uboot/fs/ubifs/lprops.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Adrian Hunter
   8 *          Artem Bityutskiy (Битюцкий Артём)
   9 */
  10
  11/*
  12 * This file implements the functions that access LEB properties and their
  13 * categories. LEBs are categorized based on the needs of UBIFS, and the
  14 * categories are stored as either heaps or lists to provide a fast way of
  15 * finding a LEB in a particular category. For example, UBIFS may need to find
  16 * an empty LEB for the journal, or a very dirty LEB for garbage collection.
  17 */
  18
  19#ifdef __UBOOT__
  20#include <linux/err.h>
  21#endif
  22#include "ubifs.h"
  23
  24/**
  25 * get_heap_comp_val - get the LEB properties value for heap comparisons.
  26 * @lprops: LEB properties
  27 * @cat: LEB category
  28 */
  29static int get_heap_comp_val(struct ubifs_lprops *lprops, int cat)
  30{
  31        switch (cat) {
  32        case LPROPS_FREE:
  33                return lprops->free;
  34        case LPROPS_DIRTY_IDX:
  35                return lprops->free + lprops->dirty;
  36        default:
  37                return lprops->dirty;
  38        }
  39}
  40
  41/**
  42 * move_up_lpt_heap - move a new heap entry up as far as possible.
  43 * @c: UBIFS file-system description object
  44 * @heap: LEB category heap
  45 * @lprops: LEB properties to move
  46 * @cat: LEB category
  47 *
  48 * New entries to a heap are added at the bottom and then moved up until the
  49 * parent's value is greater.  In the case of LPT's category heaps, the value
  50 * is either the amount of free space or the amount of dirty space, depending
  51 * on the category.
  52 */
  53static void move_up_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
  54                             struct ubifs_lprops *lprops, int cat)
  55{
  56        int val1, val2, hpos;
  57
  58        hpos = lprops->hpos;
  59        if (!hpos)
  60                return; /* Already top of the heap */
  61        val1 = get_heap_comp_val(lprops, cat);
  62        /* Compare to parent and, if greater, move up the heap */
  63        do {
  64                int ppos = (hpos - 1) / 2;
  65
  66                val2 = get_heap_comp_val(heap->arr[ppos], cat);
  67                if (val2 >= val1)
  68                        return;
  69                /* Greater than parent so move up */
  70                heap->arr[ppos]->hpos = hpos;
  71                heap->arr[hpos] = heap->arr[ppos];
  72                heap->arr[ppos] = lprops;
  73                lprops->hpos = ppos;
  74                hpos = ppos;
  75        } while (hpos);
  76}
  77
  78/**
  79 * adjust_lpt_heap - move a changed heap entry up or down the heap.
  80 * @c: UBIFS file-system description object
  81 * @heap: LEB category heap
  82 * @lprops: LEB properties to move
  83 * @hpos: heap position of @lprops
  84 * @cat: LEB category
  85 *
  86 * Changed entries in a heap are moved up or down until the parent's value is
  87 * greater.  In the case of LPT's category heaps, the value is either the amount
  88 * of free space or the amount of dirty space, depending on the category.
  89 */
  90static void adjust_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
  91                            struct ubifs_lprops *lprops, int hpos, int cat)
  92{
  93        int val1, val2, val3, cpos;
  94
  95        val1 = get_heap_comp_val(lprops, cat);
  96        /* Compare to parent and, if greater than parent, move up the heap */
  97        if (hpos) {
  98                int ppos = (hpos - 1) / 2;
  99
 100                val2 = get_heap_comp_val(heap->arr[ppos], cat);
 101                if (val1 > val2) {
 102                        /* Greater than parent so move up */
 103                        while (1) {
 104                                heap->arr[ppos]->hpos = hpos;
 105                                heap->arr[hpos] = heap->arr[ppos];
 106                                heap->arr[ppos] = lprops;
 107                                lprops->hpos = ppos;
 108                                hpos = ppos;
 109                                if (!hpos)
 110                                        return;
 111                                ppos = (hpos - 1) / 2;
 112                                val2 = get_heap_comp_val(heap->arr[ppos], cat);
 113                                if (val1 <= val2)
 114                                        return;
 115                                /* Still greater than parent so keep going */
 116                        }
 117                }
 118        }
 119
 120        /* Not greater than parent, so compare to children */
 121        while (1) {
 122                /* Compare to left child */
 123                cpos = hpos * 2 + 1;
 124                if (cpos >= heap->cnt)
 125                        return;
 126                val2 = get_heap_comp_val(heap->arr[cpos], cat);
 127                if (val1 < val2) {
 128                        /* Less than left child, so promote biggest child */
 129                        if (cpos + 1 < heap->cnt) {
 130                                val3 = get_heap_comp_val(heap->arr[cpos + 1],
 131                                                         cat);
 132                                if (val3 > val2)
 133                                        cpos += 1; /* Right child is bigger */
 134                        }
 135                        heap->arr[cpos]->hpos = hpos;
 136                        heap->arr[hpos] = heap->arr[cpos];
 137                        heap->arr[cpos] = lprops;
 138                        lprops->hpos = cpos;
 139                        hpos = cpos;
 140                        continue;
 141                }
 142                /* Compare to right child */
 143                cpos += 1;
 144                if (cpos >= heap->cnt)
 145                        return;
 146                val3 = get_heap_comp_val(heap->arr[cpos], cat);
 147                if (val1 < val3) {
 148                        /* Less than right child, so promote right child */
 149                        heap->arr[cpos]->hpos = hpos;
 150                        heap->arr[hpos] = heap->arr[cpos];
 151                        heap->arr[cpos] = lprops;
 152                        lprops->hpos = cpos;
 153                        hpos = cpos;
 154                        continue;
 155                }
 156                return;
 157        }
 158}
 159
 160/**
 161 * add_to_lpt_heap - add LEB properties to a LEB category heap.
 162 * @c: UBIFS file-system description object
 163 * @lprops: LEB properties to add
 164 * @cat: LEB category
 165 *
 166 * This function returns %1 if @lprops is added to the heap for LEB category
 167 * @cat, otherwise %0 is returned because the heap is full.
 168 */
 169static int add_to_lpt_heap(struct ubifs_info *c, struct ubifs_lprops *lprops,
 170                           int cat)
 171{
 172        struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
 173
 174        if (heap->cnt >= heap->max_cnt) {
 175                const int b = LPT_HEAP_SZ / 2 - 1;
 176                int cpos, val1, val2;
 177
 178                /* Compare to some other LEB on the bottom of heap */
 179                /* Pick a position kind of randomly */
 180                cpos = (((size_t)lprops >> 4) & b) + b;
 181                ubifs_assert(cpos >= b);
 182                ubifs_assert(cpos < LPT_HEAP_SZ);
 183                ubifs_assert(cpos < heap->cnt);
 184
 185                val1 = get_heap_comp_val(lprops, cat);
 186                val2 = get_heap_comp_val(heap->arr[cpos], cat);
 187                if (val1 > val2) {
 188                        struct ubifs_lprops *lp;
 189
 190                        lp = heap->arr[cpos];
 191                        lp->flags &= ~LPROPS_CAT_MASK;
 192                        lp->flags |= LPROPS_UNCAT;
 193                        list_add(&lp->list, &c->uncat_list);
 194                        lprops->hpos = cpos;
 195                        heap->arr[cpos] = lprops;
 196                        move_up_lpt_heap(c, heap, lprops, cat);
 197                        dbg_check_heap(c, heap, cat, lprops->hpos);
 198                        return 1; /* Added to heap */
 199                }
 200                dbg_check_heap(c, heap, cat, -1);
 201                return 0; /* Not added to heap */
 202        } else {
 203                lprops->hpos = heap->cnt++;
 204                heap->arr[lprops->hpos] = lprops;
 205                move_up_lpt_heap(c, heap, lprops, cat);
 206                dbg_check_heap(c, heap, cat, lprops->hpos);
 207                return 1; /* Added to heap */
 208        }
 209}
 210
 211/**
 212 * remove_from_lpt_heap - remove LEB properties from a LEB category heap.
 213 * @c: UBIFS file-system description object
 214 * @lprops: LEB properties to remove
 215 * @cat: LEB category
 216 */
 217static void remove_from_lpt_heap(struct ubifs_info *c,
 218                                 struct ubifs_lprops *lprops, int cat)
 219{
 220        struct ubifs_lpt_heap *heap;
 221        int hpos = lprops->hpos;
 222
 223        heap = &c->lpt_heap[cat - 1];
 224        ubifs_assert(hpos >= 0 && hpos < heap->cnt);
 225        ubifs_assert(heap->arr[hpos] == lprops);
 226        heap->cnt -= 1;
 227        if (hpos < heap->cnt) {
 228                heap->arr[hpos] = heap->arr[heap->cnt];
 229                heap->arr[hpos]->hpos = hpos;
 230                adjust_lpt_heap(c, heap, heap->arr[hpos], hpos, cat);
 231        }
 232        dbg_check_heap(c, heap, cat, -1);
 233}
 234
 235/**
 236 * lpt_heap_replace - replace lprops in a category heap.
 237 * @c: UBIFS file-system description object
 238 * @old_lprops: LEB properties to replace
 239 * @new_lprops: LEB properties with which to replace
 240 * @cat: LEB category
 241 *
 242 * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
 243 * and the lprops that the pnode contains.  When that happens, references in
 244 * the category heaps to those lprops must be updated to point to the new
 245 * lprops.  This function does that.
 246 */
 247static void lpt_heap_replace(struct ubifs_info *c,
 248                             struct ubifs_lprops *old_lprops,
 249                             struct ubifs_lprops *new_lprops, int cat)
 250{
 251        struct ubifs_lpt_heap *heap;
 252        int hpos = new_lprops->hpos;
 253
 254        heap = &c->lpt_heap[cat - 1];
 255        heap->arr[hpos] = new_lprops;
 256}
 257
 258/**
 259 * ubifs_add_to_cat - add LEB properties to a category list or heap.
 260 * @c: UBIFS file-system description object
 261 * @lprops: LEB properties to add
 262 * @cat: LEB category to which to add
 263 *
 264 * LEB properties are categorized to enable fast find operations.
 265 */
 266void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops,
 267                      int cat)
 268{
 269        switch (cat) {
 270        case LPROPS_DIRTY:
 271        case LPROPS_DIRTY_IDX:
 272        case LPROPS_FREE:
 273                if (add_to_lpt_heap(c, lprops, cat))
 274                        break;
 275                /* No more room on heap so make it un-categorized */
 276                cat = LPROPS_UNCAT;
 277                /* Fall through */
 278        case LPROPS_UNCAT:
 279                list_add(&lprops->list, &c->uncat_list);
 280                break;
 281        case LPROPS_EMPTY:
 282                list_add(&lprops->list, &c->empty_list);
 283                break;
 284        case LPROPS_FREEABLE:
 285                list_add(&lprops->list, &c->freeable_list);
 286                c->freeable_cnt += 1;
 287                break;
 288        case LPROPS_FRDI_IDX:
 289                list_add(&lprops->list, &c->frdi_idx_list);
 290                break;
 291        default:
 292                ubifs_assert(0);
 293        }
 294
 295        lprops->flags &= ~LPROPS_CAT_MASK;
 296        lprops->flags |= cat;
 297        c->in_a_category_cnt += 1;
 298        ubifs_assert(c->in_a_category_cnt <= c->main_lebs);
 299}
 300
 301/**
 302 * ubifs_remove_from_cat - remove LEB properties from a category list or heap.
 303 * @c: UBIFS file-system description object
 304 * @lprops: LEB properties to remove
 305 * @cat: LEB category from which to remove
 306 *
 307 * LEB properties are categorized to enable fast find operations.
 308 */
 309static void ubifs_remove_from_cat(struct ubifs_info *c,
 310                                  struct ubifs_lprops *lprops, int cat)
 311{
 312        switch (cat) {
 313        case LPROPS_DIRTY:
 314        case LPROPS_DIRTY_IDX:
 315        case LPROPS_FREE:
 316                remove_from_lpt_heap(c, lprops, cat);
 317                break;
 318        case LPROPS_FREEABLE:
 319                c->freeable_cnt -= 1;
 320                ubifs_assert(c->freeable_cnt >= 0);
 321                /* Fall through */
 322        case LPROPS_UNCAT:
 323        case LPROPS_EMPTY:
 324        case LPROPS_FRDI_IDX:
 325                ubifs_assert(!list_empty(&lprops->list));
 326                list_del(&lprops->list);
 327                break;
 328        default:
 329                ubifs_assert(0);
 330        }
 331
 332        c->in_a_category_cnt -= 1;
 333        ubifs_assert(c->in_a_category_cnt >= 0);
 334}
 335
 336/**
 337 * ubifs_replace_cat - replace lprops in a category list or heap.
 338 * @c: UBIFS file-system description object
 339 * @old_lprops: LEB properties to replace
 340 * @new_lprops: LEB properties with which to replace
 341 *
 342 * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
 343 * and the lprops that the pnode contains. When that happens, references in
 344 * category lists and heaps must be replaced. This function does that.
 345 */
 346void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops,
 347                       struct ubifs_lprops *new_lprops)
 348{
 349        int cat;
 350
 351        cat = new_lprops->flags & LPROPS_CAT_MASK;
 352        switch (cat) {
 353        case LPROPS_DIRTY:
 354        case LPROPS_DIRTY_IDX:
 355        case LPROPS_FREE:
 356                lpt_heap_replace(c, old_lprops, new_lprops, cat);
 357                break;
 358        case LPROPS_UNCAT:
 359        case LPROPS_EMPTY:
 360        case LPROPS_FREEABLE:
 361        case LPROPS_FRDI_IDX:
 362                list_replace(&old_lprops->list, &new_lprops->list);
 363                break;
 364        default:
 365                ubifs_assert(0);
 366        }
 367}
 368
 369/**
 370 * ubifs_ensure_cat - ensure LEB properties are categorized.
 371 * @c: UBIFS file-system description object
 372 * @lprops: LEB properties
 373 *
 374 * A LEB may have fallen off of the bottom of a heap, and ended up as
 375 * un-categorized even though it has enough space for us now. If that is the
 376 * case this function will put the LEB back onto a heap.
 377 */
 378void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops)
 379{
 380        int cat = lprops->flags & LPROPS_CAT_MASK;
 381
 382        if (cat != LPROPS_UNCAT)
 383                return;
 384        cat = ubifs_categorize_lprops(c, lprops);
 385        if (cat == LPROPS_UNCAT)
 386                return;
 387        ubifs_remove_from_cat(c, lprops, LPROPS_UNCAT);
 388        ubifs_add_to_cat(c, lprops, cat);
 389}
 390
 391/**
 392 * ubifs_categorize_lprops - categorize LEB properties.
 393 * @c: UBIFS file-system description object
 394 * @lprops: LEB properties to categorize
 395 *
 396 * LEB properties are categorized to enable fast find operations. This function
 397 * returns the LEB category to which the LEB properties belong. Note however
 398 * that if the LEB category is stored as a heap and the heap is full, the
 399 * LEB properties may have their category changed to %LPROPS_UNCAT.
 400 */
 401int ubifs_categorize_lprops(const struct ubifs_info *c,
 402                            const struct ubifs_lprops *lprops)
 403{
 404        if (lprops->flags & LPROPS_TAKEN)
 405                return LPROPS_UNCAT;
 406
 407        if (lprops->free == c->leb_size) {
 408                ubifs_assert(!(lprops->flags & LPROPS_INDEX));
 409                return LPROPS_EMPTY;
 410        }
 411
 412        if (lprops->free + lprops->dirty == c->leb_size) {
 413                if (lprops->flags & LPROPS_INDEX)
 414                        return LPROPS_FRDI_IDX;
 415                else
 416                        return LPROPS_FREEABLE;
 417        }
 418
 419        if (lprops->flags & LPROPS_INDEX) {
 420                if (lprops->dirty + lprops->free >= c->min_idx_node_sz)
 421                        return LPROPS_DIRTY_IDX;
 422        } else {
 423                if (lprops->dirty >= c->dead_wm &&
 424                    lprops->dirty > lprops->free)
 425                        return LPROPS_DIRTY;
 426                if (lprops->free > 0)
 427                        return LPROPS_FREE;
 428        }
 429
 430        return LPROPS_UNCAT;
 431}
 432
 433/**
 434 * change_category - change LEB properties category.
 435 * @c: UBIFS file-system description object
 436 * @lprops: LEB properties to re-categorize
 437 *
 438 * LEB properties are categorized to enable fast find operations. When the LEB
 439 * properties change they must be re-categorized.
 440 */
 441static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops)
 442{
 443        int old_cat = lprops->flags & LPROPS_CAT_MASK;
 444        int new_cat = ubifs_categorize_lprops(c, lprops);
 445
 446        if (old_cat == new_cat) {
 447                struct ubifs_lpt_heap *heap;
 448
 449                /* lprops on a heap now must be moved up or down */
 450                if (new_cat < 1 || new_cat > LPROPS_HEAP_CNT)
 451                        return; /* Not on a heap */
 452                heap = &c->lpt_heap[new_cat - 1];
 453                adjust_lpt_heap(c, heap, lprops, lprops->hpos, new_cat);
 454        } else {
 455                ubifs_remove_from_cat(c, lprops, old_cat);
 456                ubifs_add_to_cat(c, lprops, new_cat);
 457        }
 458}
 459
 460/**
 461 * ubifs_calc_dark - calculate LEB dark space size.
 462 * @c: the UBIFS file-system description object
 463 * @spc: amount of free and dirty space in the LEB
 464 *
 465 * This function calculates and returns amount of dark space in an LEB which
 466 * has @spc bytes of free and dirty space.
 467 *
 468 * UBIFS is trying to account the space which might not be usable, and this
 469 * space is called "dark space". For example, if an LEB has only %512 free
 470 * bytes, it is dark space, because it cannot fit a large data node.
 471 */
 472int ubifs_calc_dark(const struct ubifs_info *c, int spc)
 473{
 474        ubifs_assert(!(spc & 7));
 475
 476        if (spc < c->dark_wm)
 477                return spc;
 478
 479        /*
 480         * If we have slightly more space then the dark space watermark, we can
 481         * anyway safely assume it we'll be able to write a node of the
 482         * smallest size there.
 483         */
 484        if (spc - c->dark_wm < MIN_WRITE_SZ)
 485                return spc - MIN_WRITE_SZ;
 486
 487        return c->dark_wm;
 488}
 489
 490/**
 491 * is_lprops_dirty - determine if LEB properties are dirty.
 492 * @c: the UBIFS file-system description object
 493 * @lprops: LEB properties to test
 494 */
 495static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops)
 496{
 497        struct ubifs_pnode *pnode;
 498        int pos;
 499
 500        pos = (lprops->lnum - c->main_first) & (UBIFS_LPT_FANOUT - 1);
 501        pnode = (struct ubifs_pnode *)container_of(lprops - pos,
 502                                                   struct ubifs_pnode,
 503                                                   lprops[0]);
 504        return !test_bit(COW_CNODE, &pnode->flags) &&
 505               test_bit(DIRTY_CNODE, &pnode->flags);
 506}
 507
 508/**
 509 * ubifs_change_lp - change LEB properties.
 510 * @c: the UBIFS file-system description object
 511 * @lp: LEB properties to change
 512 * @free: new free space amount
 513 * @dirty: new dirty space amount
 514 * @flags: new flags
 515 * @idx_gc_cnt: change to the count of @idx_gc list
 516 *
 517 * This function changes LEB properties (@free, @dirty or @flag). However, the
 518 * property which has the %LPROPS_NC value is not changed. Returns a pointer to
 519 * the updated LEB properties on success and a negative error code on failure.
 520 *
 521 * Note, the LEB properties may have had to be copied (due to COW) and
 522 * consequently the pointer returned may not be the same as the pointer
 523 * passed.
 524 */
 525const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c,
 526                                           const struct ubifs_lprops *lp,
 527                                           int free, int dirty, int flags,
 528                                           int idx_gc_cnt)
 529{
 530        /*
 531         * This is the only function that is allowed to change lprops, so we
 532         * discard the "const" qualifier.
 533         */
 534        struct ubifs_lprops *lprops = (struct ubifs_lprops *)lp;
 535
 536        dbg_lp("LEB %d, free %d, dirty %d, flags %d",
 537               lprops->lnum, free, dirty, flags);
 538
 539        ubifs_assert(mutex_is_locked(&c->lp_mutex));
 540        ubifs_assert(c->lst.empty_lebs >= 0 &&
 541                     c->lst.empty_lebs <= c->main_lebs);
 542        ubifs_assert(c->freeable_cnt >= 0);
 543        ubifs_assert(c->freeable_cnt <= c->main_lebs);
 544        ubifs_assert(c->lst.taken_empty_lebs >= 0);
 545        ubifs_assert(c->lst.taken_empty_lebs <= c->lst.empty_lebs);
 546        ubifs_assert(!(c->lst.total_free & 7) && !(c->lst.total_dirty & 7));
 547        ubifs_assert(!(c->lst.total_dead & 7) && !(c->lst.total_dark & 7));
 548        ubifs_assert(!(c->lst.total_used & 7));
 549        ubifs_assert(free == LPROPS_NC || free >= 0);
 550        ubifs_assert(dirty == LPROPS_NC || dirty >= 0);
 551
 552        if (!is_lprops_dirty(c, lprops)) {
 553                lprops = ubifs_lpt_lookup_dirty(c, lprops->lnum);
 554                if (IS_ERR(lprops))
 555                        return lprops;
 556        } else
 557                ubifs_assert(lprops == ubifs_lpt_lookup_dirty(c, lprops->lnum));
 558
 559        ubifs_assert(!(lprops->free & 7) && !(lprops->dirty & 7));
 560
 561        spin_lock(&c->space_lock);
 562        if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
 563                c->lst.taken_empty_lebs -= 1;
 564
 565        if (!(lprops->flags & LPROPS_INDEX)) {
 566                int old_spc;
 567
 568                old_spc = lprops->free + lprops->dirty;
 569                if (old_spc < c->dead_wm)
 570                        c->lst.total_dead -= old_spc;
 571                else
 572                        c->lst.total_dark -= ubifs_calc_dark(c, old_spc);
 573
 574                c->lst.total_used -= c->leb_size - old_spc;
 575        }
 576
 577        if (free != LPROPS_NC) {
 578                free = ALIGN(free, 8);
 579                c->lst.total_free += free - lprops->free;
 580
 581                /* Increase or decrease empty LEBs counter if needed */
 582                if (free == c->leb_size) {
 583                        if (lprops->free != c->leb_size)
 584                                c->lst.empty_lebs += 1;
 585                } else if (lprops->free == c->leb_size)
 586                        c->lst.empty_lebs -= 1;
 587                lprops->free = free;
 588        }
 589
 590        if (dirty != LPROPS_NC) {
 591                dirty = ALIGN(dirty, 8);
 592                c->lst.total_dirty += dirty - lprops->dirty;
 593                lprops->dirty = dirty;
 594        }
 595
 596        if (flags != LPROPS_NC) {
 597                /* Take care about indexing LEBs counter if needed */
 598                if ((lprops->flags & LPROPS_INDEX)) {
 599                        if (!(flags & LPROPS_INDEX))
 600                                c->lst.idx_lebs -= 1;
 601                } else if (flags & LPROPS_INDEX)
 602                        c->lst.idx_lebs += 1;
 603                lprops->flags = flags;
 604        }
 605
 606        if (!(lprops->flags & LPROPS_INDEX)) {
 607                int new_spc;
 608
 609                new_spc = lprops->free + lprops->dirty;
 610                if (new_spc < c->dead_wm)
 611                        c->lst.total_dead += new_spc;
 612                else
 613                        c->lst.total_dark += ubifs_calc_dark(c, new_spc);
 614
 615                c->lst.total_used += c->leb_size - new_spc;
 616        }
 617
 618        if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
 619                c->lst.taken_empty_lebs += 1;
 620
 621        change_category(c, lprops);
 622        c->idx_gc_cnt += idx_gc_cnt;
 623        spin_unlock(&c->space_lock);
 624        return lprops;
 625}
 626
 627/**
 628 * ubifs_get_lp_stats - get lprops statistics.
 629 * @c: UBIFS file-system description object
 630 * @st: return statistics
 631 */
 632void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *lst)
 633{
 634        spin_lock(&c->space_lock);
 635        memcpy(lst, &c->lst, sizeof(struct ubifs_lp_stats));
 636        spin_unlock(&c->space_lock);
 637}
 638
 639/**
 640 * ubifs_change_one_lp - change LEB properties.
 641 * @c: the UBIFS file-system description object
 642 * @lnum: LEB to change properties for
 643 * @free: amount of free space
 644 * @dirty: amount of dirty space
 645 * @flags_set: flags to set
 646 * @flags_clean: flags to clean
 647 * @idx_gc_cnt: change to the count of idx_gc list
 648 *
 649 * This function changes properties of LEB @lnum. It is a helper wrapper over
 650 * 'ubifs_change_lp()' which hides lprops get/release. The arguments are the
 651 * same as in case of 'ubifs_change_lp()'. Returns zero in case of success and
 652 * a negative error code in case of failure.
 653 */
 654int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
 655                        int flags_set, int flags_clean, int idx_gc_cnt)
 656{
 657        int err = 0, flags;
 658        const struct ubifs_lprops *lp;
 659
 660        ubifs_get_lprops(c);
 661
 662        lp = ubifs_lpt_lookup_dirty(c, lnum);
 663        if (IS_ERR(lp)) {
 664                err = PTR_ERR(lp);
 665                goto out;
 666        }
 667
 668        flags = (lp->flags | flags_set) & ~flags_clean;
 669        lp = ubifs_change_lp(c, lp, free, dirty, flags, idx_gc_cnt);
 670        if (IS_ERR(lp))
 671                err = PTR_ERR(lp);
 672
 673out:
 674        ubifs_release_lprops(c);
 675        if (err)
 676                ubifs_err(c, "cannot change properties of LEB %d, error %d",
 677                          lnum, err);
 678        return err;
 679}
 680
 681/**
 682 * ubifs_update_one_lp - update LEB properties.
 683 * @c: the UBIFS file-system description object
 684 * @lnum: LEB to change properties for
 685 * @free: amount of free space
 686 * @dirty: amount of dirty space to add
 687 * @flags_set: flags to set
 688 * @flags_clean: flags to clean
 689 *
 690 * This function is the same as 'ubifs_change_one_lp()' but @dirty is added to
 691 * current dirty space, not substitutes it.
 692 */
 693int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
 694                        int flags_set, int flags_clean)
 695{
 696        int err = 0, flags;
 697        const struct ubifs_lprops *lp;
 698
 699        ubifs_get_lprops(c);
 700
 701        lp = ubifs_lpt_lookup_dirty(c, lnum);
 702        if (IS_ERR(lp)) {
 703                err = PTR_ERR(lp);
 704                goto out;
 705        }
 706
 707        flags = (lp->flags | flags_set) & ~flags_clean;
 708        lp = ubifs_change_lp(c, lp, free, lp->dirty + dirty, flags, 0);
 709        if (IS_ERR(lp))
 710                err = PTR_ERR(lp);
 711
 712out:
 713        ubifs_release_lprops(c);
 714        if (err)
 715                ubifs_err(c, "cannot update properties of LEB %d, error %d",
 716                          lnum, err);
 717        return err;
 718}
 719
 720/**
 721 * ubifs_read_one_lp - read LEB properties.
 722 * @c: the UBIFS file-system description object
 723 * @lnum: LEB to read properties for
 724 * @lp: where to store read properties
 725 *
 726 * This helper function reads properties of a LEB @lnum and stores them in @lp.
 727 * Returns zero in case of success and a negative error code in case of
 728 * failure.
 729 */
 730int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp)
 731{
 732        int err = 0;
 733        const struct ubifs_lprops *lpp;
 734
 735        ubifs_get_lprops(c);
 736
 737        lpp = ubifs_lpt_lookup(c, lnum);
 738        if (IS_ERR(lpp)) {
 739                err = PTR_ERR(lpp);
 740                ubifs_err(c, "cannot read properties of LEB %d, error %d",
 741                          lnum, err);
 742                goto out;
 743        }
 744
 745        memcpy(lp, lpp, sizeof(struct ubifs_lprops));
 746
 747out:
 748        ubifs_release_lprops(c);
 749        return err;
 750}
 751
 752/**
 753 * ubifs_fast_find_free - try to find a LEB with free space quickly.
 754 * @c: the UBIFS file-system description object
 755 *
 756 * This function returns LEB properties for a LEB with free space or %NULL if
 757 * the function is unable to find a LEB quickly.
 758 */
 759const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c)
 760{
 761        struct ubifs_lprops *lprops;
 762        struct ubifs_lpt_heap *heap;
 763
 764        ubifs_assert(mutex_is_locked(&c->lp_mutex));
 765
 766        heap = &c->lpt_heap[LPROPS_FREE - 1];
 767        if (heap->cnt == 0)
 768                return NULL;
 769
 770        lprops = heap->arr[0];
 771        ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
 772        ubifs_assert(!(lprops->flags & LPROPS_INDEX));
 773        return lprops;
 774}
 775
 776/**
 777 * ubifs_fast_find_empty - try to find an empty LEB quickly.
 778 * @c: the UBIFS file-system description object
 779 *
 780 * This function returns LEB properties for an empty LEB or %NULL if the
 781 * function is unable to find an empty LEB quickly.
 782 */
 783const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c)
 784{
 785        struct ubifs_lprops *lprops;
 786
 787        ubifs_assert(mutex_is_locked(&c->lp_mutex));
 788
 789        if (list_empty(&c->empty_list))
 790                return NULL;
 791
 792        lprops = list_entry(c->empty_list.next, struct ubifs_lprops, list);
 793        ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
 794        ubifs_assert(!(lprops->flags & LPROPS_INDEX));
 795        ubifs_assert(lprops->free == c->leb_size);
 796        return lprops;
 797}
 798
 799/**
 800 * ubifs_fast_find_freeable - try to find a freeable LEB quickly.
 801 * @c: the UBIFS file-system description object
 802 *
 803 * This function returns LEB properties for a freeable LEB or %NULL if the
 804 * function is unable to find a freeable LEB quickly.
 805 */
 806const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c)
 807{
 808        struct ubifs_lprops *lprops;
 809
 810        ubifs_assert(mutex_is_locked(&c->lp_mutex));
 811
 812        if (list_empty(&c->freeable_list))
 813                return NULL;
 814
 815        lprops = list_entry(c->freeable_list.next, struct ubifs_lprops, list);
 816        ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
 817        ubifs_assert(!(lprops->flags & LPROPS_INDEX));
 818        ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
 819        ubifs_assert(c->freeable_cnt > 0);
 820        return lprops;
 821}
 822
 823/**
 824 * ubifs_fast_find_frdi_idx - try to find a freeable index LEB quickly.
 825 * @c: the UBIFS file-system description object
 826 *
 827 * This function returns LEB properties for a freeable index LEB or %NULL if the
 828 * function is unable to find a freeable index LEB quickly.
 829 */
 830const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c)
 831{
 832        struct ubifs_lprops *lprops;
 833
 834        ubifs_assert(mutex_is_locked(&c->lp_mutex));
 835
 836        if (list_empty(&c->frdi_idx_list))
 837                return NULL;
 838
 839        lprops = list_entry(c->frdi_idx_list.next, struct ubifs_lprops, list);
 840        ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
 841        ubifs_assert((lprops->flags & LPROPS_INDEX));
 842        ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
 843        return lprops;
 844}
 845
 846/*
 847 * Everything below is related to debugging.
 848 */
 849
 850/**
 851 * dbg_check_cats - check category heaps and lists.
 852 * @c: UBIFS file-system description object
 853 *
 854 * This function returns %0 on success and a negative error code on failure.
 855 */
 856int dbg_check_cats(struct ubifs_info *c)
 857{
 858        struct ubifs_lprops *lprops;
 859        struct list_head *pos;
 860        int i, cat;
 861
 862        if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
 863                return 0;
 864
 865        list_for_each_entry(lprops, &c->empty_list, list) {
 866                if (lprops->free != c->leb_size) {
 867                        ubifs_err(c, "non-empty LEB %d on empty list (free %d dirty %d flags %d)",
 868                                  lprops->lnum, lprops->free, lprops->dirty,
 869                                  lprops->flags);
 870                        return -EINVAL;
 871                }
 872                if (lprops->flags & LPROPS_TAKEN) {
 873                        ubifs_err(c, "taken LEB %d on empty list (free %d dirty %d flags %d)",
 874                                  lprops->lnum, lprops->free, lprops->dirty,
 875                                  lprops->flags);
 876                        return -EINVAL;
 877                }
 878        }
 879
 880        i = 0;
 881        list_for_each_entry(lprops, &c->freeable_list, list) {
 882                if (lprops->free + lprops->dirty != c->leb_size) {
 883                        ubifs_err(c, "non-freeable LEB %d on freeable list (free %d dirty %d flags %d)",
 884                                  lprops->lnum, lprops->free, lprops->dirty,
 885                                  lprops->flags);
 886                        return -EINVAL;
 887                }
 888                if (lprops->flags & LPROPS_TAKEN) {
 889                        ubifs_err(c, "taken LEB %d on freeable list (free %d dirty %d flags %d)",
 890                                  lprops->lnum, lprops->free, lprops->dirty,
 891                                  lprops->flags);
 892                        return -EINVAL;
 893                }
 894                i += 1;
 895        }
 896        if (i != c->freeable_cnt) {
 897                ubifs_err(c, "freeable list count %d expected %d", i,
 898                          c->freeable_cnt);
 899                return -EINVAL;
 900        }
 901
 902        i = 0;
 903        list_for_each(pos, &c->idx_gc)
 904                i += 1;
 905        if (i != c->idx_gc_cnt) {
 906                ubifs_err(c, "idx_gc list count %d expected %d", i,
 907                          c->idx_gc_cnt);
 908                return -EINVAL;
 909        }
 910
 911        list_for_each_entry(lprops, &c->frdi_idx_list, list) {
 912                if (lprops->free + lprops->dirty != c->leb_size) {
 913                        ubifs_err(c, "non-freeable LEB %d on frdi_idx list (free %d dirty %d flags %d)",
 914                                  lprops->lnum, lprops->free, lprops->dirty,
 915                                  lprops->flags);
 916                        return -EINVAL;
 917                }
 918                if (lprops->flags & LPROPS_TAKEN) {
 919                        ubifs_err(c, "taken LEB %d on frdi_idx list (free %d dirty %d flags %d)",
 920                                  lprops->lnum, lprops->free, lprops->dirty,
 921                                  lprops->flags);
 922                        return -EINVAL;
 923                }
 924                if (!(lprops->flags & LPROPS_INDEX)) {
 925                        ubifs_err(c, "non-index LEB %d on frdi_idx list (free %d dirty %d flags %d)",
 926                                  lprops->lnum, lprops->free, lprops->dirty,
 927                                  lprops->flags);
 928                        return -EINVAL;
 929                }
 930        }
 931
 932        for (cat = 1; cat <= LPROPS_HEAP_CNT; cat++) {
 933                struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
 934
 935                for (i = 0; i < heap->cnt; i++) {
 936                        lprops = heap->arr[i];
 937                        if (!lprops) {
 938                                ubifs_err(c, "null ptr in LPT heap cat %d", cat);
 939                                return -EINVAL;
 940                        }
 941                        if (lprops->hpos != i) {
 942                                ubifs_err(c, "bad ptr in LPT heap cat %d", cat);
 943                                return -EINVAL;
 944                        }
 945                        if (lprops->flags & LPROPS_TAKEN) {
 946                                ubifs_err(c, "taken LEB in LPT heap cat %d", cat);
 947                                return -EINVAL;
 948                        }
 949                }
 950        }
 951
 952        return 0;
 953}
 954
 955void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat,
 956                    int add_pos)
 957{
 958        int i = 0, j, err = 0;
 959
 960        if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
 961                return;
 962
 963        for (i = 0; i < heap->cnt; i++) {
 964                struct ubifs_lprops *lprops = heap->arr[i];
 965                struct ubifs_lprops *lp;
 966
 967                if (i != add_pos)
 968                        if ((lprops->flags & LPROPS_CAT_MASK) != cat) {
 969                                err = 1;
 970                                goto out;
 971                        }
 972                if (lprops->hpos != i) {
 973                        err = 2;
 974                        goto out;
 975                }
 976                lp = ubifs_lpt_lookup(c, lprops->lnum);
 977                if (IS_ERR(lp)) {
 978                        err = 3;
 979                        goto out;
 980                }
 981                if (lprops != lp) {
 982                        ubifs_err(c, "lprops %zx lp %zx lprops->lnum %d lp->lnum %d",
 983                                  (size_t)lprops, (size_t)lp, lprops->lnum,
 984                                  lp->lnum);
 985                        err = 4;
 986                        goto out;
 987                }
 988                for (j = 0; j < i; j++) {
 989                        lp = heap->arr[j];
 990                        if (lp == lprops) {
 991                                err = 5;
 992                                goto out;
 993                        }
 994                        if (lp->lnum == lprops->lnum) {
 995                                err = 6;
 996                                goto out;
 997                        }
 998                }
 999        }
1000out:
1001        if (err) {
1002                ubifs_err(c, "failed cat %d hpos %d err %d", cat, i, err);
1003                dump_stack();
1004                ubifs_dump_heap(c, heap, cat);
1005        }
1006}
1007
1008/**
1009 * scan_check_cb - scan callback.
1010 * @c: the UBIFS file-system description object
1011 * @lp: LEB properties to scan
1012 * @in_tree: whether the LEB properties are in main memory
1013 * @lst: lprops statistics to update
1014 *
1015 * This function returns a code that indicates whether the scan should continue
1016 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
1017 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
1018 * (%LPT_SCAN_STOP).
1019 */
1020static int scan_check_cb(struct ubifs_info *c,
1021                         const struct ubifs_lprops *lp, int in_tree,
1022                         struct ubifs_lp_stats *lst)
1023{
1024        struct ubifs_scan_leb *sleb;
1025        struct ubifs_scan_node *snod;
1026        int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty, ret;
1027        void *buf = NULL;
1028
1029        cat = lp->flags & LPROPS_CAT_MASK;
1030        if (cat != LPROPS_UNCAT) {
1031                cat = ubifs_categorize_lprops(c, lp);
1032                if (cat != (lp->flags & LPROPS_CAT_MASK)) {
1033                        ubifs_err(c, "bad LEB category %d expected %d",
1034                                  (lp->flags & LPROPS_CAT_MASK), cat);
1035                        return -EINVAL;
1036                }
1037        }
1038
1039        /* Check lp is on its category list (if it has one) */
1040        if (in_tree) {
1041                struct list_head *list = NULL;
1042
1043                switch (cat) {
1044                case LPROPS_EMPTY:
1045                        list = &c->empty_list;
1046                        break;
1047                case LPROPS_FREEABLE:
1048                        list = &c->freeable_list;
1049                        break;
1050                case LPROPS_FRDI_IDX:
1051                        list = &c->frdi_idx_list;
1052                        break;
1053                case LPROPS_UNCAT:
1054                        list = &c->uncat_list;
1055                        break;
1056                }
1057                if (list) {
1058                        struct ubifs_lprops *lprops;
1059                        int found = 0;
1060
1061                        list_for_each_entry(lprops, list, list) {
1062                                if (lprops == lp) {
1063                                        found = 1;
1064                                        break;
1065                                }
1066                        }
1067                        if (!found) {
1068                                ubifs_err(c, "bad LPT list (category %d)", cat);
1069                                return -EINVAL;
1070                        }
1071                }
1072        }
1073
1074        /* Check lp is on its category heap (if it has one) */
1075        if (in_tree && cat > 0 && cat <= LPROPS_HEAP_CNT) {
1076                struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
1077
1078                if ((lp->hpos != -1 && heap->arr[lp->hpos]->lnum != lnum) ||
1079                    lp != heap->arr[lp->hpos]) {
1080                        ubifs_err(c, "bad LPT heap (category %d)", cat);
1081                        return -EINVAL;
1082                }
1083        }
1084
1085        buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1086        if (!buf)
1087                return -ENOMEM;
1088
1089        /*
1090         * After an unclean unmount, empty and freeable LEBs
1091         * may contain garbage - do not scan them.
1092         */
1093        if (lp->free == c->leb_size) {
1094                lst->empty_lebs += 1;
1095                lst->total_free += c->leb_size;
1096                lst->total_dark += ubifs_calc_dark(c, c->leb_size);
1097                return LPT_SCAN_CONTINUE;
1098        }
1099        if (lp->free + lp->dirty == c->leb_size &&
1100            !(lp->flags & LPROPS_INDEX)) {
1101                lst->total_free  += lp->free;
1102                lst->total_dirty += lp->dirty;
1103                lst->total_dark  +=  ubifs_calc_dark(c, c->leb_size);
1104                return LPT_SCAN_CONTINUE;
1105        }
1106
1107        sleb = ubifs_scan(c, lnum, 0, buf, 0);
1108        if (IS_ERR(sleb)) {
1109                ret = PTR_ERR(sleb);
1110                if (ret == -EUCLEAN) {
1111                        ubifs_dump_lprops(c);
1112                        ubifs_dump_budg(c, &c->bi);
1113                }
1114                goto out;
1115        }
1116
1117        is_idx = -1;
1118        list_for_each_entry(snod, &sleb->nodes, list) {
1119                int found, level = 0;
1120
1121                cond_resched();
1122
1123                if (is_idx == -1)
1124                        is_idx = (snod->type == UBIFS_IDX_NODE) ? 1 : 0;
1125
1126                if (is_idx && snod->type != UBIFS_IDX_NODE) {
1127                        ubifs_err(c, "indexing node in data LEB %d:%d",
1128                                  lnum, snod->offs);
1129                        goto out_destroy;
1130                }
1131
1132                if (snod->type == UBIFS_IDX_NODE) {
1133                        struct ubifs_idx_node *idx = snod->node;
1134
1135                        key_read(c, ubifs_idx_key(c, idx), &snod->key);
1136                        level = le16_to_cpu(idx->level);
1137                }
1138
1139                found = ubifs_tnc_has_node(c, &snod->key, level, lnum,
1140                                           snod->offs, is_idx);
1141                if (found) {
1142                        if (found < 0)
1143                                goto out_destroy;
1144                        used += ALIGN(snod->len, 8);
1145                }
1146        }
1147
1148        free = c->leb_size - sleb->endpt;
1149        dirty = sleb->endpt - used;
1150
1151        if (free > c->leb_size || free < 0 || dirty > c->leb_size ||
1152            dirty < 0) {
1153                ubifs_err(c, "bad calculated accounting for LEB %d: free %d, dirty %d",
1154                          lnum, free, dirty);
1155                goto out_destroy;
1156        }
1157
1158        if (lp->free + lp->dirty == c->leb_size &&
1159            free + dirty == c->leb_size)
1160                if ((is_idx && !(lp->flags & LPROPS_INDEX)) ||
1161                    (!is_idx && free == c->leb_size) ||
1162                    lp->free == c->leb_size) {
1163                        /*
1164                         * Empty or freeable LEBs could contain index
1165                         * nodes from an uncompleted commit due to an
1166                         * unclean unmount. Or they could be empty for
1167                         * the same reason. Or it may simply not have been
1168                         * unmapped.
1169                         */
1170                        free = lp->free;
1171                        dirty = lp->dirty;
1172                        is_idx = 0;
1173                    }
1174
1175        if (is_idx && lp->free + lp->dirty == free + dirty &&
1176            lnum != c->ihead_lnum) {
1177                /*
1178                 * After an unclean unmount, an index LEB could have a different
1179                 * amount of free space than the value recorded by lprops. That
1180                 * is because the in-the-gaps method may use free space or
1181                 * create free space (as a side-effect of using ubi_leb_change
1182                 * and not writing the whole LEB). The incorrect free space
1183                 * value is not a problem because the index is only ever
1184                 * allocated empty LEBs, so there will never be an attempt to
1185                 * write to the free space at the end of an index LEB - except
1186                 * by the in-the-gaps method for which it is not a problem.
1187                 */
1188                free = lp->free;
1189                dirty = lp->dirty;
1190        }
1191
1192        if (lp->free != free || lp->dirty != dirty)
1193                goto out_print;
1194
1195        if (is_idx && !(lp->flags & LPROPS_INDEX)) {
1196                if (free == c->leb_size)
1197                        /* Free but not unmapped LEB, it's fine */
1198                        is_idx = 0;
1199                else {
1200                        ubifs_err(c, "indexing node without indexing flag");
1201                        goto out_print;
1202                }
1203        }
1204
1205        if (!is_idx && (lp->flags & LPROPS_INDEX)) {
1206                ubifs_err(c, "data node with indexing flag");
1207                goto out_print;
1208        }
1209
1210        if (free == c->leb_size)
1211                lst->empty_lebs += 1;
1212
1213        if (is_idx)
1214                lst->idx_lebs += 1;
1215
1216        if (!(lp->flags & LPROPS_INDEX))
1217                lst->total_used += c->leb_size - free - dirty;
1218        lst->total_free += free;
1219        lst->total_dirty += dirty;
1220
1221        if (!(lp->flags & LPROPS_INDEX)) {
1222                int spc = free + dirty;
1223
1224                if (spc < c->dead_wm)
1225                        lst->total_dead += spc;
1226                else
1227                        lst->total_dark += ubifs_calc_dark(c, spc);
1228        }
1229
1230        ubifs_scan_destroy(sleb);
1231        vfree(buf);
1232        return LPT_SCAN_CONTINUE;
1233
1234out_print:
1235        ubifs_err(c, "bad accounting of LEB %d: free %d, dirty %d flags %#x, should be free %d, dirty %d",
1236                  lnum, lp->free, lp->dirty, lp->flags, free, dirty);
1237        ubifs_dump_leb(c, lnum);
1238out_destroy:
1239        ubifs_scan_destroy(sleb);
1240        ret = -EINVAL;
1241out:
1242        vfree(buf);
1243        return ret;
1244}
1245
1246/**
1247 * dbg_check_lprops - check all LEB properties.
1248 * @c: UBIFS file-system description object
1249 *
1250 * This function checks all LEB properties and makes sure they are all correct.
1251 * It returns zero if everything is fine, %-EINVAL if there is an inconsistency
1252 * and other negative error codes in case of other errors. This function is
1253 * called while the file system is locked (because of commit start), so no
1254 * additional locking is required. Note that locking the LPT mutex would cause
1255 * a circular lock dependency with the TNC mutex.
1256 */
1257int dbg_check_lprops(struct ubifs_info *c)
1258{
1259        int i, err;
1260        struct ubifs_lp_stats lst;
1261
1262        if (!dbg_is_chk_lprops(c))
1263                return 0;
1264
1265        /*
1266         * As we are going to scan the media, the write buffers have to be
1267         * synchronized.
1268         */
1269        for (i = 0; i < c->jhead_cnt; i++) {
1270                err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1271                if (err)
1272                        return err;
1273        }
1274
1275        memset(&lst, 0, sizeof(struct ubifs_lp_stats));
1276        err = ubifs_lpt_scan_nolock(c, c->main_first, c->leb_cnt - 1,
1277                                    (ubifs_lpt_scan_callback)scan_check_cb,
1278                                    &lst);
1279        if (err && err != -ENOSPC)
1280                goto out;
1281
1282        if (lst.empty_lebs != c->lst.empty_lebs ||
1283            lst.idx_lebs != c->lst.idx_lebs ||
1284            lst.total_free != c->lst.total_free ||
1285            lst.total_dirty != c->lst.total_dirty ||
1286            lst.total_used != c->lst.total_used) {
1287                ubifs_err(c, "bad overall accounting");
1288                ubifs_err(c, "calculated: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld",
1289                          lst.empty_lebs, lst.idx_lebs, lst.total_free,
1290                          lst.total_dirty, lst.total_used);
1291                ubifs_err(c, "read from lprops: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld",
1292                          c->lst.empty_lebs, c->lst.idx_lebs, c->lst.total_free,
1293                          c->lst.total_dirty, c->lst.total_used);
1294                err = -EINVAL;
1295                goto out;
1296        }
1297
1298        if (lst.total_dead != c->lst.total_dead ||
1299            lst.total_dark != c->lst.total_dark) {
1300                ubifs_err(c, "bad dead/dark space accounting");
1301                ubifs_err(c, "calculated: total_dead %lld, total_dark %lld",
1302                          lst.total_dead, lst.total_dark);
1303                ubifs_err(c, "read from lprops: total_dead %lld, total_dark %lld",
1304                          c->lst.total_dead, c->lst.total_dark);
1305                err = -EINVAL;
1306                goto out;
1307        }
1308
1309        err = dbg_check_cats(c);
1310out:
1311        return err;
1312}
1313