1
2
3
4
5
6
7
8
9
10
11#include <common.h>
12#include <asm/emif.h>
13#include <asm/arch/clock.h>
14#include <asm/arch/sys_proto.h>
15#include <asm/omap_common.h>
16#include <asm/omap_sec_common.h>
17#include <asm/utils.h>
18#include <linux/compiler.h>
19#include <asm/ti-common/ti-edma3.h>
20
21static int emif1_enabled = -1, emif2_enabled = -1;
22
23void set_lpmode_selfrefresh(u32 base)
24{
25 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
26 u32 reg;
27
28 reg = readl(&emif->emif_pwr_mgmt_ctrl);
29 reg &= ~EMIF_REG_LP_MODE_MASK;
30 reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
31 reg &= ~EMIF_REG_SR_TIM_MASK;
32 writel(reg, &emif->emif_pwr_mgmt_ctrl);
33
34
35 readl(&emif->emif_pwr_mgmt_ctrl);
36}
37
38void force_emif_self_refresh()
39{
40 set_lpmode_selfrefresh(EMIF1_BASE);
41 if (!is_dra72x())
42 set_lpmode_selfrefresh(EMIF2_BASE);
43}
44
45inline u32 emif_num(u32 base)
46{
47 if (base == EMIF1_BASE)
48 return 1;
49 else if (base == EMIF2_BASE)
50 return 2;
51 else
52 return 0;
53}
54
55static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
56{
57 u32 mr;
58 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
59
60 mr_addr |= cs << EMIF_REG_CS_SHIFT;
61 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
62 if (omap_revision() == OMAP4430_ES2_0)
63 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
64 else
65 mr = readl(&emif->emif_lpddr2_mode_reg_data);
66 debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
67 cs, mr_addr, mr);
68 if (((mr & 0x0000ff00) >> 8) == (mr & 0xff) &&
69 ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
70 ((mr & 0xff000000) >> 24) == (mr & 0xff))
71 return mr & 0xff;
72 else
73 return mr;
74}
75
76static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
77{
78 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
79
80 mr_addr |= cs << EMIF_REG_CS_SHIFT;
81 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
82 writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
83}
84
85void emif_reset_phy(u32 base)
86{
87 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
88 u32 iodft;
89
90 iodft = readl(&emif->emif_iodft_tlgc);
91 iodft |= EMIF_REG_RESET_PHY_MASK;
92 writel(iodft, &emif->emif_iodft_tlgc);
93}
94
95static void do_lpddr2_init(u32 base, u32 cs)
96{
97 u32 mr_addr;
98 const struct lpddr2_mr_regs *mr_regs;
99
100 get_lpddr2_mr_regs(&mr_regs);
101
102 while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
103 ;
104 set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
105
106
107
108
109
110 sdelay(2000);
111
112 set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
113 set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
114
115
116
117
118
119 mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
120 set_mr(base, cs, mr_addr, mr_regs->mr2);
121
122 if (mr_regs->mr3 > 0)
123 set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
124}
125
126static void lpddr2_init(u32 base, const struct emif_regs *regs)
127{
128 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
129
130
131 clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
132
133
134
135
136
137 setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
138
139
140
141
142
143 writel(regs->sdram_config_init, &emif->emif_sdram_config);
144 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
145
146 do_ext_phy_settings(base, regs);
147
148 do_lpddr2_init(base, CS0);
149 if (regs->sdram_config & EMIF_REG_EBANK_MASK)
150 do_lpddr2_init(base, CS1);
151
152 writel(regs->sdram_config, &emif->emif_sdram_config);
153 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
154
155
156 clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
157
158 }
159
160__weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
161{
162}
163
164void emif_update_timings(u32 base, const struct emif_regs *regs)
165{
166 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
167
168 if (!is_dra7xx())
169 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
170 else
171 writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl_shdw);
172
173 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
174 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
175 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
176 if (omap_revision() == OMAP4430_ES1_0) {
177
178 writel(0, &emif->emif_pwr_mgmt_ctrl);
179 } else {
180 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
181 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
182 }
183 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
184 writel(regs->zq_config, &emif->emif_zq_config);
185 writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
186 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
187
188 if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) {
189 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
190 &emif->emif_l3_config);
191 } else if (omap_revision() >= OMAP4460_ES1_0) {
192 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
193 &emif->emif_l3_config);
194 } else {
195 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
196 &emif->emif_l3_config);
197 }
198}
199
200#ifndef CONFIG_OMAP44XX
201static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
202{
203 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
204
205
206 writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
207 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
208 __udelay(130);
209
210
211
212
213
214
215
216
217
218 writel(regs->emif_ddr_phy_ctlr_1,
219 &emif->emif_ddr_phy_ctrl_1);
220
221 writel(regs->emif_ddr_phy_ctlr_1,
222 &emif->emif_ddr_phy_ctrl_1_shdw);
223 __udelay(130);
224
225 writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
226 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
227
228
229 writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
230
231
232 readl(&emif->emif_rd_wr_lvl_ctl);
233 __udelay(130);
234
235
236 config_data_eye_leveling_samples(base);
237
238
239
240
241
242 writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
243 &emif->emif_rd_wr_lvl_ctl);
244
245 __udelay(130);
246
247
248 writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
249 __udelay(130);
250}
251
252static void update_hwleveling_output(u32 base, const struct emif_regs *regs)
253{
254 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
255 u32 *emif_ext_phy_ctrl_reg, *emif_phy_status;
256 u32 reg, i, phy;
257
258 emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[6];
259 phy = readl(&emif->emif_ddr_phy_ctrl_1);
260
261
262 emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_7;
263 if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVL_MASK_MASK))
264 for (i = 0; i < PHY_RDDQS_RATIO_REGS; i++) {
265 reg = readl(emif_phy_status++);
266 writel(reg, emif_ext_phy_ctrl_reg++);
267 writel(reg, emif_ext_phy_ctrl_reg++);
268 }
269
270
271 emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_2;
272 emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[11];
273 if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVLGATE_MASK_MASK))
274 for (i = 0; i < PHY_FIFO_WE_SLAVE_RATIO_REGS; i++) {
275 reg = readl(emif_phy_status++);
276 writel(reg, emif_ext_phy_ctrl_reg++);
277 writel(reg, emif_ext_phy_ctrl_reg++);
278 }
279
280
281 emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_12;
282 emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[16];
283 if (!(phy & EMIF_DDR_PHY_CTRL_1_WRLVL_MASK_MASK))
284 for (i = 0; i < PHY_REG_WR_DQ_SLAVE_RATIO_REGS; i++) {
285 reg = readl(emif_phy_status++);
286 writel(reg, emif_ext_phy_ctrl_reg++);
287 writel(reg, emif_ext_phy_ctrl_reg++);
288 }
289
290
291 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
292 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
293 writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
294}
295
296static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
297{
298 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
299
300
301 clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36,
302 EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
303 EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
304
305 clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36_shdw,
306 EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
307 EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
308
309
310 clrsetbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK,
311 EMIF_REG_INITREF_DIS_MASK);
312
313
314 writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
315
316 __udelay(300);
317
318
319 if (readl(&emif->emif_status) & EMIF_REG_LEVELING_TO_MASK) {
320 printf("Leveling timeout on EMIF%d\n", emif_num(base));
321 return;
322 }
323
324
325 clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
326
327 debug("HW leveling success\n");
328
329
330
331
332 update_hwleveling_output(base, regs);
333}
334
335static void dra7_reset_ddr_data(u32 base, u32 size)
336{
337#if defined(CONFIG_TI_EDMA3) && !defined(CONFIG_DMA)
338 enable_edma3_clocks();
339
340 edma3_fill(EDMA3_BASE, 1, (void *)base, 0, size);
341
342 disable_edma3_clocks();
343#else
344 memset((void *)base, 0, size);
345#endif
346}
347
348static void dra7_enable_ecc(u32 base, const struct emif_regs *regs)
349{
350 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
351 u32 rgn, size;
352
353
354 if ((base != EMIF1_BASE) || !is_dra76x())
355 return;
356
357 if (regs->emif_ecc_ctrl_reg & EMIF_ECC_CTRL_REG_ECC_EN_MASK) {
358 writel(regs->emif_ecc_address_range_1,
359 &emif->emif_ecc_address_range_1);
360 writel(regs->emif_ecc_address_range_2,
361 &emif->emif_ecc_address_range_2);
362 writel(regs->emif_ecc_ctrl_reg, &emif->emif_ecc_ctrl_reg);
363
364
365 rgn = ((regs->emif_ecc_address_range_1 &
366 EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16) +
367 CONFIG_SYS_SDRAM_BASE;
368 size = (regs->emif_ecc_address_range_1 &
369 EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0x10000;
370
371 if (regs->emif_ecc_ctrl_reg &
372 EMIF_ECC_REG_ECC_ADDR_RGN_1_EN_MASK)
373 dra7_reset_ddr_data(rgn, size);
374
375
376 rgn = ((regs->emif_ecc_address_range_2 &
377 EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16) +
378 CONFIG_SYS_SDRAM_BASE;
379 size = (regs->emif_ecc_address_range_2 &
380 EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0x10000;
381
382 if (regs->emif_ecc_ctrl_reg &
383 EMIF_ECC_REG_ECC_ADDR_RGN_2_EN_MASK)
384 dra7_reset_ddr_data(rgn, size);
385
386#ifdef CONFIG_DRA7XX
387
388 writel(readl(&emif->emif_1b_ecc_err_cnt),
389 &emif->emif_1b_ecc_err_cnt);
390 writel(0xffffffff, &emif->emif_1b_ecc_err_dist_1);
391 writel(0x1, &emif->emif_2b_ecc_err_addr_log);
392 writel(EMIF_INT_WR_ECC_ERR_SYS_MASK |
393 EMIF_INT_TWOBIT_ECC_ERR_SYS_MASK |
394 EMIF_INT_ONEBIT_ECC_ERR_SYS_MASK,
395 &emif->emif_irqstatus_sys);
396#endif
397 }
398}
399
400static void dra7_ddr3_init(u32 base, const struct emif_regs *regs)
401{
402 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
403
404 if (warm_reset()) {
405 emif_reset_phy(base);
406 writel(0x0, &emif->emif_pwr_mgmt_ctrl);
407 }
408 do_ext_phy_settings(base, regs);
409
410 writel(regs->ref_ctrl | EMIF_REG_INITREF_DIS_MASK,
411 &emif->emif_sdram_ref_ctrl);
412
413 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
414 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
415 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
416
417 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0, &emif->emif_l3_config);
418 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
419 writel(regs->zq_config, &emif->emif_zq_config);
420 writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
421 writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
422 writel(regs->emif_rd_wr_lvl_ctl, &emif->emif_rd_wr_lvl_ctl);
423
424 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
425 writel(regs->emif_rd_wr_exec_thresh, &emif->emif_rd_wr_exec_thresh);
426
427 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
428
429 writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
430 writel(regs->sdram_config_init, &emif->emif_sdram_config);
431
432 __udelay(1000);
433
434 writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl);
435
436 if (regs->emif_rd_wr_lvl_rmp_ctl & EMIF_REG_RDWRLVL_EN_MASK) {
437
438
439
440
441 if (is_dra76x() && (base == EMIF1_BASE) &&
442 (regs->emif_ecc_ctrl_reg & EMIF_ECC_CTRL_REG_ECC_EN_MASK)) {
443 writel(0, &emif->emif_ecc_address_range_1);
444 writel(0, &emif->emif_ecc_address_range_2);
445 writel(EMIF_ECC_CTRL_REG_ECC_EN_MASK |
446 EMIF_ECC_CTRL_REG_ECC_ADDR_RGN_PROT_MASK,
447 &emif->emif_ecc_ctrl_reg);
448 }
449
450 dra7_ddr3_leveling(base, regs);
451
452
453 if (is_dra76x())
454 writel(0, &emif->emif_ecc_ctrl_reg);
455 }
456
457
458 dra7_enable_ecc(base, regs);
459}
460
461static void omap5_ddr3_init(u32 base, const struct emif_regs *regs)
462{
463 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
464
465 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
466 writel(regs->sdram_config_init, &emif->emif_sdram_config);
467
468
469
470
471
472
473 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
474
475
476 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
477 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
478 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
479
480 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
481
482 writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
483 writel(regs->sdram_config_init, &emif->emif_sdram_config);
484 do_ext_phy_settings(base, regs);
485
486 writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
487 omap5_ddr3_leveling(base, regs);
488}
489
490static void ddr3_init(u32 base, const struct emif_regs *regs)
491{
492 if (is_omap54xx())
493 omap5_ddr3_init(base, regs);
494 else
495 dra7_ddr3_init(base, regs);
496}
497#endif
498
499#ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
500#define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
501
502
503
504
505
506const struct lpddr2_addressing addressing_table[] = {
507
508 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },
509 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },
510 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },
511 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },
512 {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },
513 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },
514 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },
515 {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },
516 {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },
517 {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },
518};
519
520static const u32 lpddr2_density_2_size_in_mbytes[] = {
521 8,
522 16,
523 32,
524 64,
525 128,
526 256,
527 512,
528 1024,
529 2048,
530 4096
531};
532
533
534
535
536
537static void set_ddr_clk_period(u32 freq)
538{
539
540
541
542
543 *T_num = 1000000000;
544 *T_den = freq;
545 cancel_out(T_num, T_den, 200);
546
547}
548
549
550
551
552static inline u32 ns_2_cycles(u32 ns)
553{
554 return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
555}
556
557
558
559
560
561
562static inline u32 ns_x2_2_cycles(u32 ns)
563{
564 return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
565}
566
567
568
569
570
571s8 addressing_table_index(u8 type, u8 density, u8 width)
572{
573 u8 index;
574 if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
575 return -1;
576
577
578
579
580
581
582
583
584 if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
585 index = ADDR_TABLE_INDEX1GS2;
586 else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
587 index = ADDR_TABLE_INDEX2GS2;
588 else
589 index = density;
590
591 debug("emif: addressing table index %d\n", index);
592
593 return index;
594}
595
596
597
598
599
600static const struct lpddr2_ac_timings *get_timings_table(const struct
601 lpddr2_ac_timings *const *device_timings,
602 u32 freq)
603{
604 u32 i, temp, freq_nearest;
605 const struct lpddr2_ac_timings *timings = 0;
606
607 emif_assert(freq <= MAX_LPDDR2_FREQ);
608 emif_assert(device_timings);
609
610
611
612
613 freq_nearest = MAX_LPDDR2_FREQ;
614
615
616
617
618
619 for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
620 temp = device_timings[i]->max_freq;
621 if ((temp >= freq) && (temp <= freq_nearest)) {
622 freq_nearest = temp;
623 timings = device_timings[i];
624 }
625 }
626 debug("emif: timings table: %d\n", freq_nearest);
627 return timings;
628}
629
630
631
632
633
634
635
636
637
638static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
639 const struct lpddr2_device_details *cs1_device,
640 const struct lpddr2_addressing *addressing,
641 u8 RL)
642{
643 u32 config_reg = 0;
644
645 config_reg |= (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
646 config_reg |= EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
647 EMIF_REG_IBANK_POS_SHIFT;
648
649 config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
650
651 config_reg |= RL << EMIF_REG_CL_SHIFT;
652
653 config_reg |= addressing->row_sz[cs0_device->io_width] <<
654 EMIF_REG_ROWSIZE_SHIFT;
655
656 config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
657
658 config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
659 EMIF_REG_EBANK_SHIFT;
660
661 config_reg |= addressing->col_sz[cs0_device->io_width] <<
662 EMIF_REG_PAGESIZE_SHIFT;
663
664 return config_reg;
665}
666
667static u32 get_sdram_ref_ctrl(u32 freq,
668 const struct lpddr2_addressing *addressing)
669{
670 u32 ref_ctrl = 0, val = 0, freq_khz;
671 freq_khz = freq / 1000;
672
673
674
675
676 val = addressing->t_REFI_us_x10 * freq_khz / 10000;
677 ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
678
679 return ref_ctrl;
680}
681
682static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
683 const struct lpddr2_min_tck *min_tck,
684 const struct lpddr2_addressing *addressing)
685{
686 u32 tim1 = 0, val = 0;
687 val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
688 tim1 |= val << EMIF_REG_T_WTR_SHIFT;
689
690 if (addressing->num_banks == BANKS8)
691 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
692 (4 * (*T_num)) - 1;
693 else
694 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
695
696 tim1 |= val << EMIF_REG_T_RRD_SHIFT;
697
698 val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
699 tim1 |= val << EMIF_REG_T_RC_SHIFT;
700
701 val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
702 tim1 |= val << EMIF_REG_T_RAS_SHIFT;
703
704 val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
705 tim1 |= val << EMIF_REG_T_WR_SHIFT;
706
707 val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
708 tim1 |= val << EMIF_REG_T_RCD_SHIFT;
709
710 val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
711 tim1 |= val << EMIF_REG_T_RP_SHIFT;
712
713 return tim1;
714}
715
716static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
717 const struct lpddr2_min_tck *min_tck)
718{
719 u32 tim2 = 0, val = 0;
720 val = max(min_tck->tCKE, timings->tCKE) - 1;
721 tim2 |= val << EMIF_REG_T_CKE_SHIFT;
722
723 val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
724 tim2 |= val << EMIF_REG_T_RTP_SHIFT;
725
726
727
728
729
730 val = ns_2_cycles(timings->tXSR) - 1;
731 tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
732 tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
733
734 val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
735 tim2 |= val << EMIF_REG_T_XP_SHIFT;
736
737 return tim2;
738}
739
740static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
741 const struct lpddr2_min_tck *min_tck,
742 const struct lpddr2_addressing *addressing)
743{
744 u32 tim3 = 0, val = 0;
745 val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
746 tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
747
748 val = ns_2_cycles(timings->tRFCab) - 1;
749 tim3 |= val << EMIF_REG_T_RFC_SHIFT;
750
751 val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
752 tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
753
754 val = ns_2_cycles(timings->tZQCS) - 1;
755 tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
756
757 val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
758 tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
759
760 return tim3;
761}
762
763static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
764 const struct lpddr2_addressing *addressing,
765 u8 volt_ramp)
766{
767 u32 zq = 0, val = 0;
768 if (volt_ramp)
769 val =
770 EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
771 addressing->t_REFI_us_x10;
772 else
773 val =
774 EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
775 addressing->t_REFI_us_x10;
776 zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
777
778 zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
779
780 zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
781
782 zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
783
784
785
786
787
788
789
790
791
792 zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
793
794 zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
795
796 zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
797
798 return zq;
799}
800
801static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
802 const struct lpddr2_addressing *addressing,
803 u8 is_derated)
804{
805 u32 alert = 0, interval;
806 interval =
807 TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
808 if (is_derated)
809 interval *= 4;
810 alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
811
812 alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
813
814 alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
815
816 alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
817
818 alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
819
820 alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
821
822 return alert;
823}
824
825static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
826{
827 u32 idle = 0, val = 0;
828 if (volt_ramp)
829 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
830 else
831
832 val = 0x1FF;
833 idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
834
835 idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
836
837 return idle;
838}
839
840static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
841{
842 u32 phy = 0, val = 0;
843
844 phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
845
846 if (freq <= 100000000)
847 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
848 else if (freq <= 200000000)
849 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
850 else
851 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
852 phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
853
854
855 phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
856 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
857
858 return phy;
859}
860
861static u32 get_emif_mem_size(u32 base)
862{
863 u32 size_mbytes = 0, temp;
864 struct emif_device_details dev_details;
865 struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
866 u32 emif_nr = emif_num(base);
867
868 emif_reset_phy(base);
869 dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
870 &cs0_dev_details);
871 dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
872 &cs1_dev_details);
873 emif_reset_phy(base);
874
875 if (dev_details.cs0_device_details) {
876 temp = dev_details.cs0_device_details->density;
877 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
878 }
879
880 if (dev_details.cs1_device_details) {
881 temp = dev_details.cs1_device_details->density;
882 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
883 }
884
885 return size_mbytes << 20;
886}
887
888
889u32 get_dmm_section_size_map(u32 section_size)
890{
891
892
893
894
895
896
897
898
899
900
901
902 section_size >>= 24;
903 return log_2_n_round_down(section_size);
904}
905
906static void emif_calculate_regs(
907 const struct emif_device_details *emif_dev_details,
908 u32 freq, struct emif_regs *regs)
909{
910 u32 temp, sys_freq;
911 const struct lpddr2_addressing *addressing;
912 const struct lpddr2_ac_timings *timings;
913 const struct lpddr2_min_tck *min_tck;
914 const struct lpddr2_device_details *cs0_dev_details =
915 emif_dev_details->cs0_device_details;
916 const struct lpddr2_device_details *cs1_dev_details =
917 emif_dev_details->cs1_device_details;
918 const struct lpddr2_device_timings *cs0_dev_timings =
919 emif_dev_details->cs0_device_timings;
920
921 emif_assert(emif_dev_details);
922 emif_assert(regs);
923
924
925
926
927
928 emif_assert(cs0_dev_details);
929 emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
930
931
932
933
934 emif_assert((cs1_dev_details == NULL) ||
935 (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
936 (cs0_dev_details->type == cs1_dev_details->type));
937 emif_assert(freq <= MAX_LPDDR2_FREQ);
938
939 set_ddr_clk_period(freq);
940
941
942
943
944
945
946
947 timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
948 emif_assert(timings);
949 min_tck = cs0_dev_timings->min_tck;
950
951 temp = addressing_table_index(cs0_dev_details->type,
952 cs0_dev_details->density,
953 cs0_dev_details->io_width);
954
955 emif_assert((temp >= 0));
956 addressing = &(addressing_table[temp]);
957 emif_assert(addressing);
958
959 sys_freq = get_sys_clk_freq();
960
961 regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
962 cs1_dev_details,
963 addressing, RL_BOOT);
964
965 regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
966 cs1_dev_details,
967 addressing, RL_FINAL);
968
969 regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
970
971 regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
972
973 regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
974
975 regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
976
977 regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
978
979 regs->temp_alert_config =
980 get_temp_alert_config(cs1_dev_details, addressing, 0);
981
982 regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
983 LPDDR2_VOLTAGE_STABLE);
984
985 regs->emif_ddr_phy_ctlr_1_init =
986 get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
987
988 regs->emif_ddr_phy_ctlr_1 =
989 get_ddr_phy_ctrl_1(freq, RL_FINAL);
990
991 regs->freq = freq;
992
993 print_timing_reg(regs->sdram_config_init);
994 print_timing_reg(regs->sdram_config);
995 print_timing_reg(regs->ref_ctrl);
996 print_timing_reg(regs->sdram_tim1);
997 print_timing_reg(regs->sdram_tim2);
998 print_timing_reg(regs->sdram_tim3);
999 print_timing_reg(regs->read_idle_ctrl);
1000 print_timing_reg(regs->temp_alert_config);
1001 print_timing_reg(regs->zq_config);
1002 print_timing_reg(regs->emif_ddr_phy_ctlr_1);
1003 print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
1004}
1005#endif
1006
1007#ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
1008const char *get_lpddr2_type(u8 type_id)
1009{
1010 switch (type_id) {
1011 case LPDDR2_TYPE_S4:
1012 return "LPDDR2-S4";
1013 case LPDDR2_TYPE_S2:
1014 return "LPDDR2-S2";
1015 default:
1016 return NULL;
1017 }
1018}
1019
1020const char *get_lpddr2_io_width(u8 width_id)
1021{
1022 switch (width_id) {
1023 case LPDDR2_IO_WIDTH_8:
1024 return "x8";
1025 case LPDDR2_IO_WIDTH_16:
1026 return "x16";
1027 case LPDDR2_IO_WIDTH_32:
1028 return "x32";
1029 default:
1030 return NULL;
1031 }
1032}
1033
1034const char *get_lpddr2_manufacturer(u32 manufacturer)
1035{
1036 switch (manufacturer) {
1037 case LPDDR2_MANUFACTURER_SAMSUNG:
1038 return "Samsung";
1039 case LPDDR2_MANUFACTURER_QIMONDA:
1040 return "Qimonda";
1041 case LPDDR2_MANUFACTURER_ELPIDA:
1042 return "Elpida";
1043 case LPDDR2_MANUFACTURER_ETRON:
1044 return "Etron";
1045 case LPDDR2_MANUFACTURER_NANYA:
1046 return "Nanya";
1047 case LPDDR2_MANUFACTURER_HYNIX:
1048 return "Hynix";
1049 case LPDDR2_MANUFACTURER_MOSEL:
1050 return "Mosel";
1051 case LPDDR2_MANUFACTURER_WINBOND:
1052 return "Winbond";
1053 case LPDDR2_MANUFACTURER_ESMT:
1054 return "ESMT";
1055 case LPDDR2_MANUFACTURER_SPANSION:
1056 return "Spansion";
1057 case LPDDR2_MANUFACTURER_SST:
1058 return "SST";
1059 case LPDDR2_MANUFACTURER_ZMOS:
1060 return "ZMOS";
1061 case LPDDR2_MANUFACTURER_INTEL:
1062 return "Intel";
1063 case LPDDR2_MANUFACTURER_NUMONYX:
1064 return "Numonyx";
1065 case LPDDR2_MANUFACTURER_MICRON:
1066 return "Micron";
1067 default:
1068 return NULL;
1069 }
1070}
1071
1072static void display_sdram_details(u32 emif_nr, u32 cs,
1073 struct lpddr2_device_details *device)
1074{
1075 const char *mfg_str;
1076 const char *type_str;
1077 char density_str[10];
1078 u32 density;
1079
1080 debug("EMIF%d CS%d\t", emif_nr, cs);
1081
1082 if (!device) {
1083 debug("None\n");
1084 return;
1085 }
1086
1087 mfg_str = get_lpddr2_manufacturer(device->manufacturer);
1088 type_str = get_lpddr2_type(device->type);
1089
1090 density = lpddr2_density_2_size_in_mbytes[device->density];
1091 if ((density / 1024 * 1024) == density) {
1092 density /= 1024;
1093 sprintf(density_str, "%d GB", density);
1094 } else
1095 sprintf(density_str, "%d MB", density);
1096 if (mfg_str && type_str)
1097 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
1098}
1099
1100static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
1101 struct lpddr2_device_details *lpddr2_device)
1102{
1103 u32 mr = 0, temp;
1104
1105 mr = get_mr(base, cs, LPDDR2_MR0);
1106 if (mr > 0xFF) {
1107
1108 return 0;
1109 }
1110
1111 temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
1112 if (temp) {
1113
1114 return 0;
1115 }
1116 temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
1117
1118 if (temp) {
1119
1120 return 0;
1121 }
1122
1123 mr = get_mr(base, cs, LPDDR2_MR4);
1124 if (mr > 0xFF) {
1125
1126 return 0;
1127 }
1128
1129 mr = get_mr(base, cs, LPDDR2_MR5);
1130 if (mr > 0xFF) {
1131
1132 return 0;
1133 }
1134
1135 if (!get_lpddr2_manufacturer(mr)) {
1136
1137 return 0;
1138 }
1139 lpddr2_device->manufacturer = mr;
1140
1141 mr = get_mr(base, cs, LPDDR2_MR6);
1142 if (mr >= 0xFF) {
1143
1144 return 0;
1145 }
1146
1147 mr = get_mr(base, cs, LPDDR2_MR7);
1148 if (mr >= 0xFF) {
1149
1150 return 0;
1151 }
1152
1153 mr = get_mr(base, cs, LPDDR2_MR8);
1154 if (mr >= 0xFF) {
1155
1156 return 0;
1157 }
1158
1159 temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
1160 if (!get_lpddr2_type(temp)) {
1161
1162 return 0;
1163 }
1164 lpddr2_device->type = temp;
1165
1166 temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
1167 if (temp > LPDDR2_DENSITY_32Gb) {
1168
1169 return 0;
1170 }
1171 lpddr2_device->density = temp;
1172
1173 temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
1174 if (!get_lpddr2_io_width(temp)) {
1175
1176 return 0;
1177 }
1178 lpddr2_device->io_width = temp;
1179
1180
1181
1182
1183
1184 return 1;
1185}
1186
1187struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
1188 struct lpddr2_device_details *lpddr2_dev_details)
1189{
1190 u32 phy;
1191 u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
1192
1193 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1194
1195 if (!lpddr2_dev_details)
1196 return NULL;
1197
1198
1199 if (!(running_from_sdram() || warm_reset())) {
1200 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
1201 writel(phy, &emif->emif_ddr_phy_ctrl_1);
1202 }
1203
1204 if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1205 return NULL;
1206
1207 display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1208
1209 return lpddr2_dev_details;
1210}
1211#endif
1212
1213static void do_sdram_init(u32 base)
1214{
1215 const struct emif_regs *regs;
1216 u32 in_sdram, emif_nr;
1217
1218 debug(">>do_sdram_init() %x\n", base);
1219
1220 in_sdram = running_from_sdram();
1221 emif_nr = (base == EMIF1_BASE) ? 1 : 2;
1222
1223#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1224 emif_get_reg_dump(emif_nr, ®s);
1225 if (!regs) {
1226 debug("EMIF: reg dump not provided\n");
1227 return;
1228 }
1229#else
1230
1231
1232
1233
1234 struct emif_device_details dev_details;
1235 struct emif_regs calculated_regs;
1236
1237
1238
1239
1240
1241
1242 struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
1243 emif_reset_phy(base);
1244 dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
1245 &cs0_dev_details);
1246 dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
1247 &cs1_dev_details);
1248 emif_reset_phy(base);
1249
1250
1251 if (!dev_details.cs0_device_details &&
1252 !dev_details.cs1_device_details) {
1253 return;
1254 }
1255
1256
1257
1258
1259
1260
1261
1262 emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1263 &dev_details.cs1_device_timings);
1264
1265
1266 emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
1267 regs = &calculated_regs;
1268#endif
1269
1270
1271
1272
1273
1274
1275 if (!in_sdram && (!warm_reset() || is_dra7xx())) {
1276 if (emif_sdram_type(regs->sdram_config) ==
1277 EMIF_SDRAM_TYPE_LPDDR2)
1278 lpddr2_init(base, regs);
1279#ifndef CONFIG_OMAP44XX
1280 else
1281 ddr3_init(base, regs);
1282#endif
1283 }
1284#ifdef CONFIG_OMAP54XX
1285 if (warm_reset() && (emif_sdram_type(regs->sdram_config) ==
1286 EMIF_SDRAM_TYPE_DDR3) && !is_dra7xx()) {
1287 set_lpmode_selfrefresh(base);
1288 emif_reset_phy(base);
1289 omap5_ddr3_leveling(base, regs);
1290 }
1291#endif
1292
1293
1294 emif_update_timings(base, regs);
1295
1296 debug("<<do_sdram_init() %x\n", base);
1297}
1298
1299void emif_post_init_config(u32 base)
1300{
1301 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1302 u32 omap_rev = omap_revision();
1303
1304
1305 if (omap_rev == OMAP4430_ES2_0)
1306 emif_reset_phy(base);
1307
1308
1309 if (omap_rev == OMAP4430_ES1_0)
1310 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1311}
1312
1313void dmm_init(u32 base)
1314{
1315 const struct dmm_lisa_map_regs *lisa_map_regs;
1316 u32 i, section, valid;
1317
1318#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1319 emif_get_dmm_regs(&lisa_map_regs);
1320#else
1321 u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1322 u32 section_cnt, sys_addr;
1323 struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1324
1325 mapped_size = 0;
1326 section_cnt = 3;
1327 sys_addr = CONFIG_SYS_SDRAM_BASE;
1328 emif1_size = get_emif_mem_size(EMIF1_BASE);
1329 emif2_size = get_emif_mem_size(EMIF2_BASE);
1330 debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1331
1332 if (!emif1_size && !emif2_size)
1333 return;
1334
1335
1336 if (emif1_size && emif2_size) {
1337 mapped_size = min(emif1_size, emif2_size);
1338 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
1339 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
1340
1341 section_map |= (sys_addr >> 24) <<
1342 EMIF_SYS_ADDR_SHIFT;
1343 section_map |= get_dmm_section_size_map(mapped_size * 2)
1344 << EMIF_SYS_SIZE_SHIFT;
1345 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1346 emif1_size -= mapped_size;
1347 emif2_size -= mapped_size;
1348 sys_addr += (mapped_size * 2);
1349 section_cnt--;
1350 }
1351
1352
1353
1354
1355
1356 if (emif1_size) {
1357 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1358 section_map |= get_dmm_section_size_map(emif1_size)
1359 << EMIF_SYS_SIZE_SHIFT;
1360
1361 section_map |= (mapped_size >> 24) <<
1362 EMIF_SDRC_ADDR_SHIFT;
1363
1364 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
1365 section_cnt--;
1366 }
1367 if (emif2_size) {
1368 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1369 section_map |= get_dmm_section_size_map(emif2_size) <<
1370 EMIF_SYS_SIZE_SHIFT;
1371
1372 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
1373
1374 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
1375 section_cnt--;
1376 }
1377
1378 if (section_cnt == 2) {
1379
1380 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1381 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1382 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1383 } else {
1384
1385 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1386 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1387 }
1388
1389
1390 lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1391
1392 if (omap_revision() >= OMAP4460_ES1_0)
1393 lis_map_regs_calculated.is_ma_present = 1;
1394
1395 lisa_map_regs = &lis_map_regs_calculated;
1396#endif
1397 struct dmm_lisa_map_regs *hw_lisa_map_regs =
1398 (struct dmm_lisa_map_regs *)base;
1399
1400 writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1401 writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1402 writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1403 writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1404
1405 writel(lisa_map_regs->dmm_lisa_map_3,
1406 &hw_lisa_map_regs->dmm_lisa_map_3);
1407 writel(lisa_map_regs->dmm_lisa_map_2,
1408 &hw_lisa_map_regs->dmm_lisa_map_2);
1409 writel(lisa_map_regs->dmm_lisa_map_1,
1410 &hw_lisa_map_regs->dmm_lisa_map_1);
1411 writel(lisa_map_regs->dmm_lisa_map_0,
1412 &hw_lisa_map_regs->dmm_lisa_map_0);
1413
1414 if (lisa_map_regs->is_ma_present) {
1415 hw_lisa_map_regs =
1416 (struct dmm_lisa_map_regs *)MA_BASE;
1417
1418 writel(lisa_map_regs->dmm_lisa_map_3,
1419 &hw_lisa_map_regs->dmm_lisa_map_3);
1420 writel(lisa_map_regs->dmm_lisa_map_2,
1421 &hw_lisa_map_regs->dmm_lisa_map_2);
1422 writel(lisa_map_regs->dmm_lisa_map_1,
1423 &hw_lisa_map_regs->dmm_lisa_map_1);
1424 writel(lisa_map_regs->dmm_lisa_map_0,
1425 &hw_lisa_map_regs->dmm_lisa_map_0);
1426
1427 setbits_le32(MA_PRIORITY, MA_HIMEM_INTERLEAVE_UN_MASK);
1428 }
1429
1430
1431
1432
1433
1434
1435 emif1_enabled = 0;
1436 emif2_enabled = 0;
1437 for (i = 0; i < 4; i++) {
1438 section = __raw_readl(DMM_BASE + i*4);
1439 valid = (section & EMIF_SDRC_MAP_MASK) >>
1440 (EMIF_SDRC_MAP_SHIFT);
1441 if (valid == 3) {
1442 emif1_enabled = 1;
1443 emif2_enabled = 1;
1444 break;
1445 }
1446
1447 if (valid == 1)
1448 emif1_enabled = 1;
1449
1450 if (valid == 2)
1451 emif2_enabled = 1;
1452 }
1453}
1454
1455static void do_bug0039_workaround(u32 base)
1456{
1457 u32 val, i, clkctrl;
1458 struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
1459 const struct read_write_regs *bug_00339_regs;
1460 u32 iterations;
1461 u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
1462 u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;
1463
1464 if (is_dra7xx())
1465 phy_status_base++;
1466
1467 bug_00339_regs = get_bug_regs(&iterations);
1468
1469
1470 clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
1471 __raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);
1472
1473
1474 for (i = 0; i < iterations; i++) {
1475 val = __raw_readl(phy_status_base +
1476 bug_00339_regs[i].read_reg - 1);
1477
1478 __raw_writel(val, phy_ctrl_base +
1479 ((bug_00339_regs[i].write_reg - 1) << 1));
1480
1481 __raw_writel(val, phy_ctrl_base +
1482 (bug_00339_regs[i].write_reg << 1) - 1);
1483 }
1484
1485
1486 writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);
1487
1488 __raw_writel(clkctrl, (*prcm)->cm_memif_clkstctrl);
1489}
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508void sdram_init(void)
1509{
1510 u32 in_sdram, size_prog, size_detect;
1511 struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
1512 u32 sdram_type = emif_sdram_type(emif->emif_sdram_config);
1513
1514 debug(">>sdram_init()\n");
1515
1516 if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
1517 return;
1518
1519 in_sdram = running_from_sdram();
1520 debug("in_sdram = %d\n", in_sdram);
1521
1522 if (!in_sdram) {
1523 if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
1524 bypass_dpll((*prcm)->cm_clkmode_dpll_core);
1525 else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
1526 writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
1527 }
1528
1529 if (!in_sdram)
1530 dmm_init(DMM_BASE);
1531
1532 if (emif1_enabled)
1533 do_sdram_init(EMIF1_BASE);
1534
1535 if (emif2_enabled)
1536 do_sdram_init(EMIF2_BASE);
1537
1538 if (!(in_sdram || warm_reset())) {
1539 if (emif1_enabled)
1540 emif_post_init_config(EMIF1_BASE);
1541 if (emif2_enabled)
1542 emif_post_init_config(EMIF2_BASE);
1543 }
1544
1545
1546 if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
1547 freq_update_core();
1548
1549
1550 if (!in_sdram) {
1551 size_prog = omap_sdram_size();
1552 size_prog = log_2_n_round_down(size_prog);
1553 size_prog = (1 << size_prog);
1554
1555 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1556 size_prog);
1557
1558 if (size_detect != size_prog) {
1559 printf("SDRAM: identified size not same as expected"
1560 " size identified: %x expected: %x\n",
1561 size_detect,
1562 size_prog);
1563 } else
1564 debug("get_ram_size() successful");
1565 }
1566
1567#if defined(CONFIG_TI_SECURE_DEVICE)
1568
1569
1570
1571
1572 if (!in_sdram)
1573 if (0 != secure_emif_reserve())
1574 hang();
1575
1576
1577 if (0 != secure_emif_firewall_lock())
1578 hang();
1579#endif
1580
1581 if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
1582 (!in_sdram && !warm_reset()) && (!is_dra7xx())) {
1583 if (emif1_enabled)
1584 do_bug0039_workaround(EMIF1_BASE);
1585 if (emif2_enabled)
1586 do_bug0039_workaround(EMIF2_BASE);
1587 }
1588
1589 debug("<<sdram_init()\n");
1590}
1591