ratios in EXT_PHY_CTRLx registers
 330         * as per HW leveling output
 331         */
 332        update_hwleveling_output(base, regs);
 333}
 334
 335static void dra7_reset_ddr_data(u32 base, u32 size)
 336{
 337#if defined(CONFIG_TI_EDMA3) && !defined(CONFIG_DMA)
 338        enable_edma3_clocks();
 339
 340        edma3_fill(EDMA3_BASE, 1, (void *)base, 0, size);
 341
 342        disable_edma3_clocks();
 343#else
 344        memset((void *)base, 0, size);
 345#endif
 346}
 347
 348static void dra7_enable_ecc(u32 base, const struct emif_regs *regs)
 349{
 350        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
 351        u32 rgn, size;
 352
 353        /* ECC available only on dra76x EMIF1 */
 354        if ((base != EMIF1_BASE) || !is_dra76x())
 355                return;
 356
 357        if (regs->emif_ecc_ctrl_reg & EMIF_ECC_CTRL_REG_ECC_EN_MASK) {
 358                writel(regs->emif_ecc_address_range_1,
 359                       &emif->emif_ecc_address_range_1);
 360                writel(regs->emif_ecc_address_range_2,
 361                       &emif->emif_ecc_address_range_2);
 362                writel(regs->emif_ecc_ctrl_reg, &emif->emif_ecc_ctrl_reg);
 363
 364                /* Set region1 memory with 0 */
 365                rgn = ((regs->emif_ecc_address_range_1 &
 366                        EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16) +
 367                       CONFIG_SYS_SDRAM_BASE;
 368                size = (regs->emif_ecc_address_range_1 &
 369                        EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0x10000;
 370
 371                if (regs->emif_ecc_ctrl_reg &
 372                    EMIF_ECC_REG_ECC_ADDR_RGN_1_EN_MASK)
 373                        dra7_reset_ddr_data(rgn, size);
 374
 375                /* Set region2 memory with 0 */
 376                rgn = ((regs->emif_ecc_address_range_2 &
 377                        EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16) +
 378                       CONFIG_SYS_SDRAM_BASE;
 379                size = (regs->emif_ecc_address_range_2 &
 380                        EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0x10000;
 381
 382                if (regs->emif_ecc_ctrl_reg &
 383                    EMIF_ECC_REG_ECC_ADDR_RGN_2_EN_MASK)
 384                        dra7_reset_ddr_data(rgn, size);
 385
 386#ifdef CONFIG_DRA7XX
 387                /* Clear the status flags and other history */
 388                writel(readl(&emif->emif_1b_ecc_err_cnt),
 389                       &emif->emif_1b_ecc_err_cnt);
 390                writel(0xffffffff, &emif->emif_1b_ecc_err_dist_1);
 391                writel(0x1, &emif->emif_2b_ecc_err_addr_log);
 392                writel(EMIF_INT_WR_ECC_ERR_SYS_MASK |
 393                       EMIF_INT_TWOBIT_ECC_ERR_SYS_MASK |
 394                       EMIF_INT_ONEBIT_ECC_ERR_SYS_MASK,
 395                       &emif->emif_irqstatus_sys);
 396#endif
 397        }
 398}
 399
 400static void dra7_ddr3_init(u32 base, const struct emif_regs *regs)
 401{
 402        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
 403
 404        if (warm_reset()) {
 405                emif_reset_phy(base);
 406                writel(0x0, &emif->emif_pwr_mgmt_ctrl);
 407        }
 408        do_ext_phy_settings(base, regs);
 409
 410        writel(regs->ref_ctrl | EMIF_REG_INITREF_DIS_MASK,
 411               &emif->emif_sdram_ref_ctrl);
 412        /* Update timing registers */
 413        writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
 414        writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
 415        writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
 416
 417        writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0, &emif->emif_l3_config);
 418        writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
 419        writel(regs->zq_config, &emif->emif_zq_config);
 420        writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
 421        writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
 422        writel(regs->emif_rd_wr_lvl_ctl, &emif->emif_rd_wr_lvl_ctl);
 423
 424        writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
 425        writel(regs->emif_rd_wr_exec_thresh, &emif->emif_rd_wr_exec_thresh);
 426
 427        writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
 428
 429        writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
 430        writel(regs->sdram_config_init, &emif->emif_sdram_config);
 431
 432        __udelay(1000);
 433
 434        writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl);
 435
 436        if (regs->emif_rd_wr_lvl_rmp_ctl & EMIF_REG_RDWRLVL_EN_MASK) {
 437                /*
 438                 * Perform Dummy ECC setup just to allow hardware
 439                 * leveling of ECC memories
 440                 */
 441                if (is_dra76x() && (base == EMIF1_BASE) &&
 442                    (regs->emif_ecc_ctrl_reg & EMIF_ECC_CTRL_REG_ECC_EN_MASK)) {
 443                        writel(0, &emif->emif_ecc_address_range_1);
 444                        writel(0, &emif->emif_ecc_address_range_2);
 445                        writel(EMIF_ECC_CTRL_REG_ECC_EN_MASK |
 446                               EMIF_ECC_CTRL_REG_ECC_ADDR_RGN_PROT_MASK,
 447                               &emif->emif_ecc_ctrl_reg);
 448                }
 449
 450                dra7_ddr3_leveling(base, regs);
 451
 452                /* Disable ECC */
 453                if (is_dra76x())
 454                        writel(0, &emif->emif_ecc_ctrl_reg);
 455        }
 456
 457        /* Enable ECC as necessary */
 458        dra7_enable_ecc(base, regs);
 459}
 460
 461static void omap5_ddr3_init(u32 base, const struct emif_regs *regs)
 462{
 463        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
 464
 465        writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
 466        writel(regs->sdram_config_init, &emif->emif_sdram_config);
 467        /*
 468         * Set SDRAM_CONFIG and PHY control registers to locked frequency
 469         * and RL =7. As the default values of the Mode Registers are not
 470         * defined, contents of mode Registers must be fully initialized.
 471         * H/W takes care of this initialization
 472         */
 473        writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
 474
 475        /* Update timing registers */
 476        writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
 477        writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
 478        writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
 479
 480        writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
 481
 482        writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
 483        writel(regs->sdram_config_init, &emif->emif_sdram_config);
 484        do_ext_phy_settings(base, regs);
 485
 486        writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
 487        omap5_ddr3_leveling(base, regs);
 488}
 489
 490static void ddr3_init(u32 base, const struct emif_regs *regs)
 491{
 492        if (is_omap54xx())
 493                omap5_ddr3_init(base, regs);
 494        else
 495                dra7_ddr3_init(base, regs);
 496}
 497#endif
 498
 499#ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
 500#define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
 501
 502/*
 503 * Organization and refresh requirements for LPDDR2 devices of different
 504 * types and densities. Derived from JESD209-2 section 2.4
 505 */
 506const struct lpddr2_addressing addressing_table[] = {
 507        /* Banks tREFIx10     rowx32,rowx16      colx32,colx16  density */
 508        {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
 509        {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
 510        {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
 511        {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
 512        {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
 513        {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
 514        {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
 515        {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
 516        {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
 517        {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
 518};
 519
 520static const u32 lpddr2_density_2_size_in_mbytes[] = {
 521        8,                      /* 64Mb */
 522        16,                     /* 128Mb */
 523        32,                     /* 256Mb */
 524        64,                     /* 512Mb */
 525        128,                    /* 1Gb   */
 526        256,                    /* 2Gb   */
 527        512,                    /* 4Gb   */
 528        1024,                   /* 8Gb   */
 529        2048,                   /* 16Gb  */
 530        4096                    /* 32Gb  */
 531};
 532
 533/*
 534 * Calculate the period of DDR clock from frequency value and set the
 535 * denominator and numerator in global variables for easy access later
 536 */
 537static void set_ddr_clk_period(u32 freq)
 538{
 539        /*
 540         * period = 1/freq
 541         * period_in_ns = 10^9/freq
 542         */
 543        *T_num = 1000000000;
 544        *T_den = freq;
 545        cancel_out(T_num, T_den, 200);
 546
 547}
 548
 549/*
 550 * Convert time in nano seconds to number of cycles of DDR clock
 551 */
 552static inline u32 ns_2_cycles(u32 ns)
 553{
 554        return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
 555}
 556
 557/*
 558 * ns_2_cycles with the difference that the time passed is 2 times the actual
 559 * value(to avoid fractions). The cycles returned is for the original value of
 560 * the timing parameter
 561 */
 562static inline u32 ns_x2_2_cycles(u32 ns)
 563{
 564        return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
 565}
 566
 567/*
 568 * Find addressing table index based on the device's type(S2 or S4) and
 569 * density
 570 */
 571s8 addressing_table_index(u8 type, u8 density, u8 width)
 572{
 573        u8 index;
 574        if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
 575                return -1;
 576
 577        /*
 578         * Look at the way ADDR_TABLE_INDEX* values have been defined
 579         * in emif.h compared to LPDDR2_DENSITY_* values
 580         * The table is layed out in the increasing order of density
 581         * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
 582         * at the end
 583         */
 584        if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
 585                index = ADDR_TABLE_INDEX1GS2;
 586        else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
 587                index = ADDR_TABLE_INDEX2GS2;
 588        else
 589                index = density;
 590
 591        debug("emif: addressing table index %d\n", index);
 592
 593        return index;
 594}
 595
 596/*
 597 * Find the the right timing table from the array of timing
 598 * tables of the device using DDR clock frequency
 599 */
 600static const struct lpddr2_ac_timings *get_timings_table(const struct
 601                        lpddr2_ac_timings *const *device_timings,
 602                        u32 freq)
 603{
 604        u32 i, temp, freq_nearest;
 605        const struct lpddr2_ac_timings *timings = 0;
 606
 607        emif_assert(freq <= MAX_LPDDR2_FREQ);
 608        emif_assert(device_timings);
 609
 610        /*
 611         * Start with the maximum allowed frequency - that is always safe
 612         */
 613        freq_nearest = MAX_LPDDR2_FREQ;
 614        /*
 615         * Find the timings table that has the max frequency value:
 616         *   i.  Above or equal to the DDR frequency - safe
 617         *   ii. The lowest that satisfies condition (i) - optimal
 618         */
 619        for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
 620                temp = device_timings[i]->max_freq;
 621                if ((temp >= freq) && (temp <= freq_nearest)) {
 622                        freq_nearest = temp;
 623                        timings = device_timings[i];
 624                }
 625        }
 626        debug("emif: timings table: %d\n", freq_nearest);
 627        return timings;
 628}
 629
 630/*
 631 * Finds the value of emif_sdram_config_reg
 632 * All parameters are programmed based on the device on CS0.
 633 * If there is a device on CS1, it will be same as that on CS0 or
 634 * it will be NVM. We don't support NVM yet.
 635 * If cs1_device pointer is NULL it is assumed that there is no device
 636 * on CS1
 637 */
 638static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
 639                                const struct lpddr2_device_details *cs1_device,
 640                                const struct lpddr2_addressing *addressing,
 641                                u8 RL)
 642{
 643        u32 config_reg = 0;
 644
 645        config_reg |=  (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
 646        config_reg |=  EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
 647                        EMIF_REG_IBANK_POS_SHIFT;
 648
 649        config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
 650
 651        config_reg |= RL << EMIF_REG_CL_SHIFT;
 652
 653        config_reg |= addressing->row_sz[cs0_device->io_width] <<
 654                        EMIF_REG_ROWSIZE_SHIFT;
 655
 656        config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
 657
 658        config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
 659                        EMIF_REG_EBANK_SHIFT;
 660
 661        config_reg |= addressing->col_sz[cs0_device->io_width] <<
 662                        EMIF_REG_PAGESIZE_SHIFT;
 663
 664        return config_reg;
 665}
 666
 667static u32 get_sdram_ref_ctrl(u32 freq,
 668                              const struct lpddr2_addressing *addressing)
 669{
 670        u32 ref_ctrl = 0, val = 0, freq_khz;
 671        freq_khz = freq / 1000;
 672        /*
 673         * refresh rate to be set is 'tREFI * freq in MHz
 674         * division by 10000 to account for khz and x10 in t_REFI_us_x10
 675         */
 676        val = addressing->t_REFI_us_x10 * freq_khz / 10000;
 677        ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
 678
 679        return ref_ctrl;
 680}
 681
 682static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
 683                               const struct lpddr2_min_tck *min_tck,
 684                               const struct lpddr2_addressing *addressing)
 685{
 686        u32 tim1 = 0, val = 0;
 687        val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
 688        tim1 |= val << EMIF_REG_T_WTR_SHIFT;
 689
 690        if (addressing->num_banks == BANKS8)
 691                val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
 692                                                        (4 * (*T_num)) - 1;
 693        else
 694                val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
 695
 696        tim1 |= val << EMIF_REG_T_RRD_SHIFT;
 697
 698        val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
 699        tim1 |= val << EMIF_REG_T_RC_SHIFT;
 700
 701        val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
 702        tim1 |= val << EMIF_REG_T_RAS_SHIFT;
 703
 704        val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
 705        tim1 |= val << EMIF_REG_T_WR_SHIFT;
 706
 707        val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
 708        tim1 |= val << EMIF_REG_T_RCD_SHIFT;
 709
 710        val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
 711        tim1 |= val << EMIF_REG_T_RP_SHIFT;
 712
 713        return tim1;
 714}
 715
 716static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
 717                               const struct lpddr2_min_tck *min_tck)
 718{
 719        u32 tim2 = 0, val = 0;
 720        val = max(min_tck->tCKE, timings->tCKE) - 1;
 721        tim2 |= val << EMIF_REG_T_CKE_SHIFT;
 722
 723        val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
 724        tim2 |= val << EMIF_REG_T_RTP_SHIFT;
 725
 726        /*
 727         * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
 728         * same value
 729         */
 730        val = ns_2_cycles(timings->tXSR) - 1;
 731        tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
 732        tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
 733
 734        val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
 735        tim2 |= val << EMIF_REG_T_XP_SHIFT;
 736
 737        return tim2;
 738}
 739
 740static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
 741                               const struct lpddr2_min_tck *min_tck,
 742                               const struct lpddr2_addressing *addressing)
 743{
 744        u32 tim3 = 0, val = 0;
 745        val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
 746        tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
 747
 748        val = ns_2_cycles(timings->tRFCab) - 1;
 749        tim3 |= val << EMIF_REG_T_RFC_SHIFT;
 750
 751        val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
 752        tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
 753
 754        val = ns_2_cycles(timings->tZQCS) - 1;
 755        tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
 756
 757        val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
 758        tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
 759
 760        return tim3;
 761}
 762
 763static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
 764                             const struct lpddr2_addressing *addressing,
 765                             u8 volt_ramp)
 766{
 767        u32 zq = 0, val = 0;
 768        if (volt_ramp)
 769                val =
 770                    EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
 771                    addressing->t_REFI_us_x10;
 772        else
 773                val =
 774                    EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
 775                    addressing->t_REFI_us_x10;
 776        zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
 777
 778        zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
 779
 780        zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
 781
 782        zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
 783
 784        /*
 785         * Assuming that two chipselects have a single calibration resistor
 786         * If there are indeed two calibration resistors, then this flag should
 787         * be enabled to take advantage of dual calibration feature.
 788         * This data should ideally come from board files. But considering
 789         * that none of the boards today have calibration resistors per CS,
 790         * it would be an unnecessary overhead.
 791         */
 792        zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
 793
 794        zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
 795
 796        zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
 797
 798        return zq;
 799}
 800
 801static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
 802                                 const struct lpddr2_addressing *addressing,
 803                                 u8 is_derated)
 804{
 805        u32 alert = 0, interval;
 806        interval =
 807            TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
 808        if (is_derated)
 809                interval *= 4;
 810        alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
 811
 812        alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
 813
 814        alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
 815
 816        alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
 817
 818        alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
 819
 820        alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
 821
 822        return alert;
 823}
 824
 825static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
 826{
 827        u32 idle = 0, val = 0;
 828        if (volt_ramp)
 829                val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
 830        else
 831                /*Maximum value in normal conditions - suggested by hw team */
 832                val = 0x1FF;
 833        idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
 834
 835        idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
 836
 837        return idle;
 838}
 839
 840static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
 841{
 842        u32 phy = 0, val = 0;
 843
 844        phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
 845
 846        if (freq <= 100000000)
 847                val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
 848        else if (freq <= 200000000)
 849                val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
 850        else
 851                val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
 852        phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
 853
 854        /* Other fields are constant magic values. Hardcode them together */
 855        phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
 856                EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
 857
 858        return phy;
 859}
 860
 861static u32 get_emif_mem_size(u32 base)
 862{
 863        u32 size_mbytes = 0, temp;
 864        struct emif_device_details dev_details;
 865        struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
 866        u32 emif_nr = emif_num(base);
 867
 868        emif_reset_phy(base);
 869        dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
 870                                                &cs0_dev_details);
 871        dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
 872                                                &cs1_dev_details);
 873        emif_reset_phy(base);
 874
 875        if (dev_details.cs0_device_details) {
 876                temp = dev_details.cs0_device_details->density;
 877                size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
 878        }
 879
 880        if (dev_details.cs1_device_details) {
 881                temp = dev_details.cs1_device_details->density;
 882                size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
 883        }
 884        /* convert to bytes */
 885        return size_mbytes << 20;
 886}
 887
 888/* Gets the encoding corresponding to a given DMM section size */
 889u32 get_dmm_section_size_map(u32 section_size)
 890{
 891        /*
 892         * Section size mapping:
 893         * 0x0: 16-MiB section
 894         * 0x1: 32-MiB section
 895         * 0x2: 64-MiB section
 896         * 0x3: 128-MiB section
 897         * 0x4: 256-MiB section
 898         * 0x5: 512-MiB section
 899         * 0x6: 1-GiB section
 900         * 0x7: 2-GiB section
 901         */
 902        section_size >>= 24; /* divide by 16 MB */
 903        return log_2_n_round_down(section_size);
 904}
 905
 906static void emif_calculate_regs(
 907                const struct emif_device_details *emif_dev_details,
 908                u32 freq, struct emif_regs *regs)
 909{
 910        u32 temp, sys_freq;
 911        const struct lpddr2_addressing *addressing;
 912        const struct lpddr2_ac_timings *timings;
 913        const struct lpddr2_min_tck *min_tck;
 914        const struct lpddr2_device_details *cs0_dev_details =
 915                                        emif_dev_details->cs0_device_details;
 916        const struct lpddr2_device_details *cs1_dev_details =
 917                                        emif_dev_details->cs1_device_details;
 918        const struct lpddr2_device_timings *cs0_dev_timings =
 919                                        emif_dev_details->cs0_device_timings;
 920
 921        emif_assert(emif_dev_details);
 922        emif_assert(regs);
 923        /*
 924         * You can not have a device on CS1 without one on CS0
 925         * So configuring EMIF without a device on CS0 doesn't
 926         * make sense
 927         */
 928        emif_assert(cs0_dev_details);
 929        emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
 930        /*
 931         * If there is a device on CS1 it should be same type as CS0
 932         * (or NVM. But NVM is not supported in this driver yet)
 933         */
 934        emif_assert((cs1_dev_details == NULL) ||
 935                    (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
 936                    (cs0_dev_details->type == cs1_dev_details->type));
 937        emif_assert(freq <= MAX_LPDDR2_FREQ);
 938
 939        set_ddr_clk_period(freq);
 940
 941        /*
 942         * The device on CS0 is used for all timing calculations
 943         * There is only one set of registers for timings per EMIF. So, if the
 944         * second CS(CS1) has a device, it should have the same timings as the
 945         * device on CS0
 946         */
 947        timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
 948        emif_assert(timings);
 949        min_tck = cs0_dev_timings->min_tck;
 950
 951        temp = addressing_table_index(cs0_dev_details->type,
 952                                      cs0_dev_details->density,
 953                                      cs0_dev_details->io_width);
 954
 955        emif_assert((temp >= 0));
 956        addressing = &(addressing_table[temp]);
 957        emif_assert(addressing);
 958
 959        sys_freq = get_sys_clk_freq();
 960
 961        regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
 962                                                        cs1_dev_details,
 963                                                        addressing, RL_BOOT);
 964
 965        regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
 966                                                cs1_dev_details,
 967                                                addressing, RL_FINAL);
 968
 969        regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
 970
 971        regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
 972
 973        regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
 974
 975        regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
 976
 977        regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
 978
 979        regs->temp_alert_config =
 980            get_temp_alert_config(cs1_dev_details, addressing, 0);
 981
 982        regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
 983                                            LPDDR2_VOLTAGE_STABLE);
 984
 985        regs->emif_ddr_phy_ctlr_1_init =
 986                        get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
 987
 988        regs->emif_ddr_phy_ctlr_1 =
 989                        get_ddr_phy_ctrl_1(freq, RL_FINAL);
 990
 991        regs->freq = freq;
 992
 993        print_timing_reg(regs->sdram_config_init);
 994        print_timing_reg(regs->sdram_config);
 995        print_timing_reg(regs->ref_ctrl);
 996        print_timing_reg(regs->sdram_tim1);
 997        print_timing_reg(regs->sdram_tim2);
 998        print_timing_reg(regs->sdram_tim3);
 999        print_timing_reg(regs->read_idle_ctrl);
1000        print_timing_reg(regs->temp_alert_config);
1001        print_timing_reg(regs->zq_config);
1002        print_timing_reg(regs->emif_ddr_phy_ctlr_1);
1003        print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
1004}
1005#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1006
1007#ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
1008const char *get_lpddr2_type(u8 type_id)
1009{
1010        switch (type_id) {
1011        case LPDDR2_TYPE_S4:
1012                return "LPDDR2-S4";
1013        case LPDDR2_TYPE_S2:
1014                return "LPDDR2-S2";
1015        default:
1016                return NULL;
1017        }
1018}
1019
1020const char *get_lpddr2_io_width(u8 width_id)
1021{
1022        switch (width_id) {
1023        case LPDDR2_IO_WIDTH_8:
1024                return "x8";
1025        case LPDDR2_IO_WIDTH_16:
1026                return "x16";
1027        case LPDDR2_IO_WIDTH_32:
1028                return "x32";
1029        default:
1030                return NULL;
1031        }
1032}
1033
1034const char *get_lpddr2_manufacturer(u32 manufacturer)
1035{
1036        switch (manufacturer) {
1037        case LPDDR2_MANUFACTURER_SAMSUNG:
1038                return "Samsung";
1039        case LPDDR2_MANUFACTURER_QIMONDA:
1040                return "Qimonda";
1041        case LPDDR2_MANUFACTURER_ELPIDA:
1042                return "Elpida";
1043        case LPDDR2_MANUFACTURER_ETRON:
1044                return "Etron";
1045        case LPDDR2_MANUFACTURER_NANYA:
1046                return "Nanya";
1047        case LPDDR2_MANUFACTURER_HYNIX:
1048                return "Hynix";
1049        case LPDDR2_MANUFACTURER_MOSEL:
1050                return "Mosel";
1051        case LPDDR2_MANUFACTURER_WINBOND:
1052                return "Winbond";
1053        case LPDDR2_MANUFACTURER_ESMT:
1054                return "ESMT";
1055        case LPDDR2_MANUFACTURER_SPANSION:
1056                return "Spansion";
1057        case LPDDR2_MANUFACTURER_SST:
1058                return "SST";
1059        case LPDDR2_MANUFACTURER_ZMOS:
1060                return "ZMOS";
1061        case LPDDR2_MANUFACTURER_INTEL:
1062                return "Intel";
1063        case LPDDR2_MANUFACTURER_NUMONYX:
1064                return "Numonyx";
1065        case LPDDR2_MANUFACTURER_MICRON:
1066                return "Micron";
1067        default:
1068                return NULL;
1069        }
1070}
1071
1072static void display_sdram_details(u32 emif_nr, u32 cs,
1073                                  struct lpddr2_device_details *device)
1074{
1075        const char *mfg_str;
1076        const char *type_str;
1077        char density_str[10];
1078        u32 density;
1079
1080        debug("EMIF%d CS%d\t", emif_nr, cs);
1081
1082        if (!device) {
1083                debug("None\n");
1084                return;
1085        }
1086
1087        mfg_str = get_lpddr2_manufacturer(device->manufacturer);
1088        type_str = get_lpddr2_type(device->type);
1089
1090        density = lpddr2_density_2_size_in_mbytes[device->density];
1091        if ((density / 1024 * 1024) == density) {
1092                density /= 1024;
1093                sprintf(density_str, "%d GB", density);
1094        } else
1095                sprintf(density_str, "%d MB", density);
1096        if (mfg_str && type_str)
1097                debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
1098}
1099
1100static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
1101                                  struct lpddr2_device_details *lpddr2_device)
1102{
1103        u32 mr = 0, temp;
1104
1105        mr = get_mr(base, cs, LPDDR2_MR0);
1106        if (mr > 0xFF) {
1107                /* Mode register value bigger than 8 bit */
1108                return 0;
1109        }
1110
1111        temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
1112        if (temp) {
1113                /* Not SDRAM */
1114                return 0;
1115        }
1116        temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
1117
1118        if (temp) {
1119                /* DNV supported - But DNV is only supported for NVM */
1120                return 0;
1121        }
1122
1123        mr = get_mr(base, cs, LPDDR2_MR4);
1124        if (mr > 0xFF) {
1125                /* Mode register value bigger than 8 bit */
1126                return 0;
1127        }
1128
1129        mr = get_mr(base, cs, LPDDR2_MR5);
1130        if (mr > 0xFF) {
1131                /* Mode register value bigger than 8 bit */
1132                return 0;
1133        }
1134
1135        if (!get_lpddr2_manufacturer(mr)) {
1136                /* Manufacturer not identified */
1137                return 0;
1138        }
1139        lpddr2_device->manufacturer = mr;
1140
1141        mr = get_mr(base, cs, LPDDR2_MR6);
1142        if (mr >= 0xFF) {
1143                /* Mode register value bigger than 8 bit */
1144                return 0;
1145        }
1146
1147        mr = get_mr(base, cs, LPDDR2_MR7);
1148        if (mr >= 0xFF) {
1149                /* Mode register value bigger than 8 bit */
1150                return 0;
1151        }
1152
1153        mr = get_mr(base, cs, LPDDR2_MR8);
1154        if (mr >= 0xFF) {
1155                /* Mode register value bigger than 8 bit */
1156                return 0;
1157        }
1158
1159        temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
1160        if (!get_lpddr2_type(temp)) {
1161                /* Not SDRAM */
1162                return 0;
1163        }
1164        lpddr2_device->type = temp;
1165
1166        temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
1167        if (temp > LPDDR2_DENSITY_32Gb) {
1168                /* Density not supported */
1169                return 0;
1170        }
1171        lpddr2_device->density = temp;
1172
1173        temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
1174        if (!get_lpddr2_io_width(temp)) {
1175                /* IO width unsupported value */
1176                return 0;
1177        }
1178        lpddr2_device->io_width = temp;
1179
1180        /*
1181         * If all the above tests pass we should
1182         * have a device on this chip-select
1183         */
1184        return 1;
1185}
1186
1187struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
1188                        struct lpddr2_device_details *lpddr2_dev_details)
1189{
1190        u32 phy;
1191        u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
1192
1193        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1194
1195        if (!lpddr2_dev_details)
1196                return NULL;
1197
1198        /* Do the minimum init for mode register accesses */
1199        if (!(running_from_sdram() || warm_reset())) {
1200                phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
1201                writel(phy, &emif->emif_ddr_phy_ctrl_1);
1202        }
1203
1204        if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1205                return NULL;
1206
1207        display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1208
1209        return lpddr2_dev_details;
1210}
1211#endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1212
1213static void do_sdram_init(u32 base)
1214{
1215        const struct emif_regs *regs;
1216        u32 in_sdram, emif_nr;
1217
1218        debug(">>do_sdram_init() %x\n", base);
1219
1220        in_sdram = running_from_sdram();
1221        emif_nr = (base == EMIF1_BASE) ? 1 : 2;
1222
1223#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1224        emif_get_reg_dump(emif_nr, &regs);
1225        if (!regs) {
1226                debug("EMIF: reg dump not provided\n");
1227                return;
1228        }
1229#else
1230        /*
1231         * The user has not provided the register values. We need to
1232         * calculate it based on the timings and the DDR frequency
1233         */
1234        struct emif_device_details dev_details;
1235        struct emif_regs calculated_regs;
1236
1237        /*
1238         * Get device details:
1239         * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1240         * - Obtained from user otherwise
1241         */
1242        struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
1243        emif_reset_phy(base);
1244        dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
1245                                                &cs0_dev_details);
1246        dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
1247                                                &cs1_dev_details);
1248        emif_reset_phy(base);
1249
1250        /* Return if no devices on this EMIF */
1251        if (!dev_details.cs0_device_details &&
1252            !dev_details.cs1_device_details) {
1253                return;
1254        }
1255
1256        /*
1257         * Get device timings:
1258         * - Default timings specified by JESD209-2 if
1259         *   CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1260         * - Obtained from user otherwise
1261         */
1262        emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1263                                &dev_details.cs1_device_timings);
1264
1265        /* Calculate the register values */
1266        emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
1267        regs = &calculated_regs;
1268#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1269
1270        /*
1271         * Initializing the DDR device can not happen from SDRAM.
1272         * Changing the timing registers in EMIF can happen(going from one
1273         * OPP to another)
1274         */
1275        if (!in_sdram && (!warm_reset() || is_dra7xx())) {
1276                if (emif_sdram_type(regs->sdram_config) ==
1277                    EMIF_SDRAM_TYPE_LPDDR2)
1278                        lpddr2_init(base, regs);
1279#ifndef CONFIG_OMAP44XX
1280                else
1281                        ddr3_init(base, regs);
1282#endif
1283        }
1284#ifdef CONFIG_OMAP54XX
1285        if (warm_reset() && (emif_sdram_type(regs->sdram_config) ==
1286            EMIF_SDRAM_TYPE_DDR3) && !is_dra7xx()) {
1287                set_lpmode_selfrefresh(base);
1288                emif_reset_phy(base);
1289                omap5_ddr3_leveling(base, regs);
1290        }
1291#endif
1292
1293        /* Write to the shadow registers */
1294        emif_update_timings(base, regs);
1295
1296        debug("<<do_sdram_init() %x\n", base);
1297}
1298
1299void emif_post_init_config(u32 base)
1300{
1301        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1302        u32 omap_rev = omap_revision();
1303
1304        /* reset phy on ES2.0 */
1305        if (omap_rev == OMAP4430_ES2_0)
1306                emif_reset_phy(base);
1307
1308        /* Put EMIF back in smart idle on ES1.0 */
1309        if (omap_rev == OMAP4430_ES1_0)
1310                writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1311}
1312
1313void dmm_init(u32 base)
1314{
1315        const struct dmm_lisa_map_regs *lisa_map_regs;
1316        u32 i, section, valid;
1317
1318#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1319        emif_get_dmm_regs(&lisa_map_regs);
1320#else
1321        u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1322        u32 section_cnt, sys_addr;
1323        struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1324
1325        mapped_size = 0;
1326        section_cnt = 3;
1327        sys_addr = CONFIG_SYS_SDRAM_BASE;
1328        emif1_size = get_emif_mem_size(EMIF1_BASE);
1329        emif2_size = get_emif_mem_size(EMIF2_BASE);
1330        debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1331
1332        if (!emif1_size && !emif2_size)
1333                return;
1334
1335        /* symmetric interleaved section */
1336        if (emif1_size && emif2_size) {
1337                mapped_size = min(emif1_size, emif2_size);
1338                section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
1339                section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
1340                /* only MSB */
1341                section_map |= (sys_addr >> 24) <<
1342                                EMIF_SYS_ADDR_SHIFT;
1343                section_map |= get_dmm_section_size_map(mapped_size * 2)
1344                                << EMIF_SYS_SIZE_SHIFT;
1345                lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1346                emif1_size -= mapped_size;
1347                emif2_size -= mapped_size;
1348                sys_addr += (mapped_size * 2);
1349                section_cnt--;
1350        }
1351
1352        /*
1353         * Single EMIF section(we can have a maximum of 1 single EMIF
1354         * section- either EMIF1 or EMIF2 or none, but not both)
1355         */
1356        if (emif1_size) {
1357                section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1358                section_map |= get_dmm_section_size_map(emif1_size)
1359                                << EMIF_SYS_SIZE_SHIFT;
1360                /* only MSB */
1361                section_map |= (mapped_size >> 24) <<
1362                                EMIF_SDRC_ADDR_SHIFT;
1363                /* only MSB */
1364                section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
1365                section_cnt--;
1366        }
1367        if (emif2_size) {
1368                section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1369                section_map |= get_dmm_section_size_map(emif2_size) <<
1370                                EMIF_SYS_SIZE_SHIFT;
1371                /* only MSB */
1372                section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
1373                /* only MSB */
1374                section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
1375                section_cnt--;
1376        }
1377
1378        if (section_cnt == 2) {
1379                /* Only 1 section - either symmetric or single EMIF */
1380                lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1381                lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1382                lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1383        } else {
1384                /* 2 sections - 1 symmetric, 1 single EMIF */
1385                lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1386                lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1387        }
1388
1389        /* TRAP for invalid TILER mappings in section 0 */
1390        lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1391
1392        if (omap_revision() >= OMAP4460_ES1_0)
1393                lis_map_regs_calculated.is_ma_present = 1;
1394
1395        lisa_map_regs = &lis_map_regs_calculated;
1396#endif
1397        struct dmm_lisa_map_regs *hw_lisa_map_regs =
1398            (struct dmm_lisa_map_regs *)base;
1399
1400        writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1401        writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1402        writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1403        writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1404
1405        writel(lisa_map_regs->dmm_lisa_map_3,
1406                &hw_lisa_map_regs->dmm_lisa_map_3);
1407        writel(lisa_map_regs->dmm_lisa_map_2,
1408                &hw_lisa_map_regs->dmm_lisa_map_2);
1409        writel(lisa_map_regs->dmm_lisa_map_1,
1410                &hw_lisa_map_regs->dmm_lisa_map_1);
1411        writel(lisa_map_regs->dmm_lisa_map_0,
1412                &hw_lisa_map_regs->dmm_lisa_map_0);
1413
1414        if (lisa_map_regs->is_ma_present) {
1415                hw_lisa_map_regs =
1416                    (struct dmm_lisa_map_regs *)MA_BASE;
1417
1418                writel(lisa_map_regs->dmm_lisa_map_3,
1419                        &hw_lisa_map_regs->dmm_lisa_map_3);
1420                writel(lisa_map_regs->dmm_lisa_map_2,
1421                        &hw_lisa_map_regs->dmm_lisa_map_2);
1422                writel(lisa_map_regs->dmm_lisa_map_1,
1423                        &hw_lisa_map_regs->dmm_lisa_map_1);
1424                writel(lisa_map_regs->dmm_lisa_map_0,
1425                        &hw_lisa_map_regs->dmm_lisa_map_0);
1426
1427                setbits_le32(MA_PRIORITY, MA_HIMEM_INTERLEAVE_UN_MASK);
1428        }
1429
1430        /*
1431         * EMIF should be configured only when
1432         * memory is mapped on it. Using emif1_enabled
1433         * and emif2_enabled variables for this.
1434         */
1435        emif1_enabled = 0;
1436        emif2_enabled = 0;
1437        for (i = 0; i < 4; i++) {
1438                section = __raw_readl(DMM_BASE + i*4);
1439                valid = (section & EMIF_SDRC_MAP_MASK) >>
1440                        (EMIF_SDRC_MAP_SHIFT);
1441                if (valid == 3) {
1442                        emif1_enabled = 1;
1443                        emif2_enabled = 1;
1444                        break;
1445                }
1446
1447                if (valid == 1)
1448                        emif1_enabled = 1;
1449
1450                if (valid == 2)
1451                        emif2_enabled = 1;
1452        }
1453}
1454
1455static void do_bug0039_workaround(u32 base)
1456{
1457        u32 val, i, clkctrl;
1458        struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
1459        const struct read_write_regs *bug_00339_regs;
1460        u32 iterations;
1461        u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
1462        u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;
1463
1464        if (is_dra7xx())
1465                phy_status_base++;
1466
1467        bug_00339_regs = get_bug_regs(&iterations);
1468
1469        /* Put EMIF in to idle */
1470        clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
1471        __raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);
1472
1473        /* Copy the phy status registers in to phy ctrl shadow registers */
1474        for (i = 0; i < iterations; i++) {
1475                val = __raw_readl(phy_status_base +
1476                                  bug_00339_regs[i].read_reg - 1);
1477
1478                __raw_writel(val, phy_ctrl_base +
1479                             ((bug_00339_regs[i].write_reg - 1) << 1));
1480
1481                __raw_writel(val, phy_ctrl_base +
1482                             (bug_00339_regs[i].write_reg << 1) - 1);
1483        }
1484
1485        /* Disable leveling */
1486        writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);
1487
1488        __raw_writel(clkctrl,  (*prcm)->cm_memif_clkstctrl);
1489}
1490
1491/*
1492 * SDRAM initialization:
1493 * SDRAM initialization has two parts:
1494 * 1. Configuring the SDRAM device
1495 * 2. Update the AC timings related parameters in the EMIF module
1496 * (1) should be done only once and should not be done while we are
1497 * running from SDRAM.
1498 * (2) can and should be done more than once if OPP changes.
1499 * Particularly, this may be needed when we boot without SPL and
1500 * and using Configuration Header(CH). ROM code supports only at 50% OPP
1501 * at boot (low power boot). So u-boot has to switch to OPP100 and update
1502 * the frequency. So,
1503 * Doing (1) and (2) makes sense - first time initialization
1504 * Doing (2) and not (1) makes sense - OPP change (when using CH)
1505 * Doing (1) and not (2) doen't make sense
1506 * See do_sdram_init() for the details
1507 */
1508void sdram_init(void)
1509{
1510        u32 in_sdram, size_prog, size_detect;
1511        struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
1512        u32 sdram_type = emif_sdram_type(emif->emif_sdram_config);
1513
1514        debug(">>sdram_init()\n");
1515
1516        if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
1517                return;
1518
1519        in_sdram = running_from_sdram();
1520        debug("in_sdram = %d\n", in_sdram);
1521
1522        if (!in_sdram) {
1523                if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
1524                        bypass_dpll((*prcm)->cm_clkmode_dpll_core);
1525                else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
1526                        writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
1527        }
1528
1529        if (!in_sdram)
1530                dmm_init(DMM_BASE);
1531
1532        if (emif1_enabled)
1533                do_sdram_init(EMIF1_BASE);
1534
1535        if (emif2_enabled)
1536                do_sdram_init(EMIF2_BASE);
1537
1538        if (!(in_sdram || warm_reset())) {
1539                if (emif1_enabled)
1540                        emif_post_init_config(EMIF1_BASE);
1541                if (emif2_enabled)
1542                        emif_post_init_config(EMIF2_BASE);
1543        }
1544
1545        /* for the shadow registers to take effect */
1546        if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
1547                freq_update_core();
1548
1549        /* Do some testing after the init */
1550        if (!in_sdram) {
1551                size_prog = omap_sdram_size();
1552                size_prog = log_2_n_round_down(size_prog);
1553                size_prog = (1 << size_prog);
1554
1555                size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1556                                                size_prog);
1557                /* Compare with the size programmed */
1558                if (size_detect != size_prog) {
1559                        printf("SDRAM: identified size not same as expected"
1560                                " size identified: %x expected: %x\n",
1561                                size_detect,
1562                                size_prog);
1563                } else
1564                        debug("get_ram_size() successful");
1565        }
1566
1567#if defined(CONFIG_TI_SECURE_DEVICE)
1568        /*
1569         * On HS devices, do static EMIF firewall configuration
1570         * but only do it if not already running in SDRAM
1571         */
1572        if (!in_sdram)
1573                if (0 != secure_emif_reserve())
1574                        hang();
1575
1576        /* On HS devices, ensure static EMIF firewall APIs are locked */
1577        if (0 != secure_emif_firewall_lock())
1578                hang();
1579#endif
1580
1581        if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
1582            (!in_sdram && !warm_reset()) && (!is_dra7xx())) {
1583                if (emif1_enabled)
1584                        do_bug0039_workaround(EMIF1_BASE);
1585                if (emif2_enabled)
1586                        do_bug0039_workaround(EMIF2_BASE);
1587        }
1588
1589        debug("<<sdram_init()\n");
1590}
1591