uboot/arch/x86/cpu/quark/hte.c
<<
>>
Prefs
   1// SPDX-License-Identifier: Intel
   2/*
   3 * Copyright (C) 2013, Intel Corporation
   4 * Copyright (C) 2015, Bin Meng <bmeng.cn@gmail.com>
   5 *
   6 * Ported from Intel released Quark UEFI BIOS
   7 * QuarkSocPkg/QuarkNorthCluster/MemoryInit/Pei
   8 */
   9
  10#include <common.h>
  11#include <asm/arch/mrc.h>
  12#include <asm/arch/msg_port.h>
  13#include "mrc_util.h"
  14#include "hte.h"
  15
  16/**
  17 * Enable HTE to detect all possible errors for the given training parameters
  18 * (per-bit or full byte lane).
  19 */
  20static void hte_enable_all_errors(void)
  21{
  22        msg_port_write(HTE, 0x000200a2, 0xffffffff);
  23        msg_port_write(HTE, 0x000200a3, 0x000000ff);
  24        msg_port_write(HTE, 0x000200a4, 0x00000000);
  25}
  26
  27/**
  28 * Go and read the HTE register in order to find any error
  29 *
  30 * @return: The errors detected in the HTE status register
  31 */
  32static u32 hte_check_errors(void)
  33{
  34        return msg_port_read(HTE, 0x000200a7);
  35}
  36
  37/**
  38 * Wait until HTE finishes
  39 */
  40static void hte_wait_for_complete(void)
  41{
  42        u32 tmp;
  43
  44        ENTERFN();
  45
  46        do {} while ((msg_port_read(HTE, 0x00020012) & (1 << 30)) != 0);
  47
  48        tmp = msg_port_read(HTE, 0x00020011);
  49        tmp |= (1 << 9);
  50        tmp &= ~((1 << 12) | (1 << 13));
  51        msg_port_write(HTE, 0x00020011, tmp);
  52
  53        LEAVEFN();
  54}
  55
  56/**
  57 * Clear registers related with errors in the HTE
  58 */
  59static void hte_clear_error_regs(void)
  60{
  61        u32 tmp;
  62
  63        /*
  64         * Clear all HTE errors and enable error checking
  65         * for burst and chunk.
  66         */
  67        tmp = msg_port_read(HTE, 0x000200a1);
  68        tmp |= (1 << 8);
  69        msg_port_write(HTE, 0x000200a1, tmp);
  70}
  71
  72/**
  73 * Execute a basic single-cache-line memory write/read/verify test using simple
  74 * constant pattern, different for READ_TRAIN and WRITE_TRAIN modes.
  75 *
  76 * See hte_basic_write_read() which is the external visible wrapper.
  77 *
  78 * @mrc_params: host structure for all MRC global data
  79 * @addr: memory adress being tested (must hit specific channel/rank)
  80 * @first_run: if set then the HTE registers are configured, otherwise it is
  81 *             assumed configuration is done and we just re-run the test
  82 * @mode: READ_TRAIN or WRITE_TRAIN (the difference is in the pattern)
  83 *
  84 * @return: byte lane failure on each bit (for Quark only bit0 and bit1)
  85 */
  86static u16 hte_basic_data_cmp(struct mrc_params *mrc_params, u32 addr,
  87                              u8 first_run, u8 mode)
  88{
  89        u32 pattern;
  90        u32 offset;
  91
  92        if (first_run) {
  93                msg_port_write(HTE, 0x00020020, 0x01b10021);
  94                msg_port_write(HTE, 0x00020021, 0x06000000);
  95                msg_port_write(HTE, 0x00020022, addr >> 6);
  96                msg_port_write(HTE, 0x00020062, 0x00800015);
  97                msg_port_write(HTE, 0x00020063, 0xaaaaaaaa);
  98                msg_port_write(HTE, 0x00020064, 0xcccccccc);
  99                msg_port_write(HTE, 0x00020065, 0xf0f0f0f0);
 100                msg_port_write(HTE, 0x00020061, 0x00030008);
 101
 102                if (mode == WRITE_TRAIN)
 103                        pattern = 0xc33c0000;
 104                else /* READ_TRAIN */
 105                        pattern = 0xaa5555aa;
 106
 107                for (offset = 0x80; offset <= 0x8f; offset++)
 108                        msg_port_write(HTE, offset, pattern);
 109        }
 110
 111        msg_port_write(HTE, 0x000200a1, 0xffff1000);
 112        msg_port_write(HTE, 0x00020011, 0x00011000);
 113        msg_port_write(HTE, 0x00020011, 0x00011100);
 114
 115        hte_wait_for_complete();
 116
 117        /*
 118         * Return bits 15:8 of HTE_CH0_ERR_XSTAT to check for
 119         * any bytelane errors.
 120         */
 121        return (hte_check_errors() >> 8) & 0xff;
 122}
 123
 124/**
 125 * Examine a single-cache-line memory with write/read/verify test using multiple
 126 * data patterns (victim-aggressor algorithm).
 127 *
 128 * See hte_write_stress_bit_lanes() which is the external visible wrapper.
 129 *
 130 * @mrc_params: host structure for all MRC global data
 131 * @addr: memory adress being tested (must hit specific channel/rank)
 132 * @loop_cnt: number of test iterations
 133 * @seed_victim: victim data pattern seed
 134 * @seed_aggressor: aggressor data pattern seed
 135 * @victim_bit: should be 0 as auto-rotate feature is in use
 136 * @first_run: if set then the HTE registers are configured, otherwise it is
 137 *             assumed configuration is done and we just re-run the test
 138 *
 139 * @return: byte lane failure on each bit (for Quark only bit0 and bit1)
 140 */
 141static u16 hte_rw_data_cmp(struct mrc_params *mrc_params, u32 addr,
 142                           u8 loop_cnt, u32 seed_victim, u32 seed_aggressor,
 143                           u8 victim_bit, u8 first_run)
 144{
 145        u32 offset;
 146        u32 tmp;
 147
 148        if (first_run) {
 149                msg_port_write(HTE, 0x00020020, 0x00910024);
 150                msg_port_write(HTE, 0x00020023, 0x00810024);
 151                msg_port_write(HTE, 0x00020021, 0x06070000);
 152                msg_port_write(HTE, 0x00020024, 0x06070000);
 153                msg_port_write(HTE, 0x00020022, addr >> 6);
 154                msg_port_write(HTE, 0x00020025, addr >> 6);
 155                msg_port_write(HTE, 0x00020062, 0x0000002a);
 156                msg_port_write(HTE, 0x00020063, seed_victim);
 157                msg_port_write(HTE, 0x00020064, seed_aggressor);
 158                msg_port_write(HTE, 0x00020065, seed_victim);
 159
 160                /*
 161                 * Write the pattern buffers to select the victim bit
 162                 *
 163                 * Start with bit0
 164                 */
 165                for (offset = 0x80; offset <= 0x8f; offset++) {
 166                        if ((offset % 8) == victim_bit)
 167                                msg_port_write(HTE, offset, 0x55555555);
 168                        else
 169                                msg_port_write(HTE, offset, 0xcccccccc);
 170                }
 171
 172                msg_port_write(HTE, 0x00020061, 0x00000000);
 173                msg_port_write(HTE, 0x00020066, 0x03440000);
 174                msg_port_write(HTE, 0x000200a1, 0xffff1000);
 175        }
 176
 177        tmp = 0x10001000 | (loop_cnt << 16);
 178        msg_port_write(HTE, 0x00020011, tmp);
 179        msg_port_write(HTE, 0x00020011, tmp | (1 << 8));
 180
 181        hte_wait_for_complete();
 182
 183        /*
 184         * Return bits 15:8 of HTE_CH0_ERR_XSTAT to check for
 185         * any bytelane errors.
 186         */
 187        return (hte_check_errors() >> 8) & 0xff;
 188}
 189
 190/**
 191 * Use HW HTE engine to initialize or test all memory attached to a given DUNIT.
 192 * If flag is MRC_MEM_INIT, this routine writes 0s to all memory locations to
 193 * initialize ECC. If flag is MRC_MEM_TEST, this routine will send an 5AA55AA5
 194 * pattern to all memory locations on the RankMask and then read it back.
 195 * Then it sends an A55AA55A pattern to all memory locations on the RankMask
 196 * and reads it back.
 197 *
 198 * @mrc_params: host structure for all MRC global data
 199 * @flag: MRC_MEM_INIT or MRC_MEM_TEST
 200 *
 201 * @return: errors register showing HTE failures. Also prints out which rank
 202 *          failed the HTE test if failure occurs. For rank detection to work,
 203 *          the address map must be left in its default state. If MRC changes
 204 *          the address map, this function must be modified to change it back
 205 *          to default at the beginning, then restore it at the end.
 206 */
 207u32 hte_mem_init(struct mrc_params *mrc_params, u8 flag)
 208{
 209        u32 offset;
 210        int test_num;
 211        int i;
 212
 213        /*
 214         * Clear out the error registers at the start of each memory
 215         * init or memory test run.
 216         */
 217        hte_clear_error_regs();
 218
 219        msg_port_write(HTE, 0x00020062, 0x00000015);
 220
 221        for (offset = 0x80; offset <= 0x8f; offset++)
 222                msg_port_write(HTE, offset, ((offset & 1) ? 0xa55a : 0x5aa5));
 223
 224        msg_port_write(HTE, 0x00020021, 0x00000000);
 225        msg_port_write(HTE, 0x00020022, (mrc_params->mem_size >> 6) - 1);
 226        msg_port_write(HTE, 0x00020063, 0xaaaaaaaa);
 227        msg_port_write(HTE, 0x00020064, 0xcccccccc);
 228        msg_port_write(HTE, 0x00020065, 0xf0f0f0f0);
 229        msg_port_write(HTE, 0x00020066, 0x03000000);
 230
 231        switch (flag) {
 232        case MRC_MEM_INIT:
 233                /*
 234                 * Only 1 write pass through memory is needed
 235                 * to initialize ECC
 236                 */
 237                test_num = 1;
 238                break;
 239        case MRC_MEM_TEST:
 240                /* Write/read then write/read with inverted pattern */
 241                test_num = 4;
 242                break;
 243        default:
 244                DPF(D_INFO, "Unknown parameter for flag: %d\n", flag);
 245                return 0xffffffff;
 246        }
 247
 248        DPF(D_INFO, "hte_mem_init");
 249
 250        for (i = 0; i < test_num; i++) {
 251                DPF(D_INFO, ".");
 252
 253                if (i == 0) {
 254                        msg_port_write(HTE, 0x00020061, 0x00000000);
 255                        msg_port_write(HTE, 0x00020020, 0x00110010);
 256                } else if (i == 1) {
 257                        msg_port_write(HTE, 0x00020061, 0x00000000);
 258                        msg_port_write(HTE, 0x00020020, 0x00010010);
 259                } else if (i == 2) {
 260                        msg_port_write(HTE, 0x00020061, 0x00010100);
 261                        msg_port_write(HTE, 0x00020020, 0x00110010);
 262                } else {
 263                        msg_port_write(HTE, 0x00020061, 0x00010100);
 264                        msg_port_write(HTE, 0x00020020, 0x00010010);
 265                }
 266
 267                msg_port_write(HTE, 0x00020011, 0x00111000);
 268                msg_port_write(HTE, 0x00020011, 0x00111100);
 269
 270                hte_wait_for_complete();
 271
 272                /* If this is a READ pass, check for errors at the end */
 273                if ((i % 2) == 1) {
 274                        /* Return immediately if error */
 275                        if (hte_check_errors())
 276                                break;
 277                }
 278        }
 279
 280        DPF(D_INFO, "done\n");
 281
 282        return hte_check_errors();
 283}
 284
 285/**
 286 * Execute a basic single-cache-line memory write/read/verify test using simple
 287 * constant pattern, different for READ_TRAIN and WRITE_TRAIN modes.
 288 *
 289 * @mrc_params: host structure for all MRC global data
 290 * @addr: memory adress being tested (must hit specific channel/rank)
 291 * @first_run: if set then the HTE registers are configured, otherwise it is
 292 *             assumed configuration is done and we just re-run the test
 293 * @mode: READ_TRAIN or WRITE_TRAIN (the difference is in the pattern)
 294 *
 295 * @return: byte lane failure on each bit (for Quark only bit0 and bit1)
 296 */
 297u16 hte_basic_write_read(struct mrc_params *mrc_params, u32 addr,
 298                         u8 first_run, u8 mode)
 299{
 300        u16 errors;
 301
 302        ENTERFN();
 303
 304        /* Enable all error reporting in preparation for HTE test */
 305        hte_enable_all_errors();
 306        hte_clear_error_regs();
 307
 308        errors = hte_basic_data_cmp(mrc_params, addr, first_run, mode);
 309
 310        LEAVEFN();
 311
 312        return errors;
 313}
 314
 315/**
 316 * Examine a single-cache-line memory with write/read/verify test using multiple
 317 * data patterns (victim-aggressor algorithm).
 318 *
 319 * @mrc_params: host structure for all MRC global data
 320 * @addr: memory adress being tested (must hit specific channel/rank)
 321 * @first_run: if set then the HTE registers are configured, otherwise it is
 322 *             assumed configuration is done and we just re-run the test
 323 *
 324 * @return: byte lane failure on each bit (for Quark only bit0 and bit1)
 325 */
 326u16 hte_write_stress_bit_lanes(struct mrc_params *mrc_params,
 327                               u32 addr, u8 first_run)
 328{
 329        u16 errors;
 330        u8 victim_bit = 0;
 331
 332        ENTERFN();
 333
 334        /* Enable all error reporting in preparation for HTE test */
 335        hte_enable_all_errors();
 336        hte_clear_error_regs();
 337
 338        /*
 339         * Loop through each bit in the bytelane.
 340         *
 341         * Each pass creates a victim bit while keeping all other bits the same
 342         * as aggressors. AVN HTE adds an auto-rotate feature which allows us
 343         * to program the entire victim/aggressor sequence in 1 step.
 344         *
 345         * The victim bit rotates on each pass so no need to have software
 346         * implement a victim bit loop like on VLV.
 347         */
 348        errors = hte_rw_data_cmp(mrc_params, addr, HTE_LOOP_CNT,
 349                                 HTE_LFSR_VICTIM_SEED, HTE_LFSR_AGRESSOR_SEED,
 350                                 victim_bit, first_run);
 351
 352        LEAVEFN();
 353
 354        return errors;
 355}
 356
 357/**
 358 * Execute a basic single-cache-line memory write or read.
 359 * This is just for receive enable / fine write-levelling purpose.
 360 *
 361 * @addr: memory adress being tested (must hit specific channel/rank)
 362 * @first_run: if set then the HTE registers are configured, otherwise it is
 363 *             assumed configuration is done and we just re-run the test
 364 * @is_write: when non-zero memory write operation executed, otherwise read
 365 */
 366void hte_mem_op(u32 addr, u8 first_run, u8 is_write)
 367{
 368        u32 offset;
 369        u32 tmp;
 370
 371        hte_enable_all_errors();
 372        hte_clear_error_regs();
 373
 374        if (first_run) {
 375                tmp = is_write ? 0x01110021 : 0x01010021;
 376                msg_port_write(HTE, 0x00020020, tmp);
 377
 378                msg_port_write(HTE, 0x00020021, 0x06000000);
 379                msg_port_write(HTE, 0x00020022, addr >> 6);
 380                msg_port_write(HTE, 0x00020062, 0x00800015);
 381                msg_port_write(HTE, 0x00020063, 0xaaaaaaaa);
 382                msg_port_write(HTE, 0x00020064, 0xcccccccc);
 383                msg_port_write(HTE, 0x00020065, 0xf0f0f0f0);
 384                msg_port_write(HTE, 0x00020061, 0x00030008);
 385
 386                for (offset = 0x80; offset <= 0x8f; offset++)
 387                        msg_port_write(HTE, offset, 0xc33c0000);
 388        }
 389
 390        msg_port_write(HTE, 0x000200a1, 0xffff1000);
 391        msg_port_write(HTE, 0x00020011, 0x00011000);
 392        msg_port_write(HTE, 0x00020011, 0x00011100);
 393
 394        hte_wait_for_complete();
 395}
 396