uboot/drivers/ddr/altera/sequencer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: BSD-3-Clause
   2/*
   3 * Copyright Altera Corporation (C) 2012-2015
   4 */
   5
   6#include <common.h>
   7#include <log.h>
   8#include <asm/io.h>
   9#include <asm/arch/sdram.h>
  10#include <errno.h>
  11#include <hang.h>
  12#include "sequencer.h"
  13
  14static const struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
  15        (struct socfpga_sdr_rw_load_manager *)
  16                (SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
  17static const struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs
  18        = (struct socfpga_sdr_rw_load_jump_manager *)
  19                (SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
  20static const struct socfpga_sdr_reg_file *sdr_reg_file =
  21        (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
  22static const struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
  23        (struct socfpga_sdr_scc_mgr *)
  24                (SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
  25static const struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
  26        (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
  27static const struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
  28        (struct socfpga_phy_mgr_cfg *)
  29                (SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
  30static const struct socfpga_data_mgr *data_mgr =
  31        (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
  32static const struct socfpga_sdr_ctrl *sdr_ctrl =
  33        (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
  34
  35#define DELTA_D         1
  36
  37/*
  38 * In order to reduce ROM size, most of the selectable calibration steps are
  39 * decided at compile time based on the user's calibration mode selection,
  40 * as captured by the STATIC_CALIB_STEPS selection below.
  41 *
  42 * However, to support simulation-time selection of fast simulation mode, where
  43 * we skip everything except the bare minimum, we need a few of the steps to
  44 * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
  45 * check, which is based on the rtl-supplied value, or we dynamically compute
  46 * the value to use based on the dynamically-chosen calibration mode
  47 */
  48
  49#define DLEVEL 0
  50#define STATIC_IN_RTL_SIM 0
  51#define STATIC_SKIP_DELAY_LOOPS 0
  52
  53#define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
  54        STATIC_SKIP_DELAY_LOOPS)
  55
  56#define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
  57        ((non_skip_value) & seq->skip_delay_mask)
  58
  59bool dram_is_ddr(const u8 ddr)
  60{
  61        const struct socfpga_sdram_config *cfg = socfpga_get_sdram_config();
  62        const u8 type = (cfg->ctrl_cfg >> SDR_CTRLGRP_CTRLCFG_MEMTYPE_LSB) &
  63                        SDR_CTRLGRP_CTRLCFG_MEMTYPE_MASK;
  64
  65        if (ddr == 2 && type == 1)      /* DDR2 */
  66                return true;
  67
  68        if (ddr == 3 && type == 2)      /* DDR3 */
  69                return true;
  70
  71        return false;
  72}
  73
  74static void set_failing_group_stage(struct socfpga_sdrseq *seq,
  75                                    u32 group, u32 stage, u32 substage)
  76{
  77        /*
  78         * Only set the global stage if there was not been any other
  79         * failing group
  80         */
  81        if (seq->gbl.error_stage == CAL_STAGE_NIL)      {
  82                seq->gbl.error_substage = substage;
  83                seq->gbl.error_stage = stage;
  84                seq->gbl.error_group = group;
  85        }
  86}
  87
  88static void reg_file_set_group(u16 set_group)
  89{
  90        clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
  91}
  92
  93static void reg_file_set_stage(u8 set_stage)
  94{
  95        clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
  96}
  97
  98static void reg_file_set_sub_stage(u8 set_sub_stage)
  99{
 100        set_sub_stage &= 0xff;
 101        clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
 102}
 103
 104/**
 105 * phy_mgr_initialize() - Initialize PHY Manager
 106 *
 107 * Initialize PHY Manager.
 108 */
 109static void phy_mgr_initialize(struct socfpga_sdrseq *seq)
 110{
 111        u32 ratio;
 112
 113        debug("%s:%d\n", __func__, __LINE__);
 114        /* Calibration has control over path to memory */
 115        /*
 116         * In Hard PHY this is a 2-bit control:
 117         * 0: AFI Mux Select
 118         * 1: DDIO Mux Select
 119         */
 120        writel(0x3, &phy_mgr_cfg->mux_sel);
 121
 122        /* USER memory clock is not stable we begin initialization  */
 123        writel(0, &phy_mgr_cfg->reset_mem_stbl);
 124
 125        /* USER calibration status all set to zero */
 126        writel(0, &phy_mgr_cfg->cal_status);
 127
 128        writel(0, &phy_mgr_cfg->cal_debug_info);
 129
 130        /* Init params only if we do NOT skip calibration. */
 131        if ((seq->dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
 132                return;
 133
 134        ratio = seq->rwcfg->mem_dq_per_read_dqs /
 135                seq->rwcfg->mem_virtual_groups_per_read_dqs;
 136        seq->param.read_correct_mask_vg = (1 << ratio) - 1;
 137        seq->param.write_correct_mask_vg = (1 << ratio) - 1;
 138        seq->param.read_correct_mask = (1 << seq->rwcfg->mem_dq_per_read_dqs)
 139                - 1;
 140        seq->param.write_correct_mask = (1 << seq->rwcfg->mem_dq_per_write_dqs)
 141                - 1;
 142}
 143
 144/**
 145 * set_rank_and_odt_mask() - Set Rank and ODT mask
 146 * @rank:       Rank mask
 147 * @odt_mode:   ODT mode, OFF or READ_WRITE
 148 *
 149 * Set Rank and ODT mask (On-Die Termination).
 150 */
 151static void set_rank_and_odt_mask(struct socfpga_sdrseq *seq,
 152                                  const u32 rank, const u32 odt_mode)
 153{
 154        u32 odt_mask_0 = 0;
 155        u32 odt_mask_1 = 0;
 156        u32 cs_and_odt_mask;
 157
 158        if (odt_mode == RW_MGR_ODT_MODE_OFF) {
 159                odt_mask_0 = 0x0;
 160                odt_mask_1 = 0x0;
 161        } else {        /* RW_MGR_ODT_MODE_READ_WRITE */
 162                switch (seq->rwcfg->mem_number_of_ranks) {
 163                case 1: /* 1 Rank */
 164                        /* Read: ODT = 0 ; Write: ODT = 1 */
 165                        odt_mask_0 = 0x0;
 166                        odt_mask_1 = 0x1;
 167                        break;
 168                case 2: /* 2 Ranks */
 169                        if (seq->rwcfg->mem_number_of_cs_per_dimm == 1) {
 170                                /*
 171                                 * - Dual-Slot , Single-Rank (1 CS per DIMM)
 172                                 *   OR
 173                                 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
 174                                 *
 175                                 * Since MEM_NUMBER_OF_RANKS is 2, they
 176                                 * are both single rank with 2 CS each
 177                                 * (special for RDIMM).
 178                                 *
 179                                 * Read: Turn on ODT on the opposite rank
 180                                 * Write: Turn on ODT on all ranks
 181                                 */
 182                                odt_mask_0 = 0x3 & ~(1 << rank);
 183                                odt_mask_1 = 0x3;
 184                                if (dram_is_ddr(2))
 185                                        odt_mask_1 &= ~(1 << rank);
 186                        } else {
 187                                /*
 188                                 * - Single-Slot , Dual-Rank (2 CS per DIMM)
 189                                 *
 190                                 * Read: Turn on ODT off on all ranks
 191                                 * Write: Turn on ODT on active rank
 192                                 */
 193                                odt_mask_0 = 0x0;
 194                                odt_mask_1 = 0x3 & (1 << rank);
 195                        }
 196                        break;
 197                case 4: /* 4 Ranks */
 198                        /*
 199                         * DDR3 Read, DDR2 Read/Write:
 200                         * ----------+-----------------------+
 201                         *           |         ODT           |
 202                         *           +-----------------------+
 203                         *   Rank    |  3  |  2  |  1  |  0  |
 204                         * ----------+-----+-----+-----+-----+
 205                         *     0     |  0  |  1  |  0  |  0  |
 206                         *     1     |  1  |  0  |  0  |  0  |
 207                         *     2     |  0  |  0  |  0  |  1  |
 208                         *     3     |  0  |  0  |  1  |  0  |
 209                         * ----------+-----+-----+-----+-----+
 210                         *
 211                         * DDR3 Write:
 212                         * ----------+-----------------------+
 213                         *           |         ODT           |
 214                         * Write To  +-----------------------+
 215                         *   Rank    |  3  |  2  |  1  |  0  |
 216                         * ----------+-----+-----+-----+-----+
 217                         *     0     |  0  |  1  |  0  |  1  |
 218                         *     1     |  1  |  0  |  1  |  0  |
 219                         *     2     |  0  |  1  |  0  |  1  |
 220                         *     3     |  1  |  0  |  1  |  0  |
 221                         * ----------+-----+-----+-----+-----+
 222                         */
 223                        switch (rank) {
 224                        case 0:
 225                                odt_mask_0 = 0x4;
 226                                if (dram_is_ddr(2))
 227                                        odt_mask_1 = 0x4;
 228                                else if (dram_is_ddr(3))
 229                                        odt_mask_1 = 0x5;
 230                                break;
 231                        case 1:
 232                                odt_mask_0 = 0x8;
 233                                if (dram_is_ddr(2))
 234                                        odt_mask_1 = 0x8;
 235                                else if (dram_is_ddr(3))
 236                                        odt_mask_1 = 0xA;
 237                                break;
 238                        case 2:
 239                                odt_mask_0 = 0x1;
 240                                if (dram_is_ddr(2))
 241                                        odt_mask_1 = 0x1;
 242                                else if (dram_is_ddr(3))
 243                                        odt_mask_1 = 0x5;
 244                                break;
 245                        case 3:
 246                                odt_mask_0 = 0x2;
 247                                if (dram_is_ddr(2))
 248                                        odt_mask_1 = 0x2;
 249                                else if (dram_is_ddr(3))
 250                                        odt_mask_1 = 0xA;
 251                                break;
 252                        }
 253                        break;
 254                }
 255        }
 256
 257        cs_and_odt_mask = (0xFF & ~(1 << rank)) |
 258                          ((0xFF & odt_mask_0) << 8) |
 259                          ((0xFF & odt_mask_1) << 16);
 260        writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
 261                                RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
 262}
 263
 264/**
 265 * scc_mgr_set() - Set SCC Manager register
 266 * @off:        Base offset in SCC Manager space
 267 * @grp:        Read/Write group
 268 * @val:        Value to be set
 269 *
 270 * This function sets the SCC Manager (Scan Chain Control Manager) register.
 271 */
 272static void scc_mgr_set(u32 off, u32 grp, u32 val)
 273{
 274        writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
 275}
 276
 277/**
 278 * scc_mgr_initialize() - Initialize SCC Manager registers
 279 *
 280 * Initialize SCC Manager registers.
 281 */
 282static void scc_mgr_initialize(void)
 283{
 284        /*
 285         * Clear register file for HPS. 16 (2^4) is the size of the
 286         * full register file in the scc mgr:
 287         *      RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
 288         *                             MEM_IF_READ_DQS_WIDTH - 1);
 289         */
 290        int i;
 291
 292        for (i = 0; i < 16; i++) {
 293                debug_cond(DLEVEL >= 1, "%s:%d: Clearing SCC RFILE index %u\n",
 294                           __func__, __LINE__, i);
 295                scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, i, 0);
 296        }
 297}
 298
 299static void scc_mgr_set_dqdqs_output_phase(u32 write_group, u32 phase)
 300{
 301        scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
 302}
 303
 304static void scc_mgr_set_dqs_bus_in_delay(u32 read_group, u32 delay)
 305{
 306        scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
 307}
 308
 309static void scc_mgr_set_dqs_en_phase(u32 read_group, u32 phase)
 310{
 311        scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
 312}
 313
 314static void scc_mgr_set_dqs_en_delay(u32 read_group, u32 delay)
 315{
 316        scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
 317}
 318
 319static void scc_mgr_set_dq_in_delay(u32 dq_in_group, u32 delay)
 320{
 321        scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
 322}
 323
 324static void scc_mgr_set_dqs_io_in_delay(struct socfpga_sdrseq *seq,
 325                                        u32 delay)
 326{
 327        scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET,
 328                    seq->rwcfg->mem_dq_per_write_dqs, delay);
 329}
 330
 331static void scc_mgr_set_dm_in_delay(struct socfpga_sdrseq *seq, u32 dm,
 332                                    u32 delay)
 333{
 334        scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET,
 335                    seq->rwcfg->mem_dq_per_write_dqs + 1 + dm,
 336                    delay);
 337}
 338
 339static void scc_mgr_set_dq_out1_delay(u32 dq_in_group, u32 delay)
 340{
 341        scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
 342}
 343
 344static void scc_mgr_set_dqs_out1_delay(struct socfpga_sdrseq *seq,
 345                                       u32 delay)
 346{
 347        scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
 348                    seq->rwcfg->mem_dq_per_write_dqs, delay);
 349}
 350
 351static void scc_mgr_set_dm_out1_delay(struct socfpga_sdrseq *seq, u32 dm,
 352                                      u32 delay)
 353{
 354        scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
 355                    seq->rwcfg->mem_dq_per_write_dqs + 1 + dm,
 356                    delay);
 357}
 358
 359/* load up dqs config settings */
 360static void scc_mgr_load_dqs(u32 dqs)
 361{
 362        writel(dqs, &sdr_scc_mgr->dqs_ena);
 363}
 364
 365/* load up dqs io config settings */
 366static void scc_mgr_load_dqs_io(void)
 367{
 368        writel(0, &sdr_scc_mgr->dqs_io_ena);
 369}
 370
 371/* load up dq config settings */
 372static void scc_mgr_load_dq(u32 dq_in_group)
 373{
 374        writel(dq_in_group, &sdr_scc_mgr->dq_ena);
 375}
 376
 377/* load up dm config settings */
 378static void scc_mgr_load_dm(u32 dm)
 379{
 380        writel(dm, &sdr_scc_mgr->dm_ena);
 381}
 382
 383/**
 384 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
 385 * @off:        Base offset in SCC Manager space
 386 * @grp:        Read/Write group
 387 * @val:        Value to be set
 388 * @update:     If non-zero, trigger SCC Manager update for all ranks
 389 *
 390 * This function sets the SCC Manager (Scan Chain Control Manager) register
 391 * and optionally triggers the SCC update for all ranks.
 392 */
 393static void scc_mgr_set_all_ranks(struct socfpga_sdrseq *seq,
 394                                  const u32 off, const u32 grp, const u32 val,
 395                                  const int update)
 396{
 397        u32 r;
 398
 399        for (r = 0; r < seq->rwcfg->mem_number_of_ranks;
 400             r += NUM_RANKS_PER_SHADOW_REG) {
 401                scc_mgr_set(off, grp, val);
 402
 403                if (update || (r == 0)) {
 404                        writel(grp, &sdr_scc_mgr->dqs_ena);
 405                        writel(0, &sdr_scc_mgr->update);
 406                }
 407        }
 408}
 409
 410static void scc_mgr_set_dqs_en_phase_all_ranks(struct socfpga_sdrseq *seq,
 411                                               u32 read_group, u32 phase)
 412{
 413        /*
 414         * USER although the h/w doesn't support different phases per
 415         * shadow register, for simplicity our scc manager modeling
 416         * keeps different phase settings per shadow reg, and it's
 417         * important for us to keep them in sync to match h/w.
 418         * for efficiency, the scan chain update should occur only
 419         * once to sr0.
 420         */
 421        scc_mgr_set_all_ranks(seq, SCC_MGR_DQS_EN_PHASE_OFFSET,
 422                              read_group, phase, 0);
 423}
 424
 425static void scc_mgr_set_dqdqs_output_phase_all_ranks(struct socfpga_sdrseq *seq,
 426                                                     u32 write_group, u32 phase)
 427{
 428        /*
 429         * USER although the h/w doesn't support different phases per
 430         * shadow register, for simplicity our scc manager modeling
 431         * keeps different phase settings per shadow reg, and it's
 432         * important for us to keep them in sync to match h/w.
 433         * for efficiency, the scan chain update should occur only
 434         * once to sr0.
 435         */
 436        scc_mgr_set_all_ranks(seq, SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
 437                              write_group, phase, 0);
 438}
 439
 440static void scc_mgr_set_dqs_en_delay_all_ranks(struct socfpga_sdrseq *seq,
 441                                               u32 read_group, u32 delay)
 442{
 443        /*
 444         * In shadow register mode, the T11 settings are stored in
 445         * registers in the core, which are updated by the DQS_ENA
 446         * signals. Not issuing the SCC_MGR_UPD command allows us to
 447         * save lots of rank switching overhead, by calling
 448         * select_shadow_regs_for_update with update_scan_chains
 449         * set to 0.
 450         */
 451        scc_mgr_set_all_ranks(seq, SCC_MGR_DQS_EN_DELAY_OFFSET,
 452                              read_group, delay, 1);
 453}
 454
 455/**
 456 * scc_mgr_set_oct_out1_delay() - Set OCT output delay
 457 * @write_group:        Write group
 458 * @delay:              Delay value
 459 *
 460 * This function sets the OCT output delay in SCC manager.
 461 */
 462static void scc_mgr_set_oct_out1_delay(struct socfpga_sdrseq *seq,
 463                                       const u32 write_group, const u32 delay)
 464{
 465        const int ratio = seq->rwcfg->mem_if_read_dqs_width /
 466                         seq->rwcfg->mem_if_write_dqs_width;
 467        const int base = write_group * ratio;
 468        int i;
 469        /*
 470         * Load the setting in the SCC manager
 471         * Although OCT affects only write data, the OCT delay is controlled
 472         * by the DQS logic block which is instantiated once per read group.
 473         * For protocols where a write group consists of multiple read groups,
 474         * the setting must be set multiple times.
 475         */
 476        for (i = 0; i < ratio; i++)
 477                scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
 478}
 479
 480/**
 481 * scc_mgr_set_hhp_extras() - Set HHP extras.
 482 *
 483 * Load the fixed setting in the SCC manager HHP extras.
 484 */
 485static void scc_mgr_set_hhp_extras(void)
 486{
 487        /*
 488         * Load the fixed setting in the SCC manager
 489         * bits: 0:0 = 1'b1     - DQS bypass
 490         * bits: 1:1 = 1'b1     - DQ bypass
 491         * bits: 4:2 = 3'b001   - rfifo_mode
 492         * bits: 6:5 = 2'b01    - rfifo clock_select
 493         * bits: 7:7 = 1'b0     - separate gating from ungating setting
 494         * bits: 8:8 = 1'b0     - separate OE from Output delay setting
 495         */
 496        const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
 497                          (1 << 2) | (1 << 1) | (1 << 0);
 498        const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
 499                         SCC_MGR_HHP_GLOBALS_OFFSET |
 500                         SCC_MGR_HHP_EXTRAS_OFFSET;
 501
 502        debug_cond(DLEVEL >= 1, "%s:%d Setting HHP Extras\n",
 503                   __func__, __LINE__);
 504        writel(value, addr);
 505        debug_cond(DLEVEL >= 1, "%s:%d Done Setting HHP Extras\n",
 506                   __func__, __LINE__);
 507}
 508
 509/**
 510 * scc_mgr_zero_all() - Zero all DQS config
 511 *
 512 * Zero all DQS config.
 513 */
 514static void scc_mgr_zero_all(struct socfpga_sdrseq *seq)
 515{
 516        int i, r;
 517
 518        /*
 519         * USER Zero all DQS config settings, across all groups and all
 520         * shadow registers
 521         */
 522        for (r = 0; r < seq->rwcfg->mem_number_of_ranks;
 523             r += NUM_RANKS_PER_SHADOW_REG) {
 524                for (i = 0; i < seq->rwcfg->mem_if_read_dqs_width; i++) {
 525                        /*
 526                         * The phases actually don't exist on a per-rank basis,
 527                         * but there's no harm updating them several times, so
 528                         * let's keep the code simple.
 529                         */
 530                        scc_mgr_set_dqs_bus_in_delay(i,
 531                                                     seq->iocfg->dqs_in_reserve
 532                                                     );
 533                        scc_mgr_set_dqs_en_phase(i, 0);
 534                        scc_mgr_set_dqs_en_delay(i, 0);
 535                }
 536
 537                for (i = 0; i < seq->rwcfg->mem_if_write_dqs_width; i++) {
 538                        scc_mgr_set_dqdqs_output_phase(i, 0);
 539                        /* Arria V/Cyclone V don't have out2. */
 540                        scc_mgr_set_oct_out1_delay(seq, i,
 541                                                   seq->iocfg->dqs_out_reserve);
 542                }
 543        }
 544
 545        /* Multicast to all DQS group enables. */
 546        writel(0xff, &sdr_scc_mgr->dqs_ena);
 547        writel(0, &sdr_scc_mgr->update);
 548}
 549
 550/**
 551 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
 552 * @write_group:        Write group
 553 *
 554 * Set bypass mode and trigger SCC update.
 555 */
 556static void scc_set_bypass_mode(const u32 write_group)
 557{
 558        /* Multicast to all DQ enables. */
 559        writel(0xff, &sdr_scc_mgr->dq_ena);
 560        writel(0xff, &sdr_scc_mgr->dm_ena);
 561
 562        /* Update current DQS IO enable. */
 563        writel(0, &sdr_scc_mgr->dqs_io_ena);
 564
 565        /* Update the DQS logic. */
 566        writel(write_group, &sdr_scc_mgr->dqs_ena);
 567
 568        /* Hit update. */
 569        writel(0, &sdr_scc_mgr->update);
 570}
 571
 572/**
 573 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
 574 * @write_group:        Write group
 575 *
 576 * Load DQS settings for Write Group, do not trigger SCC update.
 577 */
 578static void scc_mgr_load_dqs_for_write_group(struct socfpga_sdrseq *seq,
 579                                             const u32 write_group)
 580{
 581        const int ratio = seq->rwcfg->mem_if_read_dqs_width /
 582                          seq->rwcfg->mem_if_write_dqs_width;
 583        const int base = write_group * ratio;
 584        int i;
 585        /*
 586         * Load the setting in the SCC manager
 587         * Although OCT affects only write data, the OCT delay is controlled
 588         * by the DQS logic block which is instantiated once per read group.
 589         * For protocols where a write group consists of multiple read groups,
 590         * the setting must be set multiple times.
 591         */
 592        for (i = 0; i < ratio; i++)
 593                writel(base + i, &sdr_scc_mgr->dqs_ena);
 594}
 595
 596/**
 597 * scc_mgr_zero_group() - Zero all configs for a group
 598 *
 599 * Zero DQ, DM, DQS and OCT configs for a group.
 600 */
 601static void scc_mgr_zero_group(struct socfpga_sdrseq *seq,
 602                               const u32 write_group, const int out_only)
 603{
 604        int i, r;
 605
 606        for (r = 0; r < seq->rwcfg->mem_number_of_ranks;
 607             r += NUM_RANKS_PER_SHADOW_REG) {
 608                /* Zero all DQ config settings. */
 609                for (i = 0; i < seq->rwcfg->mem_dq_per_write_dqs; i++) {
 610                        scc_mgr_set_dq_out1_delay(i, 0);
 611                        if (!out_only)
 612                                scc_mgr_set_dq_in_delay(i, 0);
 613                }
 614
 615                /* Multicast to all DQ enables. */
 616                writel(0xff, &sdr_scc_mgr->dq_ena);
 617
 618                /* Zero all DM config settings. */
 619                for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
 620                        if (!out_only)
 621                                scc_mgr_set_dm_in_delay(seq, i, 0);
 622                        scc_mgr_set_dm_out1_delay(seq, i, 0);
 623                }
 624
 625                /* Multicast to all DM enables. */
 626                writel(0xff, &sdr_scc_mgr->dm_ena);
 627
 628                /* Zero all DQS IO settings. */
 629                if (!out_only)
 630                        scc_mgr_set_dqs_io_in_delay(seq, 0);
 631
 632                /* Arria V/Cyclone V don't have out2. */
 633                scc_mgr_set_dqs_out1_delay(seq, seq->iocfg->dqs_out_reserve);
 634                scc_mgr_set_oct_out1_delay(seq, write_group,
 635                                           seq->iocfg->dqs_out_reserve);
 636                scc_mgr_load_dqs_for_write_group(seq, write_group);
 637
 638                /* Multicast to all DQS IO enables (only 1 in total). */
 639                writel(0, &sdr_scc_mgr->dqs_io_ena);
 640
 641                /* Hit update to zero everything. */
 642                writel(0, &sdr_scc_mgr->update);
 643        }
 644}
 645
 646/*
 647 * apply and load a particular input delay for the DQ pins in a group
 648 * group_bgn is the index of the first dq pin (in the write group)
 649 */
 650static void scc_mgr_apply_group_dq_in_delay(struct socfpga_sdrseq *seq,
 651                                            u32 group_bgn, u32 delay)
 652{
 653        u32 i, p;
 654
 655        for (i = 0, p = group_bgn; i < seq->rwcfg->mem_dq_per_read_dqs;
 656             i++, p++) {
 657                scc_mgr_set_dq_in_delay(p, delay);
 658                scc_mgr_load_dq(p);
 659        }
 660}
 661
 662/**
 663 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the
 664 * DQ pins in a group
 665 * @delay:              Delay value
 666 *
 667 * Apply and load a particular output delay for the DQ pins in a group.
 668 */
 669static void scc_mgr_apply_group_dq_out1_delay(struct socfpga_sdrseq *seq,
 670                                              const u32 delay)
 671{
 672        int i;
 673
 674        for (i = 0; i < seq->rwcfg->mem_dq_per_write_dqs; i++) {
 675                scc_mgr_set_dq_out1_delay(i, delay);
 676                scc_mgr_load_dq(i);
 677        }
 678}
 679
 680/* apply and load a particular output delay for the DM pins in a group */
 681static void scc_mgr_apply_group_dm_out1_delay(struct socfpga_sdrseq *seq,
 682                                              u32 delay1)
 683{
 684        u32 i;
 685
 686        for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
 687                scc_mgr_set_dm_out1_delay(seq, i, delay1);
 688                scc_mgr_load_dm(i);
 689        }
 690}
 691
 692
 693/* apply and load delay on both DQS and OCT out1 */
 694static void scc_mgr_apply_group_dqs_io_and_oct_out1(struct socfpga_sdrseq *seq,
 695                                                    u32 write_group, u32 delay)
 696{
 697        scc_mgr_set_dqs_out1_delay(seq, delay);
 698        scc_mgr_load_dqs_io();
 699
 700        scc_mgr_set_oct_out1_delay(seq, write_group, delay);
 701        scc_mgr_load_dqs_for_write_group(seq, write_group);
 702}
 703
 704/**
 705 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output
 706 * side: DQ, DM, DQS, OCT
 707 * @write_group:        Write group
 708 * @delay:              Delay value
 709 *
 710 * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
 711 */
 712static void scc_mgr_apply_group_all_out_delay_add(struct socfpga_sdrseq *seq,
 713                                                  const u32 write_group,
 714                                                  const u32 delay)
 715{
 716        u32 i, new_delay;
 717
 718        /* DQ shift */
 719        for (i = 0; i < seq->rwcfg->mem_dq_per_write_dqs; i++)
 720                scc_mgr_load_dq(i);
 721
 722        /* DM shift */
 723        for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
 724                scc_mgr_load_dm(i);
 725
 726        /* DQS shift */
 727        new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
 728        if (new_delay > seq->iocfg->io_out2_delay_max) {
 729                debug_cond(DLEVEL >= 1,
 730                           "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
 731                           __func__, __LINE__, write_group, delay, new_delay,
 732                           seq->iocfg->io_out2_delay_max,
 733                           new_delay - seq->iocfg->io_out2_delay_max);
 734                new_delay -= seq->iocfg->io_out2_delay_max;
 735                scc_mgr_set_dqs_out1_delay(seq, new_delay);
 736        }
 737
 738        scc_mgr_load_dqs_io();
 739
 740        /* OCT shift */
 741        new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
 742        if (new_delay > seq->iocfg->io_out2_delay_max) {
 743                debug_cond(DLEVEL >= 1,
 744                           "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
 745                           __func__, __LINE__, write_group, delay,
 746                           new_delay, seq->iocfg->io_out2_delay_max,
 747                           new_delay - seq->iocfg->io_out2_delay_max);
 748                new_delay -= seq->iocfg->io_out2_delay_max;
 749                scc_mgr_set_oct_out1_delay(seq, write_group, new_delay);
 750        }
 751
 752        scc_mgr_load_dqs_for_write_group(seq, write_group);
 753}
 754
 755/**
 756 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output
 757 * side to all ranks
 758 * @write_group:        Write group
 759 * @delay:              Delay value
 760 *
 761 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
 762 */
 763static void
 764scc_mgr_apply_group_all_out_delay_add_all_ranks(struct socfpga_sdrseq *seq,
 765                                                const u32 write_group,
 766                                                const u32 delay)
 767{
 768        int r;
 769
 770        for (r = 0; r < seq->rwcfg->mem_number_of_ranks;
 771             r += NUM_RANKS_PER_SHADOW_REG) {
 772                scc_mgr_apply_group_all_out_delay_add(seq, write_group, delay);
 773                writel(0, &sdr_scc_mgr->update);
 774        }
 775}
 776
 777/**
 778 * set_jump_as_return() - Return instruction optimization
 779 *
 780 * Optimization used to recover some slots in ddr3 inst_rom could be
 781 * applied to other protocols if we wanted to
 782 */
 783static void set_jump_as_return(struct socfpga_sdrseq *seq)
 784{
 785        /*
 786         * To save space, we replace return with jump to special shared
 787         * RETURN instruction so we set the counter to large value so that
 788         * we always jump.
 789         */
 790        writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
 791        writel(seq->rwcfg->rreturn, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
 792}
 793
 794/**
 795 * delay_for_n_mem_clocks() - Delay for N memory clocks
 796 * @clocks:     Length of the delay
 797 *
 798 * Delay for N memory clocks.
 799 */
 800static void delay_for_n_mem_clocks(struct socfpga_sdrseq *seq,
 801                                   const u32 clocks)
 802{
 803        u32 afi_clocks;
 804        u16 c_loop;
 805        u8 inner;
 806        u8 outer;
 807
 808        debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
 809
 810        /* Scale (rounding up) to get afi clocks. */
 811        afi_clocks = DIV_ROUND_UP(clocks, seq->misccfg->afi_rate_ratio);
 812        if (afi_clocks) /* Temporary underflow protection */
 813                afi_clocks--;
 814
 815        /*
 816         * Note, we don't bother accounting for being off a little
 817         * bit because of a few extra instructions in outer loops.
 818         * Note, the loops have a test at the end, and do the test
 819         * before the decrement, and so always perform the loop
 820         * 1 time more than the counter value
 821         */
 822        c_loop = afi_clocks >> 16;
 823        outer = c_loop ? 0xff : (afi_clocks >> 8);
 824        inner = outer ? 0xff : afi_clocks;
 825
 826        /*
 827         * rom instructions are structured as follows:
 828         *
 829         *    IDLE_LOOP2: jnz cntr0, TARGET_A
 830         *    IDLE_LOOP1: jnz cntr1, TARGET_B
 831         *                return
 832         *
 833         * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
 834         * TARGET_B is set to IDLE_LOOP2 as well
 835         *
 836         * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
 837         * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
 838         *
 839         * a little confusing, but it helps save precious space in the inst_rom
 840         * and sequencer rom and keeps the delays more accurate and reduces
 841         * overhead
 842         */
 843        if (afi_clocks < 0x100) {
 844                writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
 845                       &sdr_rw_load_mgr_regs->load_cntr1);
 846
 847                writel(seq->rwcfg->idle_loop1,
 848                       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
 849
 850                writel(seq->rwcfg->idle_loop1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
 851                                          RW_MGR_RUN_SINGLE_GROUP_OFFSET);
 852        } else {
 853                writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
 854                       &sdr_rw_load_mgr_regs->load_cntr0);
 855
 856                writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
 857                       &sdr_rw_load_mgr_regs->load_cntr1);
 858
 859                writel(seq->rwcfg->idle_loop2,
 860                       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
 861
 862                writel(seq->rwcfg->idle_loop2,
 863                       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
 864
 865                do {
 866                        writel(seq->rwcfg->idle_loop2,
 867                               SDR_PHYGRP_RWMGRGRP_ADDRESS |
 868                               RW_MGR_RUN_SINGLE_GROUP_OFFSET);
 869                } while (c_loop-- != 0);
 870        }
 871        debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
 872}
 873
 874static void delay_for_n_ns(struct socfpga_sdrseq *seq, const u32 ns)
 875{
 876        delay_for_n_mem_clocks(seq, (ns * seq->misccfg->afi_clk_freq *
 877                                seq->misccfg->afi_rate_ratio) / 1000);
 878}
 879
 880/**
 881 * rw_mgr_mem_init_load_regs() - Load instruction registers
 882 * @cntr0:      Counter 0 value
 883 * @cntr1:      Counter 1 value
 884 * @cntr2:      Counter 2 value
 885 * @jump:       Jump instruction value
 886 *
 887 * Load instruction registers.
 888 */
 889static void rw_mgr_mem_init_load_regs(struct socfpga_sdrseq *seq,
 890                                      u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
 891{
 892        u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
 893                           RW_MGR_RUN_SINGLE_GROUP_OFFSET;
 894
 895        /* Load counters */
 896        writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
 897               &sdr_rw_load_mgr_regs->load_cntr0);
 898        writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
 899               &sdr_rw_load_mgr_regs->load_cntr1);
 900        writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
 901               &sdr_rw_load_mgr_regs->load_cntr2);
 902
 903        /* Load jump address */
 904        writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
 905        writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
 906        writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
 907
 908        /* Execute count instruction */
 909        writel(jump, grpaddr);
 910}
 911
 912/**
 913 * rw_mgr_mem_load_user_ddr2() - Load user calibration values for DDR2
 914 * @handoff:    Indicate whether this is initialization or handoff phase
 915 *
 916 * Load user calibration values and optionally precharge the banks.
 917 */
 918static void rw_mgr_mem_load_user_ddr2(struct socfpga_sdrseq *seq,
 919                                      const int handoff)
 920{
 921        u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
 922                      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
 923        u32 r;
 924
 925        for (r = 0; r < seq->rwcfg->mem_number_of_ranks; r++) {
 926                /* set rank */
 927                set_rank_and_odt_mask(seq, r, RW_MGR_ODT_MODE_OFF);
 928
 929                /* precharge all banks ... */
 930                writel(seq->rwcfg->precharge_all, grpaddr);
 931
 932                writel(seq->rwcfg->emr2, grpaddr);
 933                writel(seq->rwcfg->emr3, grpaddr);
 934                writel(seq->rwcfg->emr, grpaddr);
 935
 936                if (handoff) {
 937                        writel(seq->rwcfg->mr_user, grpaddr);
 938                        continue;
 939                }
 940
 941                writel(seq->rwcfg->mr_dll_reset, grpaddr);
 942
 943                writel(seq->rwcfg->precharge_all, grpaddr);
 944
 945                writel(seq->rwcfg->refresh, grpaddr);
 946                delay_for_n_ns(seq, 200);
 947                writel(seq->rwcfg->refresh, grpaddr);
 948                delay_for_n_ns(seq, 200);
 949
 950                writel(seq->rwcfg->mr_calib, grpaddr);
 951                writel(/*seq->rwcfg->*/0x0b, grpaddr);  // EMR_OCD_ENABLE
 952                writel(seq->rwcfg->emr, grpaddr);
 953                delay_for_n_mem_clocks(seq, 200);
 954        }
 955}
 956
 957/**
 958 * rw_mgr_mem_load_user_ddr3() - Load user calibration values
 959 * @fin1:       Final instruction 1
 960 * @fin2:       Final instruction 2
 961 * @precharge:  If 1, precharge the banks at the end
 962 *
 963 * Load user calibration values and optionally precharge the banks.
 964 */
 965static void rw_mgr_mem_load_user_ddr3(struct socfpga_sdrseq *seq,
 966                                 const u32 fin1, const u32 fin2,
 967                                 const int precharge)
 968{
 969        u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
 970                      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
 971        u32 r;
 972
 973        for (r = 0; r < seq->rwcfg->mem_number_of_ranks; r++) {
 974                /* set rank */
 975                set_rank_and_odt_mask(seq, r, RW_MGR_ODT_MODE_OFF);
 976
 977                /* precharge all banks ... */
 978                if (precharge)
 979                        writel(seq->rwcfg->precharge_all, grpaddr);
 980
 981                /*
 982                 * USER Use Mirror-ed commands for odd ranks if address
 983                 * mirrorring is on
 984                 */
 985                if ((seq->rwcfg->mem_address_mirroring >> r) & 0x1) {
 986                        set_jump_as_return(seq);
 987                        writel(seq->rwcfg->mrs2_mirr, grpaddr);
 988                        delay_for_n_mem_clocks(seq, 4);
 989                        set_jump_as_return(seq);
 990                        writel(seq->rwcfg->mrs3_mirr, grpaddr);
 991                        delay_for_n_mem_clocks(seq, 4);
 992                        set_jump_as_return(seq);
 993                        writel(seq->rwcfg->mrs1_mirr, grpaddr);
 994                        delay_for_n_mem_clocks(seq, 4);
 995                        set_jump_as_return(seq);
 996                        writel(fin1, grpaddr);
 997                } else {
 998                        set_jump_as_return(seq);
 999                        writel(seq->rwcfg->mrs2, grpaddr);
1000                        delay_for_n_mem_clocks(seq, 4);
1001                        set_jump_as_return(seq);
1002                        writel(seq->rwcfg->mrs3, grpaddr);
1003                        delay_for_n_mem_clocks(seq, 4);
1004                        set_jump_as_return(seq);
1005                        writel(seq->rwcfg->mrs1, grpaddr);
1006                        set_jump_as_return(seq);
1007                        writel(fin2, grpaddr);
1008                }
1009
1010                if (precharge)
1011                        continue;
1012
1013                set_jump_as_return(seq);
1014                writel(seq->rwcfg->zqcl, grpaddr);
1015
1016                /* tZQinit = tDLLK = 512 ck cycles */
1017                delay_for_n_mem_clocks(seq, 512);
1018        }
1019}
1020
1021/**
1022 * rw_mgr_mem_load_user() - Load user calibration values
1023 * @fin1:       Final instruction 1
1024 * @fin2:       Final instruction 2
1025 * @precharge:  If 1, precharge the banks at the end
1026 *
1027 * Load user calibration values and optionally precharge the banks.
1028 */
1029static void rw_mgr_mem_load_user(struct socfpga_sdrseq *seq,
1030                                 const u32 fin1, const u32 fin2,
1031                                 const int precharge)
1032{
1033        if (dram_is_ddr(2))
1034                rw_mgr_mem_load_user_ddr2(seq, precharge);
1035        else if (dram_is_ddr(3))
1036                rw_mgr_mem_load_user_ddr3(seq, fin1, fin2, precharge);
1037        else
1038                hang();
1039}
1040/**
1041 * rw_mgr_mem_initialize() - Initialize RW Manager
1042 *
1043 * Initialize RW Manager.
1044 */
1045static void rw_mgr_mem_initialize(struct socfpga_sdrseq *seq)
1046{
1047        debug("%s:%d\n", __func__, __LINE__);
1048
1049        /* The reset / cke part of initialization is broadcasted to all ranks */
1050        if (dram_is_ddr(3)) {
1051                writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1052                                        RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
1053        }
1054
1055        /*
1056         * Here's how you load register for a loop
1057         * Counters are located @ 0x800
1058         * Jump address are located @ 0xC00
1059         * For both, registers 0 to 3 are selected using bits 3 and 2, like
1060         * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
1061         * I know this ain't pretty, but Avalon bus throws away the 2 least
1062         * significant bits
1063         */
1064
1065        /* Start with memory RESET activated */
1066
1067        /* tINIT = 200us */
1068
1069        /*
1070         * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
1071         * If a and b are the number of iteration in 2 nested loops
1072         * it takes the following number of cycles to complete the operation:
1073         * number_of_cycles = ((2 + n) * a + 2) * b
1074         * where n is the number of instruction in the inner loop
1075         * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
1076         * b = 6A
1077         */
1078        rw_mgr_mem_init_load_regs(seq, seq->misccfg->tinit_cntr0_val,
1079                                  seq->misccfg->tinit_cntr1_val,
1080                                  seq->misccfg->tinit_cntr2_val,
1081                                  seq->rwcfg->init_reset_0_cke_0);
1082
1083        /* Indicate that memory is stable. */
1084        writel(1, &phy_mgr_cfg->reset_mem_stbl);
1085
1086        if (dram_is_ddr(2)) {
1087                writel(seq->rwcfg->nop, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1088                                        RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1089
1090                /* Bring up clock enable. */
1091
1092                /* tXRP < 400 ck cycles */
1093                delay_for_n_ns(seq, 400);
1094        } else if (dram_is_ddr(3)) {
1095                /*
1096                 * transition the RESET to high
1097                 * Wait for 500us
1098                 */
1099
1100                /*
1101                 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1102                 * If a and b are the number of iteration in 2 nested loops
1103                 * it takes the following number of cycles to complete the
1104                 * operation number_of_cycles = ((2 + n) * a + 2) * b
1105                 * where n is the number of instruction in the inner loop
1106                 * One possible solution is
1107                 * n = 2 , a = 131 , b = 256 => a = 83, b = FF
1108                 */
1109                rw_mgr_mem_init_load_regs(seq, seq->misccfg->treset_cntr0_val,
1110                                          seq->misccfg->treset_cntr1_val,
1111                                          seq->misccfg->treset_cntr2_val,
1112                                          seq->rwcfg->init_reset_1_cke_0);
1113                /* Bring up clock enable. */
1114
1115                /* tXRP < 250 ck cycles */
1116                delay_for_n_mem_clocks(seq, 250);
1117        }
1118
1119        rw_mgr_mem_load_user(seq, seq->rwcfg->mrs0_dll_reset_mirr,
1120                             seq->rwcfg->mrs0_dll_reset, 0);
1121}
1122
1123/**
1124 * rw_mgr_mem_handoff() - Hand off the memory to user
1125 *
1126 * At the end of calibration we have to program the user settings in
1127 * and hand off the memory to the user.
1128 */
1129static void rw_mgr_mem_handoff(struct socfpga_sdrseq *seq)
1130{
1131        rw_mgr_mem_load_user(seq, seq->rwcfg->mrs0_user_mirr,
1132                             seq->rwcfg->mrs0_user, 1);
1133        /*
1134         * Need to wait tMOD (12CK or 15ns) time before issuing other
1135         * commands, but we will have plenty of NIOS cycles before actual
1136         * handoff so its okay.
1137         */
1138}
1139
1140/**
1141 * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
1142 * @group:      Write Group
1143 * @use_dm:     Use DM
1144 *
1145 * Issue write test command. Two variants are provided, one that just tests
1146 * a write pattern and another that tests datamask functionality.
1147 */
1148static void rw_mgr_mem_calibrate_write_test_issue(struct socfpga_sdrseq *seq,
1149                                                  u32 group, u32 test_dm)
1150{
1151        const u32 quick_write_mode =
1152                (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
1153                seq->misccfg->enable_super_quick_calibration;
1154        u32 mcc_instruction;
1155        u32 rw_wl_nop_cycles;
1156
1157        /*
1158         * Set counter and jump addresses for the right
1159         * number of NOP cycles.
1160         * The number of supported NOP cycles can range from -1 to infinity
1161         * Three different cases are handled:
1162         *
1163         * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1164         *    mechanism will be used to insert the right number of NOPs
1165         *
1166         * 2. For a number of NOP cycles equals to 0, the micro-instruction
1167         *    issuing the write command will jump straight to the
1168         *    micro-instruction that turns on DQS (for DDRx), or outputs write
1169         *    data (for RLD), skipping
1170         *    the NOP micro-instruction all together
1171         *
1172         * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1173         *    turned on in the same micro-instruction that issues the write
1174         *    command. Then we need
1175         *    to directly jump to the micro-instruction that sends out the data
1176         *
1177         * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1178         *       (2 and 3). One jump-counter (0) is used to perform multiple
1179         *       write-read operations.
1180         *       one counter left to issue this command in "multiple-group" mode
1181         */
1182
1183        rw_wl_nop_cycles = seq->gbl.rw_wl_nop_cycles;
1184
1185        if (rw_wl_nop_cycles == -1) {
1186                /*
1187                 * CNTR 2 - We want to execute the special write operation that
1188                 * turns on DQS right away and then skip directly to the
1189                 * instruction that sends out the data. We set the counter to a
1190                 * large number so that the jump is always taken.
1191                 */
1192                writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1193
1194                /* CNTR 3 - Not used */
1195                if (test_dm) {
1196                        mcc_instruction = seq->rwcfg->lfsr_wr_rd_dm_bank_0_wl_1;
1197                        writel(seq->rwcfg->lfsr_wr_rd_dm_bank_0_data,
1198                               &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1199                        writel(seq->rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1200                               &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1201                } else {
1202                        mcc_instruction = seq->rwcfg->lfsr_wr_rd_bank_0_wl_1;
1203                        writel(seq->rwcfg->lfsr_wr_rd_bank_0_data,
1204                               &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1205                        writel(seq->rwcfg->lfsr_wr_rd_bank_0_nop,
1206                               &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1207                }
1208        } else if (rw_wl_nop_cycles == 0) {
1209                /*
1210                 * CNTR 2 - We want to skip the NOP operation and go straight
1211                 * to the DQS enable instruction. We set the counter to a large
1212                 * number so that the jump is always taken.
1213                 */
1214                writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1215
1216                /* CNTR 3 - Not used */
1217                if (test_dm) {
1218                        mcc_instruction = seq->rwcfg->lfsr_wr_rd_dm_bank_0;
1219                        writel(seq->rwcfg->lfsr_wr_rd_dm_bank_0_dqs,
1220                               &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1221                } else {
1222                        mcc_instruction = seq->rwcfg->lfsr_wr_rd_bank_0;
1223                        writel(seq->rwcfg->lfsr_wr_rd_bank_0_dqs,
1224                               &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1225                }
1226        } else {
1227                /*
1228                 * CNTR 2 - In this case we want to execute the next instruction
1229                 * and NOT take the jump. So we set the counter to 0. The jump
1230                 * address doesn't count.
1231                 */
1232                writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1233                writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1234
1235                /*
1236                 * CNTR 3 - Set the nop counter to the number of cycles we
1237                 * need to loop for, minus 1.
1238                 */
1239                writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1240                if (test_dm) {
1241                        mcc_instruction = seq->rwcfg->lfsr_wr_rd_dm_bank_0;
1242                        writel(seq->rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1243                               &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1244                } else {
1245                        mcc_instruction = seq->rwcfg->lfsr_wr_rd_bank_0;
1246                        writel(seq->rwcfg->lfsr_wr_rd_bank_0_nop,
1247                               &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1248                }
1249        }
1250
1251        writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1252                  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1253
1254        if (quick_write_mode)
1255                writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1256        else
1257                writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1258
1259        writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1260
1261        /*
1262         * CNTR 1 - This is used to ensure enough time elapses
1263         * for read data to come back.
1264         */
1265        writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1266
1267        if (test_dm) {
1268                writel(seq->rwcfg->lfsr_wr_rd_dm_bank_0_wait,
1269                       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1270        } else {
1271                writel(seq->rwcfg->lfsr_wr_rd_bank_0_wait,
1272                       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1273        }
1274
1275        writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
1276                                RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
1277                                (group << 2));
1278}
1279
1280/**
1281 * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple
1282 * pass
1283 * @rank_bgn:           Rank number
1284 * @write_group:        Write Group
1285 * @use_dm:             Use DM
1286 * @all_correct:        All bits must be correct in the mask
1287 * @bit_chk:            Resulting bit mask after the test
1288 * @all_ranks:          Test all ranks
1289 *
1290 * Test writes, can check for a single bit pass or multiple bit pass.
1291 */
1292static int
1293rw_mgr_mem_calibrate_write_test(struct socfpga_sdrseq *seq,
1294                                const u32 rank_bgn, const u32 write_group,
1295                                const u32 use_dm, const u32 all_correct,
1296                                u32 *bit_chk, const u32 all_ranks)
1297{
1298        const u32 rank_end = all_ranks ?
1299                                seq->rwcfg->mem_number_of_ranks :
1300                                (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1301        const u32 shift_ratio = seq->rwcfg->mem_dq_per_write_dqs /
1302                                seq->rwcfg->mem_virtual_groups_per_write_dqs;
1303        const u32 correct_mask_vg = seq->param.write_correct_mask_vg;
1304
1305        u32 tmp_bit_chk, base_rw_mgr, group;
1306        int vg, r;
1307
1308        *bit_chk = seq->param.write_correct_mask;
1309
1310        for (r = rank_bgn; r < rank_end; r++) {
1311                /* Set rank */
1312                set_rank_and_odt_mask(seq, r, RW_MGR_ODT_MODE_READ_WRITE);
1313
1314                tmp_bit_chk = 0;
1315                for (vg = seq->rwcfg->mem_virtual_groups_per_write_dqs - 1;
1316                     vg >= 0; vg--) {
1317                        /* Reset the FIFOs to get pointers to known state. */
1318                        writel(0, &phy_mgr_cmd->fifo_reset);
1319
1320                        group = write_group *
1321                                seq->rwcfg->mem_virtual_groups_per_write_dqs
1322                                + vg;
1323                        rw_mgr_mem_calibrate_write_test_issue(seq, group,
1324                                                              use_dm);
1325
1326                        base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1327                        tmp_bit_chk <<= shift_ratio;
1328                        tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
1329                }
1330
1331                *bit_chk &= tmp_bit_chk;
1332        }
1333
1334        set_rank_and_odt_mask(seq, 0, RW_MGR_ODT_MODE_OFF);
1335        if (all_correct) {
1336                debug_cond(DLEVEL >= 2,
1337                           "write_test(%u,%u,ALL) : %u == %u => %i\n",
1338                           write_group, use_dm, *bit_chk,
1339                           seq->param.write_correct_mask,
1340                           *bit_chk == seq->param.write_correct_mask);
1341                return *bit_chk == seq->param.write_correct_mask;
1342        } else {
1343                debug_cond(DLEVEL >= 2,
1344                           "write_test(%u,%u,ONE) : %u != %i => %i\n",
1345                           write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
1346                return *bit_chk != 0x00;
1347        }
1348}
1349
1350/**
1351 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1352 * @rank_bgn:   Rank number
1353 * @group:      Read/Write Group
1354 * @all_ranks:  Test all ranks
1355 *
1356 * Performs a guaranteed read on the patterns we are going to use during a
1357 * read test to ensure memory works.
1358 */
1359static int
1360rw_mgr_mem_calibrate_read_test_patterns(struct socfpga_sdrseq *seq,
1361                                        const u32 rank_bgn, const u32 group,
1362                                        const u32 all_ranks)
1363{
1364        const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1365                         RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1366        const u32 addr_offset =
1367                         (group * seq->rwcfg->mem_virtual_groups_per_read_dqs)
1368                         << 2;
1369        const u32 rank_end = all_ranks ?
1370                                seq->rwcfg->mem_number_of_ranks :
1371                                (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1372        const u32 shift_ratio = seq->rwcfg->mem_dq_per_read_dqs /
1373                                seq->rwcfg->mem_virtual_groups_per_read_dqs;
1374        const u32 correct_mask_vg = seq->param.read_correct_mask_vg;
1375
1376        u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1377        int vg, r;
1378        int ret = 0;
1379
1380        bit_chk = seq->param.read_correct_mask;
1381
1382        for (r = rank_bgn; r < rank_end; r++) {
1383                /* Set rank */
1384                set_rank_and_odt_mask(seq, r, RW_MGR_ODT_MODE_READ_WRITE);
1385
1386                /* Load up a constant bursts of read commands */
1387                writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1388                writel(seq->rwcfg->guaranteed_read,
1389                       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1390
1391                writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1392                writel(seq->rwcfg->guaranteed_read_cont,
1393                       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1394
1395                tmp_bit_chk = 0;
1396                for (vg = seq->rwcfg->mem_virtual_groups_per_read_dqs - 1;
1397                     vg >= 0; vg--) {
1398                        /* Reset the FIFOs to get pointers to known state. */
1399                        writel(0, &phy_mgr_cmd->fifo_reset);
1400                        writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1401                                  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1402                        writel(seq->rwcfg->guaranteed_read,
1403                               addr + addr_offset + (vg << 2));
1404
1405                        base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1406                        tmp_bit_chk <<= shift_ratio;
1407                        tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1408                }
1409
1410                bit_chk &= tmp_bit_chk;
1411        }
1412
1413        writel(seq->rwcfg->clear_dqs_enable, addr + (group << 2));
1414
1415        set_rank_and_odt_mask(seq, 0, RW_MGR_ODT_MODE_OFF);
1416
1417        if (bit_chk != seq->param.read_correct_mask)
1418                ret = -EIO;
1419
1420        debug_cond(DLEVEL >= 1,
1421                   "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1422                   __func__, __LINE__, group, bit_chk,
1423                   seq->param.read_correct_mask, ret);
1424
1425        return ret;
1426}
1427
1428/**
1429 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read
1430 * test
1431 * @rank_bgn:   Rank number
1432 * @all_ranks:  Test all ranks
1433 *
1434 * Load up the patterns we are going to use during a read test.
1435 */
1436static void rw_mgr_mem_calibrate_read_load_patterns(struct socfpga_sdrseq *seq,
1437                                                    const u32 rank_bgn,
1438                                                    const int all_ranks)
1439{
1440        const u32 rank_end = all_ranks ?
1441                        seq->rwcfg->mem_number_of_ranks :
1442                        (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1443        u32 r;
1444
1445        debug("%s:%d\n", __func__, __LINE__);
1446
1447        for (r = rank_bgn; r < rank_end; r++) {
1448                /* set rank */
1449                set_rank_and_odt_mask(seq, r, RW_MGR_ODT_MODE_READ_WRITE);
1450
1451                /* Load up a constant bursts */
1452                writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1453
1454                writel(seq->rwcfg->guaranteed_write_wait0,
1455                       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1456
1457                writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1458
1459                writel(seq->rwcfg->guaranteed_write_wait1,
1460                       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1461
1462                writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1463
1464                writel(seq->rwcfg->guaranteed_write_wait2,
1465                       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1466
1467                writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1468
1469                writel(seq->rwcfg->guaranteed_write_wait3,
1470                       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1471
1472                writel(seq->rwcfg->guaranteed_write,
1473                       SDR_PHYGRP_RWMGRGRP_ADDRESS |
1474                       RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1475        }
1476
1477        set_rank_and_odt_mask(seq, 0, RW_MGR_ODT_MODE_OFF);
1478}
1479
1480/**
1481 * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1482 * @rank_bgn:           Rank number
1483 * @group:              Read/Write group
1484 * @num_tries:          Number of retries of the test
1485 * @all_correct:        All bits must be correct in the mask
1486 * @bit_chk:            Resulting bit mask after the test
1487 * @all_groups:         Test all R/W groups
1488 * @all_ranks:          Test all ranks
1489 *
1490 * Try a read and see if it returns correct data back. Test has dummy reads
1491 * inserted into the mix used to align DQS enable. Test has more thorough
1492 * checks than the regular read test.
1493 */
1494static int
1495rw_mgr_mem_calibrate_read_test(struct socfpga_sdrseq *seq,
1496                               const u32 rank_bgn, const u32 group,
1497                               const u32 num_tries, const u32 all_correct,
1498                               u32 *bit_chk,
1499                               const u32 all_groups, const u32 all_ranks)
1500{
1501        const u32 rank_end = all_ranks ? seq->rwcfg->mem_number_of_ranks :
1502                (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1503        const u32 quick_read_mode =
1504                ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1505                 seq->misccfg->enable_super_quick_calibration);
1506        u32 correct_mask_vg = seq->param.read_correct_mask_vg;
1507        u32 tmp_bit_chk;
1508        u32 base_rw_mgr;
1509        u32 addr;
1510
1511        int r, vg, ret;
1512
1513        *bit_chk = seq->param.read_correct_mask;
1514
1515        for (r = rank_bgn; r < rank_end; r++) {
1516                /* set rank */
1517                set_rank_and_odt_mask(seq, r, RW_MGR_ODT_MODE_READ_WRITE);
1518
1519                writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1520
1521                writel(seq->rwcfg->read_b2b_wait1,
1522                       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1523
1524                writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1525                writel(seq->rwcfg->read_b2b_wait2,
1526                       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1527
1528                if (quick_read_mode)
1529                        writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1530                        /* need at least two (1+1) reads to capture failures */
1531                else if (all_groups)
1532                        writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1533                else
1534                        writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1535
1536                writel(seq->rwcfg->read_b2b,
1537                       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1538                if (all_groups)
1539                        writel(seq->rwcfg->mem_if_read_dqs_width *
1540                               seq->rwcfg->mem_virtual_groups_per_read_dqs - 1,
1541                               &sdr_rw_load_mgr_regs->load_cntr3);
1542                else
1543                        writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1544
1545                writel(seq->rwcfg->read_b2b,
1546                       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1547
1548                tmp_bit_chk = 0;
1549                for (vg = seq->rwcfg->mem_virtual_groups_per_read_dqs - 1;
1550                     vg >= 0; vg--) {
1551                        /* Reset the FIFOs to get pointers to known state. */
1552                        writel(0, &phy_mgr_cmd->fifo_reset);
1553                        writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1554                                  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1555
1556                        if (all_groups) {
1557                                addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1558                                       RW_MGR_RUN_ALL_GROUPS_OFFSET;
1559                        } else {
1560                                addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1561                                       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1562                        }
1563
1564                        writel(seq->rwcfg->read_b2b, addr +
1565                               ((group *
1566                                 seq->rwcfg->mem_virtual_groups_per_read_dqs +
1567                                 vg) << 2));
1568
1569                        base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1570                        tmp_bit_chk <<=
1571                                seq->rwcfg->mem_dq_per_read_dqs /
1572                                seq->rwcfg->mem_virtual_groups_per_read_dqs;
1573                        tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1574                }
1575
1576                *bit_chk &= tmp_bit_chk;
1577        }
1578
1579        addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1580        writel(seq->rwcfg->clear_dqs_enable, addr + (group << 2));
1581
1582        set_rank_and_odt_mask(seq, 0, RW_MGR_ODT_MODE_OFF);
1583
1584        if (all_correct) {
1585                ret = (*bit_chk == seq->param.read_correct_mask);
1586                debug_cond(DLEVEL >= 2,
1587                           "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1588                           __func__, __LINE__, group, all_groups, *bit_chk,
1589                           seq->param.read_correct_mask, ret);
1590        } else  {
1591                ret = (*bit_chk != 0x00);
1592                debug_cond(DLEVEL >= 2,
1593                           "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1594                           __func__, __LINE__, group, all_groups, *bit_chk,
1595                           0, ret);
1596        }
1597
1598        return ret;
1599}
1600
1601/**
1602 * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1603 * @grp:                Read/Write group
1604 * @num_tries:          Number of retries of the test
1605 * @all_correct:        All bits must be correct in the mask
1606 * @all_groups:         Test all R/W groups
1607 *
1608 * Perform a READ test across all memory ranks.
1609 */
1610static int
1611rw_mgr_mem_calibrate_read_test_all_ranks(struct socfpga_sdrseq *seq,
1612                                         const u32 grp, const u32 num_tries,
1613                                         const u32 all_correct,
1614                                         const u32 all_groups)
1615{
1616        u32 bit_chk;
1617        return rw_mgr_mem_calibrate_read_test(seq, 0, grp, num_tries,
1618                                              all_correct, &bit_chk, all_groups,
1619                                              1);
1620}
1621
1622/**
1623 * rw_mgr_incr_vfifo() - Increase VFIFO value
1624 * @grp:        Read/Write group
1625 *
1626 * Increase VFIFO value.
1627 */
1628static void rw_mgr_incr_vfifo(const u32 grp)
1629{
1630        writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1631}
1632
1633/**
1634 * rw_mgr_decr_vfifo() - Decrease VFIFO value
1635 * @grp:        Read/Write group
1636 *
1637 * Decrease VFIFO value.
1638 */
1639static void rw_mgr_decr_vfifo(struct socfpga_sdrseq *seq, const u32 grp)
1640{
1641        u32 i;
1642
1643        for (i = 0; i < seq->misccfg->read_valid_fifo_size - 1; i++)
1644                rw_mgr_incr_vfifo(grp);
1645}
1646
1647/**
1648 * find_vfifo_failing_read() - Push VFIFO to get a failing read
1649 * @grp:        Read/Write group
1650 *
1651 * Push VFIFO until a failing read happens.
1652 */
1653static int find_vfifo_failing_read(struct socfpga_sdrseq *seq,
1654                                   const u32 grp)
1655{
1656        u32 v, ret, fail_cnt = 0;
1657
1658        for (v = 0; v < seq->misccfg->read_valid_fifo_size; v++) {
1659                debug_cond(DLEVEL >= 2, "%s:%d: vfifo %u\n",
1660                           __func__, __LINE__, v);
1661                ret = rw_mgr_mem_calibrate_read_test_all_ranks(seq, grp, 1,
1662                                                               PASS_ONE_BIT, 0);
1663                if (!ret) {
1664                        fail_cnt++;
1665
1666                        if (fail_cnt == 2)
1667                                return v;
1668                }
1669
1670                /* Fiddle with FIFO. */
1671                rw_mgr_incr_vfifo(grp);
1672        }
1673
1674        /* No failing read found! Something must have gone wrong. */
1675        debug_cond(DLEVEL >= 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1676        return 0;
1677}
1678
1679/**
1680 * sdr_find_phase_delay() - Find DQS enable phase or delay
1681 * @working:    If 1, look for working phase/delay, if 0, look for non-working
1682 * @delay:      If 1, look for delay, if 0, look for phase
1683 * @grp:        Read/Write group
1684 * @work:       Working window position
1685 * @work_inc:   Working window increment
1686 * @pd:         DQS Phase/Delay Iterator
1687 *
1688 * Find working or non-working DQS enable phase setting.
1689 */
1690static int sdr_find_phase_delay(struct socfpga_sdrseq *seq, int working,
1691                                int delay, const u32 grp, u32 *work,
1692                                const u32 work_inc, u32 *pd)
1693{
1694        const u32 max = delay ? seq->iocfg->dqs_en_delay_max :
1695                                seq->iocfg->dqs_en_phase_max;
1696        u32 ret;
1697
1698        for (; *pd <= max; (*pd)++) {
1699                if (delay)
1700                        scc_mgr_set_dqs_en_delay_all_ranks(seq, grp, *pd);
1701                else
1702                        scc_mgr_set_dqs_en_phase_all_ranks(seq, grp, *pd);
1703
1704                ret = rw_mgr_mem_calibrate_read_test_all_ranks(seq, grp, 1,
1705                                                               PASS_ONE_BIT, 0);
1706                if (!working)
1707                        ret = !ret;
1708
1709                if (ret)
1710                        return 0;
1711
1712                if (work)
1713                        *work += work_inc;
1714        }
1715
1716        return -EINVAL;
1717}
1718/**
1719 * sdr_find_phase() - Find DQS enable phase
1720 * @working:    If 1, look for working phase, if 0, look for non-working phase
1721 * @grp:        Read/Write group
1722 * @work:       Working window position
1723 * @i:          Iterator
1724 * @p:          DQS Phase Iterator
1725 *
1726 * Find working or non-working DQS enable phase setting.
1727 */
1728static int sdr_find_phase(struct socfpga_sdrseq *seq, int working,
1729                          const u32 grp, u32 *work, u32 *i, u32 *p)
1730{
1731        const u32 end = seq->misccfg->read_valid_fifo_size + (working ? 0 : 1);
1732        int ret;
1733
1734        for (; *i < end; (*i)++) {
1735                if (working)
1736                        *p = 0;
1737
1738                ret = sdr_find_phase_delay(seq, working, 0, grp, work,
1739                                           seq->iocfg->delay_per_opa_tap, p);
1740                if (!ret)
1741                        return 0;
1742
1743                if (*p > seq->iocfg->dqs_en_phase_max) {
1744                        /* Fiddle with FIFO. */
1745                        rw_mgr_incr_vfifo(grp);
1746                        if (!working)
1747                                *p = 0;
1748                }
1749        }
1750
1751        return -EINVAL;
1752}
1753
1754/**
1755 * sdr_working_phase() - Find working DQS enable phase
1756 * @grp:        Read/Write group
1757 * @work_bgn:   Working window start position
1758 * @d:          dtaps output value
1759 * @p:          DQS Phase Iterator
1760 * @i:          Iterator
1761 *
1762 * Find working DQS enable phase setting.
1763 */
1764static int sdr_working_phase(struct socfpga_sdrseq *seq, const u32 grp,
1765                             u32 *work_bgn, u32 *d, u32 *p, u32 *i)
1766{
1767        const u32 dtaps_per_ptap = seq->iocfg->delay_per_opa_tap /
1768                                   seq->iocfg->delay_per_dqs_en_dchain_tap;
1769        int ret;
1770
1771        *work_bgn = 0;
1772
1773        for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1774                *i = 0;
1775                scc_mgr_set_dqs_en_delay_all_ranks(seq, grp, *d);
1776                ret = sdr_find_phase(seq, 1, grp, work_bgn, i, p);
1777                if (!ret)
1778                        return 0;
1779                *work_bgn += seq->iocfg->delay_per_dqs_en_dchain_tap;
1780        }
1781
1782        /* Cannot find working solution */
1783        debug_cond(DLEVEL >= 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1784                   __func__, __LINE__);
1785        return -EINVAL;
1786}
1787
1788/**
1789 * sdr_backup_phase() - Find DQS enable backup phase
1790 * @grp:        Read/Write group
1791 * @work_bgn:   Working window start position
1792 * @p:          DQS Phase Iterator
1793 *
1794 * Find DQS enable backup phase setting.
1795 */
1796static void sdr_backup_phase(struct socfpga_sdrseq *seq, const u32 grp,
1797                             u32 *work_bgn, u32 *p)
1798{
1799        u32 tmp_delay, d;
1800        int ret;
1801
1802        /* Special case code for backing up a phase */
1803        if (*p == 0) {
1804                *p = seq->iocfg->dqs_en_phase_max;
1805                rw_mgr_decr_vfifo(seq, grp);
1806        } else {
1807                (*p)--;
1808        }
1809        tmp_delay = *work_bgn - seq->iocfg->delay_per_opa_tap;
1810        scc_mgr_set_dqs_en_phase_all_ranks(seq, grp, *p);
1811
1812        for (d = 0; d <= seq->iocfg->dqs_en_delay_max && tmp_delay < *work_bgn;
1813             d++) {
1814                scc_mgr_set_dqs_en_delay_all_ranks(seq, grp, d);
1815
1816                ret = rw_mgr_mem_calibrate_read_test_all_ranks(seq, grp, 1,
1817                                                               PASS_ONE_BIT, 0);
1818                if (ret) {
1819                        *work_bgn = tmp_delay;
1820                        break;
1821                }
1822
1823                tmp_delay += seq->iocfg->delay_per_dqs_en_dchain_tap;
1824        }
1825
1826        /* Restore VFIFO to old state before we decremented it (if needed). */
1827        (*p)++;
1828        if (*p > seq->iocfg->dqs_en_phase_max) {
1829                *p = 0;
1830                rw_mgr_incr_vfifo(grp);
1831        }
1832
1833        scc_mgr_set_dqs_en_delay_all_ranks(seq, grp, 0);
1834}
1835
1836/**
1837 * sdr_nonworking_phase() - Find non-working DQS enable phase
1838 * @grp:        Read/Write group
1839 * @work_end:   Working window end position
1840 * @p:          DQS Phase Iterator
1841 * @i:          Iterator
1842 *
1843 * Find non-working DQS enable phase setting.
1844 */
1845static int sdr_nonworking_phase(struct socfpga_sdrseq *seq,
1846                                const u32 grp, u32 *work_end, u32 *p, u32 *i)
1847{
1848        int ret;
1849
1850        (*p)++;
1851        *work_end += seq->iocfg->delay_per_opa_tap;
1852        if (*p > seq->iocfg->dqs_en_phase_max) {
1853                /* Fiddle with FIFO. */
1854                *p = 0;
1855                rw_mgr_incr_vfifo(grp);
1856        }
1857
1858        ret = sdr_find_phase(seq, 0, grp, work_end, i, p);
1859        if (ret) {
1860                /* Cannot see edge of failing read. */
1861                debug_cond(DLEVEL >= 2, "%s:%d: end: failed\n",
1862                           __func__, __LINE__);
1863        }
1864
1865        return ret;
1866}
1867
1868/**
1869 * sdr_find_window_center() - Find center of the working DQS window.
1870 * @grp:        Read/Write group
1871 * @work_bgn:   First working settings
1872 * @work_end:   Last working settings
1873 *
1874 * Find center of the working DQS enable window.
1875 */
1876static int sdr_find_window_center(struct socfpga_sdrseq *seq,
1877                                  const u32 grp, const u32 work_bgn,
1878                                  const u32 work_end)
1879{
1880        u32 work_mid;
1881        int tmp_delay = 0;
1882        int i, p, d;
1883
1884        work_mid = (work_bgn + work_end) / 2;
1885
1886        debug_cond(DLEVEL >= 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1887                   work_bgn, work_end, work_mid);
1888        /* Get the middle delay to be less than a VFIFO delay */
1889        tmp_delay = (seq->iocfg->dqs_en_phase_max + 1)
1890                * seq->iocfg->delay_per_opa_tap;
1891
1892        debug_cond(DLEVEL >= 2, "vfifo ptap delay %d\n", tmp_delay);
1893        work_mid %= tmp_delay;
1894        debug_cond(DLEVEL >= 2, "new work_mid %d\n", work_mid);
1895
1896        tmp_delay = rounddown(work_mid, seq->iocfg->delay_per_opa_tap);
1897        if (tmp_delay > seq->iocfg->dqs_en_phase_max
1898                * seq->iocfg->delay_per_opa_tap) {
1899                tmp_delay = seq->iocfg->dqs_en_phase_max
1900                        * seq->iocfg->delay_per_opa_tap;
1901        }
1902        p = tmp_delay / seq->iocfg->delay_per_opa_tap;
1903
1904        debug_cond(DLEVEL >= 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1905
1906        d = DIV_ROUND_UP(work_mid - tmp_delay,
1907                         seq->iocfg->delay_per_dqs_en_dchain_tap);
1908        if (d > seq->iocfg->dqs_en_delay_max)
1909                d = seq->iocfg->dqs_en_delay_max;
1910        tmp_delay += d * seq->iocfg->delay_per_dqs_en_dchain_tap;
1911
1912        debug_cond(DLEVEL >= 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1913
1914        scc_mgr_set_dqs_en_phase_all_ranks(seq, grp, p);
1915        scc_mgr_set_dqs_en_delay_all_ranks(seq, grp, d);
1916
1917        /*
1918         * push vfifo until we can successfully calibrate. We can do this
1919         * because the largest possible margin in 1 VFIFO cycle.
1920         */
1921        for (i = 0; i < seq->misccfg->read_valid_fifo_size; i++) {
1922                debug_cond(DLEVEL >= 2, "find_dqs_en_phase: center\n");
1923                if (rw_mgr_mem_calibrate_read_test_all_ranks(seq, grp, 1,
1924                                                             PASS_ONE_BIT,
1925                                                             0)) {
1926                        debug_cond(DLEVEL >= 2,
1927                                   "%s:%d center: found: ptap=%u dtap=%u\n",
1928                                   __func__, __LINE__, p, d);
1929                        return 0;
1930                }
1931
1932                /* Fiddle with FIFO. */
1933                rw_mgr_incr_vfifo(grp);
1934        }
1935
1936        debug_cond(DLEVEL >= 2, "%s:%d center: failed.\n",
1937                   __func__, __LINE__);
1938        return -EINVAL;
1939}
1940
1941/**
1942 * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to
1943 * use
1944 * @grp:        Read/Write Group
1945 *
1946 * Find a good DQS enable to use.
1947 */
1948static int
1949rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(struct socfpga_sdrseq *seq,
1950                                             const u32 grp)
1951{
1952        u32 d, p, i;
1953        u32 dtaps_per_ptap;
1954        u32 work_bgn, work_end;
1955        u32 found_passing_read, found_failing_read = 0, initial_failing_dtap;
1956        int ret;
1957
1958        debug("%s:%d %u\n", __func__, __LINE__, grp);
1959
1960        reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1961
1962        scc_mgr_set_dqs_en_delay_all_ranks(seq, grp, 0);
1963        scc_mgr_set_dqs_en_phase_all_ranks(seq, grp, 0);
1964
1965        /* Step 0: Determine number of delay taps for each phase tap. */
1966        dtaps_per_ptap = seq->iocfg->delay_per_opa_tap /
1967                         seq->iocfg->delay_per_dqs_en_dchain_tap;
1968
1969        /* Step 1: First push vfifo until we get a failing read. */
1970        find_vfifo_failing_read(seq, grp);
1971
1972        /* Step 2: Find first working phase, increment in ptaps. */
1973        work_bgn = 0;
1974        ret = sdr_working_phase(seq, grp, &work_bgn, &d, &p, &i);
1975        if (ret)
1976                return ret;
1977
1978        work_end = work_bgn;
1979
1980        /*
1981         * If d is 0 then the working window covers a phase tap and we can
1982         * follow the old procedure. Otherwise, we've found the beginning
1983         * and we need to increment the dtaps until we find the end.
1984         */
1985        if (d == 0) {
1986                /*
1987                 * Step 3a: If we have room, back off by one and
1988                 *          increment in dtaps.
1989                 */
1990                sdr_backup_phase(seq, grp, &work_bgn, &p);
1991
1992                /*
1993                 * Step 4a: go forward from working phase to non working
1994                 * phase, increment in ptaps.
1995                 */
1996                ret = sdr_nonworking_phase(seq, grp, &work_end, &p, &i);
1997                if (ret)
1998                        return ret;
1999
2000                /* Step 5a: Back off one from last, increment in dtaps. */
2001
2002                /* Special case code for backing up a phase */
2003                if (p == 0) {
2004                        p = seq->iocfg->dqs_en_phase_max;
2005                        rw_mgr_decr_vfifo(seq, grp);
2006                } else {
2007                        p = p - 1;
2008                }
2009
2010                work_end -= seq->iocfg->delay_per_opa_tap;
2011                scc_mgr_set_dqs_en_phase_all_ranks(seq, grp, p);
2012
2013                d = 0;
2014
2015                debug_cond(DLEVEL >= 2, "%s:%d p: ptap=%u\n",
2016                           __func__, __LINE__, p);
2017        }
2018
2019        /* The dtap increment to find the failing edge is done here. */
2020        sdr_find_phase_delay(seq, 0, 1, grp, &work_end,
2021                             seq->iocfg->delay_per_dqs_en_dchain_tap, &d);
2022
2023        /* Go back to working dtap */
2024        if (d != 0)
2025                work_end -= seq->iocfg->delay_per_dqs_en_dchain_tap;
2026
2027        debug_cond(DLEVEL >= 2,
2028                   "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
2029                   __func__, __LINE__, p, d - 1, work_end);
2030
2031        if (work_end < work_bgn) {
2032                /* nil range */
2033                debug_cond(DLEVEL >= 2, "%s:%d end-2: failed\n",
2034                           __func__, __LINE__);
2035                return -EINVAL;
2036        }
2037
2038        debug_cond(DLEVEL >= 2, "%s:%d found range [%u,%u]\n",
2039                   __func__, __LINE__, work_bgn, work_end);
2040
2041        /*
2042         * We need to calculate the number of dtaps that equal a ptap.
2043         * To do that we'll back up a ptap and re-find the edge of the
2044         * window using dtaps
2045         */
2046        debug_cond(DLEVEL >= 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
2047                   __func__, __LINE__);
2048
2049        /* Special case code for backing up a phase */
2050        if (p == 0) {
2051                p = seq->iocfg->dqs_en_phase_max;
2052                rw_mgr_decr_vfifo(seq, grp);
2053                debug_cond(DLEVEL >= 2, "%s:%d backedup cycle/phase: p=%u\n",
2054                           __func__, __LINE__, p);
2055        } else {
2056                p = p - 1;
2057                debug_cond(DLEVEL >= 2, "%s:%d backedup phase only: p=%u",
2058                           __func__, __LINE__, p);
2059        }
2060
2061        scc_mgr_set_dqs_en_phase_all_ranks(seq, grp, p);
2062
2063        /*
2064         * Increase dtap until we first see a passing read (in case the
2065         * window is smaller than a ptap), and then a failing read to
2066         * mark the edge of the window again.
2067         */
2068
2069        /* Find a passing read. */
2070        debug_cond(DLEVEL >= 2, "%s:%d find passing read\n",
2071                   __func__, __LINE__);
2072
2073        initial_failing_dtap = d;
2074
2075        found_passing_read = !sdr_find_phase_delay(seq, 1, 1, grp, NULL, 0, &d);
2076        if (found_passing_read) {
2077                /* Find a failing read. */
2078                debug_cond(DLEVEL >= 2, "%s:%d find failing read\n",
2079                           __func__, __LINE__);
2080                d++;
2081                found_failing_read = !sdr_find_phase_delay(seq, 0, 1, grp, NULL,
2082                                                           0, &d);
2083        } else {
2084                debug_cond(DLEVEL >= 1,
2085                           "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
2086                           __func__, __LINE__);
2087        }
2088
2089        /*
2090         * The dynamically calculated dtaps_per_ptap is only valid if we
2091         * found a passing/failing read. If we didn't, it means d hit the max
2092         * (seq->iocfg->dqs_en_delay_max). Otherwise, dtaps_per_ptap retains its
2093         * statically calculated value.
2094         */
2095        if (found_passing_read && found_failing_read)
2096                dtaps_per_ptap = d - initial_failing_dtap;
2097
2098        writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
2099        debug_cond(DLEVEL >= 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
2100                   __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
2101
2102        /* Step 6: Find the centre of the window. */
2103        ret = sdr_find_window_center(seq, grp, work_bgn, work_end);
2104
2105        return ret;
2106}
2107
2108/**
2109 * search_stop_check() - Check if the detected edge is valid
2110 * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2111 * @d:                  DQS delay
2112 * @rank_bgn:           Rank number
2113 * @write_group:        Write Group
2114 * @read_group:         Read Group
2115 * @bit_chk:            Resulting bit mask after the test
2116 * @sticky_bit_chk:     Resulting sticky bit mask after the test
2117 * @use_read_test:      Perform read test
2118 *
2119 * Test if the found edge is valid.
2120 */
2121static u32 search_stop_check(struct socfpga_sdrseq *seq, const int write,
2122                             const int d, const int rank_bgn,
2123                             const u32 write_group, const u32 read_group,
2124                             u32 *bit_chk, u32 *sticky_bit_chk,
2125                             const u32 use_read_test)
2126{
2127        const u32 ratio = seq->rwcfg->mem_if_read_dqs_width /
2128                          seq->rwcfg->mem_if_write_dqs_width;
2129        const u32 correct_mask = write ? seq->param.write_correct_mask :
2130                                         seq->param.read_correct_mask;
2131        const u32 per_dqs = write ? seq->rwcfg->mem_dq_per_write_dqs :
2132                                    seq->rwcfg->mem_dq_per_read_dqs;
2133        u32 ret;
2134        /*
2135         * Stop searching when the read test doesn't pass AND when
2136         * we've seen a passing read on every bit.
2137         */
2138        if (write) {                    /* WRITE-ONLY */
2139                ret = !rw_mgr_mem_calibrate_write_test(seq, rank_bgn,
2140                                                         write_group, 0,
2141                                                         PASS_ONE_BIT, bit_chk,
2142                                                         0);
2143        } else if (use_read_test) {     /* READ-ONLY */
2144                ret = !rw_mgr_mem_calibrate_read_test(seq, rank_bgn, read_group,
2145                                                        NUM_READ_PB_TESTS,
2146                                                        PASS_ONE_BIT, bit_chk,
2147                                                        0, 0);
2148        } else {                        /* READ-ONLY */
2149                rw_mgr_mem_calibrate_write_test(seq, rank_bgn, write_group, 0,
2150                                                PASS_ONE_BIT, bit_chk, 0);
2151                *bit_chk = *bit_chk >> (per_dqs *
2152                        (read_group - (write_group * ratio)));
2153                ret = (*bit_chk == 0);
2154        }
2155        *sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2156        ret = ret && (*sticky_bit_chk == correct_mask);
2157        debug_cond(DLEVEL >= 2,
2158                   "%s:%d center(left): dtap=%u => %u == %u && %u",
2159                   __func__, __LINE__, d,
2160                   *sticky_bit_chk, correct_mask, ret);
2161        return ret;
2162}
2163
2164/**
2165 * search_left_edge() - Find left edge of DQ/DQS working phase
2166 * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2167 * @rank_bgn:           Rank number
2168 * @write_group:        Write Group
2169 * @read_group:         Read Group
2170 * @test_bgn:           Rank number to begin the test
2171 * @sticky_bit_chk:     Resulting sticky bit mask after the test
2172 * @left_edge:          Left edge of the DQ/DQS phase
2173 * @right_edge:         Right edge of the DQ/DQS phase
2174 * @use_read_test:      Perform read test
2175 *
2176 * Find left edge of DQ/DQS working phase.
2177 */
2178static void search_left_edge(struct socfpga_sdrseq *seq, const int write,
2179                             const int rank_bgn, const u32 write_group,
2180                             const u32 read_group, const u32 test_bgn,
2181                             u32 *sticky_bit_chk, int *left_edge,
2182                             int *right_edge, const u32 use_read_test)
2183{
2184        const u32 delay_max = write ? seq->iocfg->io_out1_delay_max :
2185                                      seq->iocfg->io_in_delay_max;
2186        const u32 dqs_max = write ? seq->iocfg->io_out1_delay_max :
2187                                    seq->iocfg->dqs_in_delay_max;
2188        const u32 per_dqs = write ? seq->rwcfg->mem_dq_per_write_dqs :
2189                                    seq->rwcfg->mem_dq_per_read_dqs;
2190        u32 stop, bit_chk;
2191        int i, d;
2192
2193        for (d = 0; d <= dqs_max; d++) {
2194                if (write)
2195                        scc_mgr_apply_group_dq_out1_delay(seq, d);
2196                else
2197                        scc_mgr_apply_group_dq_in_delay(seq, test_bgn, d);
2198
2199                writel(0, &sdr_scc_mgr->update);
2200
2201                stop = search_stop_check(seq, write, d, rank_bgn, write_group,
2202                                         read_group, &bit_chk, sticky_bit_chk,
2203                                         use_read_test);
2204                if (stop == 1)
2205                        break;
2206
2207                /* stop != 1 */
2208                for (i = 0; i < per_dqs; i++) {
2209                        if (bit_chk & 1) {
2210                                /*
2211                                 * Remember a passing test as
2212                                 * the left_edge.
2213                                 */
2214                                left_edge[i] = d;
2215                        } else {
2216                                /*
2217                                 * If a left edge has not been seen
2218                                 * yet, then a future passing test
2219                                 * will mark this edge as the right
2220                                 * edge.
2221                                 */
2222                                if (left_edge[i] == delay_max + 1)
2223                                        right_edge[i] = -(d + 1);
2224                        }
2225                        bit_chk >>= 1;
2226                }
2227        }
2228
2229        /* Reset DQ delay chains to 0 */
2230        if (write)
2231                scc_mgr_apply_group_dq_out1_delay(seq, 0);
2232        else
2233                scc_mgr_apply_group_dq_in_delay(seq, test_bgn, 0);
2234
2235        *sticky_bit_chk = 0;
2236        for (i = per_dqs - 1; i >= 0; i--) {
2237                debug_cond(DLEVEL >= 2,
2238                           "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2239                           __func__, __LINE__, i, left_edge[i],
2240                           i, right_edge[i]);
2241
2242                /*
2243                 * Check for cases where we haven't found the left edge,
2244                 * which makes our assignment of the the right edge invalid.
2245                 * Reset it to the illegal value.
2246                 */
2247                if ((left_edge[i] == delay_max + 1) &&
2248                    (right_edge[i] != delay_max + 1)) {
2249                        right_edge[i] = delay_max + 1;
2250                        debug_cond(DLEVEL >= 2,
2251                                   "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2252                                   __func__, __LINE__, i, right_edge[i]);
2253                }
2254
2255                /*
2256                 * Reset sticky bit
2257                 * READ: except for bits where we have seen both
2258                 *       the left and right edge.
2259                 * WRITE: except for bits where we have seen the
2260                 *        left edge.
2261                 */
2262                *sticky_bit_chk <<= 1;
2263                if (write) {
2264                        if (left_edge[i] != delay_max + 1)
2265                                *sticky_bit_chk |= 1;
2266                } else {
2267                        if ((left_edge[i] != delay_max + 1) &&
2268                            (right_edge[i] != delay_max + 1))
2269                                *sticky_bit_chk |= 1;
2270                }
2271        }
2272}
2273
2274/**
2275 * search_right_edge() - Find right edge of DQ/DQS working phase
2276 * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2277 * @rank_bgn:           Rank number
2278 * @write_group:        Write Group
2279 * @read_group:         Read Group
2280 * @start_dqs:          DQS start phase
2281 * @start_dqs_en:       DQS enable start phase
2282 * @sticky_bit_chk:     Resulting sticky bit mask after the test
2283 * @left_edge:          Left edge of the DQ/DQS phase
2284 * @right_edge:         Right edge of the DQ/DQS phase
2285 * @use_read_test:      Perform read test
2286 *
2287 * Find right edge of DQ/DQS working phase.
2288 */
2289static int search_right_edge(struct socfpga_sdrseq *seq, const int write,
2290                             const int rank_bgn, const u32 write_group,
2291                             const u32 read_group, const int start_dqs,
2292                             const int start_dqs_en, u32 *sticky_bit_chk,
2293                             int *left_edge, int *right_edge,
2294                             const u32 use_read_test)
2295{
2296        const u32 delay_max = write ? seq->iocfg->io_out1_delay_max :
2297                                      seq->iocfg->io_in_delay_max;
2298        const u32 dqs_max = write ? seq->iocfg->io_out1_delay_max :
2299                                    seq->iocfg->dqs_in_delay_max;
2300        const u32 per_dqs = write ? seq->rwcfg->mem_dq_per_write_dqs :
2301                                    seq->rwcfg->mem_dq_per_read_dqs;
2302        u32 stop, bit_chk;
2303        int i, d;
2304
2305        for (d = 0; d <= dqs_max - start_dqs; d++) {
2306                if (write) {    /* WRITE-ONLY */
2307                        scc_mgr_apply_group_dqs_io_and_oct_out1(seq,
2308                                                                write_group,
2309                                                                d + start_dqs);
2310                } else {        /* READ-ONLY */
2311                        scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2312                        if (seq->iocfg->shift_dqs_en_when_shift_dqs) {
2313                                u32 delay = d + start_dqs_en;
2314                                if (delay > seq->iocfg->dqs_en_delay_max)
2315                                        delay = seq->iocfg->dqs_en_delay_max;
2316                                scc_mgr_set_dqs_en_delay(read_group, delay);
2317                        }
2318                        scc_mgr_load_dqs(read_group);
2319                }
2320
2321                writel(0, &sdr_scc_mgr->update);
2322
2323                stop = search_stop_check(seq, write, d, rank_bgn, write_group,
2324                                         read_group, &bit_chk, sticky_bit_chk,
2325                                         use_read_test);
2326                if (stop == 1) {
2327                        if (write && (d == 0)) {        /* WRITE-ONLY */
2328                                for (i = 0;
2329                                     i < seq->rwcfg->mem_dq_per_write_dqs;
2330                                     i++) {
2331                                        /*
2332                                         * d = 0 failed, but it passed when
2333                                         * testing the left edge, so it must be
2334                                         * marginal, set it to -1
2335                                         */
2336                                        if (right_edge[i] == delay_max + 1 &&
2337                                            left_edge[i] != delay_max + 1)
2338                                                right_edge[i] = -1;
2339                                }
2340                        }
2341                        break;
2342                }
2343
2344                /* stop != 1 */
2345                for (i = 0; i < per_dqs; i++) {
2346                        if (bit_chk & 1) {
2347                                /*
2348                                 * Remember a passing test as
2349                                 * the right_edge.
2350                                 */
2351                                right_edge[i] = d;
2352                        } else {
2353                                if (d != 0) {
2354                                        /*
2355                                         * If a right edge has not
2356                                         * been seen yet, then a future
2357                                         * passing test will mark this
2358                                         * edge as the left edge.
2359                                         */
2360                                        if (right_edge[i] == delay_max + 1)
2361                                                left_edge[i] = -(d + 1);
2362                                } else {
2363                                        /*
2364                                         * d = 0 failed, but it passed
2365                                         * when testing the left edge,
2366                                         * so it must be marginal, set
2367                                         * it to -1
2368                                         */
2369                                        if (right_edge[i] == delay_max + 1 &&
2370                                            left_edge[i] != delay_max + 1)
2371                                                right_edge[i] = -1;
2372                                        /*
2373                                         * If a right edge has not been
2374                                         * seen yet, then a future
2375                                         * passing test will mark this
2376                                         * edge as the left edge.
2377                                         */
2378                                        else if (right_edge[i] == delay_max + 1)
2379                                                left_edge[i] = -(d + 1);
2380                                }
2381                        }
2382
2383                        debug_cond(DLEVEL >= 2, "%s:%d center[r,d=%u]: ",
2384                                   __func__, __LINE__, d);
2385                        debug_cond(DLEVEL >= 2,
2386                                   "bit_chk_test=%i left_edge[%u]: %d ",
2387                                   bit_chk & 1, i, left_edge[i]);
2388                        debug_cond(DLEVEL >= 2, "right_edge[%u]: %d\n", i,
2389                                   right_edge[i]);
2390                        bit_chk >>= 1;
2391                }
2392        }
2393
2394        /* Check that all bits have a window */
2395        for (i = 0; i < per_dqs; i++) {
2396                debug_cond(DLEVEL >= 2,
2397                           "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2398                           __func__, __LINE__, i, left_edge[i],
2399                           i, right_edge[i]);
2400                if ((left_edge[i] == dqs_max + 1) ||
2401                    (right_edge[i] == dqs_max + 1))
2402                        return i + 1;   /* FIXME: If we fail, retval > 0 */
2403        }
2404
2405        return 0;
2406}
2407
2408/**
2409 * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2410 * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2411 * @left_edge:          Left edge of the DQ/DQS phase
2412 * @right_edge:         Right edge of the DQ/DQS phase
2413 * @mid_min:            Best DQ/DQS phase middle setting
2414 *
2415 * Find index and value of the middle of the DQ/DQS working phase.
2416 */
2417static int get_window_mid_index(struct socfpga_sdrseq *seq,
2418                                const int write, int *left_edge,
2419                                int *right_edge, int *mid_min)
2420{
2421        const u32 per_dqs = write ? seq->rwcfg->mem_dq_per_write_dqs :
2422                                    seq->rwcfg->mem_dq_per_read_dqs;
2423        int i, mid, min_index;
2424
2425        /* Find middle of window for each DQ bit */
2426        *mid_min = left_edge[0] - right_edge[0];
2427        min_index = 0;
2428        for (i = 1; i < per_dqs; i++) {
2429                mid = left_edge[i] - right_edge[i];
2430                if (mid < *mid_min) {
2431                        *mid_min = mid;
2432                        min_index = i;
2433                }
2434        }
2435
2436        /*
2437         * -mid_min/2 represents the amount that we need to move DQS.
2438         * If mid_min is odd and positive we'll need to add one to make
2439         * sure the rounding in further calculations is correct (always
2440         * bias to the right), so just add 1 for all positive values.
2441         */
2442        if (*mid_min > 0)
2443                (*mid_min)++;
2444        *mid_min = *mid_min / 2;
2445
2446        debug_cond(DLEVEL >= 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2447                   __func__, __LINE__, *mid_min, min_index);
2448        return min_index;
2449}
2450
2451/**
2452 * center_dq_windows() - Center the DQ/DQS windows
2453 * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2454 * @left_edge:          Left edge of the DQ/DQS phase
2455 * @right_edge:         Right edge of the DQ/DQS phase
2456 * @mid_min:            Adjusted DQ/DQS phase middle setting
2457 * @orig_mid_min:       Original DQ/DQS phase middle setting
2458 * @min_index:          DQ/DQS phase middle setting index
2459 * @test_bgn:           Rank number to begin the test
2460 * @dq_margin:          Amount of shift for the DQ
2461 * @dqs_margin:         Amount of shift for the DQS
2462 *
2463 * Align the DQ/DQS windows in each group.
2464 */
2465static void center_dq_windows(struct socfpga_sdrseq *seq,
2466                              const int write, int *left_edge, int *right_edge,
2467                              const int mid_min, const int orig_mid_min,
2468                              const int min_index, const int test_bgn,
2469                              int *dq_margin, int *dqs_margin)
2470{
2471        const s32 delay_max = write ? seq->iocfg->io_out1_delay_max :
2472                                      seq->iocfg->io_in_delay_max;
2473        const s32 per_dqs = write ? seq->rwcfg->mem_dq_per_write_dqs :
2474                                    seq->rwcfg->mem_dq_per_read_dqs;
2475        const s32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2476                                      SCC_MGR_IO_IN_DELAY_OFFSET;
2477        const s32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2478
2479        s32 temp_dq_io_delay1;
2480        int shift_dq, i, p;
2481
2482        /* Initialize data for export structures */
2483        *dqs_margin = delay_max + 1;
2484        *dq_margin  = delay_max + 1;
2485
2486        /* add delay to bring centre of all DQ windows to the same "level" */
2487        for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2488                /* Use values before divide by 2 to reduce round off error */
2489                shift_dq = (left_edge[i] - right_edge[i] -
2490                        (left_edge[min_index] - right_edge[min_index]))/2  +
2491                        (orig_mid_min - mid_min);
2492
2493                debug_cond(DLEVEL >= 2,
2494                           "vfifo_center: before: shift_dq[%u]=%d\n",
2495                           i, shift_dq);
2496
2497                temp_dq_io_delay1 = readl(addr + (i << 2));
2498
2499                if (shift_dq + temp_dq_io_delay1 > delay_max)
2500                        shift_dq = delay_max - temp_dq_io_delay1;
2501                else if (shift_dq + temp_dq_io_delay1 < 0)
2502                        shift_dq = -temp_dq_io_delay1;
2503
2504                debug_cond(DLEVEL >= 2,
2505                           "vfifo_center: after: shift_dq[%u]=%d\n",
2506                           i, shift_dq);
2507
2508                if (write)
2509                        scc_mgr_set_dq_out1_delay(i,
2510                                                  temp_dq_io_delay1 + shift_dq);
2511                else
2512                        scc_mgr_set_dq_in_delay(p,
2513                                                temp_dq_io_delay1 + shift_dq);
2514
2515                scc_mgr_load_dq(p);
2516
2517                debug_cond(DLEVEL >= 2,
2518                           "vfifo_center: margin[%u]=[%d,%d]\n", i,
2519                           left_edge[i] - shift_dq + (-mid_min),
2520                           right_edge[i] + shift_dq - (-mid_min));
2521
2522                /* To determine values for export structures */
2523                if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2524                        *dq_margin = left_edge[i] - shift_dq + (-mid_min);
2525
2526                if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2527                        *dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2528        }
2529}
2530
2531/**
2532 * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2533 * @rank_bgn:           Rank number
2534 * @rw_group:           Read/Write Group
2535 * @test_bgn:           Rank at which the test begins
2536 * @use_read_test:      Perform a read test
2537 * @update_fom:         Update FOM
2538 *
2539 * Per-bit deskew DQ and centering.
2540 */
2541static int rw_mgr_mem_calibrate_vfifo_center(struct socfpga_sdrseq *seq,
2542                                             const u32 rank_bgn,
2543                                             const u32 rw_group,
2544                                             const u32 test_bgn,
2545                                             const int use_read_test,
2546                                             const int update_fom)
2547{
2548        const u32 addr =
2549                SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2550                (rw_group << 2);
2551        /*
2552         * Store these as signed since there are comparisons with
2553         * signed numbers.
2554         */
2555        u32 sticky_bit_chk;
2556        s32 left_edge[seq->rwcfg->mem_dq_per_read_dqs];
2557        s32 right_edge[seq->rwcfg->mem_dq_per_read_dqs];
2558        s32 orig_mid_min, mid_min;
2559        s32 new_dqs, start_dqs, start_dqs_en = 0, final_dqs_en;
2560        s32 dq_margin, dqs_margin;
2561        int i, min_index;
2562        int ret;
2563
2564        debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2565
2566        start_dqs = readl(addr);
2567        if (seq->iocfg->shift_dqs_en_when_shift_dqs)
2568                start_dqs_en = readl(addr - seq->iocfg->dqs_en_delay_offset);
2569
2570        /* set the left and right edge of each bit to an illegal value */
2571        /* use (seq->iocfg->io_in_delay_max + 1) as an illegal value */
2572        sticky_bit_chk = 0;
2573        for (i = 0; i < seq->rwcfg->mem_dq_per_read_dqs; i++) {
2574                left_edge[i]  = seq->iocfg->io_in_delay_max + 1;
2575                right_edge[i] = seq->iocfg->io_in_delay_max + 1;
2576        }
2577
2578        /* Search for the left edge of the window for each bit */
2579        search_left_edge(seq, 0, rank_bgn, rw_group, rw_group, test_bgn,
2580                         &sticky_bit_chk,
2581                         left_edge, right_edge, use_read_test);
2582
2583
2584        /* Search for the right edge of the window for each bit */
2585        ret = search_right_edge(seq, 0, rank_bgn, rw_group, rw_group,
2586                                start_dqs, start_dqs_en,
2587                                &sticky_bit_chk,
2588                                left_edge, right_edge, use_read_test);
2589        if (ret) {
2590                /*
2591                 * Restore delay chain settings before letting the loop
2592                 * in rw_mgr_mem_calibrate_vfifo to retry different
2593                 * dqs/ck relationships.
2594                 */
2595                scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2596                if (seq->iocfg->shift_dqs_en_when_shift_dqs)
2597                        scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2598
2599                scc_mgr_load_dqs(rw_group);
2600                writel(0, &sdr_scc_mgr->update);
2601
2602                debug_cond(DLEVEL >= 1,
2603                           "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2604                           __func__, __LINE__, i, left_edge[i], right_edge[i]);
2605                if (use_read_test) {
2606                        set_failing_group_stage(seq, rw_group *
2607                                seq->rwcfg->mem_dq_per_read_dqs + i,
2608                                CAL_STAGE_VFIFO,
2609                                CAL_SUBSTAGE_VFIFO_CENTER);
2610                } else {
2611                        set_failing_group_stage(seq, rw_group *
2612                                seq->rwcfg->mem_dq_per_read_dqs + i,
2613                                CAL_STAGE_VFIFO_AFTER_WRITES,
2614                                CAL_SUBSTAGE_VFIFO_CENTER);
2615                }
2616                return -EIO;
2617        }
2618
2619        min_index = get_window_mid_index(seq, 0, left_edge, right_edge,
2620                                         &mid_min);
2621
2622        /* Determine the amount we can change DQS (which is -mid_min) */
2623        orig_mid_min = mid_min;
2624        new_dqs = start_dqs - mid_min;
2625        if (new_dqs > seq->iocfg->dqs_in_delay_max)
2626                new_dqs = seq->iocfg->dqs_in_delay_max;
2627        else if (new_dqs < 0)
2628                new_dqs = 0;
2629
2630        mid_min = start_dqs - new_dqs;
2631        debug_cond(DLEVEL >= 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2632                   mid_min, new_dqs);
2633
2634        if (seq->iocfg->shift_dqs_en_when_shift_dqs) {
2635                if (start_dqs_en - mid_min > seq->iocfg->dqs_en_delay_max)
2636                        mid_min += start_dqs_en - mid_min -
2637                                   seq->iocfg->dqs_en_delay_max;
2638                else if (start_dqs_en - mid_min < 0)
2639                        mid_min += start_dqs_en - mid_min;
2640        }
2641        new_dqs = start_dqs - mid_min;
2642
2643        debug_cond(DLEVEL >= 1,
2644                   "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2645                   start_dqs,
2646                   seq->iocfg->shift_dqs_en_when_shift_dqs ? start_dqs_en : -1,
2647                   new_dqs, mid_min);
2648
2649        /* Add delay to bring centre of all DQ windows to the same "level". */
2650        center_dq_windows(seq, 0, left_edge, right_edge, mid_min, orig_mid_min,
2651                          min_index, test_bgn, &dq_margin, &dqs_margin);
2652
2653        /* Move DQS-en */
2654        if (seq->iocfg->shift_dqs_en_when_shift_dqs) {
2655                final_dqs_en = start_dqs_en - mid_min;
2656                scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2657                scc_mgr_load_dqs(rw_group);
2658        }
2659
2660        /* Move DQS */
2661        scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2662        scc_mgr_load_dqs(rw_group);
2663        debug_cond(DLEVEL >= 2,
2664                   "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2665                   __func__, __LINE__, dq_margin, dqs_margin);
2666
2667        /*
2668         * Do not remove this line as it makes sure all of our decisions
2669         * have been applied. Apply the update bit.
2670         */
2671        writel(0, &sdr_scc_mgr->update);
2672
2673        if ((dq_margin < 0) || (dqs_margin < 0))
2674                return -EINVAL;
2675
2676        return 0;
2677}
2678
2679/**
2680 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the
2681 * device
2682 * @rw_group:   Read/Write Group
2683 * @phase:      DQ/DQS phase
2684 *
2685 * Because initially no communication ca be reliably performed with the memory
2686 * device, the sequencer uses a guaranteed write mechanism to write data into
2687 * the memory device.
2688 */
2689static int rw_mgr_mem_calibrate_guaranteed_write(struct socfpga_sdrseq *seq,
2690                                                 const u32 rw_group,
2691                                                 const u32 phase)
2692{
2693        int ret;
2694
2695        /* Set a particular DQ/DQS phase. */
2696        scc_mgr_set_dqdqs_output_phase_all_ranks(seq, rw_group, phase);
2697
2698        debug_cond(DLEVEL >= 1, "%s:%d guaranteed write: g=%u p=%u\n",
2699                   __func__, __LINE__, rw_group, phase);
2700
2701        /*
2702         * Altera EMI_RM 2015.05.04 :: Figure 1-25
2703         * Load up the patterns used by read calibration using the
2704         * current DQDQS phase.
2705         */
2706        rw_mgr_mem_calibrate_read_load_patterns(seq, 0, 1);
2707
2708        if (seq->gbl.phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2709                return 0;
2710
2711        /*
2712         * Altera EMI_RM 2015.05.04 :: Figure 1-26
2713         * Back-to-Back reads of the patterns used for calibration.
2714         */
2715        ret = rw_mgr_mem_calibrate_read_test_patterns(seq, 0, rw_group, 1);
2716        if (ret)
2717                debug_cond(DLEVEL >= 1,
2718                           "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2719                           __func__, __LINE__, rw_group, phase);
2720        return ret;
2721}
2722
2723/**
2724 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2725 * @rw_group:   Read/Write Group
2726 * @test_bgn:   Rank at which the test begins
2727 *
2728 * DQS enable calibration ensures reliable capture of the DQ signal without
2729 * glitches on the DQS line.
2730 */
2731static int
2732rw_mgr_mem_calibrate_dqs_enable_calibration(struct socfpga_sdrseq *seq,
2733                                            const u32 rw_group,
2734                                            const u32 test_bgn)
2735{
2736        /*
2737         * Altera EMI_RM 2015.05.04 :: Figure 1-27
2738         * DQS and DQS Eanble Signal Relationships.
2739         */
2740
2741        /* We start at zero, so have one less dq to devide among */
2742        const u32 delay_step = seq->iocfg->io_in_delay_max /
2743                               (seq->rwcfg->mem_dq_per_read_dqs - 1);
2744        int ret;
2745        u32 i, p, d, r;
2746
2747        debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2748
2749        /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2750        for (r = 0; r < seq->rwcfg->mem_number_of_ranks;
2751             r += NUM_RANKS_PER_SHADOW_REG) {
2752                for (i = 0, p = test_bgn, d = 0;
2753                     i < seq->rwcfg->mem_dq_per_read_dqs;
2754                     i++, p++, d += delay_step) {
2755                        debug_cond(DLEVEL >= 1,
2756                                   "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2757                                   __func__, __LINE__, rw_group, r, i, p, d);
2758
2759                        scc_mgr_set_dq_in_delay(p, d);
2760                        scc_mgr_load_dq(p);
2761                }
2762
2763                writel(0, &sdr_scc_mgr->update);
2764        }
2765
2766        /*
2767         * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2768         * dq_in_delay values
2769         */
2770        ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(seq, rw_group);
2771
2772        debug_cond(DLEVEL >= 1,
2773                   "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2774                   __func__, __LINE__, rw_group, !ret);
2775
2776        for (r = 0; r < seq->rwcfg->mem_number_of_ranks;
2777             r += NUM_RANKS_PER_SHADOW_REG) {
2778                scc_mgr_apply_group_dq_in_delay(seq, test_bgn, 0);
2779                writel(0, &sdr_scc_mgr->update);
2780        }
2781
2782        return ret;
2783}
2784
2785/**
2786 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2787 * @rw_group:           Read/Write Group
2788 * @test_bgn:           Rank at which the test begins
2789 * @use_read_test:      Perform a read test
2790 * @update_fom:         Update FOM
2791 *
2792 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2793 * within a group.
2794 */
2795static int
2796rw_mgr_mem_calibrate_dq_dqs_centering(struct socfpga_sdrseq *seq,
2797                                      const u32 rw_group, const u32 test_bgn,
2798                                      const int use_read_test,
2799                                      const int update_fom)
2800
2801{
2802        int ret, grp_calibrated;
2803        u32 rank_bgn, sr;
2804
2805        /*
2806         * Altera EMI_RM 2015.05.04 :: Figure 1-28
2807         * Read per-bit deskew can be done on a per shadow register basis.
2808         */
2809        grp_calibrated = 1;
2810        for (rank_bgn = 0, sr = 0;
2811             rank_bgn < seq->rwcfg->mem_number_of_ranks;
2812             rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2813                ret = rw_mgr_mem_calibrate_vfifo_center(seq, rank_bgn, rw_group,
2814                                                        test_bgn,
2815                                                        use_read_test,
2816                                                        update_fom);
2817                if (!ret)
2818                        continue;
2819
2820                grp_calibrated = 0;
2821        }
2822
2823        if (!grp_calibrated)
2824                return -EIO;
2825
2826        return 0;
2827}
2828
2829/**
2830 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2831 * @rw_group:           Read/Write Group
2832 * @test_bgn:           Rank at which the test begins
2833 *
2834 * Stage 1: Calibrate the read valid prediction FIFO.
2835 *
2836 * This function implements UniPHY calibration Stage 1, as explained in
2837 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2838 *
2839 * - read valid prediction will consist of finding:
2840 *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2841 *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2842 *  - we also do a per-bit deskew on the DQ lines.
2843 */
2844static int rw_mgr_mem_calibrate_vfifo(struct socfpga_sdrseq *seq,
2845                                      const u32 rw_group, const u32 test_bgn)
2846{
2847        u32 p, d;
2848        u32 dtaps_per_ptap;
2849        u32 failed_substage;
2850
2851        int ret;
2852
2853        debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2854
2855        /* Update info for sims */
2856        reg_file_set_group(rw_group);
2857        reg_file_set_stage(CAL_STAGE_VFIFO);
2858        reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2859
2860        failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2861
2862        /* USER Determine number of delay taps for each phase tap. */
2863        dtaps_per_ptap = DIV_ROUND_UP(seq->iocfg->delay_per_opa_tap,
2864                                      seq->iocfg->delay_per_dqs_en_dchain_tap)
2865                                      - 1;
2866
2867        for (d = 0; d <= dtaps_per_ptap; d += 2) {
2868                /*
2869                 * In RLDRAMX we may be messing the delay of pins in
2870                 * the same write rw_group but outside of the current read
2871                 * the rw_group, but that's ok because we haven't calibrated
2872                 * output side yet.
2873                 */
2874                if (d > 0) {
2875                        scc_mgr_apply_group_all_out_delay_add_all_ranks(seq,
2876                                                                        rw_group,
2877                                                                        d);
2878                }
2879
2880                for (p = 0; p <= seq->iocfg->dqdqs_out_phase_max; p++) {
2881                        /* 1) Guaranteed Write */
2882                        ret = rw_mgr_mem_calibrate_guaranteed_write(seq,
2883                                                                    rw_group,
2884                                                                    p);
2885                        if (ret)
2886                                break;
2887
2888                        /* 2) DQS Enable Calibration */
2889                        ret = rw_mgr_mem_calibrate_dqs_enable_calibration(seq,
2890                                                                          rw_group,
2891                                                                          test_bgn);
2892                        if (ret) {
2893                                failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2894                                continue;
2895                        }
2896
2897                        /* 3) Centering DQ/DQS */
2898                        /*
2899                         * If doing read after write calibration, do not update
2900                         * FOM now. Do it then.
2901                         */
2902                        ret = rw_mgr_mem_calibrate_dq_dqs_centering(seq,
2903                                                                    rw_group,
2904                                                                    test_bgn,
2905                                                                    1, 0);
2906                        if (ret) {
2907                                failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2908                                continue;
2909                        }
2910
2911                        /* All done. */
2912                        goto cal_done_ok;
2913                }
2914        }
2915
2916        /* Calibration Stage 1 failed. */
2917        set_failing_group_stage(seq, rw_group, CAL_STAGE_VFIFO,
2918                                failed_substage);
2919        return 0;
2920
2921        /* Calibration Stage 1 completed OK. */
2922cal_done_ok:
2923        /*
2924         * Reset the delay chains back to zero if they have moved > 1
2925         * (check for > 1 because loop will increase d even when pass in
2926         * first case).
2927         */
2928        if (d > 2)
2929                scc_mgr_zero_group(seq, rw_group, 1);
2930
2931        return 1;
2932}
2933
2934/**
2935 * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
2936 * @rw_group:           Read/Write Group
2937 * @test_bgn:           Rank at which the test begins
2938 *
2939 * Stage 3: DQ/DQS Centering.
2940 *
2941 * This function implements UniPHY calibration Stage 3, as explained in
2942 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2943 */
2944static int rw_mgr_mem_calibrate_vfifo_end(struct socfpga_sdrseq *seq,
2945                                          const u32 rw_group,
2946                                          const u32 test_bgn)
2947{
2948        int ret;
2949
2950        debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
2951
2952        /* Update info for sims. */
2953        reg_file_set_group(rw_group);
2954        reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2955        reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2956
2957        ret = rw_mgr_mem_calibrate_dq_dqs_centering(seq, rw_group, test_bgn, 0,
2958                                                    1);
2959        if (ret)
2960                set_failing_group_stage(seq, rw_group,
2961                                        CAL_STAGE_VFIFO_AFTER_WRITES,
2962                                        CAL_SUBSTAGE_VFIFO_CENTER);
2963        return ret;
2964}
2965
2966/**
2967 * rw_mgr_mem_calibrate_lfifo() - Minimize latency
2968 *
2969 * Stage 4: Minimize latency.
2970 *
2971 * This function implements UniPHY calibration Stage 4, as explained in
2972 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2973 * Calibrate LFIFO to find smallest read latency.
2974 */
2975static u32 rw_mgr_mem_calibrate_lfifo(struct socfpga_sdrseq *seq)
2976{
2977        int found_one = 0;
2978
2979        debug("%s:%d\n", __func__, __LINE__);
2980
2981        /* Update info for sims. */
2982        reg_file_set_stage(CAL_STAGE_LFIFO);
2983        reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2984
2985        /* Load up the patterns used by read calibration for all ranks */
2986        rw_mgr_mem_calibrate_read_load_patterns(seq, 0, 1);
2987
2988        do {
2989                writel(seq->gbl.curr_read_lat, &phy_mgr_cfg->phy_rlat);
2990                debug_cond(DLEVEL >= 2, "%s:%d lfifo: read_lat=%u",
2991                           __func__, __LINE__, seq->gbl.curr_read_lat);
2992
2993                if (!rw_mgr_mem_calibrate_read_test_all_ranks(seq, 0,
2994                                                              NUM_READ_TESTS,
2995                                                              PASS_ALL_BITS, 1))
2996                        break;
2997
2998                found_one = 1;
2999                /*
3000                 * Reduce read latency and see if things are
3001                 * working correctly.
3002                 */
3003                seq->gbl.curr_read_lat--;
3004        } while (seq->gbl.curr_read_lat > 0);
3005
3006        /* Reset the fifos to get pointers to known state. */
3007        writel(0, &phy_mgr_cmd->fifo_reset);
3008
3009        if (found_one) {
3010                /* Add a fudge factor to the read latency that was determined */
3011                seq->gbl.curr_read_lat += 2;
3012                writel(seq->gbl.curr_read_lat, &phy_mgr_cfg->phy_rlat);
3013                debug_cond(DLEVEL >= 2,
3014                           "%s:%d lfifo: success: using read_lat=%u\n",
3015                           __func__, __LINE__, seq->gbl.curr_read_lat);
3016        } else {
3017                set_failing_group_stage(seq, 0xff, CAL_STAGE_LFIFO,
3018                                        CAL_SUBSTAGE_READ_LATENCY);
3019
3020                debug_cond(DLEVEL >= 2,
3021                           "%s:%d lfifo: failed at initial read_lat=%u\n",
3022                           __func__, __LINE__, seq->gbl.curr_read_lat);
3023        }
3024
3025        return found_one;
3026}
3027
3028/**
3029 * search_window() - Search for the/part of the window with DM/DQS shift
3030 * @search_dm:          If 1, search for the DM shift, if 0, search for DQS
3031 *                      shift
3032 * @rank_bgn:           Rank number
3033 * @write_group:        Write Group
3034 * @bgn_curr:           Current window begin
3035 * @end_curr:           Current window end
3036 * @bgn_best:           Current best window begin
3037 * @end_best:           Current best window end
3038 * @win_best:           Size of the best window
3039 * @new_dqs:            New DQS value (only applicable if search_dm = 0).
3040 *
3041 * Search for the/part of the window with DM/DQS shift.
3042 */
3043static void search_window(struct socfpga_sdrseq *seq,
3044                          const int search_dm, const u32 rank_bgn,
3045                          const u32 write_group, int *bgn_curr, int *end_curr,
3046                          int *bgn_best, int *end_best, int *win_best,
3047                          int new_dqs)
3048{
3049        u32 bit_chk;
3050        const int max = seq->iocfg->io_out1_delay_max - new_dqs;
3051        int d, di;
3052
3053        /* Search for the/part of the window with DM/DQS shift. */
3054        for (di = max; di >= 0; di -= DELTA_D) {
3055                if (search_dm) {
3056                        d = di;
3057                        scc_mgr_apply_group_dm_out1_delay(seq, d);
3058                } else {
3059                        /* For DQS, we go from 0...max */
3060                        d = max - di;
3061                        /*
3062                         * Note: This only shifts DQS, so are we limiting
3063                         *       ourselves to width of DQ unnecessarily.
3064                         */
3065                        scc_mgr_apply_group_dqs_io_and_oct_out1(seq,
3066                                                                write_group,
3067                                                                d + new_dqs);
3068                }
3069
3070                writel(0, &sdr_scc_mgr->update);
3071
3072                if (rw_mgr_mem_calibrate_write_test(seq, rank_bgn, write_group,
3073                                                    1, PASS_ALL_BITS, &bit_chk,
3074                                                    0)) {
3075                        /* Set current end of the window. */
3076                        *end_curr = search_dm ? -d : d;
3077
3078                        /*
3079                         * If a starting edge of our window has not been seen
3080                         * this is our current start of the DM window.
3081                         */
3082                        if (*bgn_curr == seq->iocfg->io_out1_delay_max + 1)
3083                                *bgn_curr = search_dm ? -d : d;
3084
3085                        /*
3086                         * If current window is bigger than best seen.
3087                         * Set best seen to be current window.
3088                         */
3089                        if ((*end_curr - *bgn_curr + 1) > *win_best) {
3090                                *win_best = *end_curr - *bgn_curr + 1;
3091                                *bgn_best = *bgn_curr;
3092                                *end_best = *end_curr;
3093                        }
3094                } else {
3095                        /* We just saw a failing test. Reset temp edge. */
3096                        *bgn_curr = seq->iocfg->io_out1_delay_max + 1;
3097                        *end_curr = seq->iocfg->io_out1_delay_max + 1;
3098
3099                        /* Early exit is only applicable to DQS. */
3100                        if (search_dm)
3101                                continue;
3102
3103                        /*
3104                         * Early exit optimization: if the remaining delay
3105                         * chain space is less than already seen largest
3106                         * window we can exit.
3107                         */
3108                        if (*win_best - 1 > seq->iocfg->io_out1_delay_max
3109                                - new_dqs - d)
3110                                break;
3111                }
3112        }
3113}
3114
3115/*
3116 * rw_mgr_mem_calibrate_writes_center() - Center all windows
3117 * @rank_bgn:           Rank number
3118 * @write_group:        Write group
3119 * @test_bgn:           Rank at which the test begins
3120 *
3121 * Center all windows. Do per-bit-deskew to possibly increase size of
3122 * certain windows.
3123 */
3124static int
3125rw_mgr_mem_calibrate_writes_center(struct socfpga_sdrseq *seq,
3126                                   const u32 rank_bgn, const u32 write_group,
3127                                   const u32 test_bgn)
3128{
3129        int i;
3130        u32 sticky_bit_chk;
3131        u32 min_index;
3132        int left_edge[seq->rwcfg->mem_dq_per_write_dqs];
3133        int right_edge[seq->rwcfg->mem_dq_per_write_dqs];
3134        int mid;
3135        int mid_min, orig_mid_min;
3136        int new_dqs, start_dqs;
3137        int dq_margin, dqs_margin, dm_margin;
3138        int bgn_curr = seq->iocfg->io_out1_delay_max + 1;
3139        int end_curr = seq->iocfg->io_out1_delay_max + 1;
3140        int bgn_best = seq->iocfg->io_out1_delay_max + 1;
3141        int end_best = seq->iocfg->io_out1_delay_max + 1;
3142        int win_best = 0;
3143
3144        int ret;
3145
3146        debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
3147
3148        dm_margin = 0;
3149
3150        start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
3151                          SCC_MGR_IO_OUT1_DELAY_OFFSET) +
3152                          (seq->rwcfg->mem_dq_per_write_dqs << 2));
3153
3154        /* Per-bit deskew. */
3155
3156        /*
3157         * Set the left and right edge of each bit to an illegal value.
3158         * Use (seq->iocfg->io_out1_delay_max + 1) as an illegal value.
3159         */
3160        sticky_bit_chk = 0;
3161        for (i = 0; i < seq->rwcfg->mem_dq_per_write_dqs; i++) {
3162                left_edge[i]  = seq->iocfg->io_out1_delay_max + 1;
3163                right_edge[i] = seq->iocfg->io_out1_delay_max + 1;
3164        }
3165
3166        /* Search for the left edge of the window for each bit. */
3167        search_left_edge(seq, 1, rank_bgn, write_group, 0, test_bgn,
3168                         &sticky_bit_chk,
3169                         left_edge, right_edge, 0);
3170
3171        /* Search for the right edge of the window for each bit. */
3172        ret = search_right_edge(seq, 1, rank_bgn, write_group, 0,
3173                                start_dqs, 0,
3174                                &sticky_bit_chk,
3175                                left_edge, right_edge, 0);
3176        if (ret) {
3177                set_failing_group_stage(seq, test_bgn + ret - 1,
3178                                        CAL_STAGE_WRITES,
3179                                        CAL_SUBSTAGE_WRITES_CENTER);
3180                return -EINVAL;
3181        }
3182
3183        min_index = get_window_mid_index(seq, 1, left_edge, right_edge,
3184                                         &mid_min);
3185
3186        /* Determine the amount we can change DQS (which is -mid_min). */
3187        orig_mid_min = mid_min;
3188        new_dqs = start_dqs;
3189        mid_min = 0;
3190        debug_cond(DLEVEL >= 1,
3191                   "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
3192                   __func__, __LINE__, start_dqs, new_dqs, mid_min);
3193
3194        /* Add delay to bring centre of all DQ windows to the same "level". */
3195        center_dq_windows(seq, 1, left_edge, right_edge, mid_min, orig_mid_min,
3196                          min_index, 0, &dq_margin, &dqs_margin);
3197
3198        /* Move DQS */
3199        scc_mgr_apply_group_dqs_io_and_oct_out1(seq, write_group, new_dqs);
3200        writel(0, &sdr_scc_mgr->update);
3201
3202        /* Centre DM */
3203        debug_cond(DLEVEL >= 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3204
3205        /* Search for the/part of the window with DM shift. */
3206        search_window(seq, 1, rank_bgn, write_group, &bgn_curr, &end_curr,
3207                      &bgn_best, &end_best, &win_best, 0);
3208
3209        /* Reset DM delay chains to 0. */
3210        scc_mgr_apply_group_dm_out1_delay(seq, 0);
3211
3212        /*
3213         * Check to see if the current window nudges up aganist 0 delay.
3214         * If so we need to continue the search by shifting DQS otherwise DQS
3215         * search begins as a new search.
3216         */
3217        if (end_curr != 0) {
3218                bgn_curr = seq->iocfg->io_out1_delay_max + 1;
3219                end_curr = seq->iocfg->io_out1_delay_max + 1;
3220        }
3221
3222        /* Search for the/part of the window with DQS shifts. */
3223        search_window(seq, 0, rank_bgn, write_group, &bgn_curr, &end_curr,
3224                      &bgn_best, &end_best, &win_best, new_dqs);
3225
3226        /* Assign left and right edge for cal and reporting. */
3227        left_edge[0] = -1 * bgn_best;
3228        right_edge[0] = end_best;
3229
3230        debug_cond(DLEVEL >= 2, "%s:%d dm_calib: left=%d right=%d\n",
3231                   __func__, __LINE__, left_edge[0], right_edge[0]);
3232
3233        /* Move DQS (back to orig). */
3234        scc_mgr_apply_group_dqs_io_and_oct_out1(seq, write_group, new_dqs);
3235
3236        /* Move DM */
3237
3238        /* Find middle of window for the DM bit. */
3239        mid = (left_edge[0] - right_edge[0]) / 2;
3240
3241        /* Only move right, since we are not moving DQS/DQ. */
3242        if (mid < 0)
3243                mid = 0;
3244
3245        /* dm_marign should fail if we never find a window. */
3246        if (win_best == 0)
3247                dm_margin = -1;
3248        else
3249                dm_margin = left_edge[0] - mid;
3250
3251        scc_mgr_apply_group_dm_out1_delay(seq, mid);
3252        writel(0, &sdr_scc_mgr->update);
3253
3254        debug_cond(DLEVEL >= 2,
3255                   "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3256                   __func__, __LINE__, left_edge[0], right_edge[0],
3257                   mid, dm_margin);
3258        /* Export values. */
3259        seq->gbl.fom_out += dq_margin + dqs_margin;
3260
3261        debug_cond(DLEVEL >= 2,
3262                   "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3263                   __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3264
3265        /*
3266         * Do not remove this line as it makes sure all of our
3267         * decisions have been applied.
3268         */
3269        writel(0, &sdr_scc_mgr->update);
3270
3271        if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3272                return -EINVAL;
3273
3274        return 0;
3275}
3276
3277/**
3278 * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3279 * @rank_bgn:           Rank number
3280 * @group:              Read/Write Group
3281 * @test_bgn:           Rank at which the test begins
3282 *
3283 * Stage 2: Write Calibration Part One.
3284 *
3285 * This function implements UniPHY calibration Stage 2, as explained in
3286 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3287 */
3288static int rw_mgr_mem_calibrate_writes(struct socfpga_sdrseq *seq,
3289                                       const u32 rank_bgn, const u32 group,
3290                                       const u32 test_bgn)
3291{
3292        int ret;
3293
3294        /* Update info for sims */
3295        debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3296
3297        reg_file_set_group(group);
3298        reg_file_set_stage(CAL_STAGE_WRITES);
3299        reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3300
3301        ret = rw_mgr_mem_calibrate_writes_center(seq, rank_bgn, group,
3302                                                 test_bgn);
3303        if (ret)
3304                set_failing_group_stage(seq, group, CAL_STAGE_WRITES,
3305                                        CAL_SUBSTAGE_WRITES_CENTER);
3306
3307        return ret;
3308}
3309
3310/**
3311 * mem_precharge_and_activate() - Precharge all banks and activate
3312 *
3313 * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3314 */
3315static void mem_precharge_and_activate(struct socfpga_sdrseq *seq)
3316{
3317        int r;
3318
3319        for (r = 0; r < seq->rwcfg->mem_number_of_ranks; r++) {
3320                /* Set rank. */
3321                set_rank_and_odt_mask(seq, r, RW_MGR_ODT_MODE_OFF);
3322
3323                /* Precharge all banks. */
3324                writel(seq->rwcfg->precharge_all, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3325                                             RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3326
3327                writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3328                writel(seq->rwcfg->activate_0_and_1_wait1,
3329                       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3330
3331                writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3332                writel(seq->rwcfg->activate_0_and_1_wait2,
3333                       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3334
3335                /* Activate rows. */
3336                writel(seq->rwcfg->activate_0_and_1,
3337                       SDR_PHYGRP_RWMGRGRP_ADDRESS |
3338                       RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3339        }
3340}
3341
3342/**
3343 * mem_init_latency() - Configure memory RLAT and WLAT settings
3344 *
3345 * Configure memory RLAT and WLAT parameters.
3346 */
3347static void mem_init_latency(struct socfpga_sdrseq *seq)
3348{
3349        /*
3350         * For AV/CV, LFIFO is hardened and always runs at full rate
3351         * so max latency in AFI clocks, used here, is correspondingly
3352         * smaller.
3353         */
3354        const u32 max_latency = (1 << seq->misccfg->max_latency_count_width)
3355                - 1;
3356        u32 rlat, wlat;
3357
3358        debug("%s:%d\n", __func__, __LINE__);
3359
3360        /*
3361         * Read in write latency.
3362         * WL for Hard PHY does not include additive latency.
3363         */
3364        wlat = readl(&data_mgr->t_wl_add);
3365        wlat += readl(&data_mgr->mem_t_add);
3366
3367        seq->gbl.rw_wl_nop_cycles = wlat - 1;
3368
3369        /* Read in readl latency. */
3370        rlat = readl(&data_mgr->t_rl_add);
3371
3372        /* Set a pretty high read latency initially. */
3373        seq->gbl.curr_read_lat = rlat + 16;
3374        if (seq->gbl.curr_read_lat > max_latency)
3375                seq->gbl.curr_read_lat = max_latency;
3376
3377        writel(seq->gbl.curr_read_lat, &phy_mgr_cfg->phy_rlat);
3378
3379        /* Advertise write latency. */
3380        writel(wlat, &phy_mgr_cfg->afi_wlat);
3381}
3382
3383/**
3384 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3385 *
3386 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3387 */
3388static void mem_skip_calibrate(struct socfpga_sdrseq *seq)
3389{
3390        u32 vfifo_offset;
3391        u32 i, j, r;
3392
3393        debug("%s:%d\n", __func__, __LINE__);
3394        /* Need to update every shadow register set used by the interface */
3395        for (r = 0; r < seq->rwcfg->mem_number_of_ranks;
3396             r += NUM_RANKS_PER_SHADOW_REG) {
3397                /*
3398                 * Set output phase alignment settings appropriate for
3399                 * skip calibration.
3400                 */
3401                for (i = 0; i < seq->rwcfg->mem_if_read_dqs_width; i++) {
3402                        scc_mgr_set_dqs_en_phase(i, 0);
3403                        if (seq->iocfg->dll_chain_length == 6)
3404                                scc_mgr_set_dqdqs_output_phase(i, 6);
3405                        else
3406                                scc_mgr_set_dqdqs_output_phase(i, 7);
3407                        /*
3408                         * Case:33398
3409                         *
3410                         * Write data arrives to the I/O two cycles before write
3411                         * latency is reached (720 deg).
3412                         *   -> due to bit-slip in a/c bus
3413                         *   -> to allow board skew where dqs is longer than ck
3414                         *      -> how often can this happen!?
3415                         *      -> can claim back some ptaps for high freq
3416                         *       support if we can relax this, but i digress...
3417                         *
3418                         * The write_clk leads mem_ck by 90 deg
3419                         * The minimum ptap of the OPA is 180 deg
3420                         * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3421                         * The write_clk is always delayed by 2 ptaps
3422                         *
3423                         * Hence, to make DQS aligned to CK, we need to delay
3424                         * DQS by:
3425                         *    (720 - 90 - 180 - 2) *
3426                         *      (360 / seq->iocfg->dll_chain_length)
3427                         *
3428                         * Dividing the above by
3429                         (360 / seq->iocfg->dll_chain_length)
3430                         * gives us the number of ptaps, which simplies to:
3431                         *
3432                         *    (1.25 * seq->iocfg->dll_chain_length - 2)
3433                         */
3434                        scc_mgr_set_dqdqs_output_phase(i,
3435                                       ((125 * seq->iocfg->dll_chain_length)
3436                                       / 100) - 2);
3437                }
3438                writel(0xff, &sdr_scc_mgr->dqs_ena);
3439                writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3440
3441                for (i = 0; i < seq->rwcfg->mem_if_write_dqs_width; i++) {
3442                        writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3443                                  SCC_MGR_GROUP_COUNTER_OFFSET);
3444                }
3445                writel(0xff, &sdr_scc_mgr->dq_ena);
3446                writel(0xff, &sdr_scc_mgr->dm_ena);
3447                writel(0, &sdr_scc_mgr->update);
3448        }
3449
3450        /* Compensate for simulation model behaviour */
3451        for (i = 0; i < seq->rwcfg->mem_if_read_dqs_width; i++) {
3452                scc_mgr_set_dqs_bus_in_delay(i, 10);
3453                scc_mgr_load_dqs(i);
3454        }
3455        writel(0, &sdr_scc_mgr->update);
3456
3457        /*
3458         * ArriaV has hard FIFOs that can only be initialized by incrementing
3459         * in sequencer.
3460         */
3461        vfifo_offset = seq->misccfg->calib_vfifo_offset;
3462        for (j = 0; j < vfifo_offset; j++)
3463                writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3464        writel(0, &phy_mgr_cmd->fifo_reset);
3465
3466        /*
3467         * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3468         * setting from generation-time constant.
3469         */
3470        seq->gbl.curr_read_lat = seq->misccfg->calib_lfifo_offset;
3471        writel(seq->gbl.curr_read_lat, &phy_mgr_cfg->phy_rlat);
3472}
3473
3474/**
3475 * mem_calibrate() - Memory calibration entry point.
3476 *
3477 * Perform memory calibration.
3478 */
3479static u32 mem_calibrate(struct socfpga_sdrseq *seq)
3480{
3481        u32 i;
3482        u32 rank_bgn, sr;
3483        u32 write_group, write_test_bgn;
3484        u32 read_group, read_test_bgn;
3485        u32 run_groups, current_run;
3486        u32 failing_groups = 0;
3487        u32 group_failed = 0;
3488
3489        const u32 rwdqs_ratio = seq->rwcfg->mem_if_read_dqs_width /
3490                                seq->rwcfg->mem_if_write_dqs_width;
3491
3492        debug("%s:%d\n", __func__, __LINE__);
3493
3494        /* Initialize the data settings */
3495        seq->gbl.error_substage = CAL_SUBSTAGE_NIL;
3496        seq->gbl.error_stage = CAL_STAGE_NIL;
3497        seq->gbl.error_group = 0xff;
3498        seq->gbl.fom_in = 0;
3499        seq->gbl.fom_out = 0;
3500
3501        /* Initialize WLAT and RLAT. */
3502        mem_init_latency(seq);
3503
3504        /* Initialize bit slips. */
3505        mem_precharge_and_activate(seq);
3506
3507        for (i = 0; i < seq->rwcfg->mem_if_read_dqs_width; i++) {
3508                writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3509                          SCC_MGR_GROUP_COUNTER_OFFSET);
3510                /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3511                if (i == 0)
3512                        scc_mgr_set_hhp_extras();
3513
3514                scc_set_bypass_mode(i);
3515        }
3516
3517        /* Calibration is skipped. */
3518        if ((seq->dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3519                /*
3520                 * Set VFIFO and LFIFO to instant-on settings in skip
3521                 * calibration mode.
3522                 */
3523                mem_skip_calibrate(seq);
3524
3525                /*
3526                 * Do not remove this line as it makes sure all of our
3527                 * decisions have been applied.
3528                 */
3529                writel(0, &sdr_scc_mgr->update);
3530                return 1;
3531        }
3532
3533        /* Calibration is not skipped. */
3534        for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3535                /*
3536                 * Zero all delay chain/phase settings for all
3537                 * groups and all shadow register sets.
3538                 */
3539                scc_mgr_zero_all(seq);
3540
3541                run_groups = ~0;
3542
3543                for (write_group = 0, write_test_bgn = 0; write_group
3544                        < seq->rwcfg->mem_if_write_dqs_width; write_group++,
3545                        write_test_bgn += seq->rwcfg->mem_dq_per_write_dqs) {
3546                        /* Initialize the group failure */
3547                        group_failed = 0;
3548
3549                        current_run = run_groups & ((1 <<
3550                                RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3551                        run_groups = run_groups >>
3552                                RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3553
3554                        if (current_run == 0)
3555                                continue;
3556
3557                        writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3558                                            SCC_MGR_GROUP_COUNTER_OFFSET);
3559                        scc_mgr_zero_group(seq, write_group, 0);
3560
3561                        for (read_group = write_group * rwdqs_ratio,
3562                             read_test_bgn = 0;
3563                             read_group < (write_group + 1) * rwdqs_ratio;
3564                             read_group++,
3565                             read_test_bgn += seq->rwcfg->mem_dq_per_read_dqs) {
3566                                if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3567                                        continue;
3568
3569                                /* Calibrate the VFIFO */
3570                                if (rw_mgr_mem_calibrate_vfifo(seq, read_group,
3571                                                               read_test_bgn))
3572                                        continue;
3573
3574                                if (!(seq->gbl.phy_debug_mode_flags &
3575                                      PHY_DEBUG_SWEEP_ALL_GROUPS))
3576                                        return 0;
3577
3578                                /* The group failed, we're done. */
3579                                goto grp_failed;
3580                        }
3581
3582                        /* Calibrate the output side */
3583                        for (rank_bgn = 0, sr = 0;
3584                             rank_bgn < seq->rwcfg->mem_number_of_ranks;
3585                             rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3586                                if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3587                                        continue;
3588
3589                                /* Not needed in quick mode! */
3590                                if (STATIC_CALIB_STEPS &
3591                                    CALIB_SKIP_DELAY_SWEEPS)
3592                                        continue;
3593
3594                                /* Calibrate WRITEs */
3595                                if (!rw_mgr_mem_calibrate_writes(seq, rank_bgn,
3596                                                                 write_group,
3597                                                                 write_test_bgn))
3598                                        continue;
3599
3600                                group_failed = 1;
3601                                if (!(seq->gbl.phy_debug_mode_flags &
3602                                      PHY_DEBUG_SWEEP_ALL_GROUPS))
3603                                        return 0;
3604                        }
3605
3606                        /* Some group failed, we're done. */
3607                        if (group_failed)
3608                                goto grp_failed;
3609
3610                        for (read_group = write_group * rwdqs_ratio,
3611                             read_test_bgn = 0;
3612                             read_group < (write_group + 1) * rwdqs_ratio;
3613                             read_group++,
3614                             read_test_bgn += seq->rwcfg->mem_dq_per_read_dqs) {
3615                                if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3616                                        continue;
3617
3618                                if (!rw_mgr_mem_calibrate_vfifo_end(seq,
3619                                                                    read_group,
3620                                                                    read_test_bgn))
3621                                        continue;
3622
3623                                if (!(seq->gbl.phy_debug_mode_flags &
3624                                      PHY_DEBUG_SWEEP_ALL_GROUPS))
3625                                        return 0;
3626
3627                                /* The group failed, we're done. */
3628                                goto grp_failed;
3629                        }
3630
3631                        /* No group failed, continue as usual. */
3632                        continue;
3633
3634grp_failed:             /* A group failed, increment the counter. */
3635                        failing_groups++;
3636                }
3637
3638                /*
3639                 * USER If there are any failing groups then report
3640                 * the failure.
3641                 */
3642                if (failing_groups != 0)
3643                        return 0;
3644
3645                if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3646                        continue;
3647
3648                /* Calibrate the LFIFO */
3649                if (!rw_mgr_mem_calibrate_lfifo(seq))
3650                        return 0;
3651        }
3652
3653        /*
3654         * Do not remove this line as it makes sure all of our decisions
3655         * have been applied.
3656         */
3657        writel(0, &sdr_scc_mgr->update);
3658        return 1;
3659}
3660
3661/**
3662 * run_mem_calibrate() - Perform memory calibration
3663 *
3664 * This function triggers the entire memory calibration procedure.
3665 */
3666static int run_mem_calibrate(struct socfpga_sdrseq *seq)
3667{
3668        int pass;
3669        u32 ctrl_cfg;
3670
3671        debug("%s:%d\n", __func__, __LINE__);
3672
3673        /* Reset pass/fail status shown on afi_cal_success/fail */
3674        writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3675
3676        /* Stop tracking manager. */
3677        ctrl_cfg = readl(&sdr_ctrl->ctrl_cfg);
3678        writel(ctrl_cfg & ~SDR_CTRLGRP_CTRLCFG_DQSTRKEN_MASK,
3679               &sdr_ctrl->ctrl_cfg);
3680
3681        phy_mgr_initialize(seq);
3682        rw_mgr_mem_initialize(seq);
3683
3684        /* Perform the actual memory calibration. */
3685        pass = mem_calibrate(seq);
3686
3687        mem_precharge_and_activate(seq);
3688        writel(0, &phy_mgr_cmd->fifo_reset);
3689
3690        /* Handoff. */
3691        rw_mgr_mem_handoff(seq);
3692        /*
3693         * In Hard PHY this is a 2-bit control:
3694         * 0: AFI Mux Select
3695         * 1: DDIO Mux Select
3696         */
3697        writel(0x2, &phy_mgr_cfg->mux_sel);
3698
3699        /* Start tracking manager. */
3700        writel(ctrl_cfg, &sdr_ctrl->ctrl_cfg);
3701
3702        return pass;
3703}
3704
3705/**
3706 * debug_mem_calibrate() - Report result of memory calibration
3707 * @pass:       Value indicating whether calibration passed or failed
3708 *
3709 * This function reports the results of the memory calibration
3710 * and writes debug information into the register file.
3711 */
3712static void debug_mem_calibrate(struct socfpga_sdrseq *seq, int pass)
3713{
3714        u32 debug_info;
3715
3716        if (pass) {
3717                debug(KBUILD_BASENAME ": CALIBRATION PASSED\n");
3718
3719                seq->gbl.fom_in /= 2;
3720                seq->gbl.fom_out /= 2;
3721
3722                if (seq->gbl.fom_in > 0xff)
3723                        seq->gbl.fom_in = 0xff;
3724
3725                if (seq->gbl.fom_out > 0xff)
3726                        seq->gbl.fom_out = 0xff;
3727
3728                /* Update the FOM in the register file */
3729                debug_info = seq->gbl.fom_in;
3730                debug_info |= seq->gbl.fom_out << 8;
3731                writel(debug_info, &sdr_reg_file->fom);
3732
3733                writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3734                writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3735        } else {
3736                debug(KBUILD_BASENAME ": CALIBRATION FAILED\n");
3737
3738                debug_info = seq->gbl.error_stage;
3739                debug_info |= seq->gbl.error_substage << 8;
3740                debug_info |= seq->gbl.error_group << 16;
3741
3742                writel(debug_info, &sdr_reg_file->failing_stage);
3743                writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3744                writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3745
3746                /* Update the failing group/stage in the register file */
3747                debug_info = seq->gbl.error_stage;
3748                debug_info |= seq->gbl.error_substage << 8;
3749                debug_info |= seq->gbl.error_group << 16;
3750                writel(debug_info, &sdr_reg_file->failing_stage);
3751        }
3752
3753        debug(KBUILD_BASENAME ": Calibration complete\n");
3754}
3755
3756/**
3757 * hc_initialize_rom_data() - Initialize ROM data
3758 *
3759 * Initialize ROM data.
3760 */
3761static void hc_initialize_rom_data(void)
3762{
3763        unsigned int nelem = 0;
3764        const u32 *rom_init;
3765        u32 i, addr;
3766
3767        socfpga_get_seq_inst_init(&rom_init, &nelem);
3768        addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3769        for (i = 0; i < nelem; i++)
3770                writel(rom_init[i], addr + (i << 2));
3771
3772        socfpga_get_seq_ac_init(&rom_init, &nelem);
3773        addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3774        for (i = 0; i < nelem; i++)
3775                writel(rom_init[i], addr + (i << 2));
3776}
3777
3778/**
3779 * initialize_reg_file() - Initialize SDR register file
3780 *
3781 * Initialize SDR register file.
3782 */
3783static void initialize_reg_file(struct socfpga_sdrseq *seq)
3784{
3785        /* Initialize the register file with the correct data */
3786        writel(seq->misccfg->reg_file_init_seq_signature,
3787               &sdr_reg_file->signature);
3788        writel(0, &sdr_reg_file->debug_data_addr);
3789        writel(0, &sdr_reg_file->cur_stage);
3790        writel(0, &sdr_reg_file->fom);
3791        writel(0, &sdr_reg_file->failing_stage);
3792        writel(0, &sdr_reg_file->debug1);
3793        writel(0, &sdr_reg_file->debug2);
3794}
3795
3796/**
3797 * initialize_hps_phy() - Initialize HPS PHY
3798 *
3799 * Initialize HPS PHY.
3800 */
3801static void initialize_hps_phy(void)
3802{
3803        u32 reg;
3804        /*
3805         * Tracking also gets configured here because it's in the
3806         * same register.
3807         */
3808        u32 trk_sample_count = 7500;
3809        u32 trk_long_idle_sample_count = (10 << 16) | 100;
3810        /*
3811         * Format is number of outer loops in the 16 MSB, sample
3812         * count in 16 LSB.
3813         */
3814
3815        reg = 0;
3816        reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3817        reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3818        reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3819        reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3820        reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3821        reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3822        /*
3823         * This field selects the intrinsic latency to RDATA_EN/FULL path.
3824         * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3825         */
3826        reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3827        reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3828                trk_sample_count);
3829        writel(reg, &sdr_ctrl->phy_ctrl0);
3830
3831        reg = 0;
3832        reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3833                trk_sample_count >>
3834                SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3835        reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3836                trk_long_idle_sample_count);
3837        writel(reg, &sdr_ctrl->phy_ctrl1);
3838
3839        reg = 0;
3840        reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3841                trk_long_idle_sample_count >>
3842                SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3843        writel(reg, &sdr_ctrl->phy_ctrl2);
3844}
3845
3846/**
3847 * initialize_tracking() - Initialize tracking
3848 *
3849 * Initialize the register file with usable initial data.
3850 */
3851static void initialize_tracking(struct socfpga_sdrseq *seq)
3852{
3853        /*
3854         * Initialize the register file with the correct data.
3855         * Compute usable version of value in case we skip full
3856         * computation later.
3857         */
3858        writel(DIV_ROUND_UP(seq->iocfg->delay_per_opa_tap,
3859                            seq->iocfg->delay_per_dchain_tap) - 1,
3860               &sdr_reg_file->dtaps_per_ptap);
3861
3862        /* trk_sample_count */
3863        writel(7500, &sdr_reg_file->trk_sample_count);
3864
3865        /* longidle outer loop [15:0] */
3866        writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3867
3868        /*
3869         * longidle sample count [31:24]
3870         * trfc, worst case of 933Mhz 4Gb [23:16]
3871         * trcd, worst case [15:8]
3872         * vfifo wait [7:0]
3873         */
3874        writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3875               &sdr_reg_file->delays);
3876
3877        /* mux delay */
3878        if (dram_is_ddr(2)) {
3879                writel(0, &sdr_reg_file->trk_rw_mgr_addr);
3880        } else if (dram_is_ddr(3)) {
3881                writel((seq->rwcfg->idle << 24) |
3882                       (seq->rwcfg->activate_1 << 16) |
3883                       (seq->rwcfg->sgle_read << 8) |
3884                       (seq->rwcfg->precharge_all << 0),
3885                       &sdr_reg_file->trk_rw_mgr_addr);
3886        }
3887
3888        writel(seq->rwcfg->mem_if_read_dqs_width,
3889               &sdr_reg_file->trk_read_dqs_width);
3890
3891        /* trefi [7:0] */
3892        if (dram_is_ddr(2)) {
3893                writel(1000 << 0, &sdr_reg_file->trk_rfsh);
3894        } else if (dram_is_ddr(3)) {
3895                writel((seq->rwcfg->refresh_all << 24) | (1000 << 0),
3896                       &sdr_reg_file->trk_rfsh);
3897        }
3898}
3899
3900int sdram_calibration_full(struct socfpga_sdr *sdr)
3901{
3902        u32 pass;
3903        struct socfpga_sdrseq seq;
3904
3905        /*
3906         * For size reasons, this file uses hard coded addresses.
3907         * Check if we are called with the correct address.
3908         */
3909        if (sdr != (struct socfpga_sdr *)SOCFPGA_SDR_ADDRESS)
3910                return -ENODEV;
3911
3912        memset(&seq, 0, sizeof(seq));
3913
3914        seq.rwcfg = socfpga_get_sdram_rwmgr_config();
3915        seq.iocfg = socfpga_get_sdram_io_config();
3916        seq.misccfg = socfpga_get_sdram_misc_config();
3917
3918        /* Set the calibration enabled by default */
3919        seq.gbl.phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3920        /*
3921         * Only sweep all groups (regardless of fail state) by default
3922         * Set enabled read test by default.
3923         */
3924#if DISABLE_GUARANTEED_READ
3925        seq.gbl.phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3926#endif
3927        /* Initialize the register file */
3928        initialize_reg_file(&seq);
3929
3930        /* Initialize any PHY CSR */
3931        initialize_hps_phy();
3932
3933        scc_mgr_initialize();
3934
3935        initialize_tracking(&seq);
3936
3937        debug(KBUILD_BASENAME ": Preparing to start memory calibration\n");
3938
3939        debug("%s:%d\n", __func__, __LINE__);
3940        debug_cond(DLEVEL >= 1,
3941                   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3942                   seq.rwcfg->mem_number_of_ranks,
3943                   seq.rwcfg->mem_number_of_cs_per_dimm,
3944                   seq.rwcfg->mem_dq_per_read_dqs,
3945                   seq.rwcfg->mem_dq_per_write_dqs,
3946                   seq.rwcfg->mem_virtual_groups_per_read_dqs,
3947                   seq.rwcfg->mem_virtual_groups_per_write_dqs);
3948        debug_cond(DLEVEL >= 1,
3949                   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3950                   seq.rwcfg->mem_if_read_dqs_width,
3951                   seq.rwcfg->mem_if_write_dqs_width,
3952                   seq.rwcfg->mem_data_width, seq.rwcfg->mem_data_mask_width,
3953                   seq.iocfg->delay_per_opa_tap,
3954                   seq.iocfg->delay_per_dchain_tap);
3955        debug_cond(DLEVEL >= 1, "dtap_dqsen_delay=%u, dll=%u",
3956                   seq.iocfg->delay_per_dqs_en_dchain_tap,
3957                   seq.iocfg->dll_chain_length);
3958        debug_cond(DLEVEL >= 1,
3959                   "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3960                   seq.iocfg->dqs_en_phase_max, seq.iocfg->dqdqs_out_phase_max,
3961                   seq.iocfg->dqs_en_delay_max, seq.iocfg->dqs_in_delay_max);
3962        debug_cond(DLEVEL >= 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3963                   seq.iocfg->io_in_delay_max, seq.iocfg->io_out1_delay_max,
3964                   seq.iocfg->io_out2_delay_max);
3965        debug_cond(DLEVEL >= 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3966                   seq.iocfg->dqs_in_reserve, seq.iocfg->dqs_out_reserve);
3967
3968        hc_initialize_rom_data();
3969
3970        /* update info for sims */
3971        reg_file_set_stage(CAL_STAGE_NIL);
3972        reg_file_set_group(0);
3973
3974        /*
3975         * Load global needed for those actions that require
3976         * some dynamic calibration support.
3977         */
3978        seq.dyn_calib_steps = STATIC_CALIB_STEPS;
3979        /*
3980         * Load global to allow dynamic selection of delay loop settings
3981         * based on calibration mode.
3982         */
3983        if (!(seq.dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3984                seq.skip_delay_mask = 0xff;
3985        else
3986                seq.skip_delay_mask = 0x0;
3987
3988        pass = run_mem_calibrate(&seq);
3989        debug_mem_calibrate(&seq, pass);
3990        return pass;
3991}
3992