uboot/fs/ubifs/tnc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Adrian Hunter
   8 *          Artem Bityutskiy (Битюцкий Артём)
   9 */
  10
  11/*
  12 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
  13 * the UBIFS B-tree.
  14 *
  15 * At the moment the locking rules of the TNC tree are quite simple and
  16 * straightforward. We just have a mutex and lock it when we traverse the
  17 * tree. If a znode is not in memory, we read it from flash while still having
  18 * the mutex locked.
  19 */
  20
  21#ifndef __UBOOT__
  22#include <linux/crc32.h>
  23#include <linux/slab.h>
  24#include <u-boot/crc.h>
  25#else
  26#include <linux/compat.h>
  27#include <linux/err.h>
  28#include <linux/stat.h>
  29#endif
  30#include "ubifs.h"
  31
  32/*
  33 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
  34 * @NAME_LESS: name corresponding to the first argument is less than second
  35 * @NAME_MATCHES: names match
  36 * @NAME_GREATER: name corresponding to the second argument is greater than
  37 *                first
  38 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
  39 *
  40 * These constants were introduce to improve readability.
  41 */
  42enum {
  43        NAME_LESS    = 0,
  44        NAME_MATCHES = 1,
  45        NAME_GREATER = 2,
  46        NOT_ON_MEDIA = 3,
  47};
  48
  49/**
  50 * insert_old_idx - record an index node obsoleted since the last commit start.
  51 * @c: UBIFS file-system description object
  52 * @lnum: LEB number of obsoleted index node
  53 * @offs: offset of obsoleted index node
  54 *
  55 * Returns %0 on success, and a negative error code on failure.
  56 *
  57 * For recovery, there must always be a complete intact version of the index on
  58 * flash at all times. That is called the "old index". It is the index as at the
  59 * time of the last successful commit. Many of the index nodes in the old index
  60 * may be dirty, but they must not be erased until the next successful commit
  61 * (at which point that index becomes the old index).
  62 *
  63 * That means that the garbage collection and the in-the-gaps method of
  64 * committing must be able to determine if an index node is in the old index.
  65 * Most of the old index nodes can be found by looking up the TNC using the
  66 * 'lookup_znode()' function. However, some of the old index nodes may have
  67 * been deleted from the current index or may have been changed so much that
  68 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
  69 * That is what this function does. The RB-tree is ordered by LEB number and
  70 * offset because they uniquely identify the old index node.
  71 */
  72static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
  73{
  74        struct ubifs_old_idx *old_idx, *o;
  75        struct rb_node **p, *parent = NULL;
  76
  77        old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
  78        if (unlikely(!old_idx))
  79                return -ENOMEM;
  80        old_idx->lnum = lnum;
  81        old_idx->offs = offs;
  82
  83        p = &c->old_idx.rb_node;
  84        while (*p) {
  85                parent = *p;
  86                o = rb_entry(parent, struct ubifs_old_idx, rb);
  87                if (lnum < o->lnum)
  88                        p = &(*p)->rb_left;
  89                else if (lnum > o->lnum)
  90                        p = &(*p)->rb_right;
  91                else if (offs < o->offs)
  92                        p = &(*p)->rb_left;
  93                else if (offs > o->offs)
  94                        p = &(*p)->rb_right;
  95                else {
  96                        ubifs_err(c, "old idx added twice!");
  97                        kfree(old_idx);
  98                        return 0;
  99                }
 100        }
 101        rb_link_node(&old_idx->rb, parent, p);
 102        rb_insert_color(&old_idx->rb, &c->old_idx);
 103        return 0;
 104}
 105
 106/**
 107 * insert_old_idx_znode - record a znode obsoleted since last commit start.
 108 * @c: UBIFS file-system description object
 109 * @znode: znode of obsoleted index node
 110 *
 111 * Returns %0 on success, and a negative error code on failure.
 112 */
 113int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
 114{
 115        if (znode->parent) {
 116                struct ubifs_zbranch *zbr;
 117
 118                zbr = &znode->parent->zbranch[znode->iip];
 119                if (zbr->len)
 120                        return insert_old_idx(c, zbr->lnum, zbr->offs);
 121        } else
 122                if (c->zroot.len)
 123                        return insert_old_idx(c, c->zroot.lnum,
 124                                              c->zroot.offs);
 125        return 0;
 126}
 127
 128/**
 129 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
 130 * @c: UBIFS file-system description object
 131 * @znode: znode of obsoleted index node
 132 *
 133 * Returns %0 on success, and a negative error code on failure.
 134 */
 135static int ins_clr_old_idx_znode(struct ubifs_info *c,
 136                                 struct ubifs_znode *znode)
 137{
 138        int err;
 139
 140        if (znode->parent) {
 141                struct ubifs_zbranch *zbr;
 142
 143                zbr = &znode->parent->zbranch[znode->iip];
 144                if (zbr->len) {
 145                        err = insert_old_idx(c, zbr->lnum, zbr->offs);
 146                        if (err)
 147                                return err;
 148                        zbr->lnum = 0;
 149                        zbr->offs = 0;
 150                        zbr->len = 0;
 151                }
 152        } else
 153                if (c->zroot.len) {
 154                        err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
 155                        if (err)
 156                                return err;
 157                        c->zroot.lnum = 0;
 158                        c->zroot.offs = 0;
 159                        c->zroot.len = 0;
 160                }
 161        return 0;
 162}
 163
 164/**
 165 * destroy_old_idx - destroy the old_idx RB-tree.
 166 * @c: UBIFS file-system description object
 167 *
 168 * During start commit, the old_idx RB-tree is used to avoid overwriting index
 169 * nodes that were in the index last commit but have since been deleted.  This
 170 * is necessary for recovery i.e. the old index must be kept intact until the
 171 * new index is successfully written.  The old-idx RB-tree is used for the
 172 * in-the-gaps method of writing index nodes and is destroyed every commit.
 173 */
 174void destroy_old_idx(struct ubifs_info *c)
 175{
 176        struct ubifs_old_idx *old_idx, *n;
 177
 178        rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
 179                kfree(old_idx);
 180
 181        c->old_idx = RB_ROOT;
 182}
 183
 184/**
 185 * copy_znode - copy a dirty znode.
 186 * @c: UBIFS file-system description object
 187 * @znode: znode to copy
 188 *
 189 * A dirty znode being committed may not be changed, so it is copied.
 190 */
 191static struct ubifs_znode *copy_znode(struct ubifs_info *c,
 192                                      struct ubifs_znode *znode)
 193{
 194        struct ubifs_znode *zn;
 195
 196        zn = kmalloc(c->max_znode_sz, GFP_NOFS);
 197        if (unlikely(!zn))
 198                return ERR_PTR(-ENOMEM);
 199
 200        memcpy(zn, znode, c->max_znode_sz);
 201        zn->cnext = NULL;
 202        __set_bit(DIRTY_ZNODE, &zn->flags);
 203        __clear_bit(COW_ZNODE, &zn->flags);
 204
 205        ubifs_assert(!ubifs_zn_obsolete(znode));
 206        __set_bit(OBSOLETE_ZNODE, &znode->flags);
 207
 208        if (znode->level != 0) {
 209                int i;
 210                const int n = zn->child_cnt;
 211
 212                /* The children now have new parent */
 213                for (i = 0; i < n; i++) {
 214                        struct ubifs_zbranch *zbr = &zn->zbranch[i];
 215
 216                        if (zbr->znode)
 217                                zbr->znode->parent = zn;
 218                }
 219        }
 220
 221        atomic_long_inc(&c->dirty_zn_cnt);
 222        return zn;
 223}
 224
 225/**
 226 * add_idx_dirt - add dirt due to a dirty znode.
 227 * @c: UBIFS file-system description object
 228 * @lnum: LEB number of index node
 229 * @dirt: size of index node
 230 *
 231 * This function updates lprops dirty space and the new size of the index.
 232 */
 233static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
 234{
 235        c->calc_idx_sz -= ALIGN(dirt, 8);
 236        return ubifs_add_dirt(c, lnum, dirt);
 237}
 238
 239/**
 240 * dirty_cow_znode - ensure a znode is not being committed.
 241 * @c: UBIFS file-system description object
 242 * @zbr: branch of znode to check
 243 *
 244 * Returns dirtied znode on success or negative error code on failure.
 245 */
 246static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
 247                                           struct ubifs_zbranch *zbr)
 248{
 249        struct ubifs_znode *znode = zbr->znode;
 250        struct ubifs_znode *zn;
 251        int err;
 252
 253        if (!ubifs_zn_cow(znode)) {
 254                /* znode is not being committed */
 255                if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
 256                        atomic_long_inc(&c->dirty_zn_cnt);
 257                        atomic_long_dec(&c->clean_zn_cnt);
 258                        atomic_long_dec(&ubifs_clean_zn_cnt);
 259                        err = add_idx_dirt(c, zbr->lnum, zbr->len);
 260                        if (unlikely(err))
 261                                return ERR_PTR(err);
 262                }
 263                return znode;
 264        }
 265
 266        zn = copy_znode(c, znode);
 267        if (IS_ERR(zn))
 268                return zn;
 269
 270        if (zbr->len) {
 271                err = insert_old_idx(c, zbr->lnum, zbr->offs);
 272                if (unlikely(err))
 273                        return ERR_PTR(err);
 274                err = add_idx_dirt(c, zbr->lnum, zbr->len);
 275        } else
 276                err = 0;
 277
 278        zbr->znode = zn;
 279        zbr->lnum = 0;
 280        zbr->offs = 0;
 281        zbr->len = 0;
 282
 283        if (unlikely(err))
 284                return ERR_PTR(err);
 285        return zn;
 286}
 287
 288/**
 289 * lnc_add - add a leaf node to the leaf node cache.
 290 * @c: UBIFS file-system description object
 291 * @zbr: zbranch of leaf node
 292 * @node: leaf node
 293 *
 294 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
 295 * purpose of the leaf node cache is to save re-reading the same leaf node over
 296 * and over again. Most things are cached by VFS, however the file system must
 297 * cache directory entries for readdir and for resolving hash collisions. The
 298 * present implementation of the leaf node cache is extremely simple, and
 299 * allows for error returns that are not used but that may be needed if a more
 300 * complex implementation is created.
 301 *
 302 * Note, this function does not add the @node object to LNC directly, but
 303 * allocates a copy of the object and adds the copy to LNC. The reason for this
 304 * is that @node has been allocated outside of the TNC subsystem and will be
 305 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
 306 * may be changed at any time, e.g. freed by the shrinker.
 307 */
 308static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 309                   const void *node)
 310{
 311        int err;
 312        void *lnc_node;
 313        const struct ubifs_dent_node *dent = node;
 314
 315        ubifs_assert(!zbr->leaf);
 316        ubifs_assert(zbr->len != 0);
 317        ubifs_assert(is_hash_key(c, &zbr->key));
 318
 319        err = ubifs_validate_entry(c, dent);
 320        if (err) {
 321                dump_stack();
 322                ubifs_dump_node(c, dent);
 323                return err;
 324        }
 325
 326        lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
 327        if (!lnc_node)
 328                /* We don't have to have the cache, so no error */
 329                return 0;
 330
 331        zbr->leaf = lnc_node;
 332        return 0;
 333}
 334
 335 /**
 336 * lnc_add_directly - add a leaf node to the leaf-node-cache.
 337 * @c: UBIFS file-system description object
 338 * @zbr: zbranch of leaf node
 339 * @node: leaf node
 340 *
 341 * This function is similar to 'lnc_add()', but it does not create a copy of
 342 * @node but inserts @node to TNC directly.
 343 */
 344static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 345                            void *node)
 346{
 347        int err;
 348
 349        ubifs_assert(!zbr->leaf);
 350        ubifs_assert(zbr->len != 0);
 351
 352        err = ubifs_validate_entry(c, node);
 353        if (err) {
 354                dump_stack();
 355                ubifs_dump_node(c, node);
 356                return err;
 357        }
 358
 359        zbr->leaf = node;
 360        return 0;
 361}
 362
 363/**
 364 * lnc_free - remove a leaf node from the leaf node cache.
 365 * @zbr: zbranch of leaf node
 366 * @node: leaf node
 367 */
 368static void lnc_free(struct ubifs_zbranch *zbr)
 369{
 370        if (!zbr->leaf)
 371                return;
 372        kfree(zbr->leaf);
 373        zbr->leaf = NULL;
 374}
 375
 376/**
 377 * tnc_read_node_nm - read a "hashed" leaf node.
 378 * @c: UBIFS file-system description object
 379 * @zbr: key and position of the node
 380 * @node: node is returned here
 381 *
 382 * This function reads a "hashed" node defined by @zbr from the leaf node cache
 383 * (in it is there) or from the hash media, in which case the node is also
 384 * added to LNC. Returns zero in case of success or a negative negative error
 385 * code in case of failure.
 386 */
 387static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 388                            void *node)
 389{
 390        int err;
 391
 392        ubifs_assert(is_hash_key(c, &zbr->key));
 393
 394        if (zbr->leaf) {
 395                /* Read from the leaf node cache */
 396                ubifs_assert(zbr->len != 0);
 397                memcpy(node, zbr->leaf, zbr->len);
 398                return 0;
 399        }
 400
 401        err = ubifs_tnc_read_node(c, zbr, node);
 402        if (err)
 403                return err;
 404
 405        /* Add the node to the leaf node cache */
 406        err = lnc_add(c, zbr, node);
 407        return err;
 408}
 409
 410/**
 411 * try_read_node - read a node if it is a node.
 412 * @c: UBIFS file-system description object
 413 * @buf: buffer to read to
 414 * @type: node type
 415 * @len: node length (not aligned)
 416 * @lnum: LEB number of node to read
 417 * @offs: offset of node to read
 418 *
 419 * This function tries to read a node of known type and length, checks it and
 420 * stores it in @buf. This function returns %1 if a node is present and %0 if
 421 * a node is not present. A negative error code is returned for I/O errors.
 422 * This function performs that same function as ubifs_read_node except that
 423 * it does not require that there is actually a node present and instead
 424 * the return code indicates if a node was read.
 425 *
 426 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
 427 * is true (it is controlled by corresponding mount option). However, if
 428 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
 429 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
 430 * because during mounting or re-mounting from R/O mode to R/W mode we may read
 431 * journal nodes (when replying the journal or doing the recovery) and the
 432 * journal nodes may potentially be corrupted, so checking is required.
 433 */
 434static int try_read_node(const struct ubifs_info *c, void *buf, int type,
 435                         int len, int lnum, int offs)
 436{
 437        int err, node_len;
 438        struct ubifs_ch *ch = buf;
 439        uint32_t crc, node_crc;
 440
 441        dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
 442
 443        err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
 444        if (err) {
 445                ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
 446                          type, lnum, offs, err);
 447                return err;
 448        }
 449
 450        if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
 451                return 0;
 452
 453        if (ch->node_type != type)
 454                return 0;
 455
 456        node_len = le32_to_cpu(ch->len);
 457        if (node_len != len)
 458                return 0;
 459
 460        if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
 461            !c->remounting_rw)
 462                return 1;
 463
 464        crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
 465        node_crc = le32_to_cpu(ch->crc);
 466        if (crc != node_crc)
 467                return 0;
 468
 469        return 1;
 470}
 471
 472/**
 473 * fallible_read_node - try to read a leaf node.
 474 * @c: UBIFS file-system description object
 475 * @key:  key of node to read
 476 * @zbr:  position of node
 477 * @node: node returned
 478 *
 479 * This function tries to read a node and returns %1 if the node is read, %0
 480 * if the node is not present, and a negative error code in the case of error.
 481 */
 482static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
 483                              struct ubifs_zbranch *zbr, void *node)
 484{
 485        int ret;
 486
 487        dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
 488
 489        ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
 490                            zbr->offs);
 491        if (ret == 1) {
 492                union ubifs_key node_key;
 493                struct ubifs_dent_node *dent = node;
 494
 495                /* All nodes have key in the same place */
 496                key_read(c, &dent->key, &node_key);
 497                if (keys_cmp(c, key, &node_key) != 0)
 498                        ret = 0;
 499        }
 500        if (ret == 0 && c->replaying)
 501                dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
 502                        zbr->lnum, zbr->offs, zbr->len);
 503        return ret;
 504}
 505
 506/**
 507 * matches_name - determine if a direntry or xattr entry matches a given name.
 508 * @c: UBIFS file-system description object
 509 * @zbr: zbranch of dent
 510 * @nm: name to match
 511 *
 512 * This function checks if xentry/direntry referred by zbranch @zbr matches name
 513 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
 514 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
 515 * of failure, a negative error code is returned.
 516 */
 517static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 518                        const struct qstr *nm)
 519{
 520        struct ubifs_dent_node *dent;
 521        int nlen, err;
 522
 523        /* If possible, match against the dent in the leaf node cache */
 524        if (!zbr->leaf) {
 525                dent = kmalloc(zbr->len, GFP_NOFS);
 526                if (!dent)
 527                        return -ENOMEM;
 528
 529                err = ubifs_tnc_read_node(c, zbr, dent);
 530                if (err)
 531                        goto out_free;
 532
 533                /* Add the node to the leaf node cache */
 534                err = lnc_add_directly(c, zbr, dent);
 535                if (err)
 536                        goto out_free;
 537        } else
 538                dent = zbr->leaf;
 539
 540        nlen = le16_to_cpu(dent->nlen);
 541        err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
 542        if (err == 0) {
 543                if (nlen == nm->len)
 544                        return NAME_MATCHES;
 545                else if (nlen < nm->len)
 546                        return NAME_LESS;
 547                else
 548                        return NAME_GREATER;
 549        } else if (err < 0)
 550                return NAME_LESS;
 551        else
 552                return NAME_GREATER;
 553
 554out_free:
 555        kfree(dent);
 556        return err;
 557}
 558
 559/**
 560 * get_znode - get a TNC znode that may not be loaded yet.
 561 * @c: UBIFS file-system description object
 562 * @znode: parent znode
 563 * @n: znode branch slot number
 564 *
 565 * This function returns the znode or a negative error code.
 566 */
 567static struct ubifs_znode *get_znode(struct ubifs_info *c,
 568                                     struct ubifs_znode *znode, int n)
 569{
 570        struct ubifs_zbranch *zbr;
 571
 572        zbr = &znode->zbranch[n];
 573        if (zbr->znode)
 574                znode = zbr->znode;
 575        else
 576                znode = ubifs_load_znode(c, zbr, znode, n);
 577        return znode;
 578}
 579
 580/**
 581 * tnc_next - find next TNC entry.
 582 * @c: UBIFS file-system description object
 583 * @zn: znode is passed and returned here
 584 * @n: znode branch slot number is passed and returned here
 585 *
 586 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
 587 * no next entry, or a negative error code otherwise.
 588 */
 589static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
 590{
 591        struct ubifs_znode *znode = *zn;
 592        int nn = *n;
 593
 594        nn += 1;
 595        if (nn < znode->child_cnt) {
 596                *n = nn;
 597                return 0;
 598        }
 599        while (1) {
 600                struct ubifs_znode *zp;
 601
 602                zp = znode->parent;
 603                if (!zp)
 604                        return -ENOENT;
 605                nn = znode->iip + 1;
 606                znode = zp;
 607                if (nn < znode->child_cnt) {
 608                        znode = get_znode(c, znode, nn);
 609                        if (IS_ERR(znode))
 610                                return PTR_ERR(znode);
 611                        while (znode->level != 0) {
 612                                znode = get_znode(c, znode, 0);
 613                                if (IS_ERR(znode))
 614                                        return PTR_ERR(znode);
 615                        }
 616                        nn = 0;
 617                        break;
 618                }
 619        }
 620        *zn = znode;
 621        *n = nn;
 622        return 0;
 623}
 624
 625/**
 626 * tnc_prev - find previous TNC entry.
 627 * @c: UBIFS file-system description object
 628 * @zn: znode is returned here
 629 * @n: znode branch slot number is passed and returned here
 630 *
 631 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
 632 * there is no next entry, or a negative error code otherwise.
 633 */
 634static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
 635{
 636        struct ubifs_znode *znode = *zn;
 637        int nn = *n;
 638
 639        if (nn > 0) {
 640                *n = nn - 1;
 641                return 0;
 642        }
 643        while (1) {
 644                struct ubifs_znode *zp;
 645
 646                zp = znode->parent;
 647                if (!zp)
 648                        return -ENOENT;
 649                nn = znode->iip - 1;
 650                znode = zp;
 651                if (nn >= 0) {
 652                        znode = get_znode(c, znode, nn);
 653                        if (IS_ERR(znode))
 654                                return PTR_ERR(znode);
 655                        while (znode->level != 0) {
 656                                nn = znode->child_cnt - 1;
 657                                znode = get_znode(c, znode, nn);
 658                                if (IS_ERR(znode))
 659                                        return PTR_ERR(znode);
 660                        }
 661                        nn = znode->child_cnt - 1;
 662                        break;
 663                }
 664        }
 665        *zn = znode;
 666        *n = nn;
 667        return 0;
 668}
 669
 670/**
 671 * resolve_collision - resolve a collision.
 672 * @c: UBIFS file-system description object
 673 * @key: key of a directory or extended attribute entry
 674 * @zn: znode is returned here
 675 * @n: zbranch number is passed and returned here
 676 * @nm: name of the entry
 677 *
 678 * This function is called for "hashed" keys to make sure that the found key
 679 * really corresponds to the looked up node (directory or extended attribute
 680 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
 681 * %0 is returned if @nm is not found and @zn and @n are set to the previous
 682 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
 683 * This means that @n may be set to %-1 if the leftmost key in @zn is the
 684 * previous one. A negative error code is returned on failures.
 685 */
 686static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
 687                             struct ubifs_znode **zn, int *n,
 688                             const struct qstr *nm)
 689{
 690        int err;
 691
 692        err = matches_name(c, &(*zn)->zbranch[*n], nm);
 693        if (unlikely(err < 0))
 694                return err;
 695        if (err == NAME_MATCHES)
 696                return 1;
 697
 698        if (err == NAME_GREATER) {
 699                /* Look left */
 700                while (1) {
 701                        err = tnc_prev(c, zn, n);
 702                        if (err == -ENOENT) {
 703                                ubifs_assert(*n == 0);
 704                                *n = -1;
 705                                return 0;
 706                        }
 707                        if (err < 0)
 708                                return err;
 709                        if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
 710                                /*
 711                                 * We have found the branch after which we would
 712                                 * like to insert, but inserting in this znode
 713                                 * may still be wrong. Consider the following 3
 714                                 * znodes, in the case where we are resolving a
 715                                 * collision with Key2.
 716                                 *
 717                                 *                  znode zp
 718                                 *            ----------------------
 719                                 * level 1     |  Key0  |  Key1  |
 720                                 *            -----------------------
 721                                 *                 |            |
 722                                 *       znode za  |            |  znode zb
 723                                 *          ------------      ------------
 724                                 * level 0  |  Key0  |        |  Key2  |
 725                                 *          ------------      ------------
 726                                 *
 727                                 * The lookup finds Key2 in znode zb. Lets say
 728                                 * there is no match and the name is greater so
 729                                 * we look left. When we find Key0, we end up
 730                                 * here. If we return now, we will insert into
 731                                 * znode za at slot n = 1.  But that is invalid
 732                                 * according to the parent's keys.  Key2 must
 733                                 * be inserted into znode zb.
 734                                 *
 735                                 * Note, this problem is not relevant for the
 736                                 * case when we go right, because
 737                                 * 'tnc_insert()' would correct the parent key.
 738                                 */
 739                                if (*n == (*zn)->child_cnt - 1) {
 740                                        err = tnc_next(c, zn, n);
 741                                        if (err) {
 742                                                /* Should be impossible */
 743                                                ubifs_assert(0);
 744                                                if (err == -ENOENT)
 745                                                        err = -EINVAL;
 746                                                return err;
 747                                        }
 748                                        ubifs_assert(*n == 0);
 749                                        *n = -1;
 750                                }
 751                                return 0;
 752                        }
 753                        err = matches_name(c, &(*zn)->zbranch[*n], nm);
 754                        if (err < 0)
 755                                return err;
 756                        if (err == NAME_LESS)
 757                                return 0;
 758                        if (err == NAME_MATCHES)
 759                                return 1;
 760                        ubifs_assert(err == NAME_GREATER);
 761                }
 762        } else {
 763                int nn = *n;
 764                struct ubifs_znode *znode = *zn;
 765
 766                /* Look right */
 767                while (1) {
 768                        err = tnc_next(c, &znode, &nn);
 769                        if (err == -ENOENT)
 770                                return 0;
 771                        if (err < 0)
 772                                return err;
 773                        if (keys_cmp(c, &znode->zbranch[nn].key, key))
 774                                return 0;
 775                        err = matches_name(c, &znode->zbranch[nn], nm);
 776                        if (err < 0)
 777                                return err;
 778                        if (err == NAME_GREATER)
 779                                return 0;
 780                        *zn = znode;
 781                        *n = nn;
 782                        if (err == NAME_MATCHES)
 783                                return 1;
 784                        ubifs_assert(err == NAME_LESS);
 785                }
 786        }
 787}
 788
 789/**
 790 * fallible_matches_name - determine if a dent matches a given name.
 791 * @c: UBIFS file-system description object
 792 * @zbr: zbranch of dent
 793 * @nm: name to match
 794 *
 795 * This is a "fallible" version of 'matches_name()' function which does not
 796 * panic if the direntry/xentry referred by @zbr does not exist on the media.
 797 *
 798 * This function checks if xentry/direntry referred by zbranch @zbr matches name
 799 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
 800 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
 801 * if xentry/direntry referred by @zbr does not exist on the media. A negative
 802 * error code is returned in case of failure.
 803 */
 804static int fallible_matches_name(struct ubifs_info *c,
 805                                 struct ubifs_zbranch *zbr,
 806                                 const struct qstr *nm)
 807{
 808        struct ubifs_dent_node *dent;
 809        int nlen, err;
 810
 811        /* If possible, match against the dent in the leaf node cache */
 812        if (!zbr->leaf) {
 813                dent = kmalloc(zbr->len, GFP_NOFS);
 814                if (!dent)
 815                        return -ENOMEM;
 816
 817                err = fallible_read_node(c, &zbr->key, zbr, dent);
 818                if (err < 0)
 819                        goto out_free;
 820                if (err == 0) {
 821                        /* The node was not present */
 822                        err = NOT_ON_MEDIA;
 823                        goto out_free;
 824                }
 825                ubifs_assert(err == 1);
 826
 827                err = lnc_add_directly(c, zbr, dent);
 828                if (err)
 829                        goto out_free;
 830        } else
 831                dent = zbr->leaf;
 832
 833        nlen = le16_to_cpu(dent->nlen);
 834        err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
 835        if (err == 0) {
 836                if (nlen == nm->len)
 837                        return NAME_MATCHES;
 838                else if (nlen < nm->len)
 839                        return NAME_LESS;
 840                else
 841                        return NAME_GREATER;
 842        } else if (err < 0)
 843                return NAME_LESS;
 844        else
 845                return NAME_GREATER;
 846
 847out_free:
 848        kfree(dent);
 849        return err;
 850}
 851
 852/**
 853 * fallible_resolve_collision - resolve a collision even if nodes are missing.
 854 * @c: UBIFS file-system description object
 855 * @key: key
 856 * @zn: znode is returned here
 857 * @n: branch number is passed and returned here
 858 * @nm: name of directory entry
 859 * @adding: indicates caller is adding a key to the TNC
 860 *
 861 * This is a "fallible" version of the 'resolve_collision()' function which
 862 * does not panic if one of the nodes referred to by TNC does not exist on the
 863 * media. This may happen when replaying the journal if a deleted node was
 864 * Garbage-collected and the commit was not done. A branch that refers to a node
 865 * that is not present is called a dangling branch. The following are the return
 866 * codes for this function:
 867 *  o if @nm was found, %1 is returned and @zn and @n are set to the found
 868 *    branch;
 869 *  o if we are @adding and @nm was not found, %0 is returned;
 870 *  o if we are not @adding and @nm was not found, but a dangling branch was
 871 *    found, then %1 is returned and @zn and @n are set to the dangling branch;
 872 *  o a negative error code is returned in case of failure.
 873 */
 874static int fallible_resolve_collision(struct ubifs_info *c,
 875                                      const union ubifs_key *key,
 876                                      struct ubifs_znode **zn, int *n,
 877                                      const struct qstr *nm, int adding)
 878{
 879        struct ubifs_znode *o_znode = NULL, *znode = *zn;
 880        int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
 881
 882        cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
 883        if (unlikely(cmp < 0))
 884                return cmp;
 885        if (cmp == NAME_MATCHES)
 886                return 1;
 887        if (cmp == NOT_ON_MEDIA) {
 888                o_znode = znode;
 889                o_n = nn;
 890                /*
 891                 * We are unlucky and hit a dangling branch straight away.
 892                 * Now we do not really know where to go to find the needed
 893                 * branch - to the left or to the right. Well, let's try left.
 894                 */
 895                unsure = 1;
 896        } else if (!adding)
 897                unsure = 1; /* Remove a dangling branch wherever it is */
 898
 899        if (cmp == NAME_GREATER || unsure) {
 900                /* Look left */
 901                while (1) {
 902                        err = tnc_prev(c, zn, n);
 903                        if (err == -ENOENT) {
 904                                ubifs_assert(*n == 0);
 905                                *n = -1;
 906                                break;
 907                        }
 908                        if (err < 0)
 909                                return err;
 910                        if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
 911                                /* See comments in 'resolve_collision()' */
 912                                if (*n == (*zn)->child_cnt - 1) {
 913                                        err = tnc_next(c, zn, n);
 914                                        if (err) {
 915                                                /* Should be impossible */
 916                                                ubifs_assert(0);
 917                                                if (err == -ENOENT)
 918                                                        err = -EINVAL;
 919                                                return err;
 920                                        }
 921                                        ubifs_assert(*n == 0);
 922                                        *n = -1;
 923                                }
 924                                break;
 925                        }
 926                        err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
 927                        if (err < 0)
 928                                return err;
 929                        if (err == NAME_MATCHES)
 930                                return 1;
 931                        if (err == NOT_ON_MEDIA) {
 932                                o_znode = *zn;
 933                                o_n = *n;
 934                                continue;
 935                        }
 936                        if (!adding)
 937                                continue;
 938                        if (err == NAME_LESS)
 939                                break;
 940                        else
 941                                unsure = 0;
 942                }
 943        }
 944
 945        if (cmp == NAME_LESS || unsure) {
 946                /* Look right */
 947                *zn = znode;
 948                *n = nn;
 949                while (1) {
 950                        err = tnc_next(c, &znode, &nn);
 951                        if (err == -ENOENT)
 952                                break;
 953                        if (err < 0)
 954                                return err;
 955                        if (keys_cmp(c, &znode->zbranch[nn].key, key))
 956                                break;
 957                        err = fallible_matches_name(c, &znode->zbranch[nn], nm);
 958                        if (err < 0)
 959                                return err;
 960                        if (err == NAME_GREATER)
 961                                break;
 962                        *zn = znode;
 963                        *n = nn;
 964                        if (err == NAME_MATCHES)
 965                                return 1;
 966                        if (err == NOT_ON_MEDIA) {
 967                                o_znode = znode;
 968                                o_n = nn;
 969                        }
 970                }
 971        }
 972
 973        /* Never match a dangling branch when adding */
 974        if (adding || !o_znode)
 975                return 0;
 976
 977        dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
 978                o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
 979                o_znode->zbranch[o_n].len);
 980        *zn = o_znode;
 981        *n = o_n;
 982        return 1;
 983}
 984
 985/**
 986 * matches_position - determine if a zbranch matches a given position.
 987 * @zbr: zbranch of dent
 988 * @lnum: LEB number of dent to match
 989 * @offs: offset of dent to match
 990 *
 991 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
 992 */
 993static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
 994{
 995        if (zbr->lnum == lnum && zbr->offs == offs)
 996                return 1;
 997        else
 998                return 0;
 999}
1000
1001/**
1002 * resolve_collision_directly - resolve a collision directly.
1003 * @c: UBIFS file-system description object
1004 * @key: key of directory entry
1005 * @zn: znode is passed and returned here
1006 * @n: zbranch number is passed and returned here
1007 * @lnum: LEB number of dent node to match
1008 * @offs: offset of dent node to match
1009 *
1010 * This function is used for "hashed" keys to make sure the found directory or
1011 * extended attribute entry node is what was looked for. It is used when the
1012 * flash address of the right node is known (@lnum:@offs) which makes it much
1013 * easier to resolve collisions (no need to read entries and match full
1014 * names). This function returns %1 and sets @zn and @n if the collision is
1015 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1016 * previous directory entry. Otherwise a negative error code is returned.
1017 */
1018static int resolve_collision_directly(struct ubifs_info *c,
1019                                      const union ubifs_key *key,
1020                                      struct ubifs_znode **zn, int *n,
1021                                      int lnum, int offs)
1022{
1023        struct ubifs_znode *znode;
1024        int nn, err;
1025
1026        znode = *zn;
1027        nn = *n;
1028        if (matches_position(&znode->zbranch[nn], lnum, offs))
1029                return 1;
1030
1031        /* Look left */
1032        while (1) {
1033                err = tnc_prev(c, &znode, &nn);
1034                if (err == -ENOENT)
1035                        break;
1036                if (err < 0)
1037                        return err;
1038                if (keys_cmp(c, &znode->zbranch[nn].key, key))
1039                        break;
1040                if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1041                        *zn = znode;
1042                        *n = nn;
1043                        return 1;
1044                }
1045        }
1046
1047        /* Look right */
1048        znode = *zn;
1049        nn = *n;
1050        while (1) {
1051                err = tnc_next(c, &znode, &nn);
1052                if (err == -ENOENT)
1053                        return 0;
1054                if (err < 0)
1055                        return err;
1056                if (keys_cmp(c, &znode->zbranch[nn].key, key))
1057                        return 0;
1058                *zn = znode;
1059                *n = nn;
1060                if (matches_position(&znode->zbranch[nn], lnum, offs))
1061                        return 1;
1062        }
1063}
1064
1065/**
1066 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1067 * @c: UBIFS file-system description object
1068 * @znode: znode to dirty
1069 *
1070 * If we do not have a unique key that resides in a znode, then we cannot
1071 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1072 * This function records the path back to the last dirty ancestor, and then
1073 * dirties the znodes on that path.
1074 */
1075static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1076                                               struct ubifs_znode *znode)
1077{
1078        struct ubifs_znode *zp;
1079        int *path = c->bottom_up_buf, p = 0;
1080
1081        ubifs_assert(c->zroot.znode);
1082        ubifs_assert(znode);
1083        if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1084                kfree(c->bottom_up_buf);
1085                c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1086                                           GFP_NOFS);
1087                if (!c->bottom_up_buf)
1088                        return ERR_PTR(-ENOMEM);
1089                path = c->bottom_up_buf;
1090        }
1091        if (c->zroot.znode->level) {
1092                /* Go up until parent is dirty */
1093                while (1) {
1094                        int n;
1095
1096                        zp = znode->parent;
1097                        if (!zp)
1098                                break;
1099                        n = znode->iip;
1100                        ubifs_assert(p < c->zroot.znode->level);
1101                        path[p++] = n;
1102                        if (!zp->cnext && ubifs_zn_dirty(znode))
1103                                break;
1104                        znode = zp;
1105                }
1106        }
1107
1108        /* Come back down, dirtying as we go */
1109        while (1) {
1110                struct ubifs_zbranch *zbr;
1111
1112                zp = znode->parent;
1113                if (zp) {
1114                        ubifs_assert(path[p - 1] >= 0);
1115                        ubifs_assert(path[p - 1] < zp->child_cnt);
1116                        zbr = &zp->zbranch[path[--p]];
1117                        znode = dirty_cow_znode(c, zbr);
1118                } else {
1119                        ubifs_assert(znode == c->zroot.znode);
1120                        znode = dirty_cow_znode(c, &c->zroot);
1121                }
1122                if (IS_ERR(znode) || !p)
1123                        break;
1124                ubifs_assert(path[p - 1] >= 0);
1125                ubifs_assert(path[p - 1] < znode->child_cnt);
1126                znode = znode->zbranch[path[p - 1]].znode;
1127        }
1128
1129        return znode;
1130}
1131
1132/**
1133 * ubifs_lookup_level0 - search for zero-level znode.
1134 * @c: UBIFS file-system description object
1135 * @key:  key to lookup
1136 * @zn: znode is returned here
1137 * @n: znode branch slot number is returned here
1138 *
1139 * This function looks up the TNC tree and search for zero-level znode which
1140 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1141 * cases:
1142 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1143 *     is returned and slot number of the matched branch is stored in @n;
1144 *   o not exact match, which means that zero-level znode does not contain
1145 *     @key, then %0 is returned and slot number of the closest branch is stored
1146 *     in @n;
1147 *   o @key is so small that it is even less than the lowest key of the
1148 *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1149 *
1150 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1151 * function reads corresponding indexing nodes and inserts them to TNC. In
1152 * case of failure, a negative error code is returned.
1153 */
1154int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1155                        struct ubifs_znode **zn, int *n)
1156{
1157        int err, exact;
1158        struct ubifs_znode *znode;
1159        unsigned long time = get_seconds();
1160
1161        dbg_tnck(key, "search key ");
1162        ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
1163
1164        znode = c->zroot.znode;
1165        if (unlikely(!znode)) {
1166                znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1167                if (IS_ERR(znode))
1168                        return PTR_ERR(znode);
1169        }
1170
1171        znode->time = time;
1172
1173        while (1) {
1174                struct ubifs_zbranch *zbr;
1175
1176                exact = ubifs_search_zbranch(c, znode, key, n);
1177
1178                if (znode->level == 0)
1179                        break;
1180
1181                if (*n < 0)
1182                        *n = 0;
1183                zbr = &znode->zbranch[*n];
1184
1185                if (zbr->znode) {
1186                        znode->time = time;
1187                        znode = zbr->znode;
1188                        continue;
1189                }
1190
1191                /* znode is not in TNC cache, load it from the media */
1192                znode = ubifs_load_znode(c, zbr, znode, *n);
1193                if (IS_ERR(znode))
1194                        return PTR_ERR(znode);
1195        }
1196
1197        *zn = znode;
1198        if (exact || !is_hash_key(c, key) || *n != -1) {
1199                dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1200                return exact;
1201        }
1202
1203        /*
1204         * Here is a tricky place. We have not found the key and this is a
1205         * "hashed" key, which may collide. The rest of the code deals with
1206         * situations like this:
1207         *
1208         *                  | 3 | 5 |
1209         *                  /       \
1210         *          | 3 | 5 |      | 6 | 7 | (x)
1211         *
1212         * Or more a complex example:
1213         *
1214         *                | 1 | 5 |
1215         *                /       \
1216         *       | 1 | 3 |         | 5 | 8 |
1217         *              \           /
1218         *          | 5 | 5 |   | 6 | 7 | (x)
1219         *
1220         * In the examples, if we are looking for key "5", we may reach nodes
1221         * marked with "(x)". In this case what we have do is to look at the
1222         * left and see if there is "5" key there. If there is, we have to
1223         * return it.
1224         *
1225         * Note, this whole situation is possible because we allow to have
1226         * elements which are equivalent to the next key in the parent in the
1227         * children of current znode. For example, this happens if we split a
1228         * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1229         * like this:
1230         *                      | 3 | 5 |
1231         *                       /     \
1232         *                | 3 | 5 |   | 5 | 6 | 7 |
1233         *                              ^
1234         * And this becomes what is at the first "picture" after key "5" marked
1235         * with "^" is removed. What could be done is we could prohibit
1236         * splitting in the middle of the colliding sequence. Also, when
1237         * removing the leftmost key, we would have to correct the key of the
1238         * parent node, which would introduce additional complications. Namely,
1239         * if we changed the leftmost key of the parent znode, the garbage
1240         * collector would be unable to find it (GC is doing this when GC'ing
1241         * indexing LEBs). Although we already have an additional RB-tree where
1242         * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1243         * after the commit. But anyway, this does not look easy to implement
1244         * so we did not try this.
1245         */
1246        err = tnc_prev(c, &znode, n);
1247        if (err == -ENOENT) {
1248                dbg_tnc("found 0, lvl %d, n -1", znode->level);
1249                *n = -1;
1250                return 0;
1251        }
1252        if (unlikely(err < 0))
1253                return err;
1254        if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1255                dbg_tnc("found 0, lvl %d, n -1", znode->level);
1256                *n = -1;
1257                return 0;
1258        }
1259
1260        dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1261        *zn = znode;
1262        return 1;
1263}
1264
1265/**
1266 * lookup_level0_dirty - search for zero-level znode dirtying.
1267 * @c: UBIFS file-system description object
1268 * @key:  key to lookup
1269 * @zn: znode is returned here
1270 * @n: znode branch slot number is returned here
1271 *
1272 * This function looks up the TNC tree and search for zero-level znode which
1273 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1274 * cases:
1275 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1276 *     is returned and slot number of the matched branch is stored in @n;
1277 *   o not exact match, which means that zero-level znode does not contain @key
1278 *     then %0 is returned and slot number of the closed branch is stored in
1279 *     @n;
1280 *   o @key is so small that it is even less than the lowest key of the
1281 *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1282 *
1283 * Additionally all znodes in the path from the root to the located zero-level
1284 * znode are marked as dirty.
1285 *
1286 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1287 * function reads corresponding indexing nodes and inserts them to TNC. In
1288 * case of failure, a negative error code is returned.
1289 */
1290static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1291                               struct ubifs_znode **zn, int *n)
1292{
1293        int err, exact;
1294        struct ubifs_znode *znode;
1295        unsigned long time = get_seconds();
1296
1297        dbg_tnck(key, "search and dirty key ");
1298
1299        znode = c->zroot.znode;
1300        if (unlikely(!znode)) {
1301                znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1302                if (IS_ERR(znode))
1303                        return PTR_ERR(znode);
1304        }
1305
1306        znode = dirty_cow_znode(c, &c->zroot);
1307        if (IS_ERR(znode))
1308                return PTR_ERR(znode);
1309
1310        znode->time = time;
1311
1312        while (1) {
1313                struct ubifs_zbranch *zbr;
1314
1315                exact = ubifs_search_zbranch(c, znode, key, n);
1316
1317                if (znode->level == 0)
1318                        break;
1319
1320                if (*n < 0)
1321                        *n = 0;
1322                zbr = &znode->zbranch[*n];
1323
1324                if (zbr->znode) {
1325                        znode->time = time;
1326                        znode = dirty_cow_znode(c, zbr);
1327                        if (IS_ERR(znode))
1328                                return PTR_ERR(znode);
1329                        continue;
1330                }
1331
1332                /* znode is not in TNC cache, load it from the media */
1333                znode = ubifs_load_znode(c, zbr, znode, *n);
1334                if (IS_ERR(znode))
1335                        return PTR_ERR(znode);
1336                znode = dirty_cow_znode(c, zbr);
1337                if (IS_ERR(znode))
1338                        return PTR_ERR(znode);
1339        }
1340
1341        *zn = znode;
1342        if (exact || !is_hash_key(c, key) || *n != -1) {
1343                dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1344                return exact;
1345        }
1346
1347        /*
1348         * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1349         * code.
1350         */
1351        err = tnc_prev(c, &znode, n);
1352        if (err == -ENOENT) {
1353                *n = -1;
1354                dbg_tnc("found 0, lvl %d, n -1", znode->level);
1355                return 0;
1356        }
1357        if (unlikely(err < 0))
1358                return err;
1359        if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1360                *n = -1;
1361                dbg_tnc("found 0, lvl %d, n -1", znode->level);
1362                return 0;
1363        }
1364
1365        if (znode->cnext || !ubifs_zn_dirty(znode)) {
1366                znode = dirty_cow_bottom_up(c, znode);
1367                if (IS_ERR(znode))
1368                        return PTR_ERR(znode);
1369        }
1370
1371        dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1372        *zn = znode;
1373        return 1;
1374}
1375
1376/**
1377 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1378 * @c: UBIFS file-system description object
1379 * @lnum: LEB number
1380 * @gc_seq1: garbage collection sequence number
1381 *
1382 * This function determines if @lnum may have been garbage collected since
1383 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1384 * %0 is returned.
1385 */
1386static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1387{
1388#ifndef __UBOOT__
1389        int gc_seq2, gced_lnum;
1390
1391        gced_lnum = c->gced_lnum;
1392        smp_rmb();
1393        gc_seq2 = c->gc_seq;
1394        /* Same seq means no GC */
1395        if (gc_seq1 == gc_seq2)
1396                return 0;
1397        /* Different by more than 1 means we don't know */
1398        if (gc_seq1 + 1 != gc_seq2)
1399                return 1;
1400        /*
1401         * We have seen the sequence number has increased by 1. Now we need to
1402         * be sure we read the right LEB number, so read it again.
1403         */
1404        smp_rmb();
1405        if (gced_lnum != c->gced_lnum)
1406                return 1;
1407        /* Finally we can check lnum */
1408        if (gced_lnum == lnum)
1409                return 1;
1410#else
1411        /* No garbage collection in the read-only U-Boot implementation */
1412#endif
1413        return 0;
1414}
1415
1416/**
1417 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1418 * @c: UBIFS file-system description object
1419 * @key: node key to lookup
1420 * @node: the node is returned here
1421 * @lnum: LEB number is returned here
1422 * @offs: offset is returned here
1423 *
1424 * This function looks up and reads node with key @key. The caller has to make
1425 * sure the @node buffer is large enough to fit the node. Returns zero in case
1426 * of success, %-ENOENT if the node was not found, and a negative error code in
1427 * case of failure. The node location can be returned in @lnum and @offs.
1428 */
1429int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1430                     void *node, int *lnum, int *offs)
1431{
1432        int found, n, err, safely = 0, gc_seq1;
1433        struct ubifs_znode *znode;
1434        struct ubifs_zbranch zbr, *zt;
1435
1436again:
1437        mutex_lock(&c->tnc_mutex);
1438        found = ubifs_lookup_level0(c, key, &znode, &n);
1439        if (!found) {
1440                err = -ENOENT;
1441                goto out;
1442        } else if (found < 0) {
1443                err = found;
1444                goto out;
1445        }
1446        zt = &znode->zbranch[n];
1447        if (lnum) {
1448                *lnum = zt->lnum;
1449                *offs = zt->offs;
1450        }
1451        if (is_hash_key(c, key)) {
1452                /*
1453                 * In this case the leaf node cache gets used, so we pass the
1454                 * address of the zbranch and keep the mutex locked
1455                 */
1456                err = tnc_read_node_nm(c, zt, node);
1457                goto out;
1458        }
1459        if (safely) {
1460                err = ubifs_tnc_read_node(c, zt, node);
1461                goto out;
1462        }
1463        /* Drop the TNC mutex prematurely and race with garbage collection */
1464        zbr = znode->zbranch[n];
1465        gc_seq1 = c->gc_seq;
1466        mutex_unlock(&c->tnc_mutex);
1467
1468        if (ubifs_get_wbuf(c, zbr.lnum)) {
1469                /* We do not GC journal heads */
1470                err = ubifs_tnc_read_node(c, &zbr, node);
1471                return err;
1472        }
1473
1474        err = fallible_read_node(c, key, &zbr, node);
1475        if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1476                /*
1477                 * The node may have been GC'ed out from under us so try again
1478                 * while keeping the TNC mutex locked.
1479                 */
1480                safely = 1;
1481                goto again;
1482        }
1483        return 0;
1484
1485out:
1486        mutex_unlock(&c->tnc_mutex);
1487        return err;
1488}
1489
1490/**
1491 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1492 * @c: UBIFS file-system description object
1493 * @bu: bulk-read parameters and results
1494 *
1495 * Lookup consecutive data node keys for the same inode that reside
1496 * consecutively in the same LEB. This function returns zero in case of success
1497 * and a negative error code in case of failure.
1498 *
1499 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1500 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1501 * maximum possible amount of nodes for bulk-read.
1502 */
1503int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1504{
1505        int n, err = 0, lnum = -1, uninitialized_var(offs);
1506        int uninitialized_var(len);
1507        unsigned int block = key_block(c, &bu->key);
1508        struct ubifs_znode *znode;
1509
1510        bu->cnt = 0;
1511        bu->blk_cnt = 0;
1512        bu->eof = 0;
1513
1514        mutex_lock(&c->tnc_mutex);
1515        /* Find first key */
1516        err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1517        if (err < 0)
1518                goto out;
1519        if (err) {
1520                /* Key found */
1521                len = znode->zbranch[n].len;
1522                /* The buffer must be big enough for at least 1 node */
1523                if (len > bu->buf_len) {
1524                        err = -EINVAL;
1525                        goto out;
1526                }
1527                /* Add this key */
1528                bu->zbranch[bu->cnt++] = znode->zbranch[n];
1529                bu->blk_cnt += 1;
1530                lnum = znode->zbranch[n].lnum;
1531                offs = ALIGN(znode->zbranch[n].offs + len, 8);
1532        }
1533        while (1) {
1534                struct ubifs_zbranch *zbr;
1535                union ubifs_key *key;
1536                unsigned int next_block;
1537
1538                /* Find next key */
1539                err = tnc_next(c, &znode, &n);
1540                if (err)
1541                        goto out;
1542                zbr = &znode->zbranch[n];
1543                key = &zbr->key;
1544                /* See if there is another data key for this file */
1545                if (key_inum(c, key) != key_inum(c, &bu->key) ||
1546                    key_type(c, key) != UBIFS_DATA_KEY) {
1547                        err = -ENOENT;
1548                        goto out;
1549                }
1550                if (lnum < 0) {
1551                        /* First key found */
1552                        lnum = zbr->lnum;
1553                        offs = ALIGN(zbr->offs + zbr->len, 8);
1554                        len = zbr->len;
1555                        if (len > bu->buf_len) {
1556                                err = -EINVAL;
1557                                goto out;
1558                        }
1559                } else {
1560                        /*
1561                         * The data nodes must be in consecutive positions in
1562                         * the same LEB.
1563                         */
1564                        if (zbr->lnum != lnum || zbr->offs != offs)
1565                                goto out;
1566                        offs += ALIGN(zbr->len, 8);
1567                        len = ALIGN(len, 8) + zbr->len;
1568                        /* Must not exceed buffer length */
1569                        if (len > bu->buf_len)
1570                                goto out;
1571                }
1572                /* Allow for holes */
1573                next_block = key_block(c, key);
1574                bu->blk_cnt += (next_block - block - 1);
1575                if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1576                        goto out;
1577                block = next_block;
1578                /* Add this key */
1579                bu->zbranch[bu->cnt++] = *zbr;
1580                bu->blk_cnt += 1;
1581                /* See if we have room for more */
1582                if (bu->cnt >= UBIFS_MAX_BULK_READ)
1583                        goto out;
1584                if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1585                        goto out;
1586        }
1587out:
1588        if (err == -ENOENT) {
1589                bu->eof = 1;
1590                err = 0;
1591        }
1592        bu->gc_seq = c->gc_seq;
1593        mutex_unlock(&c->tnc_mutex);
1594        if (err)
1595                return err;
1596        /*
1597         * An enormous hole could cause bulk-read to encompass too many
1598         * page cache pages, so limit the number here.
1599         */
1600        if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1601                bu->blk_cnt = UBIFS_MAX_BULK_READ;
1602        /*
1603         * Ensure that bulk-read covers a whole number of page cache
1604         * pages.
1605         */
1606        if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1607            !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1608                return 0;
1609        if (bu->eof) {
1610                /* At the end of file we can round up */
1611                bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1612                return 0;
1613        }
1614        /* Exclude data nodes that do not make up a whole page cache page */
1615        block = key_block(c, &bu->key) + bu->blk_cnt;
1616        block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1617        while (bu->cnt) {
1618                if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1619                        break;
1620                bu->cnt -= 1;
1621        }
1622        return 0;
1623}
1624
1625/**
1626 * read_wbuf - bulk-read from a LEB with a wbuf.
1627 * @wbuf: wbuf that may overlap the read
1628 * @buf: buffer into which to read
1629 * @len: read length
1630 * @lnum: LEB number from which to read
1631 * @offs: offset from which to read
1632 *
1633 * This functions returns %0 on success or a negative error code on failure.
1634 */
1635static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1636                     int offs)
1637{
1638        const struct ubifs_info *c = wbuf->c;
1639        int rlen, overlap;
1640
1641        dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1642        ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1643        ubifs_assert(!(offs & 7) && offs < c->leb_size);
1644        ubifs_assert(offs + len <= c->leb_size);
1645
1646        spin_lock(&wbuf->lock);
1647        overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1648        if (!overlap) {
1649                /* We may safely unlock the write-buffer and read the data */
1650                spin_unlock(&wbuf->lock);
1651                return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1652        }
1653
1654        /* Don't read under wbuf */
1655        rlen = wbuf->offs - offs;
1656        if (rlen < 0)
1657                rlen = 0;
1658
1659        /* Copy the rest from the write-buffer */
1660        memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1661        spin_unlock(&wbuf->lock);
1662
1663        if (rlen > 0)
1664                /* Read everything that goes before write-buffer */
1665                return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1666
1667        return 0;
1668}
1669
1670/**
1671 * validate_data_node - validate data nodes for bulk-read.
1672 * @c: UBIFS file-system description object
1673 * @buf: buffer containing data node to validate
1674 * @zbr: zbranch of data node to validate
1675 *
1676 * This functions returns %0 on success or a negative error code on failure.
1677 */
1678static int validate_data_node(struct ubifs_info *c, void *buf,
1679                              struct ubifs_zbranch *zbr)
1680{
1681        union ubifs_key key1;
1682        struct ubifs_ch *ch = buf;
1683        int err, len;
1684
1685        if (ch->node_type != UBIFS_DATA_NODE) {
1686                ubifs_err(c, "bad node type (%d but expected %d)",
1687                          ch->node_type, UBIFS_DATA_NODE);
1688                goto out_err;
1689        }
1690
1691        err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1692        if (err) {
1693                ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
1694                goto out;
1695        }
1696
1697        len = le32_to_cpu(ch->len);
1698        if (len != zbr->len) {
1699                ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
1700                goto out_err;
1701        }
1702
1703        /* Make sure the key of the read node is correct */
1704        key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1705        if (!keys_eq(c, &zbr->key, &key1)) {
1706                ubifs_err(c, "bad key in node at LEB %d:%d",
1707                          zbr->lnum, zbr->offs);
1708                dbg_tnck(&zbr->key, "looked for key ");
1709                dbg_tnck(&key1, "found node's key ");
1710                goto out_err;
1711        }
1712
1713        return 0;
1714
1715out_err:
1716        err = -EINVAL;
1717out:
1718        ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1719        ubifs_dump_node(c, buf);
1720        dump_stack();
1721        return err;
1722}
1723
1724/**
1725 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1726 * @c: UBIFS file-system description object
1727 * @bu: bulk-read parameters and results
1728 *
1729 * This functions reads and validates the data nodes that were identified by the
1730 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1731 * -EAGAIN to indicate a race with GC, or another negative error code on
1732 * failure.
1733 */
1734int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1735{
1736        int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1737        struct ubifs_wbuf *wbuf;
1738        void *buf;
1739
1740        len = bu->zbranch[bu->cnt - 1].offs;
1741        len += bu->zbranch[bu->cnt - 1].len - offs;
1742        if (len > bu->buf_len) {
1743                ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
1744                return -EINVAL;
1745        }
1746
1747        /* Do the read */
1748        wbuf = ubifs_get_wbuf(c, lnum);
1749        if (wbuf)
1750                err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1751        else
1752                err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1753
1754        /* Check for a race with GC */
1755        if (maybe_leb_gced(c, lnum, bu->gc_seq))
1756                return -EAGAIN;
1757
1758        if (err && err != -EBADMSG) {
1759                ubifs_err(c, "failed to read from LEB %d:%d, error %d",
1760                          lnum, offs, err);
1761                dump_stack();
1762                dbg_tnck(&bu->key, "key ");
1763                return err;
1764        }
1765
1766        /* Validate the nodes read */
1767        buf = bu->buf;
1768        for (i = 0; i < bu->cnt; i++) {
1769                err = validate_data_node(c, buf, &bu->zbranch[i]);
1770                if (err)
1771                        return err;
1772                buf = buf + ALIGN(bu->zbranch[i].len, 8);
1773        }
1774
1775        return 0;
1776}
1777
1778/**
1779 * do_lookup_nm- look up a "hashed" node.
1780 * @c: UBIFS file-system description object
1781 * @key: node key to lookup
1782 * @node: the node is returned here
1783 * @nm: node name
1784 *
1785 * This function look up and reads a node which contains name hash in the key.
1786 * Since the hash may have collisions, there may be many nodes with the same
1787 * key, so we have to sequentially look to all of them until the needed one is
1788 * found. This function returns zero in case of success, %-ENOENT if the node
1789 * was not found, and a negative error code in case of failure.
1790 */
1791static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1792                        void *node, const struct qstr *nm)
1793{
1794        int found, n, err;
1795        struct ubifs_znode *znode;
1796
1797        dbg_tnck(key, "name '%.*s' key ", nm->len, nm->name);
1798        mutex_lock(&c->tnc_mutex);
1799        found = ubifs_lookup_level0(c, key, &znode, &n);
1800        if (!found) {
1801                err = -ENOENT;
1802                goto out_unlock;
1803        } else if (found < 0) {
1804                err = found;
1805                goto out_unlock;
1806        }
1807
1808        ubifs_assert(n >= 0);
1809
1810        err = resolve_collision(c, key, &znode, &n, nm);
1811        dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1812        if (unlikely(err < 0))
1813                goto out_unlock;
1814        if (err == 0) {
1815                err = -ENOENT;
1816                goto out_unlock;
1817        }
1818
1819        err = tnc_read_node_nm(c, &znode->zbranch[n], node);
1820
1821out_unlock:
1822        mutex_unlock(&c->tnc_mutex);
1823        return err;
1824}
1825
1826/**
1827 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1828 * @c: UBIFS file-system description object
1829 * @key: node key to lookup
1830 * @node: the node is returned here
1831 * @nm: node name
1832 *
1833 * This function look up and reads a node which contains name hash in the key.
1834 * Since the hash may have collisions, there may be many nodes with the same
1835 * key, so we have to sequentially look to all of them until the needed one is
1836 * found. This function returns zero in case of success, %-ENOENT if the node
1837 * was not found, and a negative error code in case of failure.
1838 */
1839int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1840                        void *node, const struct qstr *nm)
1841{
1842        int err, len;
1843        const struct ubifs_dent_node *dent = node;
1844
1845        /*
1846         * We assume that in most of the cases there are no name collisions and
1847         * 'ubifs_tnc_lookup()' returns us the right direntry.
1848         */
1849        err = ubifs_tnc_lookup(c, key, node);
1850        if (err)
1851                return err;
1852
1853        len = le16_to_cpu(dent->nlen);
1854        if (nm->len == len && !memcmp(dent->name, nm->name, len))
1855                return 0;
1856
1857        /*
1858         * Unluckily, there are hash collisions and we have to iterate over
1859         * them look at each direntry with colliding name hash sequentially.
1860         */
1861        return do_lookup_nm(c, key, node, nm);
1862}
1863
1864/**
1865 * correct_parent_keys - correct parent znodes' keys.
1866 * @c: UBIFS file-system description object
1867 * @znode: znode to correct parent znodes for
1868 *
1869 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1870 * zbranch changes, keys of parent znodes have to be corrected. This helper
1871 * function is called in such situations and corrects the keys if needed.
1872 */
1873static void correct_parent_keys(const struct ubifs_info *c,
1874                                struct ubifs_znode *znode)
1875{
1876        union ubifs_key *key, *key1;
1877
1878        ubifs_assert(znode->parent);
1879        ubifs_assert(znode->iip == 0);
1880
1881        key = &znode->zbranch[0].key;
1882        key1 = &znode->parent->zbranch[0].key;
1883
1884        while (keys_cmp(c, key, key1) < 0) {
1885                key_copy(c, key, key1);
1886                znode = znode->parent;
1887                znode->alt = 1;
1888                if (!znode->parent || znode->iip)
1889                        break;
1890                key1 = &znode->parent->zbranch[0].key;
1891        }
1892}
1893
1894/**
1895 * insert_zbranch - insert a zbranch into a znode.
1896 * @znode: znode into which to insert
1897 * @zbr: zbranch to insert
1898 * @n: slot number to insert to
1899 *
1900 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
1901 * znode's array of zbranches and keeps zbranches consolidated, so when a new
1902 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
1903 * slot, zbranches starting from @n have to be moved right.
1904 */
1905static void insert_zbranch(struct ubifs_znode *znode,
1906                           const struct ubifs_zbranch *zbr, int n)
1907{
1908        int i;
1909
1910        ubifs_assert(ubifs_zn_dirty(znode));
1911
1912        if (znode->level) {
1913                for (i = znode->child_cnt; i > n; i--) {
1914                        znode->zbranch[i] = znode->zbranch[i - 1];
1915                        if (znode->zbranch[i].znode)
1916                                znode->zbranch[i].znode->iip = i;
1917                }
1918                if (zbr->znode)
1919                        zbr->znode->iip = n;
1920        } else
1921                for (i = znode->child_cnt; i > n; i--)
1922                        znode->zbranch[i] = znode->zbranch[i - 1];
1923
1924        znode->zbranch[n] = *zbr;
1925        znode->child_cnt += 1;
1926
1927        /*
1928         * After inserting at slot zero, the lower bound of the key range of
1929         * this znode may have changed. If this znode is subsequently split
1930         * then the upper bound of the key range may change, and furthermore
1931         * it could change to be lower than the original lower bound. If that
1932         * happens, then it will no longer be possible to find this znode in the
1933         * TNC using the key from the index node on flash. That is bad because
1934         * if it is not found, we will assume it is obsolete and may overwrite
1935         * it. Then if there is an unclean unmount, we will start using the
1936         * old index which will be broken.
1937         *
1938         * So we first mark znodes that have insertions at slot zero, and then
1939         * if they are split we add their lnum/offs to the old_idx tree.
1940         */
1941        if (n == 0)
1942                znode->alt = 1;
1943}
1944
1945/**
1946 * tnc_insert - insert a node into TNC.
1947 * @c: UBIFS file-system description object
1948 * @znode: znode to insert into
1949 * @zbr: branch to insert
1950 * @n: slot number to insert new zbranch to
1951 *
1952 * This function inserts a new node described by @zbr into znode @znode. If
1953 * znode does not have a free slot for new zbranch, it is split. Parent znodes
1954 * are splat as well if needed. Returns zero in case of success or a negative
1955 * error code in case of failure.
1956 */
1957static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
1958                      struct ubifs_zbranch *zbr, int n)
1959{
1960        struct ubifs_znode *zn, *zi, *zp;
1961        int i, keep, move, appending = 0;
1962        union ubifs_key *key = &zbr->key, *key1;
1963
1964        ubifs_assert(n >= 0 && n <= c->fanout);
1965
1966        /* Implement naive insert for now */
1967again:
1968        zp = znode->parent;
1969        if (znode->child_cnt < c->fanout) {
1970                ubifs_assert(n != c->fanout);
1971                dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
1972
1973                insert_zbranch(znode, zbr, n);
1974
1975                /* Ensure parent's key is correct */
1976                if (n == 0 && zp && znode->iip == 0)
1977                        correct_parent_keys(c, znode);
1978
1979                return 0;
1980        }
1981
1982        /*
1983         * Unfortunately, @znode does not have more empty slots and we have to
1984         * split it.
1985         */
1986        dbg_tnck(key, "splitting level %d, key ", znode->level);
1987
1988        if (znode->alt)
1989                /*
1990                 * We can no longer be sure of finding this znode by key, so we
1991                 * record it in the old_idx tree.
1992                 */
1993                ins_clr_old_idx_znode(c, znode);
1994
1995        zn = kzalloc(c->max_znode_sz, GFP_NOFS);
1996        if (!zn)
1997                return -ENOMEM;
1998        zn->parent = zp;
1999        zn->level = znode->level;
2000
2001        /* Decide where to split */
2002        if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2003                /* Try not to split consecutive data keys */
2004                if (n == c->fanout) {
2005                        key1 = &znode->zbranch[n - 1].key;
2006                        if (key_inum(c, key1) == key_inum(c, key) &&
2007                            key_type(c, key1) == UBIFS_DATA_KEY)
2008                                appending = 1;
2009                } else
2010                        goto check_split;
2011        } else if (appending && n != c->fanout) {
2012                /* Try not to split consecutive data keys */
2013                appending = 0;
2014check_split:
2015                if (n >= (c->fanout + 1) / 2) {
2016                        key1 = &znode->zbranch[0].key;
2017                        if (key_inum(c, key1) == key_inum(c, key) &&
2018                            key_type(c, key1) == UBIFS_DATA_KEY) {
2019                                key1 = &znode->zbranch[n].key;
2020                                if (key_inum(c, key1) != key_inum(c, key) ||
2021                                    key_type(c, key1) != UBIFS_DATA_KEY) {
2022                                        keep = n;
2023                                        move = c->fanout - keep;
2024                                        zi = znode;
2025                                        goto do_split;
2026                                }
2027                        }
2028                }
2029        }
2030
2031        if (appending) {
2032                keep = c->fanout;
2033                move = 0;
2034        } else {
2035                keep = (c->fanout + 1) / 2;
2036                move = c->fanout - keep;
2037        }
2038
2039        /*
2040         * Although we don't at present, we could look at the neighbors and see
2041         * if we can move some zbranches there.
2042         */
2043
2044        if (n < keep) {
2045                /* Insert into existing znode */
2046                zi = znode;
2047                move += 1;
2048                keep -= 1;
2049        } else {
2050                /* Insert into new znode */
2051                zi = zn;
2052                n -= keep;
2053                /* Re-parent */
2054                if (zn->level != 0)
2055                        zbr->znode->parent = zn;
2056        }
2057
2058do_split:
2059
2060        __set_bit(DIRTY_ZNODE, &zn->flags);
2061        atomic_long_inc(&c->dirty_zn_cnt);
2062
2063        zn->child_cnt = move;
2064        znode->child_cnt = keep;
2065
2066        dbg_tnc("moving %d, keeping %d", move, keep);
2067
2068        /* Move zbranch */
2069        for (i = 0; i < move; i++) {
2070                zn->zbranch[i] = znode->zbranch[keep + i];
2071                /* Re-parent */
2072                if (zn->level != 0)
2073                        if (zn->zbranch[i].znode) {
2074                                zn->zbranch[i].znode->parent = zn;
2075                                zn->zbranch[i].znode->iip = i;
2076                        }
2077        }
2078
2079        /* Insert new key and branch */
2080        dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2081
2082        insert_zbranch(zi, zbr, n);
2083
2084        /* Insert new znode (produced by spitting) into the parent */
2085        if (zp) {
2086                if (n == 0 && zi == znode && znode->iip == 0)
2087                        correct_parent_keys(c, znode);
2088
2089                /* Locate insertion point */
2090                n = znode->iip + 1;
2091
2092                /* Tail recursion */
2093                zbr->key = zn->zbranch[0].key;
2094                zbr->znode = zn;
2095                zbr->lnum = 0;
2096                zbr->offs = 0;
2097                zbr->len = 0;
2098                znode = zp;
2099
2100                goto again;
2101        }
2102
2103        /* We have to split root znode */
2104        dbg_tnc("creating new zroot at level %d", znode->level + 1);
2105
2106        zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2107        if (!zi)
2108                return -ENOMEM;
2109
2110        zi->child_cnt = 2;
2111        zi->level = znode->level + 1;
2112
2113        __set_bit(DIRTY_ZNODE, &zi->flags);
2114        atomic_long_inc(&c->dirty_zn_cnt);
2115
2116        zi->zbranch[0].key = znode->zbranch[0].key;
2117        zi->zbranch[0].znode = znode;
2118        zi->zbranch[0].lnum = c->zroot.lnum;
2119        zi->zbranch[0].offs = c->zroot.offs;
2120        zi->zbranch[0].len = c->zroot.len;
2121        zi->zbranch[1].key = zn->zbranch[0].key;
2122        zi->zbranch[1].znode = zn;
2123
2124        c->zroot.lnum = 0;
2125        c->zroot.offs = 0;
2126        c->zroot.len = 0;
2127        c->zroot.znode = zi;
2128
2129        zn->parent = zi;
2130        zn->iip = 1;
2131        znode->parent = zi;
2132        znode->iip = 0;
2133
2134        return 0;
2135}
2136
2137/**
2138 * ubifs_tnc_add - add a node to TNC.
2139 * @c: UBIFS file-system description object
2140 * @key: key to add
2141 * @lnum: LEB number of node
2142 * @offs: node offset
2143 * @len: node length
2144 *
2145 * This function adds a node with key @key to TNC. The node may be new or it may
2146 * obsolete some existing one. Returns %0 on success or negative error code on
2147 * failure.
2148 */
2149int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2150                  int offs, int len)
2151{
2152        int found, n, err = 0;
2153        struct ubifs_znode *znode;
2154
2155        mutex_lock(&c->tnc_mutex);
2156        dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2157        found = lookup_level0_dirty(c, key, &znode, &n);
2158        if (!found) {
2159                struct ubifs_zbranch zbr;
2160
2161                zbr.znode = NULL;
2162                zbr.lnum = lnum;
2163                zbr.offs = offs;
2164                zbr.len = len;
2165                key_copy(c, key, &zbr.key);
2166                err = tnc_insert(c, znode, &zbr, n + 1);
2167        } else if (found == 1) {
2168                struct ubifs_zbranch *zbr = &znode->zbranch[n];
2169
2170                lnc_free(zbr);
2171                err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2172                zbr->lnum = lnum;
2173                zbr->offs = offs;
2174                zbr->len = len;
2175        } else
2176                err = found;
2177        if (!err)
2178                err = dbg_check_tnc(c, 0);
2179        mutex_unlock(&c->tnc_mutex);
2180
2181        return err;
2182}
2183
2184/**
2185 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2186 * @c: UBIFS file-system description object
2187 * @key: key to add
2188 * @old_lnum: LEB number of old node
2189 * @old_offs: old node offset
2190 * @lnum: LEB number of node
2191 * @offs: node offset
2192 * @len: node length
2193 *
2194 * This function replaces a node with key @key in the TNC only if the old node
2195 * is found.  This function is called by garbage collection when node are moved.
2196 * Returns %0 on success or negative error code on failure.
2197 */
2198int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2199                      int old_lnum, int old_offs, int lnum, int offs, int len)
2200{
2201        int found, n, err = 0;
2202        struct ubifs_znode *znode;
2203
2204        mutex_lock(&c->tnc_mutex);
2205        dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2206                 old_offs, lnum, offs, len);
2207        found = lookup_level0_dirty(c, key, &znode, &n);
2208        if (found < 0) {
2209                err = found;
2210                goto out_unlock;
2211        }
2212
2213        if (found == 1) {
2214                struct ubifs_zbranch *zbr = &znode->zbranch[n];
2215
2216                found = 0;
2217                if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2218                        lnc_free(zbr);
2219                        err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2220                        if (err)
2221                                goto out_unlock;
2222                        zbr->lnum = lnum;
2223                        zbr->offs = offs;
2224                        zbr->len = len;
2225                        found = 1;
2226                } else if (is_hash_key(c, key)) {
2227                        found = resolve_collision_directly(c, key, &znode, &n,
2228                                                           old_lnum, old_offs);
2229                        dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2230                                found, znode, n, old_lnum, old_offs);
2231                        if (found < 0) {
2232                                err = found;
2233                                goto out_unlock;
2234                        }
2235
2236                        if (found) {
2237                                /* Ensure the znode is dirtied */
2238                                if (znode->cnext || !ubifs_zn_dirty(znode)) {
2239                                        znode = dirty_cow_bottom_up(c, znode);
2240                                        if (IS_ERR(znode)) {
2241                                                err = PTR_ERR(znode);
2242                                                goto out_unlock;
2243                                        }
2244                                }
2245                                zbr = &znode->zbranch[n];
2246                                lnc_free(zbr);
2247                                err = ubifs_add_dirt(c, zbr->lnum,
2248                                                     zbr->len);
2249                                if (err)
2250                                        goto out_unlock;
2251                                zbr->lnum = lnum;
2252                                zbr->offs = offs;
2253                                zbr->len = len;
2254                        }
2255                }
2256        }
2257
2258        if (!found)
2259                err = ubifs_add_dirt(c, lnum, len);
2260
2261        if (!err)
2262                err = dbg_check_tnc(c, 0);
2263
2264out_unlock:
2265        mutex_unlock(&c->tnc_mutex);
2266        return err;
2267}
2268
2269/**
2270 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2271 * @c: UBIFS file-system description object
2272 * @key: key to add
2273 * @lnum: LEB number of node
2274 * @offs: node offset
2275 * @len: node length
2276 * @nm: node name
2277 *
2278 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2279 * may have collisions, like directory entry keys.
2280 */
2281int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2282                     int lnum, int offs, int len, const struct qstr *nm)
2283{
2284        int found, n, err = 0;
2285        struct ubifs_znode *znode;
2286
2287        mutex_lock(&c->tnc_mutex);
2288        dbg_tnck(key, "LEB %d:%d, name '%.*s', key ",
2289                 lnum, offs, nm->len, nm->name);
2290        found = lookup_level0_dirty(c, key, &znode, &n);
2291        if (found < 0) {
2292                err = found;
2293                goto out_unlock;
2294        }
2295
2296        if (found == 1) {
2297                if (c->replaying)
2298                        found = fallible_resolve_collision(c, key, &znode, &n,
2299                                                           nm, 1);
2300                else
2301                        found = resolve_collision(c, key, &znode, &n, nm);
2302                dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2303                if (found < 0) {
2304                        err = found;
2305                        goto out_unlock;
2306                }
2307
2308                /* Ensure the znode is dirtied */
2309                if (znode->cnext || !ubifs_zn_dirty(znode)) {
2310                        znode = dirty_cow_bottom_up(c, znode);
2311                        if (IS_ERR(znode)) {
2312                                err = PTR_ERR(znode);
2313                                goto out_unlock;
2314                        }
2315                }
2316
2317                if (found == 1) {
2318                        struct ubifs_zbranch *zbr = &znode->zbranch[n];
2319
2320                        lnc_free(zbr);
2321                        err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2322                        zbr->lnum = lnum;
2323                        zbr->offs = offs;
2324                        zbr->len = len;
2325                        goto out_unlock;
2326                }
2327        }
2328
2329        if (!found) {
2330                struct ubifs_zbranch zbr;
2331
2332                zbr.znode = NULL;
2333                zbr.lnum = lnum;
2334                zbr.offs = offs;
2335                zbr.len = len;
2336                key_copy(c, key, &zbr.key);
2337                err = tnc_insert(c, znode, &zbr, n + 1);
2338                if (err)
2339                        goto out_unlock;
2340                if (c->replaying) {
2341                        /*
2342                         * We did not find it in the index so there may be a
2343                         * dangling branch still in the index. So we remove it
2344                         * by passing 'ubifs_tnc_remove_nm()' the same key but
2345                         * an unmatchable name.
2346                         */
2347                        struct qstr noname = { .name = "" };
2348
2349                        err = dbg_check_tnc(c, 0);
2350                        mutex_unlock(&c->tnc_mutex);
2351                        if (err)
2352                                return err;
2353                        return ubifs_tnc_remove_nm(c, key, &noname);
2354                }
2355        }
2356
2357out_unlock:
2358        if (!err)
2359                err = dbg_check_tnc(c, 0);
2360        mutex_unlock(&c->tnc_mutex);
2361        return err;
2362}
2363
2364/**
2365 * tnc_delete - delete a znode form TNC.
2366 * @c: UBIFS file-system description object
2367 * @znode: znode to delete from
2368 * @n: zbranch slot number to delete
2369 *
2370 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2371 * case of success and a negative error code in case of failure.
2372 */
2373static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2374{
2375        struct ubifs_zbranch *zbr;
2376        struct ubifs_znode *zp;
2377        int i, err;
2378
2379        /* Delete without merge for now */
2380        ubifs_assert(znode->level == 0);
2381        ubifs_assert(n >= 0 && n < c->fanout);
2382        dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2383
2384        zbr = &znode->zbranch[n];
2385        lnc_free(zbr);
2386
2387        err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2388        if (err) {
2389                ubifs_dump_znode(c, znode);
2390                return err;
2391        }
2392
2393        /* We do not "gap" zbranch slots */
2394        for (i = n; i < znode->child_cnt - 1; i++)
2395                znode->zbranch[i] = znode->zbranch[i + 1];
2396        znode->child_cnt -= 1;
2397
2398        if (znode->child_cnt > 0)
2399                return 0;
2400
2401        /*
2402         * This was the last zbranch, we have to delete this znode from the
2403         * parent.
2404         */
2405
2406        do {
2407                ubifs_assert(!ubifs_zn_obsolete(znode));
2408                ubifs_assert(ubifs_zn_dirty(znode));
2409
2410                zp = znode->parent;
2411                n = znode->iip;
2412
2413                atomic_long_dec(&c->dirty_zn_cnt);
2414
2415                err = insert_old_idx_znode(c, znode);
2416                if (err)
2417                        return err;
2418
2419                if (znode->cnext) {
2420                        __set_bit(OBSOLETE_ZNODE, &znode->flags);
2421                        atomic_long_inc(&c->clean_zn_cnt);
2422                        atomic_long_inc(&ubifs_clean_zn_cnt);
2423                } else
2424                        kfree(znode);
2425                znode = zp;
2426        } while (znode->child_cnt == 1); /* while removing last child */
2427
2428        /* Remove from znode, entry n - 1 */
2429        znode->child_cnt -= 1;
2430        ubifs_assert(znode->level != 0);
2431        for (i = n; i < znode->child_cnt; i++) {
2432                znode->zbranch[i] = znode->zbranch[i + 1];
2433                if (znode->zbranch[i].znode)
2434                        znode->zbranch[i].znode->iip = i;
2435        }
2436
2437        /*
2438         * If this is the root and it has only 1 child then
2439         * collapse the tree.
2440         */
2441        if (!znode->parent) {
2442                while (znode->child_cnt == 1 && znode->level != 0) {
2443                        zp = znode;
2444                        zbr = &znode->zbranch[0];
2445                        znode = get_znode(c, znode, 0);
2446                        if (IS_ERR(znode))
2447                                return PTR_ERR(znode);
2448                        znode = dirty_cow_znode(c, zbr);
2449                        if (IS_ERR(znode))
2450                                return PTR_ERR(znode);
2451                        znode->parent = NULL;
2452                        znode->iip = 0;
2453                        if (c->zroot.len) {
2454                                err = insert_old_idx(c, c->zroot.lnum,
2455                                                     c->zroot.offs);
2456                                if (err)
2457                                        return err;
2458                        }
2459                        c->zroot.lnum = zbr->lnum;
2460                        c->zroot.offs = zbr->offs;
2461                        c->zroot.len = zbr->len;
2462                        c->zroot.znode = znode;
2463                        ubifs_assert(!ubifs_zn_obsolete(zp));
2464                        ubifs_assert(ubifs_zn_dirty(zp));
2465                        atomic_long_dec(&c->dirty_zn_cnt);
2466
2467                        if (zp->cnext) {
2468                                __set_bit(OBSOLETE_ZNODE, &zp->flags);
2469                                atomic_long_inc(&c->clean_zn_cnt);
2470                                atomic_long_inc(&ubifs_clean_zn_cnt);
2471                        } else
2472                                kfree(zp);
2473                }
2474        }
2475
2476        return 0;
2477}
2478
2479/**
2480 * ubifs_tnc_remove - remove an index entry of a node.
2481 * @c: UBIFS file-system description object
2482 * @key: key of node
2483 *
2484 * Returns %0 on success or negative error code on failure.
2485 */
2486int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2487{
2488        int found, n, err = 0;
2489        struct ubifs_znode *znode;
2490
2491        mutex_lock(&c->tnc_mutex);
2492        dbg_tnck(key, "key ");
2493        found = lookup_level0_dirty(c, key, &znode, &n);
2494        if (found < 0) {
2495                err = found;
2496                goto out_unlock;
2497        }
2498        if (found == 1)
2499                err = tnc_delete(c, znode, n);
2500        if (!err)
2501                err = dbg_check_tnc(c, 0);
2502
2503out_unlock:
2504        mutex_unlock(&c->tnc_mutex);
2505        return err;
2506}
2507
2508/**
2509 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2510 * @c: UBIFS file-system description object
2511 * @key: key of node
2512 * @nm: directory entry name
2513 *
2514 * Returns %0 on success or negative error code on failure.
2515 */
2516int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2517                        const struct qstr *nm)
2518{
2519        int n, err;
2520        struct ubifs_znode *znode;
2521
2522        mutex_lock(&c->tnc_mutex);
2523        dbg_tnck(key, "%.*s, key ", nm->len, nm->name);
2524        err = lookup_level0_dirty(c, key, &znode, &n);
2525        if (err < 0)
2526                goto out_unlock;
2527
2528        if (err) {
2529                if (c->replaying)
2530                        err = fallible_resolve_collision(c, key, &znode, &n,
2531                                                         nm, 0);
2532                else
2533                        err = resolve_collision(c, key, &znode, &n, nm);
2534                dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2535                if (err < 0)
2536                        goto out_unlock;
2537                if (err) {
2538                        /* Ensure the znode is dirtied */
2539                        if (znode->cnext || !ubifs_zn_dirty(znode)) {
2540                                znode = dirty_cow_bottom_up(c, znode);
2541                                if (IS_ERR(znode)) {
2542                                        err = PTR_ERR(znode);
2543                                        goto out_unlock;
2544                                }
2545                        }
2546                        err = tnc_delete(c, znode, n);
2547                }
2548        }
2549
2550out_unlock:
2551        if (!err)
2552                err = dbg_check_tnc(c, 0);
2553        mutex_unlock(&c->tnc_mutex);
2554        return err;
2555}
2556
2557/**
2558 * key_in_range - determine if a key falls within a range of keys.
2559 * @c: UBIFS file-system description object
2560 * @key: key to check
2561 * @from_key: lowest key in range
2562 * @to_key: highest key in range
2563 *
2564 * This function returns %1 if the key is in range and %0 otherwise.
2565 */
2566static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2567                        union ubifs_key *from_key, union ubifs_key *to_key)
2568{
2569        if (keys_cmp(c, key, from_key) < 0)
2570                return 0;
2571        if (keys_cmp(c, key, to_key) > 0)
2572                return 0;
2573        return 1;
2574}
2575
2576/**
2577 * ubifs_tnc_remove_range - remove index entries in range.
2578 * @c: UBIFS file-system description object
2579 * @from_key: lowest key to remove
2580 * @to_key: highest key to remove
2581 *
2582 * This function removes index entries starting at @from_key and ending at
2583 * @to_key.  This function returns zero in case of success and a negative error
2584 * code in case of failure.
2585 */
2586int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2587                           union ubifs_key *to_key)
2588{
2589        int i, n, k, err = 0;
2590        struct ubifs_znode *znode;
2591        union ubifs_key *key;
2592
2593        mutex_lock(&c->tnc_mutex);
2594        while (1) {
2595                /* Find first level 0 znode that contains keys to remove */
2596                err = ubifs_lookup_level0(c, from_key, &znode, &n);
2597                if (err < 0)
2598                        goto out_unlock;
2599
2600                if (err)
2601                        key = from_key;
2602                else {
2603                        err = tnc_next(c, &znode, &n);
2604                        if (err == -ENOENT) {
2605                                err = 0;
2606                                goto out_unlock;
2607                        }
2608                        if (err < 0)
2609                                goto out_unlock;
2610                        key = &znode->zbranch[n].key;
2611                        if (!key_in_range(c, key, from_key, to_key)) {
2612                                err = 0;
2613                                goto out_unlock;
2614                        }
2615                }
2616
2617                /* Ensure the znode is dirtied */
2618                if (znode->cnext || !ubifs_zn_dirty(znode)) {
2619                        znode = dirty_cow_bottom_up(c, znode);
2620                        if (IS_ERR(znode)) {
2621                                err = PTR_ERR(znode);
2622                                goto out_unlock;
2623                        }
2624                }
2625
2626                /* Remove all keys in range except the first */
2627                for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2628                        key = &znode->zbranch[i].key;
2629                        if (!key_in_range(c, key, from_key, to_key))
2630                                break;
2631                        lnc_free(&znode->zbranch[i]);
2632                        err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2633                                             znode->zbranch[i].len);
2634                        if (err) {
2635                                ubifs_dump_znode(c, znode);
2636                                goto out_unlock;
2637                        }
2638                        dbg_tnck(key, "removing key ");
2639                }
2640                if (k) {
2641                        for (i = n + 1 + k; i < znode->child_cnt; i++)
2642                                znode->zbranch[i - k] = znode->zbranch[i];
2643                        znode->child_cnt -= k;
2644                }
2645
2646                /* Now delete the first */
2647                err = tnc_delete(c, znode, n);
2648                if (err)
2649                        goto out_unlock;
2650        }
2651
2652out_unlock:
2653        if (!err)
2654                err = dbg_check_tnc(c, 0);
2655        mutex_unlock(&c->tnc_mutex);
2656        return err;
2657}
2658
2659/**
2660 * ubifs_tnc_remove_ino - remove an inode from TNC.
2661 * @c: UBIFS file-system description object
2662 * @inum: inode number to remove
2663 *
2664 * This function remove inode @inum and all the extended attributes associated
2665 * with the anode from TNC and returns zero in case of success or a negative
2666 * error code in case of failure.
2667 */
2668int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2669{
2670        union ubifs_key key1, key2;
2671        struct ubifs_dent_node *xent, *pxent = NULL;
2672        struct qstr nm = { .name = NULL };
2673
2674        dbg_tnc("ino %lu", (unsigned long)inum);
2675
2676        /*
2677         * Walk all extended attribute entries and remove them together with
2678         * corresponding extended attribute inodes.
2679         */
2680        lowest_xent_key(c, &key1, inum);
2681        while (1) {
2682                ino_t xattr_inum;
2683                int err;
2684
2685                xent = ubifs_tnc_next_ent(c, &key1, &nm);
2686                if (IS_ERR(xent)) {
2687                        err = PTR_ERR(xent);
2688                        if (err == -ENOENT)
2689                                break;
2690                        return err;
2691                }
2692
2693                xattr_inum = le64_to_cpu(xent->inum);
2694                dbg_tnc("xent '%s', ino %lu", xent->name,
2695                        (unsigned long)xattr_inum);
2696
2697                nm.name = xent->name;
2698                nm.len = le16_to_cpu(xent->nlen);
2699                err = ubifs_tnc_remove_nm(c, &key1, &nm);
2700                if (err) {
2701                        kfree(xent);
2702                        return err;
2703                }
2704
2705                lowest_ino_key(c, &key1, xattr_inum);
2706                highest_ino_key(c, &key2, xattr_inum);
2707                err = ubifs_tnc_remove_range(c, &key1, &key2);
2708                if (err) {
2709                        kfree(xent);
2710                        return err;
2711                }
2712
2713                kfree(pxent);
2714                pxent = xent;
2715                key_read(c, &xent->key, &key1);
2716        }
2717
2718        kfree(pxent);
2719        lowest_ino_key(c, &key1, inum);
2720        highest_ino_key(c, &key2, inum);
2721
2722        return ubifs_tnc_remove_range(c, &key1, &key2);
2723}
2724
2725/**
2726 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2727 * @c: UBIFS file-system description object
2728 * @key: key of last entry
2729 * @nm: name of last entry found or %NULL
2730 *
2731 * This function finds and reads the next directory or extended attribute entry
2732 * after the given key (@key) if there is one. @nm is used to resolve
2733 * collisions.
2734 *
2735 * If the name of the current entry is not known and only the key is known,
2736 * @nm->name has to be %NULL. In this case the semantics of this function is a
2737 * little bit different and it returns the entry corresponding to this key, not
2738 * the next one. If the key was not found, the closest "right" entry is
2739 * returned.
2740 *
2741 * If the fist entry has to be found, @key has to contain the lowest possible
2742 * key value for this inode and @name has to be %NULL.
2743 *
2744 * This function returns the found directory or extended attribute entry node
2745 * in case of success, %-ENOENT is returned if no entry was found, and a
2746 * negative error code is returned in case of failure.
2747 */
2748struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2749                                           union ubifs_key *key,
2750                                           const struct qstr *nm)
2751{
2752        int n, err, type = key_type(c, key);
2753        struct ubifs_znode *znode;
2754        struct ubifs_dent_node *dent;
2755        struct ubifs_zbranch *zbr;
2756        union ubifs_key *dkey;
2757
2758        dbg_tnck(key, "%s ", nm->name ? (char *)nm->name : "(lowest)");
2759        ubifs_assert(is_hash_key(c, key));
2760
2761        mutex_lock(&c->tnc_mutex);
2762        err = ubifs_lookup_level0(c, key, &znode, &n);
2763        if (unlikely(err < 0))
2764                goto out_unlock;
2765
2766        if (nm->name) {
2767                if (err) {
2768                        /* Handle collisions */
2769                        err = resolve_collision(c, key, &znode, &n, nm);
2770                        dbg_tnc("rc returned %d, znode %p, n %d",
2771                                err, znode, n);
2772                        if (unlikely(err < 0))
2773                                goto out_unlock;
2774                }
2775
2776                /* Now find next entry */
2777                err = tnc_next(c, &znode, &n);
2778                if (unlikely(err))
2779                        goto out_unlock;
2780        } else {
2781                /*
2782                 * The full name of the entry was not given, in which case the
2783                 * behavior of this function is a little different and it
2784                 * returns current entry, not the next one.
2785                 */
2786                if (!err) {
2787                        /*
2788                         * However, the given key does not exist in the TNC
2789                         * tree and @znode/@n variables contain the closest
2790                         * "preceding" element. Switch to the next one.
2791                         */
2792                        err = tnc_next(c, &znode, &n);
2793                        if (err)
2794                                goto out_unlock;
2795                }
2796        }
2797
2798        zbr = &znode->zbranch[n];
2799        dent = kmalloc(zbr->len, GFP_NOFS);
2800        if (unlikely(!dent)) {
2801                err = -ENOMEM;
2802                goto out_unlock;
2803        }
2804
2805        /*
2806         * The above 'tnc_next()' call could lead us to the next inode, check
2807         * this.
2808         */
2809        dkey = &zbr->key;
2810        if (key_inum(c, dkey) != key_inum(c, key) ||
2811            key_type(c, dkey) != type) {
2812                err = -ENOENT;
2813                goto out_free;
2814        }
2815
2816        err = tnc_read_node_nm(c, zbr, dent);
2817        if (unlikely(err))
2818                goto out_free;
2819
2820        mutex_unlock(&c->tnc_mutex);
2821        return dent;
2822
2823out_free:
2824        kfree(dent);
2825out_unlock:
2826        mutex_unlock(&c->tnc_mutex);
2827        return ERR_PTR(err);
2828}
2829
2830/**
2831 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2832 * @c: UBIFS file-system description object
2833 *
2834 * Destroy left-over obsolete znodes from a failed commit.
2835 */
2836static void tnc_destroy_cnext(struct ubifs_info *c)
2837{
2838        struct ubifs_znode *cnext;
2839
2840        if (!c->cnext)
2841                return;
2842        ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2843        cnext = c->cnext;
2844        do {
2845                struct ubifs_znode *znode = cnext;
2846
2847                cnext = cnext->cnext;
2848                if (ubifs_zn_obsolete(znode))
2849                        kfree(znode);
2850        } while (cnext && cnext != c->cnext);
2851}
2852
2853/**
2854 * ubifs_tnc_close - close TNC subsystem and free all related resources.
2855 * @c: UBIFS file-system description object
2856 */
2857void ubifs_tnc_close(struct ubifs_info *c)
2858{
2859        tnc_destroy_cnext(c);
2860        if (c->zroot.znode) {
2861                long n, freed;
2862
2863                n = atomic_long_read(&c->clean_zn_cnt);
2864                freed = ubifs_destroy_tnc_subtree(c->zroot.znode);
2865                ubifs_assert(freed == n);
2866                atomic_long_sub(n, &ubifs_clean_zn_cnt);
2867        }
2868        kfree(c->gap_lebs);
2869        kfree(c->ilebs);
2870        destroy_old_idx(c);
2871}
2872
2873/**
2874 * left_znode - get the znode to the left.
2875 * @c: UBIFS file-system description object
2876 * @znode: znode
2877 *
2878 * This function returns a pointer to the znode to the left of @znode or NULL if
2879 * there is not one. A negative error code is returned on failure.
2880 */
2881static struct ubifs_znode *left_znode(struct ubifs_info *c,
2882                                      struct ubifs_znode *znode)
2883{
2884        int level = znode->level;
2885
2886        while (1) {
2887                int n = znode->iip - 1;
2888
2889                /* Go up until we can go left */
2890                znode = znode->parent;
2891                if (!znode)
2892                        return NULL;
2893                if (n >= 0) {
2894                        /* Now go down the rightmost branch to 'level' */
2895                        znode = get_znode(c, znode, n);
2896                        if (IS_ERR(znode))
2897                                return znode;
2898                        while (znode->level != level) {
2899                                n = znode->child_cnt - 1;
2900                                znode = get_znode(c, znode, n);
2901                                if (IS_ERR(znode))
2902                                        return znode;
2903                        }
2904                        break;
2905                }
2906        }
2907        return znode;
2908}
2909
2910/**
2911 * right_znode - get the znode to the right.
2912 * @c: UBIFS file-system description object
2913 * @znode: znode
2914 *
2915 * This function returns a pointer to the znode to the right of @znode or NULL
2916 * if there is not one. A negative error code is returned on failure.
2917 */
2918static struct ubifs_znode *right_znode(struct ubifs_info *c,
2919                                       struct ubifs_znode *znode)
2920{
2921        int level = znode->level;
2922
2923        while (1) {
2924                int n = znode->iip + 1;
2925
2926                /* Go up until we can go right */
2927                znode = znode->parent;
2928                if (!znode)
2929                        return NULL;
2930                if (n < znode->child_cnt) {
2931                        /* Now go down the leftmost branch to 'level' */
2932                        znode = get_znode(c, znode, n);
2933                        if (IS_ERR(znode))
2934                                return znode;
2935                        while (znode->level != level) {
2936                                znode = get_znode(c, znode, 0);
2937                                if (IS_ERR(znode))
2938                                        return znode;
2939                        }
2940                        break;
2941                }
2942        }
2943        return znode;
2944}
2945
2946/**
2947 * lookup_znode - find a particular indexing node from TNC.
2948 * @c: UBIFS file-system description object
2949 * @key: index node key to lookup
2950 * @level: index node level
2951 * @lnum: index node LEB number
2952 * @offs: index node offset
2953 *
2954 * This function searches an indexing node by its first key @key and its
2955 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
2956 * nodes it traverses to TNC. This function is called for indexing nodes which
2957 * were found on the media by scanning, for example when garbage-collecting or
2958 * when doing in-the-gaps commit. This means that the indexing node which is
2959 * looked for does not have to have exactly the same leftmost key @key, because
2960 * the leftmost key may have been changed, in which case TNC will contain a
2961 * dirty znode which still refers the same @lnum:@offs. This function is clever
2962 * enough to recognize such indexing nodes.
2963 *
2964 * Note, if a znode was deleted or changed too much, then this function will
2965 * not find it. For situations like this UBIFS has the old index RB-tree
2966 * (indexed by @lnum:@offs).
2967 *
2968 * This function returns a pointer to the znode found or %NULL if it is not
2969 * found. A negative error code is returned on failure.
2970 */
2971static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
2972                                        union ubifs_key *key, int level,
2973                                        int lnum, int offs)
2974{
2975        struct ubifs_znode *znode, *zn;
2976        int n, nn;
2977
2978        ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
2979
2980        /*
2981         * The arguments have probably been read off flash, so don't assume
2982         * they are valid.
2983         */
2984        if (level < 0)
2985                return ERR_PTR(-EINVAL);
2986
2987        /* Get the root znode */
2988        znode = c->zroot.znode;
2989        if (!znode) {
2990                znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
2991                if (IS_ERR(znode))
2992                        return znode;
2993        }
2994        /* Check if it is the one we are looking for */
2995        if (c->zroot.lnum == lnum && c->zroot.offs == offs)
2996                return znode;
2997        /* Descend to the parent level i.e. (level + 1) */
2998        if (level >= znode->level)
2999                return NULL;
3000        while (1) {
3001                ubifs_search_zbranch(c, znode, key, &n);
3002                if (n < 0) {
3003                        /*
3004                         * We reached a znode where the leftmost key is greater
3005                         * than the key we are searching for. This is the same
3006                         * situation as the one described in a huge comment at
3007                         * the end of the 'ubifs_lookup_level0()' function. And
3008                         * for exactly the same reasons we have to try to look
3009                         * left before giving up.
3010                         */
3011                        znode = left_znode(c, znode);
3012                        if (!znode)
3013                                return NULL;
3014                        if (IS_ERR(znode))
3015                                return znode;
3016                        ubifs_search_zbranch(c, znode, key, &n);
3017                        ubifs_assert(n >= 0);
3018                }
3019                if (znode->level == level + 1)
3020                        break;
3021                znode = get_znode(c, znode, n);
3022                if (IS_ERR(znode))
3023                        return znode;
3024        }
3025        /* Check if the child is the one we are looking for */
3026        if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3027                return get_znode(c, znode, n);
3028        /* If the key is unique, there is nowhere else to look */
3029        if (!is_hash_key(c, key))
3030                return NULL;
3031        /*
3032         * The key is not unique and so may be also in the znodes to either
3033         * side.
3034         */
3035        zn = znode;
3036        nn = n;
3037        /* Look left */
3038        while (1) {
3039                /* Move one branch to the left */
3040                if (n)
3041                        n -= 1;
3042                else {
3043                        znode = left_znode(c, znode);
3044                        if (!znode)
3045                                break;
3046                        if (IS_ERR(znode))
3047                                return znode;
3048                        n = znode->child_cnt - 1;
3049                }
3050                /* Check it */
3051                if (znode->zbranch[n].lnum == lnum &&
3052                    znode->zbranch[n].offs == offs)
3053                        return get_znode(c, znode, n);
3054                /* Stop if the key is less than the one we are looking for */
3055                if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3056                        break;
3057        }
3058        /* Back to the middle */
3059        znode = zn;
3060        n = nn;
3061        /* Look right */
3062        while (1) {
3063                /* Move one branch to the right */
3064                if (++n >= znode->child_cnt) {
3065                        znode = right_znode(c, znode);
3066                        if (!znode)
3067                                break;
3068                        if (IS_ERR(znode))
3069                                return znode;
3070                        n = 0;
3071                }
3072                /* Check it */
3073                if (znode->zbranch[n].lnum == lnum &&
3074                    znode->zbranch[n].offs == offs)
3075                        return get_znode(c, znode, n);
3076                /* Stop if the key is greater than the one we are looking for */
3077                if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3078                        break;
3079        }
3080        return NULL;
3081}
3082
3083/**
3084 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3085 * @c: UBIFS file-system description object
3086 * @key: key of index node
3087 * @level: index node level
3088 * @lnum: LEB number of index node
3089 * @offs: offset of index node
3090 *
3091 * This function returns %0 if the index node is not referred to in the TNC, %1
3092 * if the index node is referred to in the TNC and the corresponding znode is
3093 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3094 * znode is clean, and a negative error code in case of failure.
3095 *
3096 * Note, the @key argument has to be the key of the first child. Also note,
3097 * this function relies on the fact that 0:0 is never a valid LEB number and
3098 * offset for a main-area node.
3099 */
3100int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3101                       int lnum, int offs)
3102{
3103        struct ubifs_znode *znode;
3104
3105        znode = lookup_znode(c, key, level, lnum, offs);
3106        if (!znode)
3107                return 0;
3108        if (IS_ERR(znode))
3109                return PTR_ERR(znode);
3110
3111        return ubifs_zn_dirty(znode) ? 1 : 2;
3112}
3113
3114/**
3115 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3116 * @c: UBIFS file-system description object
3117 * @key: node key
3118 * @lnum: node LEB number
3119 * @offs: node offset
3120 *
3121 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3122 * not, and a negative error code in case of failure.
3123 *
3124 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3125 * and offset for a main-area node.
3126 */
3127static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3128                               int lnum, int offs)
3129{
3130        struct ubifs_zbranch *zbr;
3131        struct ubifs_znode *znode, *zn;
3132        int n, found, err, nn;
3133        const int unique = !is_hash_key(c, key);
3134
3135        found = ubifs_lookup_level0(c, key, &znode, &n);
3136        if (found < 0)
3137                return found; /* Error code */
3138        if (!found)
3139                return 0;
3140        zbr = &znode->zbranch[n];
3141        if (lnum == zbr->lnum && offs == zbr->offs)
3142                return 1; /* Found it */
3143        if (unique)
3144                return 0;
3145        /*
3146         * Because the key is not unique, we have to look left
3147         * and right as well
3148         */
3149        zn = znode;
3150        nn = n;
3151        /* Look left */
3152        while (1) {
3153                err = tnc_prev(c, &znode, &n);
3154                if (err == -ENOENT)
3155                        break;
3156                if (err)
3157                        return err;
3158                if (keys_cmp(c, key, &znode->zbranch[n].key))
3159                        break;
3160                zbr = &znode->zbranch[n];
3161                if (lnum == zbr->lnum && offs == zbr->offs)
3162                        return 1; /* Found it */
3163        }
3164        /* Look right */
3165        znode = zn;
3166        n = nn;
3167        while (1) {
3168                err = tnc_next(c, &znode, &n);
3169                if (err) {
3170                        if (err == -ENOENT)
3171                                return 0;
3172                        return err;
3173                }
3174                if (keys_cmp(c, key, &znode->zbranch[n].key))
3175                        break;
3176                zbr = &znode->zbranch[n];
3177                if (lnum == zbr->lnum && offs == zbr->offs)
3178                        return 1; /* Found it */
3179        }
3180        return 0;
3181}
3182
3183/**
3184 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3185 * @c: UBIFS file-system description object
3186 * @key: node key
3187 * @level: index node level (if it is an index node)
3188 * @lnum: node LEB number
3189 * @offs: node offset
3190 * @is_idx: non-zero if the node is an index node
3191 *
3192 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3193 * negative error code in case of failure. For index nodes, @key has to be the
3194 * key of the first child. An index node is considered to be in the TNC only if
3195 * the corresponding znode is clean or has not been loaded.
3196 */
3197int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3198                       int lnum, int offs, int is_idx)
3199{
3200        int err;
3201
3202        mutex_lock(&c->tnc_mutex);
3203        if (is_idx) {
3204                err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3205                if (err < 0)
3206                        goto out_unlock;
3207                if (err == 1)
3208                        /* The index node was found but it was dirty */
3209                        err = 0;
3210                else if (err == 2)
3211                        /* The index node was found and it was clean */
3212                        err = 1;
3213                else
3214                        BUG_ON(err != 0);
3215        } else
3216                err = is_leaf_node_in_tnc(c, key, lnum, offs);
3217
3218out_unlock:
3219        mutex_unlock(&c->tnc_mutex);
3220        return err;
3221}
3222
3223/**
3224 * ubifs_dirty_idx_node - dirty an index node.
3225 * @c: UBIFS file-system description object
3226 * @key: index node key
3227 * @level: index node level
3228 * @lnum: index node LEB number
3229 * @offs: index node offset
3230 *
3231 * This function loads and dirties an index node so that it can be garbage
3232 * collected. The @key argument has to be the key of the first child. This
3233 * function relies on the fact that 0:0 is never a valid LEB number and offset
3234 * for a main-area node. Returns %0 on success and a negative error code on
3235 * failure.
3236 */
3237int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3238                         int lnum, int offs)
3239{
3240        struct ubifs_znode *znode;
3241        int err = 0;
3242
3243        mutex_lock(&c->tnc_mutex);
3244        znode = lookup_znode(c, key, level, lnum, offs);
3245        if (!znode)
3246                goto out_unlock;
3247        if (IS_ERR(znode)) {
3248                err = PTR_ERR(znode);
3249                goto out_unlock;
3250        }
3251        znode = dirty_cow_bottom_up(c, znode);
3252        if (IS_ERR(znode)) {
3253                err = PTR_ERR(znode);
3254                goto out_unlock;
3255        }
3256
3257out_unlock:
3258        mutex_unlock(&c->tnc_mutex);
3259        return err;
3260}
3261
3262/**
3263 * dbg_check_inode_size - check if inode size is correct.
3264 * @c: UBIFS file-system description object
3265 * @inum: inode number
3266 * @size: inode size
3267 *
3268 * This function makes sure that the inode size (@size) is correct and it does
3269 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3270 * if it has a data page beyond @size, and other negative error code in case of
3271 * other errors.
3272 */
3273int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3274                         loff_t size)
3275{
3276        int err, n;
3277        union ubifs_key from_key, to_key, *key;
3278        struct ubifs_znode *znode;
3279        unsigned int block;
3280
3281        if (!S_ISREG(inode->i_mode))
3282                return 0;
3283        if (!dbg_is_chk_gen(c))
3284                return 0;
3285
3286        block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3287        data_key_init(c, &from_key, inode->i_ino, block);
3288        highest_data_key(c, &to_key, inode->i_ino);
3289
3290        mutex_lock(&c->tnc_mutex);
3291        err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3292        if (err < 0)
3293                goto out_unlock;
3294
3295        if (err) {
3296                key = &from_key;
3297                goto out_dump;
3298        }
3299
3300        err = tnc_next(c, &znode, &n);
3301        if (err == -ENOENT) {
3302                err = 0;
3303                goto out_unlock;
3304        }
3305        if (err < 0)
3306                goto out_unlock;
3307
3308        ubifs_assert(err == 0);
3309        key = &znode->zbranch[n].key;
3310        if (!key_in_range(c, key, &from_key, &to_key))
3311                goto out_unlock;
3312
3313out_dump:
3314        block = key_block(c, key);
3315        ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
3316                  (unsigned long)inode->i_ino, size,
3317                  ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3318        mutex_unlock(&c->tnc_mutex);
3319        ubifs_dump_inode(c, inode);
3320        dump_stack();
3321        return -EINVAL;
3322
3323out_unlock:
3324        mutex_unlock(&c->tnc_mutex);
3325        return err;
3326}
3327