uboot/drivers/mtd/ubi/wl.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Copyright (c) International Business Machines Corp., 2006
   4 *
   5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
   6 */
   7
   8/*
   9 * UBI wear-leveling sub-system.
  10 *
  11 * This sub-system is responsible for wear-leveling. It works in terms of
  12 * physical eraseblocks and erase counters and knows nothing about logical
  13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
  14 * eraseblocks are of two types - used and free. Used physical eraseblocks are
  15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
  16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
  17 *
  18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
  19 * header. The rest of the physical eraseblock contains only %0xFF bytes.
  20 *
  21 * When physical eraseblocks are returned to the WL sub-system by means of the
  22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
  23 * done asynchronously in context of the per-UBI device background thread,
  24 * which is also managed by the WL sub-system.
  25 *
  26 * The wear-leveling is ensured by means of moving the contents of used
  27 * physical eraseblocks with low erase counter to free physical eraseblocks
  28 * with high erase counter.
  29 *
  30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
  31 * bad.
  32 *
  33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
  34 * in a physical eraseblock, it has to be moved. Technically this is the same
  35 * as moving it for wear-leveling reasons.
  36 *
  37 * As it was said, for the UBI sub-system all physical eraseblocks are either
  38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
  39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
  40 * RB-trees, as well as (temporarily) in the @wl->pq queue.
  41 *
  42 * When the WL sub-system returns a physical eraseblock, the physical
  43 * eraseblock is protected from being moved for some "time". For this reason,
  44 * the physical eraseblock is not directly moved from the @wl->free tree to the
  45 * @wl->used tree. There is a protection queue in between where this
  46 * physical eraseblock is temporarily stored (@wl->pq).
  47 *
  48 * All this protection stuff is needed because:
  49 *  o we don't want to move physical eraseblocks just after we have given them
  50 *    to the user; instead, we first want to let users fill them up with data;
  51 *
  52 *  o there is a chance that the user will put the physical eraseblock very
  53 *    soon, so it makes sense not to move it for some time, but wait.
  54 *
  55 * Physical eraseblocks stay protected only for limited time. But the "time" is
  56 * measured in erase cycles in this case. This is implemented with help of the
  57 * protection queue. Eraseblocks are put to the tail of this queue when they
  58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
  59 * head of the queue on each erase operation (for any eraseblock). So the
  60 * length of the queue defines how may (global) erase cycles PEBs are protected.
  61 *
  62 * To put it differently, each physical eraseblock has 2 main states: free and
  63 * used. The former state corresponds to the @wl->free tree. The latter state
  64 * is split up on several sub-states:
  65 * o the WL movement is allowed (@wl->used tree);
  66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
  67 *   erroneous - e.g., there was a read error;
  68 * o the WL movement is temporarily prohibited (@wl->pq queue);
  69 * o scrubbing is needed (@wl->scrub tree).
  70 *
  71 * Depending on the sub-state, wear-leveling entries of the used physical
  72 * eraseblocks may be kept in one of those structures.
  73 *
  74 * Note, in this implementation, we keep a small in-RAM object for each physical
  75 * eraseblock. This is surely not a scalable solution. But it appears to be good
  76 * enough for moderately large flashes and it is simple. In future, one may
  77 * re-work this sub-system and make it more scalable.
  78 *
  79 * At the moment this sub-system does not utilize the sequence number, which
  80 * was introduced relatively recently. But it would be wise to do this because
  81 * the sequence number of a logical eraseblock characterizes how old is it. For
  82 * example, when we move a PEB with low erase counter, and we need to pick the
  83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
  84 * pick target PEB with an average EC if our PEB is not very "old". This is a
  85 * room for future re-works of the WL sub-system.
  86 */
  87
  88#ifndef __UBOOT__
  89#include <linux/slab.h>
  90#include <linux/crc32.h>
  91#include <linux/freezer.h>
  92#include <linux/kthread.h>
  93#else
  94#include <ubi_uboot.h>
  95#endif
  96
  97#include "ubi.h"
  98#include "wl.h"
  99
 100/* Number of physical eraseblocks reserved for wear-leveling purposes */
 101#define WL_RESERVED_PEBS 1
 102
 103/*
 104 * Maximum difference between two erase counters. If this threshold is
 105 * exceeded, the WL sub-system starts moving data from used physical
 106 * eraseblocks with low erase counter to free physical eraseblocks with high
 107 * erase counter.
 108 */
 109#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
 110
 111/*
 112 * When a physical eraseblock is moved, the WL sub-system has to pick the target
 113 * physical eraseblock to move to. The simplest way would be just to pick the
 114 * one with the highest erase counter. But in certain workloads this could lead
 115 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
 116 * situation when the picked physical eraseblock is constantly erased after the
 117 * data is written to it. So, we have a constant which limits the highest erase
 118 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
 119 * does not pick eraseblocks with erase counter greater than the lowest erase
 120 * counter plus %WL_FREE_MAX_DIFF.
 121 */
 122#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
 123
 124/*
 125 * Maximum number of consecutive background thread failures which is enough to
 126 * switch to read-only mode.
 127 */
 128#define WL_MAX_FAILURES 32
 129
 130static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
 131static int self_check_in_wl_tree(const struct ubi_device *ubi,
 132                                 struct ubi_wl_entry *e, struct rb_root *root);
 133static int self_check_in_pq(const struct ubi_device *ubi,
 134                            struct ubi_wl_entry *e);
 135
 136/**
 137 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
 138 * @e: the wear-leveling entry to add
 139 * @root: the root of the tree
 140 *
 141 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
 142 * the @ubi->used and @ubi->free RB-trees.
 143 */
 144static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
 145{
 146        struct rb_node **p, *parent = NULL;
 147
 148        p = &root->rb_node;
 149        while (*p) {
 150                struct ubi_wl_entry *e1;
 151
 152                parent = *p;
 153                e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
 154
 155                if (e->ec < e1->ec)
 156                        p = &(*p)->rb_left;
 157                else if (e->ec > e1->ec)
 158                        p = &(*p)->rb_right;
 159                else {
 160                        ubi_assert(e->pnum != e1->pnum);
 161                        if (e->pnum < e1->pnum)
 162                                p = &(*p)->rb_left;
 163                        else
 164                                p = &(*p)->rb_right;
 165                }
 166        }
 167
 168        rb_link_node(&e->u.rb, parent, p);
 169        rb_insert_color(&e->u.rb, root);
 170}
 171
 172/**
 173 * wl_tree_destroy - destroy a wear-leveling entry.
 174 * @ubi: UBI device description object
 175 * @e: the wear-leveling entry to add
 176 *
 177 * This function destroys a wear leveling entry and removes
 178 * the reference from the lookup table.
 179 */
 180static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
 181{
 182        ubi->lookuptbl[e->pnum] = NULL;
 183        kmem_cache_free(ubi_wl_entry_slab, e);
 184}
 185
 186/**
 187 * do_work - do one pending work.
 188 * @ubi: UBI device description object
 189 *
 190 * This function returns zero in case of success and a negative error code in
 191 * case of failure.
 192 */
 193static int do_work(struct ubi_device *ubi)
 194{
 195        int err;
 196        struct ubi_work *wrk;
 197
 198        cond_resched();
 199
 200        /*
 201         * @ubi->work_sem is used to synchronize with the workers. Workers take
 202         * it in read mode, so many of them may be doing works at a time. But
 203         * the queue flush code has to be sure the whole queue of works is
 204         * done, and it takes the mutex in write mode.
 205         */
 206        down_read(&ubi->work_sem);
 207        spin_lock(&ubi->wl_lock);
 208        if (list_empty(&ubi->works)) {
 209                spin_unlock(&ubi->wl_lock);
 210                up_read(&ubi->work_sem);
 211                return 0;
 212        }
 213
 214        wrk = list_entry(ubi->works.next, struct ubi_work, list);
 215        list_del(&wrk->list);
 216        ubi->works_count -= 1;
 217        ubi_assert(ubi->works_count >= 0);
 218        spin_unlock(&ubi->wl_lock);
 219
 220        /*
 221         * Call the worker function. Do not touch the work structure
 222         * after this call as it will have been freed or reused by that
 223         * time by the worker function.
 224         */
 225        err = wrk->func(ubi, wrk, 0);
 226        if (err)
 227                ubi_err(ubi, "work failed with error code %d", err);
 228        up_read(&ubi->work_sem);
 229
 230        return err;
 231}
 232
 233/**
 234 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
 235 * @e: the wear-leveling entry to check
 236 * @root: the root of the tree
 237 *
 238 * This function returns non-zero if @e is in the @root RB-tree and zero if it
 239 * is not.
 240 */
 241static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
 242{
 243        struct rb_node *p;
 244
 245        p = root->rb_node;
 246        while (p) {
 247                struct ubi_wl_entry *e1;
 248
 249                e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
 250
 251                if (e->pnum == e1->pnum) {
 252                        ubi_assert(e == e1);
 253                        return 1;
 254                }
 255
 256                if (e->ec < e1->ec)
 257                        p = p->rb_left;
 258                else if (e->ec > e1->ec)
 259                        p = p->rb_right;
 260                else {
 261                        ubi_assert(e->pnum != e1->pnum);
 262                        if (e->pnum < e1->pnum)
 263                                p = p->rb_left;
 264                        else
 265                                p = p->rb_right;
 266                }
 267        }
 268
 269        return 0;
 270}
 271
 272/**
 273 * prot_queue_add - add physical eraseblock to the protection queue.
 274 * @ubi: UBI device description object
 275 * @e: the physical eraseblock to add
 276 *
 277 * This function adds @e to the tail of the protection queue @ubi->pq, where
 278 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
 279 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
 280 * be locked.
 281 */
 282static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
 283{
 284        int pq_tail = ubi->pq_head - 1;
 285
 286        if (pq_tail < 0)
 287                pq_tail = UBI_PROT_QUEUE_LEN - 1;
 288        ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
 289        list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
 290        dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
 291}
 292
 293/**
 294 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
 295 * @ubi: UBI device description object
 296 * @root: the RB-tree where to look for
 297 * @diff: maximum possible difference from the smallest erase counter
 298 *
 299 * This function looks for a wear leveling entry with erase counter closest to
 300 * min + @diff, where min is the smallest erase counter.
 301 */
 302static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
 303                                          struct rb_root *root, int diff)
 304{
 305        struct rb_node *p;
 306        struct ubi_wl_entry *e, *prev_e = NULL;
 307        int max;
 308
 309        e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
 310        max = e->ec + diff;
 311
 312        p = root->rb_node;
 313        while (p) {
 314                struct ubi_wl_entry *e1;
 315
 316                e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
 317                if (e1->ec >= max)
 318                        p = p->rb_left;
 319                else {
 320                        p = p->rb_right;
 321                        prev_e = e;
 322                        e = e1;
 323                }
 324        }
 325
 326        /* If no fastmap has been written and this WL entry can be used
 327         * as anchor PEB, hold it back and return the second best WL entry
 328         * such that fastmap can use the anchor PEB later. */
 329        if (prev_e && !ubi->fm_disabled &&
 330            !ubi->fm && e->pnum < UBI_FM_MAX_START)
 331                return prev_e;
 332
 333        return e;
 334}
 335
 336/**
 337 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
 338 * @ubi: UBI device description object
 339 * @root: the RB-tree where to look for
 340 *
 341 * This function looks for a wear leveling entry with medium erase counter,
 342 * but not greater or equivalent than the lowest erase counter plus
 343 * %WL_FREE_MAX_DIFF/2.
 344 */
 345static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
 346                                               struct rb_root *root)
 347{
 348        struct ubi_wl_entry *e, *first, *last;
 349
 350        first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
 351        last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
 352
 353        if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
 354                e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
 355
 356                /* If no fastmap has been written and this WL entry can be used
 357                 * as anchor PEB, hold it back and return the second best
 358                 * WL entry such that fastmap can use the anchor PEB later. */
 359                e = may_reserve_for_fm(ubi, e, root);
 360        } else
 361                e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
 362
 363        return e;
 364}
 365
 366/**
 367 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
 368 * refill_wl_user_pool().
 369 * @ubi: UBI device description object
 370 *
 371 * This function returns a a wear leveling entry in case of success and
 372 * NULL in case of failure.
 373 */
 374static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
 375{
 376        struct ubi_wl_entry *e;
 377
 378        e = find_mean_wl_entry(ubi, &ubi->free);
 379        if (!e) {
 380                ubi_err(ubi, "no free eraseblocks");
 381                return NULL;
 382        }
 383
 384        self_check_in_wl_tree(ubi, e, &ubi->free);
 385
 386        /*
 387         * Move the physical eraseblock to the protection queue where it will
 388         * be protected from being moved for some time.
 389         */
 390        rb_erase(&e->u.rb, &ubi->free);
 391        ubi->free_count--;
 392        dbg_wl("PEB %d EC %d", e->pnum, e->ec);
 393
 394        return e;
 395}
 396
 397/**
 398 * prot_queue_del - remove a physical eraseblock from the protection queue.
 399 * @ubi: UBI device description object
 400 * @pnum: the physical eraseblock to remove
 401 *
 402 * This function deletes PEB @pnum from the protection queue and returns zero
 403 * in case of success and %-ENODEV if the PEB was not found.
 404 */
 405static int prot_queue_del(struct ubi_device *ubi, int pnum)
 406{
 407        struct ubi_wl_entry *e;
 408
 409        e = ubi->lookuptbl[pnum];
 410        if (!e)
 411                return -ENODEV;
 412
 413        if (self_check_in_pq(ubi, e))
 414                return -ENODEV;
 415
 416        list_del(&e->u.list);
 417        dbg_wl("deleted PEB %d from the protection queue", e->pnum);
 418        return 0;
 419}
 420
 421/**
 422 * sync_erase - synchronously erase a physical eraseblock.
 423 * @ubi: UBI device description object
 424 * @e: the the physical eraseblock to erase
 425 * @torture: if the physical eraseblock has to be tortured
 426 *
 427 * This function returns zero in case of success and a negative error code in
 428 * case of failure.
 429 */
 430static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 431                      int torture)
 432{
 433        int err;
 434        struct ubi_ec_hdr *ec_hdr;
 435        unsigned long long ec = e->ec;
 436
 437        dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
 438
 439        err = self_check_ec(ubi, e->pnum, e->ec);
 440        if (err)
 441                return -EINVAL;
 442
 443        ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
 444        if (!ec_hdr)
 445                return -ENOMEM;
 446
 447        err = ubi_io_sync_erase(ubi, e->pnum, torture);
 448        if (err < 0)
 449                goto out_free;
 450
 451        ec += err;
 452        if (ec > UBI_MAX_ERASECOUNTER) {
 453                /*
 454                 * Erase counter overflow. Upgrade UBI and use 64-bit
 455                 * erase counters internally.
 456                 */
 457                ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
 458                        e->pnum, ec);
 459                err = -EINVAL;
 460                goto out_free;
 461        }
 462
 463        dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
 464
 465        ec_hdr->ec = cpu_to_be64(ec);
 466
 467        err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
 468        if (err)
 469                goto out_free;
 470
 471        e->ec = ec;
 472        spin_lock(&ubi->wl_lock);
 473        if (e->ec > ubi->max_ec)
 474                ubi->max_ec = e->ec;
 475        spin_unlock(&ubi->wl_lock);
 476
 477out_free:
 478        kfree(ec_hdr);
 479        return err;
 480}
 481
 482/**
 483 * serve_prot_queue - check if it is time to stop protecting PEBs.
 484 * @ubi: UBI device description object
 485 *
 486 * This function is called after each erase operation and removes PEBs from the
 487 * tail of the protection queue. These PEBs have been protected for long enough
 488 * and should be moved to the used tree.
 489 */
 490static void serve_prot_queue(struct ubi_device *ubi)
 491{
 492        struct ubi_wl_entry *e, *tmp;
 493        int count;
 494
 495        /*
 496         * There may be several protected physical eraseblock to remove,
 497         * process them all.
 498         */
 499repeat:
 500        count = 0;
 501        spin_lock(&ubi->wl_lock);
 502        list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
 503                dbg_wl("PEB %d EC %d protection over, move to used tree",
 504                        e->pnum, e->ec);
 505
 506                list_del(&e->u.list);
 507                wl_tree_add(e, &ubi->used);
 508                if (count++ > 32) {
 509                        /*
 510                         * Let's be nice and avoid holding the spinlock for
 511                         * too long.
 512                         */
 513                        spin_unlock(&ubi->wl_lock);
 514                        cond_resched();
 515                        goto repeat;
 516                }
 517        }
 518
 519        ubi->pq_head += 1;
 520        if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
 521                ubi->pq_head = 0;
 522        ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
 523        spin_unlock(&ubi->wl_lock);
 524}
 525
 526#ifdef __UBOOT__
 527void ubi_do_worker(struct ubi_device *ubi)
 528{
 529        int err;
 530
 531        if (list_empty(&ubi->works) || ubi->ro_mode ||
 532            !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi))
 533                return;
 534
 535        spin_lock(&ubi->wl_lock);
 536        while (!list_empty(&ubi->works)) {
 537                /*
 538                 * call do_work, which executes exactly one work form the queue,
 539                 * including removeing it from the work queue.
 540                 */
 541                spin_unlock(&ubi->wl_lock);
 542                err = do_work(ubi);
 543                spin_lock(&ubi->wl_lock);
 544                if (err) {
 545                        ubi_err(ubi, "%s: work failed with error code %d",
 546                                ubi->bgt_name, err);
 547                }
 548        }
 549        spin_unlock(&ubi->wl_lock);
 550}
 551#endif
 552
 553/**
 554 * __schedule_ubi_work - schedule a work.
 555 * @ubi: UBI device description object
 556 * @wrk: the work to schedule
 557 *
 558 * This function adds a work defined by @wrk to the tail of the pending works
 559 * list. Can only be used if ubi->work_sem is already held in read mode!
 560 */
 561static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
 562{
 563        spin_lock(&ubi->wl_lock);
 564        list_add_tail(&wrk->list, &ubi->works);
 565        ubi_assert(ubi->works_count >= 0);
 566        ubi->works_count += 1;
 567#ifndef __UBOOT__
 568        if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
 569                wake_up_process(ubi->bgt_thread);
 570#endif
 571        spin_unlock(&ubi->wl_lock);
 572}
 573
 574/**
 575 * schedule_ubi_work - schedule a work.
 576 * @ubi: UBI device description object
 577 * @wrk: the work to schedule
 578 *
 579 * This function adds a work defined by @wrk to the tail of the pending works
 580 * list.
 581 */
 582static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
 583{
 584        down_read(&ubi->work_sem);
 585        __schedule_ubi_work(ubi, wrk);
 586        up_read(&ubi->work_sem);
 587}
 588
 589static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
 590                        int shutdown);
 591
 592/**
 593 * schedule_erase - schedule an erase work.
 594 * @ubi: UBI device description object
 595 * @e: the WL entry of the physical eraseblock to erase
 596 * @vol_id: the volume ID that last used this PEB
 597 * @lnum: the last used logical eraseblock number for the PEB
 598 * @torture: if the physical eraseblock has to be tortured
 599 *
 600 * This function returns zero in case of success and a %-ENOMEM in case of
 601 * failure.
 602 */
 603static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 604                          int vol_id, int lnum, int torture)
 605{
 606        struct ubi_work *wl_wrk;
 607
 608        ubi_assert(e);
 609
 610        dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
 611               e->pnum, e->ec, torture);
 612
 613        wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
 614        if (!wl_wrk)
 615                return -ENOMEM;
 616
 617        wl_wrk->func = &erase_worker;
 618        wl_wrk->e = e;
 619        wl_wrk->vol_id = vol_id;
 620        wl_wrk->lnum = lnum;
 621        wl_wrk->torture = torture;
 622
 623        schedule_ubi_work(ubi, wl_wrk);
 624
 625#ifdef __UBOOT__
 626        ubi_do_worker(ubi);
 627#endif
 628        return 0;
 629}
 630
 631/**
 632 * do_sync_erase - run the erase worker synchronously.
 633 * @ubi: UBI device description object
 634 * @e: the WL entry of the physical eraseblock to erase
 635 * @vol_id: the volume ID that last used this PEB
 636 * @lnum: the last used logical eraseblock number for the PEB
 637 * @torture: if the physical eraseblock has to be tortured
 638 *
 639 */
 640static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 641                         int vol_id, int lnum, int torture)
 642{
 643        struct ubi_work *wl_wrk;
 644
 645        dbg_wl("sync erase of PEB %i", e->pnum);
 646
 647        wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
 648        if (!wl_wrk)
 649                return -ENOMEM;
 650
 651        wl_wrk->e = e;
 652        wl_wrk->vol_id = vol_id;
 653        wl_wrk->lnum = lnum;
 654        wl_wrk->torture = torture;
 655
 656        return erase_worker(ubi, wl_wrk, 0);
 657}
 658
 659/**
 660 * wear_leveling_worker - wear-leveling worker function.
 661 * @ubi: UBI device description object
 662 * @wrk: the work object
 663 * @shutdown: non-zero if the worker has to free memory and exit
 664 * because the WL-subsystem is shutting down
 665 *
 666 * This function copies a more worn out physical eraseblock to a less worn out
 667 * one. Returns zero in case of success and a negative error code in case of
 668 * failure.
 669 */
 670static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
 671                                int shutdown)
 672{
 673        int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
 674        int vol_id = -1, lnum = -1;
 675#ifdef CONFIG_MTD_UBI_FASTMAP
 676        int anchor = wrk->anchor;
 677#endif
 678        struct ubi_wl_entry *e1, *e2;
 679        struct ubi_vid_hdr *vid_hdr;
 680
 681        kfree(wrk);
 682        if (shutdown)
 683                return 0;
 684
 685        vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
 686        if (!vid_hdr)
 687                return -ENOMEM;
 688
 689        mutex_lock(&ubi->move_mutex);
 690        spin_lock(&ubi->wl_lock);
 691        ubi_assert(!ubi->move_from && !ubi->move_to);
 692        ubi_assert(!ubi->move_to_put);
 693
 694        if (!ubi->free.rb_node ||
 695            (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
 696                /*
 697                 * No free physical eraseblocks? Well, they must be waiting in
 698                 * the queue to be erased. Cancel movement - it will be
 699                 * triggered again when a free physical eraseblock appears.
 700                 *
 701                 * No used physical eraseblocks? They must be temporarily
 702                 * protected from being moved. They will be moved to the
 703                 * @ubi->used tree later and the wear-leveling will be
 704                 * triggered again.
 705                 */
 706                dbg_wl("cancel WL, a list is empty: free %d, used %d",
 707                       !ubi->free.rb_node, !ubi->used.rb_node);
 708                goto out_cancel;
 709        }
 710
 711#ifdef CONFIG_MTD_UBI_FASTMAP
 712        /* Check whether we need to produce an anchor PEB */
 713        if (!anchor)
 714                anchor = !anchor_pebs_avalible(&ubi->free);
 715
 716        if (anchor) {
 717                e1 = find_anchor_wl_entry(&ubi->used);
 718                if (!e1)
 719                        goto out_cancel;
 720                e2 = get_peb_for_wl(ubi);
 721                if (!e2)
 722                        goto out_cancel;
 723
 724                self_check_in_wl_tree(ubi, e1, &ubi->used);
 725                rb_erase(&e1->u.rb, &ubi->used);
 726                dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
 727        } else if (!ubi->scrub.rb_node) {
 728#else
 729        if (!ubi->scrub.rb_node) {
 730#endif
 731                /*
 732                 * Now pick the least worn-out used physical eraseblock and a
 733                 * highly worn-out free physical eraseblock. If the erase
 734                 * counters differ much enough, start wear-leveling.
 735                 */
 736                e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
 737                e2 = get_peb_for_wl(ubi);
 738                if (!e2)
 739                        goto out_cancel;
 740
 741                if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
 742                        dbg_wl("no WL needed: min used EC %d, max free EC %d",
 743                               e1->ec, e2->ec);
 744
 745                        /* Give the unused PEB back */
 746                        wl_tree_add(e2, &ubi->free);
 747                        ubi->free_count++;
 748                        goto out_cancel;
 749                }
 750                self_check_in_wl_tree(ubi, e1, &ubi->used);
 751                rb_erase(&e1->u.rb, &ubi->used);
 752                dbg_wl("move PEB %d EC %d to PEB %d EC %d",
 753                       e1->pnum, e1->ec, e2->pnum, e2->ec);
 754        } else {
 755                /* Perform scrubbing */
 756                scrubbing = 1;
 757                e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
 758                e2 = get_peb_for_wl(ubi);
 759                if (!e2)
 760                        goto out_cancel;
 761
 762                self_check_in_wl_tree(ubi, e1, &ubi->scrub);
 763                rb_erase(&e1->u.rb, &ubi->scrub);
 764                dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
 765        }
 766
 767        ubi->move_from = e1;
 768        ubi->move_to = e2;
 769        spin_unlock(&ubi->wl_lock);
 770
 771        /*
 772         * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
 773         * We so far do not know which logical eraseblock our physical
 774         * eraseblock (@e1) belongs to. We have to read the volume identifier
 775         * header first.
 776         *
 777         * Note, we are protected from this PEB being unmapped and erased. The
 778         * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
 779         * which is being moved was unmapped.
 780         */
 781
 782        err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
 783        if (err && err != UBI_IO_BITFLIPS) {
 784                if (err == UBI_IO_FF) {
 785                        /*
 786                         * We are trying to move PEB without a VID header. UBI
 787                         * always write VID headers shortly after the PEB was
 788                         * given, so we have a situation when it has not yet
 789                         * had a chance to write it, because it was preempted.
 790                         * So add this PEB to the protection queue so far,
 791                         * because presumably more data will be written there
 792                         * (including the missing VID header), and then we'll
 793                         * move it.
 794                         */
 795                        dbg_wl("PEB %d has no VID header", e1->pnum);
 796                        protect = 1;
 797                        goto out_not_moved;
 798                } else if (err == UBI_IO_FF_BITFLIPS) {
 799                        /*
 800                         * The same situation as %UBI_IO_FF, but bit-flips were
 801                         * detected. It is better to schedule this PEB for
 802                         * scrubbing.
 803                         */
 804                        dbg_wl("PEB %d has no VID header but has bit-flips",
 805                               e1->pnum);
 806                        scrubbing = 1;
 807                        goto out_not_moved;
 808                }
 809
 810                ubi_err(ubi, "error %d while reading VID header from PEB %d",
 811                        err, e1->pnum);
 812                goto out_error;
 813        }
 814
 815        vol_id = be32_to_cpu(vid_hdr->vol_id);
 816        lnum = be32_to_cpu(vid_hdr->lnum);
 817
 818        err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
 819        if (err) {
 820                if (err == MOVE_CANCEL_RACE) {
 821                        /*
 822                         * The LEB has not been moved because the volume is
 823                         * being deleted or the PEB has been put meanwhile. We
 824                         * should prevent this PEB from being selected for
 825                         * wear-leveling movement again, so put it to the
 826                         * protection queue.
 827                         */
 828                        protect = 1;
 829                        goto out_not_moved;
 830                }
 831                if (err == MOVE_RETRY) {
 832                        scrubbing = 1;
 833                        goto out_not_moved;
 834                }
 835                if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
 836                    err == MOVE_TARGET_RD_ERR) {
 837                        /*
 838                         * Target PEB had bit-flips or write error - torture it.
 839                         */
 840                        torture = 1;
 841                        goto out_not_moved;
 842                }
 843
 844                if (err == MOVE_SOURCE_RD_ERR) {
 845                        /*
 846                         * An error happened while reading the source PEB. Do
 847                         * not switch to R/O mode in this case, and give the
 848                         * upper layers a possibility to recover from this,
 849                         * e.g. by unmapping corresponding LEB. Instead, just
 850                         * put this PEB to the @ubi->erroneous list to prevent
 851                         * UBI from trying to move it over and over again.
 852                         */
 853                        if (ubi->erroneous_peb_count > ubi->max_erroneous) {
 854                                ubi_err(ubi, "too many erroneous eraseblocks (%d)",
 855                                        ubi->erroneous_peb_count);
 856                                goto out_error;
 857                        }
 858                        erroneous = 1;
 859                        goto out_not_moved;
 860                }
 861
 862                if (err < 0)
 863                        goto out_error;
 864
 865                ubi_assert(0);
 866        }
 867
 868        /* The PEB has been successfully moved */
 869        if (scrubbing)
 870                ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
 871                        e1->pnum, vol_id, lnum, e2->pnum);
 872        ubi_free_vid_hdr(ubi, vid_hdr);
 873
 874        spin_lock(&ubi->wl_lock);
 875        if (!ubi->move_to_put) {
 876                wl_tree_add(e2, &ubi->used);
 877                e2 = NULL;
 878        }
 879        ubi->move_from = ubi->move_to = NULL;
 880        ubi->move_to_put = ubi->wl_scheduled = 0;
 881        spin_unlock(&ubi->wl_lock);
 882
 883        err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
 884        if (err) {
 885                if (e2)
 886                        wl_entry_destroy(ubi, e2);
 887                goto out_ro;
 888        }
 889
 890        if (e2) {
 891                /*
 892                 * Well, the target PEB was put meanwhile, schedule it for
 893                 * erasure.
 894                 */
 895                dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
 896                       e2->pnum, vol_id, lnum);
 897                err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
 898                if (err)
 899                        goto out_ro;
 900        }
 901
 902        dbg_wl("done");
 903        mutex_unlock(&ubi->move_mutex);
 904        return 0;
 905
 906        /*
 907         * For some reasons the LEB was not moved, might be an error, might be
 908         * something else. @e1 was not changed, so return it back. @e2 might
 909         * have been changed, schedule it for erasure.
 910         */
 911out_not_moved:
 912        if (vol_id != -1)
 913                dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
 914                       e1->pnum, vol_id, lnum, e2->pnum, err);
 915        else
 916                dbg_wl("cancel moving PEB %d to PEB %d (%d)",
 917                       e1->pnum, e2->pnum, err);
 918        spin_lock(&ubi->wl_lock);
 919        if (protect)
 920                prot_queue_add(ubi, e1);
 921        else if (erroneous) {
 922                wl_tree_add(e1, &ubi->erroneous);
 923                ubi->erroneous_peb_count += 1;
 924        } else if (scrubbing)
 925                wl_tree_add(e1, &ubi->scrub);
 926        else
 927                wl_tree_add(e1, &ubi->used);
 928        ubi_assert(!ubi->move_to_put);
 929        ubi->move_from = ubi->move_to = NULL;
 930        ubi->wl_scheduled = 0;
 931        spin_unlock(&ubi->wl_lock);
 932
 933        ubi_free_vid_hdr(ubi, vid_hdr);
 934        err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
 935        if (err)
 936                goto out_ro;
 937
 938        mutex_unlock(&ubi->move_mutex);
 939        return 0;
 940
 941out_error:
 942        if (vol_id != -1)
 943                ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
 944                        err, e1->pnum, e2->pnum);
 945        else
 946                ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
 947                        err, e1->pnum, vol_id, lnum, e2->pnum);
 948        spin_lock(&ubi->wl_lock);
 949        ubi->move_from = ubi->move_to = NULL;
 950        ubi->move_to_put = ubi->wl_scheduled = 0;
 951        spin_unlock(&ubi->wl_lock);
 952
 953        ubi_free_vid_hdr(ubi, vid_hdr);
 954        wl_entry_destroy(ubi, e1);
 955        wl_entry_destroy(ubi, e2);
 956
 957out_ro:
 958        ubi_ro_mode(ubi);
 959        mutex_unlock(&ubi->move_mutex);
 960        ubi_assert(err != 0);
 961        return err < 0 ? err : -EIO;
 962
 963out_cancel:
 964        ubi->wl_scheduled = 0;
 965        spin_unlock(&ubi->wl_lock);
 966        mutex_unlock(&ubi->move_mutex);
 967        ubi_free_vid_hdr(ubi, vid_hdr);
 968        return 0;
 969}
 970
 971/**
 972 * ensure_wear_leveling - schedule wear-leveling if it is needed.
 973 * @ubi: UBI device description object
 974 * @nested: set to non-zero if this function is called from UBI worker
 975 *
 976 * This function checks if it is time to start wear-leveling and schedules it
 977 * if yes. This function returns zero in case of success and a negative error
 978 * code in case of failure.
 979 */
 980static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
 981{
 982        int err = 0;
 983        struct ubi_wl_entry *e1;
 984        struct ubi_wl_entry *e2;
 985        struct ubi_work *wrk;
 986
 987        spin_lock(&ubi->wl_lock);
 988        if (ubi->wl_scheduled)
 989                /* Wear-leveling is already in the work queue */
 990                goto out_unlock;
 991
 992        /*
 993         * If the ubi->scrub tree is not empty, scrubbing is needed, and the
 994         * the WL worker has to be scheduled anyway.
 995         */
 996        if (!ubi->scrub.rb_node) {
 997                if (!ubi->used.rb_node || !ubi->free.rb_node)
 998                        /* No physical eraseblocks - no deal */
 999                        goto out_unlock;
1000
1001                /*
1002                 * We schedule wear-leveling only if the difference between the
1003                 * lowest erase counter of used physical eraseblocks and a high
1004                 * erase counter of free physical eraseblocks is greater than
1005                 * %UBI_WL_THRESHOLD.
1006                 */
1007                e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1008                e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1009
1010                if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1011                        goto out_unlock;
1012                dbg_wl("schedule wear-leveling");
1013        } else
1014                dbg_wl("schedule scrubbing");
1015
1016        ubi->wl_scheduled = 1;
1017        spin_unlock(&ubi->wl_lock);
1018
1019        wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1020        if (!wrk) {
1021                err = -ENOMEM;
1022                goto out_cancel;
1023        }
1024
1025        wrk->anchor = 0;
1026        wrk->func = &wear_leveling_worker;
1027        if (nested)
1028                __schedule_ubi_work(ubi, wrk);
1029#ifndef __UBOOT__
1030        else
1031                schedule_ubi_work(ubi, wrk);
1032#else
1033        else {
1034                schedule_ubi_work(ubi, wrk);
1035                ubi_do_worker(ubi);
1036        }
1037#endif
1038        return err;
1039
1040out_cancel:
1041        spin_lock(&ubi->wl_lock);
1042        ubi->wl_scheduled = 0;
1043out_unlock:
1044        spin_unlock(&ubi->wl_lock);
1045        return err;
1046}
1047
1048/**
1049 * erase_worker - physical eraseblock erase worker function.
1050 * @ubi: UBI device description object
1051 * @wl_wrk: the work object
1052 * @shutdown: non-zero if the worker has to free memory and exit
1053 * because the WL sub-system is shutting down
1054 *
1055 * This function erases a physical eraseblock and perform torture testing if
1056 * needed. It also takes care about marking the physical eraseblock bad if
1057 * needed. Returns zero in case of success and a negative error code in case of
1058 * failure.
1059 */
1060static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1061                        int shutdown)
1062{
1063        struct ubi_wl_entry *e = wl_wrk->e;
1064        int pnum = e->pnum;
1065        int vol_id = wl_wrk->vol_id;
1066        int lnum = wl_wrk->lnum;
1067        int err, available_consumed = 0;
1068
1069        if (shutdown) {
1070                dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1071                kfree(wl_wrk);
1072                wl_entry_destroy(ubi, e);
1073                return 0;
1074        }
1075
1076        dbg_wl("erase PEB %d EC %d LEB %d:%d",
1077               pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1078
1079        err = sync_erase(ubi, e, wl_wrk->torture);
1080        if (!err) {
1081                /* Fine, we've erased it successfully */
1082                kfree(wl_wrk);
1083
1084                spin_lock(&ubi->wl_lock);
1085                wl_tree_add(e, &ubi->free);
1086                ubi->free_count++;
1087                spin_unlock(&ubi->wl_lock);
1088
1089                /*
1090                 * One more erase operation has happened, take care about
1091                 * protected physical eraseblocks.
1092                 */
1093                serve_prot_queue(ubi);
1094
1095                /* And take care about wear-leveling */
1096                err = ensure_wear_leveling(ubi, 1);
1097                return err;
1098        }
1099
1100        ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1101        kfree(wl_wrk);
1102
1103        if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1104            err == -EBUSY) {
1105                int err1;
1106
1107                /* Re-schedule the LEB for erasure */
1108                err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1109                if (err1) {
1110                        err = err1;
1111                        goto out_ro;
1112                }
1113                return err;
1114        }
1115
1116        wl_entry_destroy(ubi, e);
1117        if (err != -EIO)
1118                /*
1119                 * If this is not %-EIO, we have no idea what to do. Scheduling
1120                 * this physical eraseblock for erasure again would cause
1121                 * errors again and again. Well, lets switch to R/O mode.
1122                 */
1123                goto out_ro;
1124
1125        /* It is %-EIO, the PEB went bad */
1126
1127        if (!ubi->bad_allowed) {
1128                ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1129                goto out_ro;
1130        }
1131
1132        spin_lock(&ubi->volumes_lock);
1133        if (ubi->beb_rsvd_pebs == 0) {
1134                if (ubi->avail_pebs == 0) {
1135                        spin_unlock(&ubi->volumes_lock);
1136                        ubi_err(ubi, "no reserved/available physical eraseblocks");
1137                        goto out_ro;
1138                }
1139                ubi->avail_pebs -= 1;
1140                available_consumed = 1;
1141        }
1142        spin_unlock(&ubi->volumes_lock);
1143
1144        ubi_msg(ubi, "mark PEB %d as bad", pnum);
1145        err = ubi_io_mark_bad(ubi, pnum);
1146        if (err)
1147                goto out_ro;
1148
1149        spin_lock(&ubi->volumes_lock);
1150        if (ubi->beb_rsvd_pebs > 0) {
1151                if (available_consumed) {
1152                        /*
1153                         * The amount of reserved PEBs increased since we last
1154                         * checked.
1155                         */
1156                        ubi->avail_pebs += 1;
1157                        available_consumed = 0;
1158                }
1159                ubi->beb_rsvd_pebs -= 1;
1160        }
1161        ubi->bad_peb_count += 1;
1162        ubi->good_peb_count -= 1;
1163        ubi_calculate_reserved(ubi);
1164        if (available_consumed)
1165                ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1166        else if (ubi->beb_rsvd_pebs)
1167                ubi_msg(ubi, "%d PEBs left in the reserve",
1168                        ubi->beb_rsvd_pebs);
1169        else
1170                ubi_warn(ubi, "last PEB from the reserve was used");
1171        spin_unlock(&ubi->volumes_lock);
1172
1173        return err;
1174
1175out_ro:
1176        if (available_consumed) {
1177                spin_lock(&ubi->volumes_lock);
1178                ubi->avail_pebs += 1;
1179                spin_unlock(&ubi->volumes_lock);
1180        }
1181        ubi_ro_mode(ubi);
1182        return err;
1183}
1184
1185/**
1186 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1187 * @ubi: UBI device description object
1188 * @vol_id: the volume ID that last used this PEB
1189 * @lnum: the last used logical eraseblock number for the PEB
1190 * @pnum: physical eraseblock to return
1191 * @torture: if this physical eraseblock has to be tortured
1192 *
1193 * This function is called to return physical eraseblock @pnum to the pool of
1194 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1195 * occurred to this @pnum and it has to be tested. This function returns zero
1196 * in case of success, and a negative error code in case of failure.
1197 */
1198int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1199                   int pnum, int torture)
1200{
1201        int err;
1202        struct ubi_wl_entry *e;
1203
1204        dbg_wl("PEB %d", pnum);
1205        ubi_assert(pnum >= 0);
1206        ubi_assert(pnum < ubi->peb_count);
1207
1208        down_read(&ubi->fm_protect);
1209
1210retry:
1211        spin_lock(&ubi->wl_lock);
1212        e = ubi->lookuptbl[pnum];
1213        if (e == ubi->move_from) {
1214                /*
1215                 * User is putting the physical eraseblock which was selected to
1216                 * be moved. It will be scheduled for erasure in the
1217                 * wear-leveling worker.
1218                 */
1219                dbg_wl("PEB %d is being moved, wait", pnum);
1220                spin_unlock(&ubi->wl_lock);
1221
1222                /* Wait for the WL worker by taking the @ubi->move_mutex */
1223                mutex_lock(&ubi->move_mutex);
1224                mutex_unlock(&ubi->move_mutex);
1225                goto retry;
1226        } else if (e == ubi->move_to) {
1227                /*
1228                 * User is putting the physical eraseblock which was selected
1229                 * as the target the data is moved to. It may happen if the EBA
1230                 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1231                 * but the WL sub-system has not put the PEB to the "used" tree
1232                 * yet, but it is about to do this. So we just set a flag which
1233                 * will tell the WL worker that the PEB is not needed anymore
1234                 * and should be scheduled for erasure.
1235                 */
1236                dbg_wl("PEB %d is the target of data moving", pnum);
1237                ubi_assert(!ubi->move_to_put);
1238                ubi->move_to_put = 1;
1239                spin_unlock(&ubi->wl_lock);
1240                up_read(&ubi->fm_protect);
1241                return 0;
1242        } else {
1243                if (in_wl_tree(e, &ubi->used)) {
1244                        self_check_in_wl_tree(ubi, e, &ubi->used);
1245                        rb_erase(&e->u.rb, &ubi->used);
1246                } else if (in_wl_tree(e, &ubi->scrub)) {
1247                        self_check_in_wl_tree(ubi, e, &ubi->scrub);
1248                        rb_erase(&e->u.rb, &ubi->scrub);
1249                } else if (in_wl_tree(e, &ubi->erroneous)) {
1250                        self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1251                        rb_erase(&e->u.rb, &ubi->erroneous);
1252                        ubi->erroneous_peb_count -= 1;
1253                        ubi_assert(ubi->erroneous_peb_count >= 0);
1254                        /* Erroneous PEBs should be tortured */
1255                        torture = 1;
1256                } else {
1257                        err = prot_queue_del(ubi, e->pnum);
1258                        if (err) {
1259                                ubi_err(ubi, "PEB %d not found", pnum);
1260                                ubi_ro_mode(ubi);
1261                                spin_unlock(&ubi->wl_lock);
1262                                up_read(&ubi->fm_protect);
1263                                return err;
1264                        }
1265                }
1266        }
1267        spin_unlock(&ubi->wl_lock);
1268
1269        err = schedule_erase(ubi, e, vol_id, lnum, torture);
1270        if (err) {
1271                spin_lock(&ubi->wl_lock);
1272                wl_tree_add(e, &ubi->used);
1273                spin_unlock(&ubi->wl_lock);
1274        }
1275
1276        up_read(&ubi->fm_protect);
1277        return err;
1278}
1279
1280/**
1281 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1282 * @ubi: UBI device description object
1283 * @pnum: the physical eraseblock to schedule
1284 *
1285 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1286 * needs scrubbing. This function schedules a physical eraseblock for
1287 * scrubbing which is done in background. This function returns zero in case of
1288 * success and a negative error code in case of failure.
1289 */
1290int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1291{
1292        struct ubi_wl_entry *e;
1293
1294        ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1295
1296retry:
1297        spin_lock(&ubi->wl_lock);
1298        e = ubi->lookuptbl[pnum];
1299        if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1300                                   in_wl_tree(e, &ubi->erroneous)) {
1301                spin_unlock(&ubi->wl_lock);
1302                return 0;
1303        }
1304
1305        if (e == ubi->move_to) {
1306                /*
1307                 * This physical eraseblock was used to move data to. The data
1308                 * was moved but the PEB was not yet inserted to the proper
1309                 * tree. We should just wait a little and let the WL worker
1310                 * proceed.
1311                 */
1312                spin_unlock(&ubi->wl_lock);
1313                dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1314                yield();
1315                goto retry;
1316        }
1317
1318        if (in_wl_tree(e, &ubi->used)) {
1319                self_check_in_wl_tree(ubi, e, &ubi->used);
1320                rb_erase(&e->u.rb, &ubi->used);
1321        } else {
1322                int err;
1323
1324                err = prot_queue_del(ubi, e->pnum);
1325                if (err) {
1326                        ubi_err(ubi, "PEB %d not found", pnum);
1327                        ubi_ro_mode(ubi);
1328                        spin_unlock(&ubi->wl_lock);
1329                        return err;
1330                }
1331        }
1332
1333        wl_tree_add(e, &ubi->scrub);
1334        spin_unlock(&ubi->wl_lock);
1335
1336        /*
1337         * Technically scrubbing is the same as wear-leveling, so it is done
1338         * by the WL worker.
1339         */
1340        return ensure_wear_leveling(ubi, 0);
1341}
1342
1343/**
1344 * ubi_wl_flush - flush all pending works.
1345 * @ubi: UBI device description object
1346 * @vol_id: the volume id to flush for
1347 * @lnum: the logical eraseblock number to flush for
1348 *
1349 * This function executes all pending works for a particular volume id /
1350 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1351 * acts as a wildcard for all of the corresponding volume numbers or logical
1352 * eraseblock numbers. It returns zero in case of success and a negative error
1353 * code in case of failure.
1354 */
1355int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1356{
1357        int err = 0;
1358        int found = 1;
1359
1360        /*
1361         * Erase while the pending works queue is not empty, but not more than
1362         * the number of currently pending works.
1363         */
1364        dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1365               vol_id, lnum, ubi->works_count);
1366
1367        while (found) {
1368                struct ubi_work *wrk, *tmp;
1369                found = 0;
1370
1371                down_read(&ubi->work_sem);
1372                spin_lock(&ubi->wl_lock);
1373                list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1374                        if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1375                            (lnum == UBI_ALL || wrk->lnum == lnum)) {
1376                                list_del(&wrk->list);
1377                                ubi->works_count -= 1;
1378                                ubi_assert(ubi->works_count >= 0);
1379                                spin_unlock(&ubi->wl_lock);
1380
1381                                err = wrk->func(ubi, wrk, 0);
1382                                if (err) {
1383                                        up_read(&ubi->work_sem);
1384                                        return err;
1385                                }
1386
1387                                spin_lock(&ubi->wl_lock);
1388                                found = 1;
1389                                break;
1390                        }
1391                }
1392                spin_unlock(&ubi->wl_lock);
1393                up_read(&ubi->work_sem);
1394        }
1395
1396        /*
1397         * Make sure all the works which have been done in parallel are
1398         * finished.
1399         */
1400        down_write(&ubi->work_sem);
1401        up_write(&ubi->work_sem);
1402
1403        return err;
1404}
1405
1406/**
1407 * tree_destroy - destroy an RB-tree.
1408 * @ubi: UBI device description object
1409 * @root: the root of the tree to destroy
1410 */
1411static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1412{
1413        struct rb_node *rb;
1414        struct ubi_wl_entry *e;
1415
1416        rb = root->rb_node;
1417        while (rb) {
1418                if (rb->rb_left)
1419                        rb = rb->rb_left;
1420                else if (rb->rb_right)
1421                        rb = rb->rb_right;
1422                else {
1423                        e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1424
1425                        rb = rb_parent(rb);
1426                        if (rb) {
1427                                if (rb->rb_left == &e->u.rb)
1428                                        rb->rb_left = NULL;
1429                                else
1430                                        rb->rb_right = NULL;
1431                        }
1432
1433                        wl_entry_destroy(ubi, e);
1434                }
1435        }
1436}
1437
1438/**
1439 * ubi_thread - UBI background thread.
1440 * @u: the UBI device description object pointer
1441 */
1442int ubi_thread(void *u)
1443{
1444        int failures = 0;
1445        struct ubi_device *ubi = u;
1446
1447        ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1448                ubi->bgt_name, task_pid_nr(current));
1449
1450        set_freezable();
1451        for (;;) {
1452                int err;
1453
1454                if (kthread_should_stop())
1455                        break;
1456
1457                if (try_to_freeze())
1458                        continue;
1459
1460                spin_lock(&ubi->wl_lock);
1461                if (list_empty(&ubi->works) || ubi->ro_mode ||
1462                    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1463                        set_current_state(TASK_INTERRUPTIBLE);
1464                        spin_unlock(&ubi->wl_lock);
1465                        schedule();
1466                        continue;
1467                }
1468                spin_unlock(&ubi->wl_lock);
1469
1470                err = do_work(ubi);
1471                if (err) {
1472                        ubi_err(ubi, "%s: work failed with error code %d",
1473                                ubi->bgt_name, err);
1474                        if (failures++ > WL_MAX_FAILURES) {
1475                                /*
1476                                 * Too many failures, disable the thread and
1477                                 * switch to read-only mode.
1478                                 */
1479                                ubi_msg(ubi, "%s: %d consecutive failures",
1480                                        ubi->bgt_name, WL_MAX_FAILURES);
1481                                ubi_ro_mode(ubi);
1482                                ubi->thread_enabled = 0;
1483                                continue;
1484                        }
1485                } else
1486                        failures = 0;
1487
1488                cond_resched();
1489        }
1490
1491        dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1492        return 0;
1493}
1494
1495/**
1496 * shutdown_work - shutdown all pending works.
1497 * @ubi: UBI device description object
1498 */
1499static void shutdown_work(struct ubi_device *ubi)
1500{
1501#ifdef CONFIG_MTD_UBI_FASTMAP
1502#ifndef __UBOOT__
1503        flush_work(&ubi->fm_work);
1504#else
1505        /* in U-Boot, we have all work done */
1506#endif
1507#endif
1508        while (!list_empty(&ubi->works)) {
1509                struct ubi_work *wrk;
1510
1511                wrk = list_entry(ubi->works.next, struct ubi_work, list);
1512                list_del(&wrk->list);
1513                wrk->func(ubi, wrk, 1);
1514                ubi->works_count -= 1;
1515                ubi_assert(ubi->works_count >= 0);
1516        }
1517}
1518
1519/**
1520 * ubi_wl_init - initialize the WL sub-system using attaching information.
1521 * @ubi: UBI device description object
1522 * @ai: attaching information
1523 *
1524 * This function returns zero in case of success, and a negative error code in
1525 * case of failure.
1526 */
1527int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1528{
1529        int err, i, reserved_pebs, found_pebs = 0;
1530        struct rb_node *rb1, *rb2;
1531        struct ubi_ainf_volume *av;
1532        struct ubi_ainf_peb *aeb, *tmp;
1533        struct ubi_wl_entry *e;
1534
1535        ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1536        spin_lock_init(&ubi->wl_lock);
1537        mutex_init(&ubi->move_mutex);
1538        init_rwsem(&ubi->work_sem);
1539        ubi->max_ec = ai->max_ec;
1540        INIT_LIST_HEAD(&ubi->works);
1541
1542        sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1543
1544        err = -ENOMEM;
1545        ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1546        if (!ubi->lookuptbl)
1547                return err;
1548
1549        for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1550                INIT_LIST_HEAD(&ubi->pq[i]);
1551        ubi->pq_head = 0;
1552
1553        ubi->free_count = 0;
1554        list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1555                cond_resched();
1556
1557                e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1558                if (!e)
1559                        goto out_free;
1560
1561                e->pnum = aeb->pnum;
1562                e->ec = aeb->ec;
1563                ubi->lookuptbl[e->pnum] = e;
1564                if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1565                        wl_entry_destroy(ubi, e);
1566                        goto out_free;
1567                }
1568
1569                found_pebs++;
1570        }
1571
1572        list_for_each_entry(aeb, &ai->free, u.list) {
1573                cond_resched();
1574
1575                e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1576                if (!e)
1577                        goto out_free;
1578
1579                e->pnum = aeb->pnum;
1580                e->ec = aeb->ec;
1581                ubi_assert(e->ec >= 0);
1582
1583                wl_tree_add(e, &ubi->free);
1584                ubi->free_count++;
1585
1586                ubi->lookuptbl[e->pnum] = e;
1587
1588                found_pebs++;
1589        }
1590
1591        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1592                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1593                        cond_resched();
1594
1595                        e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1596                        if (!e)
1597                                goto out_free;
1598
1599                        e->pnum = aeb->pnum;
1600                        e->ec = aeb->ec;
1601                        ubi->lookuptbl[e->pnum] = e;
1602
1603                        if (!aeb->scrub) {
1604                                dbg_wl("add PEB %d EC %d to the used tree",
1605                                       e->pnum, e->ec);
1606                                wl_tree_add(e, &ubi->used);
1607                        } else {
1608                                dbg_wl("add PEB %d EC %d to the scrub tree",
1609                                       e->pnum, e->ec);
1610                                wl_tree_add(e, &ubi->scrub);
1611                        }
1612
1613                        found_pebs++;
1614                }
1615        }
1616
1617        dbg_wl("found %i PEBs", found_pebs);
1618
1619        if (ubi->fm) {
1620                ubi_assert(ubi->good_peb_count ==
1621                           found_pebs + ubi->fm->used_blocks);
1622
1623                for (i = 0; i < ubi->fm->used_blocks; i++) {
1624                        e = ubi->fm->e[i];
1625                        ubi->lookuptbl[e->pnum] = e;
1626                }
1627        }
1628        else
1629                ubi_assert(ubi->good_peb_count == found_pebs);
1630
1631        reserved_pebs = WL_RESERVED_PEBS;
1632        ubi_fastmap_init(ubi, &reserved_pebs);
1633
1634        if (ubi->avail_pebs < reserved_pebs) {
1635                ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1636                        ubi->avail_pebs, reserved_pebs);
1637                if (ubi->corr_peb_count)
1638                        ubi_err(ubi, "%d PEBs are corrupted and not used",
1639                                ubi->corr_peb_count);
1640                goto out_free;
1641        }
1642        ubi->avail_pebs -= reserved_pebs;
1643        ubi->rsvd_pebs += reserved_pebs;
1644
1645        /* Schedule wear-leveling if needed */
1646        err = ensure_wear_leveling(ubi, 0);
1647        if (err)
1648                goto out_free;
1649
1650        return 0;
1651
1652out_free:
1653        shutdown_work(ubi);
1654        tree_destroy(ubi, &ubi->used);
1655        tree_destroy(ubi, &ubi->free);
1656        tree_destroy(ubi, &ubi->scrub);
1657        kfree(ubi->lookuptbl);
1658        return err;
1659}
1660
1661/**
1662 * protection_queue_destroy - destroy the protection queue.
1663 * @ubi: UBI device description object
1664 */
1665static void protection_queue_destroy(struct ubi_device *ubi)
1666{
1667        int i;
1668        struct ubi_wl_entry *e, *tmp;
1669
1670        for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1671                list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1672                        list_del(&e->u.list);
1673                        wl_entry_destroy(ubi, e);
1674                }
1675        }
1676}
1677
1678/**
1679 * ubi_wl_close - close the wear-leveling sub-system.
1680 * @ubi: UBI device description object
1681 */
1682void ubi_wl_close(struct ubi_device *ubi)
1683{
1684        dbg_wl("close the WL sub-system");
1685        ubi_fastmap_close(ubi);
1686        shutdown_work(ubi);
1687        protection_queue_destroy(ubi);
1688        tree_destroy(ubi, &ubi->used);
1689        tree_destroy(ubi, &ubi->erroneous);
1690        tree_destroy(ubi, &ubi->free);
1691        tree_destroy(ubi, &ubi->scrub);
1692        kfree(ubi->lookuptbl);
1693}
1694
1695/**
1696 * self_check_ec - make sure that the erase counter of a PEB is correct.
1697 * @ubi: UBI device description object
1698 * @pnum: the physical eraseblock number to check
1699 * @ec: the erase counter to check
1700 *
1701 * This function returns zero if the erase counter of physical eraseblock @pnum
1702 * is equivalent to @ec, and a negative error code if not or if an error
1703 * occurred.
1704 */
1705static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1706{
1707        int err;
1708        long long read_ec;
1709        struct ubi_ec_hdr *ec_hdr;
1710
1711        if (!ubi_dbg_chk_gen(ubi))
1712                return 0;
1713
1714        ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1715        if (!ec_hdr)
1716                return -ENOMEM;
1717
1718        err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1719        if (err && err != UBI_IO_BITFLIPS) {
1720                /* The header does not have to exist */
1721                err = 0;
1722                goto out_free;
1723        }
1724
1725        read_ec = be64_to_cpu(ec_hdr->ec);
1726        if (ec != read_ec && read_ec - ec > 1) {
1727                ubi_err(ubi, "self-check failed for PEB %d", pnum);
1728                ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1729                dump_stack();
1730                err = 1;
1731        } else
1732                err = 0;
1733
1734out_free:
1735        kfree(ec_hdr);
1736        return err;
1737}
1738
1739/**
1740 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1741 * @ubi: UBI device description object
1742 * @e: the wear-leveling entry to check
1743 * @root: the root of the tree
1744 *
1745 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1746 * is not.
1747 */
1748static int self_check_in_wl_tree(const struct ubi_device *ubi,
1749                                 struct ubi_wl_entry *e, struct rb_root *root)
1750{
1751        if (!ubi_dbg_chk_gen(ubi))
1752                return 0;
1753
1754        if (in_wl_tree(e, root))
1755                return 0;
1756
1757        ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1758                e->pnum, e->ec, root);
1759        dump_stack();
1760        return -EINVAL;
1761}
1762
1763/**
1764 * self_check_in_pq - check if wear-leveling entry is in the protection
1765 *                        queue.
1766 * @ubi: UBI device description object
1767 * @e: the wear-leveling entry to check
1768 *
1769 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1770 */
1771static int self_check_in_pq(const struct ubi_device *ubi,
1772                            struct ubi_wl_entry *e)
1773{
1774        struct ubi_wl_entry *p;
1775        int i;
1776
1777        if (!ubi_dbg_chk_gen(ubi))
1778                return 0;
1779
1780        for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1781                list_for_each_entry(p, &ubi->pq[i], u.list)
1782                        if (p == e)
1783                                return 0;
1784
1785        ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
1786                e->pnum, e->ec);
1787        dump_stack();
1788        return -EINVAL;
1789}
1790#ifndef CONFIG_MTD_UBI_FASTMAP
1791static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
1792{
1793        struct ubi_wl_entry *e;
1794
1795        e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1796        self_check_in_wl_tree(ubi, e, &ubi->free);
1797        ubi->free_count--;
1798        ubi_assert(ubi->free_count >= 0);
1799        rb_erase(&e->u.rb, &ubi->free);
1800
1801        return e;
1802}
1803
1804/**
1805 * produce_free_peb - produce a free physical eraseblock.
1806 * @ubi: UBI device description object
1807 *
1808 * This function tries to make a free PEB by means of synchronous execution of
1809 * pending works. This may be needed if, for example the background thread is
1810 * disabled. Returns zero in case of success and a negative error code in case
1811 * of failure.
1812 */
1813static int produce_free_peb(struct ubi_device *ubi)
1814{
1815        int err;
1816
1817        while (!ubi->free.rb_node && ubi->works_count) {
1818                spin_unlock(&ubi->wl_lock);
1819
1820                dbg_wl("do one work synchronously");
1821                err = do_work(ubi);
1822
1823                spin_lock(&ubi->wl_lock);
1824                if (err)
1825                        return err;
1826        }
1827
1828        return 0;
1829}
1830
1831/**
1832 * ubi_wl_get_peb - get a physical eraseblock.
1833 * @ubi: UBI device description object
1834 *
1835 * This function returns a physical eraseblock in case of success and a
1836 * negative error code in case of failure.
1837 * Returns with ubi->fm_eba_sem held in read mode!
1838 */
1839int ubi_wl_get_peb(struct ubi_device *ubi)
1840{
1841        int err;
1842        struct ubi_wl_entry *e;
1843
1844retry:
1845        down_read(&ubi->fm_eba_sem);
1846        spin_lock(&ubi->wl_lock);
1847        if (!ubi->free.rb_node) {
1848                if (ubi->works_count == 0) {
1849                        ubi_err(ubi, "no free eraseblocks");
1850                        ubi_assert(list_empty(&ubi->works));
1851                        spin_unlock(&ubi->wl_lock);
1852                        return -ENOSPC;
1853                }
1854
1855                err = produce_free_peb(ubi);
1856                if (err < 0) {
1857                        spin_unlock(&ubi->wl_lock);
1858                        return err;
1859                }
1860                spin_unlock(&ubi->wl_lock);
1861                up_read(&ubi->fm_eba_sem);
1862                goto retry;
1863
1864        }
1865        e = wl_get_wle(ubi);
1866        prot_queue_add(ubi, e);
1867        spin_unlock(&ubi->wl_lock);
1868
1869        err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
1870                                    ubi->peb_size - ubi->vid_hdr_aloffset);
1871        if (err) {
1872                ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
1873                return err;
1874        }
1875
1876        return e->pnum;
1877}
1878#else
1879#include "fastmap-wl.c"
1880#endif
1881