uboot/arch/x86/cpu/mp_init.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Copyright (C) 2015 Google, Inc
   4 *
   5 * Based on code from the coreboot file of the same name
   6 */
   7
   8#include <common.h>
   9#include <cpu.h>
  10#include <dm.h>
  11#include <errno.h>
  12#include <log.h>
  13#include <malloc.h>
  14#include <qfw.h>
  15#include <asm/atomic.h>
  16#include <asm/cpu.h>
  17#include <asm/global_data.h>
  18#include <asm/interrupt.h>
  19#include <asm/io.h>
  20#include <asm/lapic.h>
  21#include <asm/microcode.h>
  22#include <asm/mp.h>
  23#include <asm/msr.h>
  24#include <asm/mtrr.h>
  25#include <asm/processor.h>
  26#include <asm/sipi.h>
  27#include <dm/device-internal.h>
  28#include <dm/uclass-internal.h>
  29#include <dm/lists.h>
  30#include <dm/root.h>
  31#include <linux/delay.h>
  32#include <linux/linkage.h>
  33
  34DECLARE_GLOBAL_DATA_PTR;
  35
  36/*
  37 * Setting up multiprocessing
  38 *
  39 * See https://www.intel.com/content/www/us/en/intelligent-systems/intel-boot-loader-development-kit/minimal-intel-architecture-boot-loader-paper.html
  40 *
  41 * Note that this file refers to the boot CPU (the one U-Boot is running on) as
  42 * the BSP (BootStrap Processor) and the others as APs (Application Processors).
  43 *
  44 * This module works by loading some setup code into RAM at AP_DEFAULT_BASE and
  45 * telling each AP to execute it. The code that each AP runs is in
  46 * sipi_vector.S (see ap_start16) which includes a struct sipi_params at the
  47 * end of it. Those parameters are set up by the C code.
  48
  49 * Setting up is handled by load_sipi_vector(). It inits the common block of
  50 * parameters (sipi_params) which tell the APs what to do. This block includes
  51 * microcode and the MTTRs (Memory-Type-Range Registers) from the main CPU.
  52 * There is also an ap_count which each AP increments as it starts up, so the
  53 * BSP can tell how many checked in.
  54 *
  55 * The APs are started with a SIPI (Startup Inter-Processor Interrupt) which
  56 * tells an AP to start executing at a particular address, in this case
  57 * AP_DEFAULT_BASE which contains the code copied from ap_start16. This protocol
  58 * is handled by start_aps().
  59 *
  60 * After being started, each AP runs the code in ap_start16, switches to 32-bit
  61 * mode, runs the code at ap_start, then jumps to c_handler which is ap_init().
  62 * This runs a very simple 'flight plan' described in mp_steps(). This sets up
  63 * the CPU and waits for further instructions by looking at its entry in
  64 * ap_callbacks[]. Note that the flight plan is only actually run for each CPU
  65 * in bsp_do_flight_plan(): once the BSP completes each flight record, it sets
  66 * mp_flight_record->barrier to 1 to allow the APs to executed the record one
  67 * by one.
  68 *
  69 * CPUS are numbered sequentially from 0 using the device tree:
  70 *
  71 *      cpus {
  72 *              u-boot,dm-pre-reloc;
  73 *              #address-cells = <1>;
  74 *              #size-cells = <0>;
  75 *
  76 *              cpu@0 {
  77 *                      u-boot,dm-pre-reloc;
  78 *                      device_type = "cpu";
  79 *                      compatible = "intel,apl-cpu";
  80 *                      reg = <0>;
  81 *                      intel,apic-id = <0>;
  82 *              };
  83 *
  84 *              cpu@1 {
  85 *                      device_type = "cpu";
  86 *                      compatible = "intel,apl-cpu";
  87 *                      reg = <1>;
  88 *                      intel,apic-id = <2>;
  89 *              };
  90 *
  91 * Here the 'reg' property is the CPU number and then is placed in dev_seq(cpu)
  92 * so that we can index into ap_callbacks[] using that. The APIC ID is different
  93 * and may not be sequential (it typically is if hyperthreading is supported).
  94 *
  95 * Once APs are inited they wait in ap_wait_for_instruction() for instructions.
  96 * Instructions come in the form of a function to run. This logic is in
  97 * mp_run_on_cpus() which supports running on any one AP, all APs, just the BSP
  98 * or all CPUs. The BSP logic is handled directly in mp_run_on_cpus(), by
  99 * calling the function. For the APs, callback information is stored in a
 100 * single, common struct mp_callback and a pointer to this is written to each
 101 * AP's slot in ap_callbacks[] by run_ap_work(). All APs get the message even
 102 * if it is only for one of them. When an AP notices a message it checks whether
 103 * it should call the function (see check in ap_wait_for_instruction()) and then
 104 * does so if needed. After that it sets its slot to NULL to indicate it is
 105 * done.
 106 *
 107 * While U-Boot is running it can use mp_run_on_cpus() to run code on the APs.
 108 * An example of this is the 'mtrr' command which allows reading and changing
 109 * the MTRRs on all CPUs.
 110 *
 111 * Before U-Boot exits it calls mp_park_aps() which tells all CPUs to halt by
 112 * executing a 'hlt' instruction. That allows them to be used by Linux when it
 113 * starts up.
 114 */
 115
 116/* This also needs to match the sipi.S assembly code for saved MSR encoding */
 117struct __packed saved_msr {
 118        uint32_t index;
 119        uint32_t lo;
 120        uint32_t hi;
 121};
 122
 123/**
 124 * struct mp_flight_plan - Holds the flight plan
 125 *
 126 * @num_records: Number of flight records
 127 * @records: Pointer to each record
 128 */
 129struct mp_flight_plan {
 130        int num_records;
 131        struct mp_flight_record *records;
 132};
 133
 134/**
 135 * struct mp_callback - Callback information for APs
 136 *
 137 * @func: Function to run
 138 * @arg: Argument to pass to the function
 139 * @logical_cpu_number: Either a CPU number (i.e. dev_seq(cpu) or a special
 140 *      value like MP_SELECT_BSP. It tells the AP whether it should process this
 141 *      callback
 142 */
 143struct mp_callback {
 144        mp_run_func func;
 145        void *arg;
 146        int logical_cpu_number;
 147};
 148
 149/* Stores the flight plan so that APs can find it */
 150static struct mp_flight_plan mp_info;
 151
 152/*
 153 * ap_callbacks - Callback mailbox array
 154 *
 155 * Array of callback, one entry for each available CPU, indexed by the CPU
 156 * number, which is dev_seq(cpu). The entry for the main CPU is never used.
 157 * When this is NULL, there is no pending work for the CPU to run. When
 158 * non-NULL it points to the mp_callback structure. This is shared between all
 159 * CPUs, so should only be written by the main CPU.
 160 */
 161static struct mp_callback **ap_callbacks;
 162
 163static inline void barrier_wait(atomic_t *b)
 164{
 165        while (atomic_read(b) == 0)
 166                asm("pause");
 167        mfence();
 168}
 169
 170static inline void release_barrier(atomic_t *b)
 171{
 172        mfence();
 173        atomic_set(b, 1);
 174}
 175
 176static inline void stop_this_cpu(void)
 177{
 178        /* Called by an AP when it is ready to halt and wait for a new task */
 179        for (;;)
 180                cpu_hlt();
 181}
 182
 183/* Returns 1 if timeout waiting for APs. 0 if target APs found */
 184static int wait_for_aps(atomic_t *val, int target, int total_delay,
 185                        int delay_step)
 186{
 187        int timeout = 0;
 188        int delayed = 0;
 189
 190        while (atomic_read(val) != target) {
 191                udelay(delay_step);
 192                delayed += delay_step;
 193                if (delayed >= total_delay) {
 194                        timeout = 1;
 195                        break;
 196                }
 197        }
 198
 199        return timeout;
 200}
 201
 202static void ap_do_flight_plan(struct udevice *cpu)
 203{
 204        int i;
 205
 206        for (i = 0; i < mp_info.num_records; i++) {
 207                struct mp_flight_record *rec = &mp_info.records[i];
 208
 209                atomic_inc(&rec->cpus_entered);
 210                barrier_wait(&rec->barrier);
 211
 212                if (rec->ap_call != NULL)
 213                        rec->ap_call(cpu, rec->ap_arg);
 214        }
 215}
 216
 217static int find_cpu_by_apic_id(int apic_id, struct udevice **devp)
 218{
 219        struct udevice *dev;
 220
 221        *devp = NULL;
 222        for (uclass_find_first_device(UCLASS_CPU, &dev);
 223             dev;
 224             uclass_find_next_device(&dev)) {
 225                struct cpu_plat *plat = dev_get_parent_plat(dev);
 226
 227                if (plat->cpu_id == apic_id) {
 228                        *devp = dev;
 229                        return 0;
 230                }
 231        }
 232
 233        return -ENOENT;
 234}
 235
 236/*
 237 * By the time APs call ap_init() caching has been setup, and microcode has
 238 * been loaded
 239 */
 240static void ap_init(unsigned int cpu_index)
 241{
 242        struct udevice *dev;
 243        int apic_id;
 244        int ret;
 245
 246        /* Ensure the local apic is enabled */
 247        enable_lapic();
 248
 249        apic_id = lapicid();
 250        ret = find_cpu_by_apic_id(apic_id, &dev);
 251        if (ret) {
 252                debug("Unknown CPU apic_id %x\n", apic_id);
 253                goto done;
 254        }
 255
 256        debug("AP: slot %d apic_id %x, dev %s\n", cpu_index, apic_id,
 257              dev ? dev->name : "(apic_id not found)");
 258
 259        /*
 260         * Walk the flight plan, which only returns if CONFIG_SMP_AP_WORK is not
 261         * enabled
 262         */
 263        ap_do_flight_plan(dev);
 264
 265done:
 266        stop_this_cpu();
 267}
 268
 269static const unsigned int fixed_mtrrs[NUM_FIXED_MTRRS] = {
 270        MTRR_FIX_64K_00000_MSR, MTRR_FIX_16K_80000_MSR, MTRR_FIX_16K_A0000_MSR,
 271        MTRR_FIX_4K_C0000_MSR, MTRR_FIX_4K_C8000_MSR, MTRR_FIX_4K_D0000_MSR,
 272        MTRR_FIX_4K_D8000_MSR, MTRR_FIX_4K_E0000_MSR, MTRR_FIX_4K_E8000_MSR,
 273        MTRR_FIX_4K_F0000_MSR, MTRR_FIX_4K_F8000_MSR,
 274};
 275
 276static inline struct saved_msr *save_msr(int index, struct saved_msr *entry)
 277{
 278        msr_t msr;
 279
 280        msr = msr_read(index);
 281        entry->index = index;
 282        entry->lo = msr.lo;
 283        entry->hi = msr.hi;
 284
 285        /* Return the next entry */
 286        entry++;
 287        return entry;
 288}
 289
 290static int save_bsp_msrs(char *start, int size)
 291{
 292        int msr_count;
 293        int num_var_mtrrs;
 294        struct saved_msr *msr_entry;
 295        int i;
 296        msr_t msr;
 297
 298        /* Determine number of MTRRs need to be saved */
 299        msr = msr_read(MTRR_CAP_MSR);
 300        num_var_mtrrs = msr.lo & 0xff;
 301
 302        /* 2 * num_var_mtrrs for base and mask. +1 for IA32_MTRR_DEF_TYPE */
 303        msr_count = 2 * num_var_mtrrs + NUM_FIXED_MTRRS + 1;
 304
 305        if ((msr_count * sizeof(struct saved_msr)) > size) {
 306                printf("Cannot mirror all %d msrs\n", msr_count);
 307                return -ENOSPC;
 308        }
 309
 310        msr_entry = (void *)start;
 311        for (i = 0; i < NUM_FIXED_MTRRS; i++)
 312                msr_entry = save_msr(fixed_mtrrs[i], msr_entry);
 313
 314        for (i = 0; i < num_var_mtrrs; i++) {
 315                msr_entry = save_msr(MTRR_PHYS_BASE_MSR(i), msr_entry);
 316                msr_entry = save_msr(MTRR_PHYS_MASK_MSR(i), msr_entry);
 317        }
 318
 319        msr_entry = save_msr(MTRR_DEF_TYPE_MSR, msr_entry);
 320
 321        return msr_count;
 322}
 323
 324static int load_sipi_vector(atomic_t **ap_countp, int num_cpus)
 325{
 326        struct sipi_params_16bit *params16;
 327        struct sipi_params *params;
 328        static char msr_save[512];
 329        char *stack;
 330        ulong addr;
 331        int code_len;
 332        int size;
 333        int ret;
 334
 335        /* Copy in the code */
 336        code_len = ap_start16_code_end - ap_start16;
 337        debug("Copying SIPI code to %x: %d bytes\n", AP_DEFAULT_BASE,
 338              code_len);
 339        memcpy((void *)AP_DEFAULT_BASE, ap_start16, code_len);
 340
 341        addr = AP_DEFAULT_BASE + (ulong)sipi_params_16bit - (ulong)ap_start16;
 342        params16 = (struct sipi_params_16bit *)addr;
 343        params16->ap_start = (uint32_t)ap_start;
 344        params16->gdt = (uint32_t)gd->arch.gdt;
 345        params16->gdt_limit = X86_GDT_SIZE - 1;
 346        debug("gdt = %x, gdt_limit = %x\n", params16->gdt, params16->gdt_limit);
 347
 348        params = (struct sipi_params *)sipi_params;
 349        debug("SIPI 32-bit params at %p\n", params);
 350        params->idt_ptr = (uint32_t)x86_get_idt();
 351
 352        params->stack_size = CONFIG_AP_STACK_SIZE;
 353        size = params->stack_size * num_cpus;
 354        stack = memalign(4096, size);
 355        if (!stack)
 356                return -ENOMEM;
 357        params->stack_top = (u32)(stack + size);
 358#if !defined(CONFIG_QEMU) && !defined(CONFIG_HAVE_FSP) && \
 359        !defined(CONFIG_INTEL_MID)
 360        params->microcode_ptr = ucode_base;
 361        debug("Microcode at %x\n", params->microcode_ptr);
 362#endif
 363        params->msr_table_ptr = (u32)msr_save;
 364        ret = save_bsp_msrs(msr_save, sizeof(msr_save));
 365        if (ret < 0)
 366                return ret;
 367        params->msr_count = ret;
 368
 369        params->c_handler = (uint32_t)&ap_init;
 370
 371        *ap_countp = &params->ap_count;
 372        atomic_set(*ap_countp, 0);
 373        debug("SIPI vector is ready\n");
 374
 375        return 0;
 376}
 377
 378static int check_cpu_devices(int expected_cpus)
 379{
 380        int i;
 381
 382        for (i = 0; i < expected_cpus; i++) {
 383                struct udevice *dev;
 384                int ret;
 385
 386                ret = uclass_find_device(UCLASS_CPU, i, &dev);
 387                if (ret) {
 388                        debug("Cannot find CPU %d in device tree\n", i);
 389                        return ret;
 390                }
 391        }
 392
 393        return 0;
 394}
 395
 396/* Returns 1 for timeout. 0 on success */
 397static int apic_wait_timeout(int total_delay, const char *msg)
 398{
 399        int total = 0;
 400
 401        if (!(lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY))
 402                return 0;
 403
 404        debug("Waiting for %s...", msg);
 405        while (lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY) {
 406                udelay(50);
 407                total += 50;
 408                if (total >= total_delay) {
 409                        debug("timed out: aborting\n");
 410                        return -ETIMEDOUT;
 411                }
 412        }
 413        debug("done\n");
 414
 415        return 0;
 416}
 417
 418/**
 419 * start_aps() - Start up the APs and count how many we find
 420 *
 421 * This is called on the boot processor to start up all the other processors
 422 * (here called APs).
 423 *
 424 * @num_aps: Number of APs we expect to find
 425 * @ap_count: Initially zero. Incremented by this function for each AP found
 426 * @return 0 if all APs were set up correctly or there are none to set up,
 427 *      -ENOSPC if the SIPI vector is too high in memory,
 428 *      -ETIMEDOUT if the ICR is busy or the second SIPI fails to complete
 429 *      -EIO if not all APs check in correctly
 430 */
 431static int start_aps(int num_aps, atomic_t *ap_count)
 432{
 433        int sipi_vector;
 434        /* Max location is 4KiB below 1MiB */
 435        const int max_vector_loc = ((1 << 20) - (1 << 12)) >> 12;
 436
 437        if (num_aps == 0)
 438                return 0;
 439
 440        /* The vector is sent as a 4k aligned address in one byte */
 441        sipi_vector = AP_DEFAULT_BASE >> 12;
 442
 443        if (sipi_vector > max_vector_loc) {
 444                printf("SIPI vector too large! 0x%08x\n",
 445                       sipi_vector);
 446                return -ENOSPC;
 447        }
 448
 449        debug("Attempting to start %d APs\n", num_aps);
 450
 451        if (apic_wait_timeout(1000, "ICR not to be busy"))
 452                return -ETIMEDOUT;
 453
 454        /* Send INIT IPI to all but self */
 455        lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
 456        lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
 457                    LAPIC_DM_INIT);
 458        debug("Waiting for 10ms after sending INIT\n");
 459        mdelay(10);
 460
 461        /* Send 1st SIPI */
 462        if (apic_wait_timeout(1000, "ICR not to be busy"))
 463                return -ETIMEDOUT;
 464
 465        lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
 466        lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
 467                    LAPIC_DM_STARTUP | sipi_vector);
 468        if (apic_wait_timeout(10000, "first SIPI to complete"))
 469                return -ETIMEDOUT;
 470
 471        /* Wait for CPUs to check in up to 200 us */
 472        wait_for_aps(ap_count, num_aps, 200, 15);
 473
 474        /* Send 2nd SIPI */
 475        if (apic_wait_timeout(1000, "ICR not to be busy"))
 476                return -ETIMEDOUT;
 477
 478        lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
 479        lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
 480                    LAPIC_DM_STARTUP | sipi_vector);
 481        if (apic_wait_timeout(10000, "second SIPI to complete"))
 482                return -ETIMEDOUT;
 483
 484        /* Wait for CPUs to check in */
 485        if (wait_for_aps(ap_count, num_aps, 10000, 50)) {
 486                debug("Not all APs checked in: %d/%d\n",
 487                      atomic_read(ap_count), num_aps);
 488                return -EIO;
 489        }
 490
 491        return 0;
 492}
 493
 494/**
 495 * bsp_do_flight_plan() - Do the flight plan on the BSP
 496 *
 497 * This runs the flight plan on the main CPU used to boot U-Boot
 498 *
 499 * @cpu: Device for the main CPU
 500 * @plan: Flight plan to run
 501 * @num_aps: Number of APs (CPUs other than the BSP)
 502 * @returns 0 on success, -ETIMEDOUT if an AP failed to come up
 503 */
 504static int bsp_do_flight_plan(struct udevice *cpu, struct mp_flight_plan *plan,
 505                              int num_aps)
 506{
 507        int i;
 508        int ret = 0;
 509        const int timeout_us = 100000;
 510        const int step_us = 100;
 511
 512        for (i = 0; i < plan->num_records; i++) {
 513                struct mp_flight_record *rec = &plan->records[i];
 514
 515                /* Wait for APs if the record is not released */
 516                if (atomic_read(&rec->barrier) == 0) {
 517                        /* Wait for the APs to check in */
 518                        if (wait_for_aps(&rec->cpus_entered, num_aps,
 519                                         timeout_us, step_us)) {
 520                                debug("MP record %d timeout\n", i);
 521                                ret = -ETIMEDOUT;
 522                        }
 523                }
 524
 525                if (rec->bsp_call != NULL)
 526                        rec->bsp_call(cpu, rec->bsp_arg);
 527
 528                release_barrier(&rec->barrier);
 529        }
 530
 531        return ret;
 532}
 533
 534/**
 535 * get_bsp() - Get information about the bootstrap processor
 536 *
 537 * @devp: If non-NULL, returns CPU device corresponding to the BSP
 538 * @cpu_countp: If non-NULL, returns the total number of CPUs
 539 * @return CPU number of the BSP, or -ve on error. If multiprocessing is not
 540 *      enabled, returns 0
 541 */
 542static int get_bsp(struct udevice **devp, int *cpu_countp)
 543{
 544        char processor_name[CPU_MAX_NAME_LEN];
 545        struct udevice *dev;
 546        int apic_id;
 547        int ret;
 548
 549        cpu_get_name(processor_name);
 550        debug("CPU: %s\n", processor_name);
 551
 552        apic_id = lapicid();
 553        ret = find_cpu_by_apic_id(apic_id, &dev);
 554        if (ret < 0) {
 555                printf("Cannot find boot CPU, APIC ID %d\n", apic_id);
 556                return ret;
 557        }
 558        ret = cpu_get_count(dev);
 559        if (ret < 0)
 560                return log_msg_ret("count", ret);
 561        if (devp)
 562                *devp = dev;
 563        if (cpu_countp)
 564                *cpu_countp = ret;
 565
 566        return dev_seq(dev) >= 0 ? dev_seq(dev) : 0;
 567}
 568
 569/**
 570 * read_callback() - Read the pointer in a callback slot
 571 *
 572 * This is called by APs to read their callback slot to see if there is a
 573 * pointer to new instructions
 574 *
 575 * @slot: Pointer to the AP's callback slot
 576 * @return value of that pointer
 577 */
 578static struct mp_callback *read_callback(struct mp_callback **slot)
 579{
 580        dmb();
 581
 582        return *slot;
 583}
 584
 585/**
 586 * store_callback() - Store a pointer to the callback slot
 587 *
 588 * This is called by APs to write NULL into the callback slot when they have
 589 * finished the work requested by the BSP.
 590 *
 591 * @slot: Pointer to the AP's callback slot
 592 * @val: Value to write (e.g. NULL)
 593 */
 594static void store_callback(struct mp_callback **slot, struct mp_callback *val)
 595{
 596        *slot = val;
 597        dmb();
 598}
 599
 600/**
 601 * run_ap_work() - Run a callback on selected APs
 602 *
 603 * This writes @callback to all APs and waits for them all to acknowledge it,
 604 * Note that whether each AP actually calls the callback depends on the value
 605 * of logical_cpu_number (see struct mp_callback). The logical CPU number is
 606 * the CPU device's req->seq value.
 607 *
 608 * @callback: Callback information to pass to all APs
 609 * @bsp: CPU device for the BSP
 610 * @num_cpus: The number of CPUs in the system (= number of APs + 1)
 611 * @expire_ms: Timeout to wait for all APs to finish, in milliseconds, or 0 for
 612 *      no timeout
 613 * @return 0 if OK, -ETIMEDOUT if one or more APs failed to respond in time
 614 */
 615static int run_ap_work(struct mp_callback *callback, struct udevice *bsp,
 616                       int num_cpus, uint expire_ms)
 617{
 618        int cur_cpu = dev_seq(bsp);
 619        int num_aps = num_cpus - 1; /* number of non-BSPs to get this message */
 620        int cpus_accepted;
 621        ulong start;
 622        int i;
 623
 624        if (!IS_ENABLED(CONFIG_SMP_AP_WORK)) {
 625                printf("APs already parked. CONFIG_SMP_AP_WORK not enabled\n");
 626                return -ENOTSUPP;
 627        }
 628
 629        /* Signal to all the APs to run the func. */
 630        for (i = 0; i < num_cpus; i++) {
 631                if (cur_cpu != i)
 632                        store_callback(&ap_callbacks[i], callback);
 633        }
 634        mfence();
 635
 636        /* Wait for all the APs to signal back that call has been accepted. */
 637        start = get_timer(0);
 638
 639        do {
 640                mdelay(1);
 641                cpus_accepted = 0;
 642
 643                for (i = 0; i < num_cpus; i++) {
 644                        if (cur_cpu == i)
 645                                continue;
 646                        if (!read_callback(&ap_callbacks[i]))
 647                                cpus_accepted++;
 648                }
 649
 650                if (expire_ms && get_timer(start) >= expire_ms) {
 651                        log(UCLASS_CPU, LOGL_CRIT,
 652                            "AP call expired; %d/%d CPUs accepted\n",
 653                            cpus_accepted, num_aps);
 654                        return -ETIMEDOUT;
 655                }
 656        } while (cpus_accepted != num_aps);
 657
 658        /* Make sure we can see any data written by the APs */
 659        mfence();
 660
 661        return 0;
 662}
 663
 664/**
 665 * ap_wait_for_instruction() - Wait for and process requests from the main CPU
 666 *
 667 * This is called by APs (here, everything other than the main boot CPU) to
 668 * await instructions. They arrive in the form of a function call and argument,
 669 * which is then called. This uses a simple mailbox with atomic read/set
 670 *
 671 * @cpu: CPU that is waiting
 672 * @unused: Optional argument provided by struct mp_flight_record, not used here
 673 * @return Does not return
 674 */
 675static int ap_wait_for_instruction(struct udevice *cpu, void *unused)
 676{
 677        struct mp_callback lcb;
 678        struct mp_callback **per_cpu_slot;
 679
 680        if (!IS_ENABLED(CONFIG_SMP_AP_WORK))
 681                return 0;
 682
 683        per_cpu_slot = &ap_callbacks[dev_seq(cpu)];
 684
 685        while (1) {
 686                struct mp_callback *cb = read_callback(per_cpu_slot);
 687
 688                if (!cb) {
 689                        asm ("pause");
 690                        continue;
 691                }
 692
 693                /* Copy to local variable before using the value */
 694                memcpy(&lcb, cb, sizeof(lcb));
 695                mfence();
 696                if (lcb.logical_cpu_number == MP_SELECT_ALL ||
 697                    lcb.logical_cpu_number == MP_SELECT_APS ||
 698                    dev_seq(cpu) == lcb.logical_cpu_number)
 699                        lcb.func(lcb.arg);
 700
 701                /* Indicate we are finished */
 702                store_callback(per_cpu_slot, NULL);
 703        }
 704
 705        return 0;
 706}
 707
 708static int mp_init_cpu(struct udevice *cpu, void *unused)
 709{
 710        struct cpu_plat *plat = dev_get_parent_plat(cpu);
 711
 712        plat->ucode_version = microcode_read_rev();
 713        plat->device_id = gd->arch.x86_device;
 714
 715        return device_probe(cpu);
 716}
 717
 718static struct mp_flight_record mp_steps[] = {
 719        MP_FR_BLOCK_APS(mp_init_cpu, NULL, mp_init_cpu, NULL),
 720        MP_FR_BLOCK_APS(ap_wait_for_instruction, NULL, NULL, NULL),
 721};
 722
 723int mp_run_on_cpus(int cpu_select, mp_run_func func, void *arg)
 724{
 725        struct mp_callback lcb = {
 726                .func = func,
 727                .arg = arg,
 728                .logical_cpu_number = cpu_select,
 729        };
 730        struct udevice *dev;
 731        int num_cpus;
 732        int ret;
 733
 734        ret = get_bsp(&dev, &num_cpus);
 735        if (ret < 0)
 736                return log_msg_ret("bsp", ret);
 737        if (cpu_select == MP_SELECT_ALL || cpu_select == MP_SELECT_BSP ||
 738            cpu_select == ret) {
 739                /* Run on BSP first */
 740                func(arg);
 741        }
 742
 743        if (!IS_ENABLED(CONFIG_SMP_AP_WORK) ||
 744            !(gd->flags & GD_FLG_SMP_READY)) {
 745                /* Allow use of this function on the BSP only */
 746                if (cpu_select == MP_SELECT_BSP || !cpu_select)
 747                        return 0;
 748                return -ENOTSUPP;
 749        }
 750
 751        /* Allow up to 1 second for all APs to finish */
 752        ret = run_ap_work(&lcb, dev, num_cpus, 1000 /* ms */);
 753        if (ret)
 754                return log_msg_ret("aps", ret);
 755
 756        return 0;
 757}
 758
 759static void park_this_cpu(void *unused)
 760{
 761        stop_this_cpu();
 762}
 763
 764int mp_park_aps(void)
 765{
 766        int ret;
 767
 768        ret = mp_run_on_cpus(MP_SELECT_APS, park_this_cpu, NULL);
 769        if (ret)
 770                return log_ret(ret);
 771
 772        return 0;
 773}
 774
 775int mp_first_cpu(int cpu_select)
 776{
 777        struct udevice *dev;
 778        int num_cpus;
 779        int ret;
 780
 781        /*
 782         * This assumes that CPUs are numbered from 0. This function tries to
 783         * avoid assuming the CPU 0 is the boot CPU
 784         */
 785        if (cpu_select == MP_SELECT_ALL)
 786                return 0;   /* start with the first one */
 787
 788        ret = get_bsp(&dev, &num_cpus);
 789        if (ret < 0)
 790                return log_msg_ret("bsp", ret);
 791
 792        /* Return boot CPU if requested */
 793        if (cpu_select == MP_SELECT_BSP)
 794                return ret;
 795
 796        /* Return something other than the boot CPU, if APs requested */
 797        if (cpu_select == MP_SELECT_APS && num_cpus > 1)
 798                return ret == 0 ? 1 : 0;
 799
 800        /* Try to check for an invalid value */
 801        if (cpu_select < 0 || cpu_select >= num_cpus)
 802                return -EINVAL;
 803
 804        return cpu_select;  /* return the only selected one */
 805}
 806
 807int mp_next_cpu(int cpu_select, int prev_cpu)
 808{
 809        struct udevice *dev;
 810        int num_cpus;
 811        int ret;
 812        int bsp;
 813
 814        /* If we selected the BSP or a particular single CPU, we are done */
 815        if (!IS_ENABLED(CONFIG_SMP_AP_WORK) || cpu_select == MP_SELECT_BSP ||
 816            cpu_select >= 0)
 817                return -EFBIG;
 818
 819        /* Must be doing MP_SELECT_ALL or MP_SELECT_APS; return the next CPU */
 820        ret = get_bsp(&dev, &num_cpus);
 821        if (ret < 0)
 822                return log_msg_ret("bsp", ret);
 823        bsp = ret;
 824
 825        /* Move to the next CPU */
 826        assert(prev_cpu >= 0);
 827        ret = prev_cpu + 1;
 828
 829        /* Skip the BSP if needed */
 830        if (cpu_select == MP_SELECT_APS && ret == bsp)
 831                ret++;
 832        if (ret >= num_cpus)
 833                return -EFBIG;
 834
 835        return ret;
 836}
 837
 838int mp_init(void)
 839{
 840        int num_aps, num_cpus;
 841        atomic_t *ap_count;
 842        struct udevice *cpu;
 843        int ret;
 844
 845        if (IS_ENABLED(CONFIG_QFW)) {
 846                ret = qemu_cpu_fixup();
 847                if (ret)
 848                        return ret;
 849        }
 850
 851        ret = get_bsp(&cpu, &num_cpus);
 852        if (ret < 0) {
 853                debug("Cannot init boot CPU: err=%d\n", ret);
 854                return ret;
 855        }
 856
 857        if (num_cpus < 2)
 858                debug("Warning: Only 1 CPU is detected\n");
 859
 860        ret = check_cpu_devices(num_cpus);
 861        if (ret)
 862                log_warning("Warning: Device tree does not describe all CPUs. Extra ones will not be started correctly\n");
 863
 864        ap_callbacks = calloc(num_cpus, sizeof(struct mp_callback *));
 865        if (!ap_callbacks)
 866                return -ENOMEM;
 867
 868        /* Copy needed parameters so that APs have a reference to the plan */
 869        mp_info.num_records = ARRAY_SIZE(mp_steps);
 870        mp_info.records = mp_steps;
 871
 872        /* Load the SIPI vector */
 873        ret = load_sipi_vector(&ap_count, num_cpus);
 874        if (ap_count == NULL)
 875                return -ENOENT;
 876
 877        /*
 878         * Make sure SIPI data hits RAM so the APs that come up will see
 879         * the startup code even if the caches are disabled
 880         */
 881        wbinvd();
 882
 883        /* Start the APs providing number of APs and the cpus_entered field */
 884        num_aps = num_cpus - 1;
 885        ret = start_aps(num_aps, ap_count);
 886        if (ret) {
 887                mdelay(1000);
 888                debug("%d/%d eventually checked in?\n", atomic_read(ap_count),
 889                      num_aps);
 890                return ret;
 891        }
 892
 893        /* Walk the flight plan for the BSP */
 894        ret = bsp_do_flight_plan(cpu, &mp_info, num_aps);
 895        if (ret) {
 896                debug("CPU init failed: err=%d\n", ret);
 897                return ret;
 898        }
 899        gd->flags |= GD_FLG_SMP_READY;
 900
 901        return 0;
 902}
 903