uboot/include/linux/kernel.h
<<
>>
Prefs
   1#ifndef _LINUX_KERNEL_H
   2#define _LINUX_KERNEL_H
   3
   4
   5#include <linux/types.h>
   6
   7#define USHRT_MAX       ((u16)(~0U))
   8#define SHRT_MAX        ((s16)(USHRT_MAX>>1))
   9#define SHRT_MIN        ((s16)(-SHRT_MAX - 1))
  10#define INT_MAX         ((int)(~0U>>1))
  11#define INT_MIN         (-INT_MAX - 1)
  12#define UINT_MAX        (~0U)
  13#define LONG_MAX        ((long)(~0UL>>1))
  14#define LONG_MIN        (-LONG_MAX - 1)
  15#define ULONG_MAX       (~0UL)
  16#define LLONG_MAX       ((long long)(~0ULL>>1))
  17#define LLONG_MIN       (-LLONG_MAX - 1)
  18#define ULLONG_MAX      (~0ULL)
  19#ifndef SIZE_MAX
  20#define SIZE_MAX        (~(size_t)0)
  21#endif
  22
  23#define U8_MAX          ((u8)~0U)
  24#define S8_MAX          ((s8)(U8_MAX>>1))
  25#define S8_MIN          ((s8)(-S8_MAX - 1))
  26#define U16_MAX         ((u16)~0U)
  27#define S16_MAX         ((s16)(U16_MAX>>1))
  28#define S16_MIN         ((s16)(-S16_MAX - 1))
  29#define U32_MAX         ((u32)~0U)
  30#define S32_MAX         ((s32)(U32_MAX>>1))
  31#define S32_MIN         ((s32)(-S32_MAX - 1))
  32#define U64_MAX         ((u64)~0ULL)
  33#define S64_MAX         ((s64)(U64_MAX>>1))
  34#define S64_MIN         ((s64)(-S64_MAX - 1))
  35
  36/* Aliases defined by stdint.h */
  37#define UINT32_MAX      U32_MAX
  38#define UINT64_MAX      U64_MAX
  39
  40#define STACK_MAGIC     0xdeadbeef
  41
  42#define REPEAT_BYTE(x)  ((~0ul / 0xff) * (x))
  43
  44#define ALIGN(x,a)              __ALIGN_MASK((x),(typeof(x))(a)-1)
  45#define ALIGN_DOWN(x, a)        ALIGN((x) - ((a) - 1), (a))
  46#define __ALIGN_MASK(x,mask)    (((x)+(mask))&~(mask))
  47#define PTR_ALIGN(p, a)         ((typeof(p))ALIGN((unsigned long)(p), (a)))
  48#define IS_ALIGNED(x, a)                (((x) & ((typeof(x))(a) - 1)) == 0)
  49
  50#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
  51
  52/*
  53 * This looks more complex than it should be. But we need to
  54 * get the type for the ~ right in round_down (it needs to be
  55 * as wide as the result!), and we want to evaluate the macro
  56 * arguments just once each.
  57 */
  58#define __round_mask(x, y) ((__typeof__(x))((y)-1))
  59#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
  60#define round_down(x, y) ((x) & ~__round_mask(x, y))
  61
  62#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
  63#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
  64
  65#define DIV_ROUND_DOWN_ULL(ll, d) \
  66        ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
  67
  68#define DIV_ROUND_UP_ULL(ll, d)         DIV_ROUND_DOWN_ULL((ll) + (d) - 1, (d))
  69
  70#if BITS_PER_LONG == 32
  71# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
  72#else
  73# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
  74#endif
  75
  76/* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */
  77#define roundup(x, y) (                                 \
  78{                                                       \
  79        const typeof(y) __y = y;                        \
  80        (((x) + (__y - 1)) / __y) * __y;                \
  81}                                                       \
  82)
  83#define rounddown(x, y) (                               \
  84{                                                       \
  85        typeof(x) __x = (x);                            \
  86        __x - (__x % (y));                              \
  87}                                                       \
  88)
  89
  90/*
  91 * Divide positive or negative dividend by positive divisor and round
  92 * to closest integer. Result is undefined for negative divisors and
  93 * for negative dividends if the divisor variable type is unsigned.
  94 */
  95#define DIV_ROUND_CLOSEST(x, divisor)(                  \
  96{                                                       \
  97        typeof(x) __x = x;                              \
  98        typeof(divisor) __d = divisor;                  \
  99        (((typeof(x))-1) > 0 ||                         \
 100         ((typeof(divisor))-1) > 0 || (__x) > 0) ?      \
 101                (((__x) + ((__d) / 2)) / (__d)) :       \
 102                (((__x) - ((__d) / 2)) / (__d));        \
 103}                                                       \
 104)
 105/*
 106 * Same as above but for u64 dividends. divisor must be a 32-bit
 107 * number.
 108 */
 109#define DIV_ROUND_CLOSEST_ULL(x, divisor)(              \
 110{                                                       \
 111        typeof(divisor) __d = divisor;                  \
 112        unsigned long long _tmp = (x) + (__d) / 2;      \
 113        do_div(_tmp, __d);                              \
 114        _tmp;                                           \
 115}                                                       \
 116)
 117
 118/*
 119 * Multiplies an integer by a fraction, while avoiding unnecessary
 120 * overflow or loss of precision.
 121 */
 122#define mult_frac(x, numer, denom)(                     \
 123{                                                       \
 124        typeof(x) quot = (x) / (denom);                 \
 125        typeof(x) rem  = (x) % (denom);                 \
 126        (quot * (numer)) + ((rem * (numer)) / (denom)); \
 127}                                                       \
 128)
 129
 130/**
 131 * upper_32_bits - return bits 32-63 of a number
 132 * @n: the number we're accessing
 133 *
 134 * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
 135 * the "right shift count >= width of type" warning when that quantity is
 136 * 32-bits.
 137 */
 138#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
 139
 140/**
 141 * lower_32_bits - return bits 0-31 of a number
 142 * @n: the number we're accessing
 143 */
 144#define lower_32_bits(n) ((u32)(n))
 145
 146/*
 147 * abs() handles unsigned and signed longs, ints, shorts and chars.  For all
 148 * input types abs() returns a signed long.
 149 * abs() should not be used for 64-bit types (s64, u64, long long) - use abs64()
 150 * for those.
 151 */
 152#define abs(x) ({                                               \
 153                long ret;                                       \
 154                if (sizeof(x) == sizeof(long)) {                \
 155                        long __x = (x);                         \
 156                        ret = (__x < 0) ? -__x : __x;           \
 157                } else {                                        \
 158                        int __x = (x);                          \
 159                        ret = (__x < 0) ? -__x : __x;           \
 160                }                                               \
 161                ret;                                            \
 162        })
 163
 164#define abs64(x) ({                             \
 165                s64 __x = (x);                  \
 166                (__x < 0) ? -__x : __x;         \
 167        })
 168
 169/*
 170 * min()/max()/clamp() macros that also do
 171 * strict type-checking.. See the
 172 * "unnecessary" pointer comparison.
 173 */
 174#define min(x, y) ({                            \
 175        typeof(x) _min1 = (x);                  \
 176        typeof(y) _min2 = (y);                  \
 177        (void) (&_min1 == &_min2);              \
 178        _min1 < _min2 ? _min1 : _min2; })
 179
 180#define max(x, y) ({                            \
 181        typeof(x) _max1 = (x);                  \
 182        typeof(y) _max2 = (y);                  \
 183        (void) (&_max1 == &_max2);              \
 184        _max1 > _max2 ? _max1 : _max2; })
 185
 186#define min3(x, y, z) min((typeof(x))min(x, y), z)
 187#define max3(x, y, z) max((typeof(x))max(x, y), z)
 188
 189/**
 190 * min_not_zero - return the minimum that is _not_ zero, unless both are zero
 191 * @x: value1
 192 * @y: value2
 193 */
 194#define min_not_zero(x, y) ({                   \
 195        typeof(x) __x = (x);                    \
 196        typeof(y) __y = (y);                    \
 197        __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
 198
 199/**
 200 * clamp - return a value clamped to a given range with strict typechecking
 201 * @val: current value
 202 * @lo: lowest allowable value
 203 * @hi: highest allowable value
 204 *
 205 * This macro does strict typechecking of lo/hi to make sure they are of the
 206 * same type as val.  See the unnecessary pointer comparisons.
 207 */
 208#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
 209
 210/*
 211 * ..and if you can't take the strict
 212 * types, you can specify one yourself.
 213 *
 214 * Or not use min/max/clamp at all, of course.
 215 */
 216#define min_t(type, x, y) ({                    \
 217        type __min1 = (x);                      \
 218        type __min2 = (y);                      \
 219        __min1 < __min2 ? __min1: __min2; })
 220
 221#define max_t(type, x, y) ({                    \
 222        type __max1 = (x);                      \
 223        type __max2 = (y);                      \
 224        __max1 > __max2 ? __max1: __max2; })
 225
 226/**
 227 * clamp_t - return a value clamped to a given range using a given type
 228 * @type: the type of variable to use
 229 * @val: current value
 230 * @lo: minimum allowable value
 231 * @hi: maximum allowable value
 232 *
 233 * This macro does no typechecking and uses temporary variables of type
 234 * 'type' to make all the comparisons.
 235 */
 236#define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
 237
 238/**
 239 * clamp_val - return a value clamped to a given range using val's type
 240 * @val: current value
 241 * @lo: minimum allowable value
 242 * @hi: maximum allowable value
 243 *
 244 * This macro does no typechecking and uses temporary variables of whatever
 245 * type the input argument 'val' is.  This is useful when val is an unsigned
 246 * type and min and max are literals that will otherwise be assigned a signed
 247 * integer type.
 248 */
 249#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
 250
 251
 252/*
 253 * swap - swap value of @a and @b
 254 */
 255#define swap(a, b) \
 256        do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
 257
 258/**
 259 * container_of - cast a member of a structure out to the containing structure
 260 * @ptr:        the pointer to the member.
 261 * @type:       the type of the container struct this is embedded in.
 262 * @member:     the name of the member within the struct.
 263 *
 264 */
 265#define container_of(ptr, type, member) ({                      \
 266        const typeof( ((type *)0)->member ) *__mptr = (ptr);    \
 267        (type *)( (char *)__mptr - offsetof(type,member) );})
 268
 269#endif
 270