uboot/drivers/misc/cros_ec.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Chromium OS cros_ec driver
   4 *
   5 * Copyright (c) 2012 The Chromium OS Authors.
   6 */
   7
   8/*
   9 * This is the interface to the Chrome OS EC. It provides keyboard functions,
  10 * power control and battery management. Quite a few other functions are
  11 * provided to enable the EC software to be updated, talk to the EC's I2C bus
  12 * and store a small amount of data in a memory which persists while the EC
  13 * is not reset.
  14 */
  15
  16#define LOG_CATEGORY UCLASS_CROS_EC
  17
  18#include <common.h>
  19#include <command.h>
  20#include <dm.h>
  21#include <flash.h>
  22#include <i2c.h>
  23#include <cros_ec.h>
  24#include <fdtdec.h>
  25#include <log.h>
  26#include <malloc.h>
  27#include <spi.h>
  28#include <linux/delay.h>
  29#include <linux/errno.h>
  30#include <asm/io.h>
  31#include <asm-generic/gpio.h>
  32#include <dm/device-internal.h>
  33#include <dm/of_extra.h>
  34#include <dm/uclass-internal.h>
  35
  36#ifdef DEBUG_TRACE
  37#define debug_trace(fmt, b...)  debug(fmt, #b)
  38#else
  39#define debug_trace(fmt, b...)
  40#endif
  41
  42enum {
  43        /* Timeout waiting for a flash erase command to complete */
  44        CROS_EC_CMD_TIMEOUT_MS  = 5000,
  45        /* Timeout waiting for a synchronous hash to be recomputed */
  46        CROS_EC_CMD_HASH_TIMEOUT_MS = 2000,
  47
  48        /* Wait 10 ms between attempts to check if EC's hash is ready */
  49        CROS_EC_HASH_CHECK_DELAY_MS = 10,
  50
  51};
  52
  53#define INVALID_HCMD 0xFF
  54
  55/*
  56 * Map UHEPI masks to non UHEPI commands in order to support old EC FW
  57 * which does not support UHEPI command.
  58 */
  59static const struct {
  60        u8 set_cmd;
  61        u8 clear_cmd;
  62        u8 get_cmd;
  63} event_map[] = {
  64        [EC_HOST_EVENT_MAIN] = {
  65                INVALID_HCMD, EC_CMD_HOST_EVENT_CLEAR,
  66                INVALID_HCMD,
  67        },
  68        [EC_HOST_EVENT_B] = {
  69                INVALID_HCMD, EC_CMD_HOST_EVENT_CLEAR_B,
  70                EC_CMD_HOST_EVENT_GET_B,
  71        },
  72        [EC_HOST_EVENT_SCI_MASK] = {
  73                EC_CMD_HOST_EVENT_SET_SCI_MASK, INVALID_HCMD,
  74                EC_CMD_HOST_EVENT_GET_SCI_MASK,
  75        },
  76        [EC_HOST_EVENT_SMI_MASK] = {
  77                EC_CMD_HOST_EVENT_SET_SMI_MASK, INVALID_HCMD,
  78                EC_CMD_HOST_EVENT_GET_SMI_MASK,
  79        },
  80        [EC_HOST_EVENT_ALWAYS_REPORT_MASK] = {
  81                INVALID_HCMD, INVALID_HCMD, INVALID_HCMD,
  82        },
  83        [EC_HOST_EVENT_ACTIVE_WAKE_MASK] = {
  84                EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
  85                EC_CMD_HOST_EVENT_GET_WAKE_MASK,
  86        },
  87        [EC_HOST_EVENT_LAZY_WAKE_MASK_S0IX] = {
  88                EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
  89                EC_CMD_HOST_EVENT_GET_WAKE_MASK,
  90        },
  91        [EC_HOST_EVENT_LAZY_WAKE_MASK_S3] = {
  92                EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
  93                EC_CMD_HOST_EVENT_GET_WAKE_MASK,
  94        },
  95        [EC_HOST_EVENT_LAZY_WAKE_MASK_S5] = {
  96                EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
  97                EC_CMD_HOST_EVENT_GET_WAKE_MASK,
  98        },
  99};
 100
 101void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len)
 102{
 103#ifdef DEBUG
 104        int i;
 105
 106        printf("%s: ", name);
 107        if (cmd != -1)
 108                printf("cmd=%#x: ", cmd);
 109        for (i = 0; i < len; i++)
 110                printf("%02x ", data[i]);
 111        printf("\n");
 112#endif
 113}
 114
 115/*
 116 * Calculate a simple 8-bit checksum of a data block
 117 *
 118 * @param data  Data block to checksum
 119 * @param size  Size of data block in bytes
 120 * @return checksum value (0 to 255)
 121 */
 122int cros_ec_calc_checksum(const uint8_t *data, int size)
 123{
 124        int csum, i;
 125
 126        for (i = csum = 0; i < size; i++)
 127                csum += data[i];
 128        return csum & 0xff;
 129}
 130
 131/**
 132 * Create a request packet for protocol version 3.
 133 *
 134 * The packet is stored in the device's internal output buffer.
 135 *
 136 * @param dev           CROS-EC device
 137 * @param cmd           Command to send (EC_CMD_...)
 138 * @param cmd_version   Version of command to send (EC_VER_...)
 139 * @param dout          Output data (may be NULL If dout_len=0)
 140 * @param dout_len      Size of output data in bytes
 141 * @return packet size in bytes, or <0 if error.
 142 */
 143static int create_proto3_request(struct cros_ec_dev *cdev,
 144                                 int cmd, int cmd_version,
 145                                 const void *dout, int dout_len)
 146{
 147        struct ec_host_request *rq = (struct ec_host_request *)cdev->dout;
 148        int out_bytes = dout_len + sizeof(*rq);
 149
 150        /* Fail if output size is too big */
 151        if (out_bytes > (int)sizeof(cdev->dout)) {
 152                debug("%s: Cannot send %d bytes\n", __func__, dout_len);
 153                return -EC_RES_REQUEST_TRUNCATED;
 154        }
 155
 156        /* Fill in request packet */
 157        rq->struct_version = EC_HOST_REQUEST_VERSION;
 158        rq->checksum = 0;
 159        rq->command = cmd;
 160        rq->command_version = cmd_version;
 161        rq->reserved = 0;
 162        rq->data_len = dout_len;
 163
 164        /* Copy data after header */
 165        memcpy(rq + 1, dout, dout_len);
 166
 167        /* Write checksum field so the entire packet sums to 0 */
 168        rq->checksum = (uint8_t)(-cros_ec_calc_checksum(cdev->dout, out_bytes));
 169
 170        cros_ec_dump_data("out", cmd, cdev->dout, out_bytes);
 171
 172        /* Return size of request packet */
 173        return out_bytes;
 174}
 175
 176/**
 177 * Prepare the device to receive a protocol version 3 response.
 178 *
 179 * @param dev           CROS-EC device
 180 * @param din_len       Maximum size of response in bytes
 181 * @return maximum expected number of bytes in response, or <0 if error.
 182 */
 183static int prepare_proto3_response_buffer(struct cros_ec_dev *cdev, int din_len)
 184{
 185        int in_bytes = din_len + sizeof(struct ec_host_response);
 186
 187        /* Fail if input size is too big */
 188        if (in_bytes > (int)sizeof(cdev->din)) {
 189                debug("%s: Cannot receive %d bytes\n", __func__, din_len);
 190                return -EC_RES_RESPONSE_TOO_BIG;
 191        }
 192
 193        /* Return expected size of response packet */
 194        return in_bytes;
 195}
 196
 197/**
 198 * Handle a protocol version 3 response packet.
 199 *
 200 * The packet must already be stored in the device's internal input buffer.
 201 *
 202 * @param dev           CROS-EC device
 203 * @param dinp          Returns pointer to response data
 204 * @param din_len       Maximum size of response in bytes
 205 * @return number of bytes of response data, or <0 if error. Note that error
 206 * codes can be from errno.h or -ve EC_RES_INVALID_CHECKSUM values (and they
 207 * overlap!)
 208 */
 209static int handle_proto3_response(struct cros_ec_dev *dev,
 210                                  uint8_t **dinp, int din_len)
 211{
 212        struct ec_host_response *rs = (struct ec_host_response *)dev->din;
 213        int in_bytes;
 214        int csum;
 215
 216        cros_ec_dump_data("in-header", -1, dev->din, sizeof(*rs));
 217
 218        /* Check input data */
 219        if (rs->struct_version != EC_HOST_RESPONSE_VERSION) {
 220                debug("%s: EC response version mismatch\n", __func__);
 221                return -EC_RES_INVALID_RESPONSE;
 222        }
 223
 224        if (rs->reserved) {
 225                debug("%s: EC response reserved != 0\n", __func__);
 226                return -EC_RES_INVALID_RESPONSE;
 227        }
 228
 229        if (rs->data_len > din_len) {
 230                debug("%s: EC returned too much data\n", __func__);
 231                return -EC_RES_RESPONSE_TOO_BIG;
 232        }
 233
 234        cros_ec_dump_data("in-data", -1, dev->din + sizeof(*rs), rs->data_len);
 235
 236        /* Update in_bytes to actual data size */
 237        in_bytes = sizeof(*rs) + rs->data_len;
 238
 239        /* Verify checksum */
 240        csum = cros_ec_calc_checksum(dev->din, in_bytes);
 241        if (csum) {
 242                debug("%s: EC response checksum invalid: 0x%02x\n", __func__,
 243                      csum);
 244                return -EC_RES_INVALID_CHECKSUM;
 245        }
 246
 247        /* Return error result, if any */
 248        if (rs->result)
 249                return -(int)rs->result;
 250
 251        /* If we're still here, set response data pointer and return length */
 252        *dinp = (uint8_t *)(rs + 1);
 253
 254        return rs->data_len;
 255}
 256
 257static int send_command_proto3(struct cros_ec_dev *cdev,
 258                               int cmd, int cmd_version,
 259                               const void *dout, int dout_len,
 260                               uint8_t **dinp, int din_len)
 261{
 262        struct dm_cros_ec_ops *ops;
 263        int out_bytes, in_bytes;
 264        int rv;
 265
 266        /* Create request packet */
 267        out_bytes = create_proto3_request(cdev, cmd, cmd_version,
 268                                          dout, dout_len);
 269        if (out_bytes < 0)
 270                return out_bytes;
 271
 272        /* Prepare response buffer */
 273        in_bytes = prepare_proto3_response_buffer(cdev, din_len);
 274        if (in_bytes < 0)
 275                return in_bytes;
 276
 277        ops = dm_cros_ec_get_ops(cdev->dev);
 278        rv = ops->packet ? ops->packet(cdev->dev, out_bytes, in_bytes) :
 279                        -ENOSYS;
 280        if (rv < 0)
 281                return rv;
 282
 283        /* Process the response */
 284        return handle_proto3_response(cdev, dinp, din_len);
 285}
 286
 287static int send_command(struct cros_ec_dev *dev, uint cmd, int cmd_version,
 288                        const void *dout, int dout_len,
 289                        uint8_t **dinp, int din_len)
 290{
 291        struct dm_cros_ec_ops *ops;
 292        int ret = -1;
 293
 294        /* Handle protocol version 3 support */
 295        if (dev->protocol_version == 3) {
 296                return send_command_proto3(dev, cmd, cmd_version,
 297                                           dout, dout_len, dinp, din_len);
 298        }
 299
 300        ops = dm_cros_ec_get_ops(dev->dev);
 301        ret = ops->command(dev->dev, cmd, cmd_version,
 302                           (const uint8_t *)dout, dout_len, dinp, din_len);
 303
 304        return ret;
 305}
 306
 307/**
 308 * Send a command to the CROS-EC device and return the reply.
 309 *
 310 * The device's internal input/output buffers are used.
 311 *
 312 * @param dev           CROS-EC device
 313 * @param cmd           Command to send (EC_CMD_...)
 314 * @param cmd_version   Version of command to send (EC_VER_...)
 315 * @param dout          Output data (may be NULL If dout_len=0)
 316 * @param dout_len      Size of output data in bytes
 317 * @param dinp          Response data (may be NULL If din_len=0).
 318 *                      If not NULL, it will be updated to point to the data
 319 *                      and will always be double word aligned (64-bits)
 320 * @param din_len       Maximum size of response in bytes
 321 * @return number of bytes in response, or -ve on error
 322 */
 323static int ec_command_inptr(struct udevice *dev, uint cmd,
 324                            int cmd_version, const void *dout, int dout_len,
 325                            uint8_t **dinp, int din_len)
 326{
 327        struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
 328        uint8_t *din = NULL;
 329        int len;
 330
 331        len = send_command(cdev, cmd, cmd_version, dout, dout_len, &din,
 332                           din_len);
 333
 334        /* If the command doesn't complete, wait a while */
 335        if (len == -EC_RES_IN_PROGRESS) {
 336                struct ec_response_get_comms_status *resp = NULL;
 337                ulong start;
 338
 339                /* Wait for command to complete */
 340                start = get_timer(0);
 341                do {
 342                        int ret;
 343
 344                        mdelay(50);     /* Insert some reasonable delay */
 345                        ret = send_command(cdev, EC_CMD_GET_COMMS_STATUS, 0,
 346                                           NULL, 0,
 347                                           (uint8_t **)&resp, sizeof(*resp));
 348                        if (ret < 0)
 349                                return ret;
 350
 351                        if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) {
 352                                debug("%s: Command %#02x timeout\n",
 353                                      __func__, cmd);
 354                                return -EC_RES_TIMEOUT;
 355                        }
 356                } while (resp->flags & EC_COMMS_STATUS_PROCESSING);
 357
 358                /* OK it completed, so read the status response */
 359                /* not sure why it was 0 for the last argument */
 360                len = send_command(cdev, EC_CMD_RESEND_RESPONSE, 0, NULL, 0,
 361                                   &din, din_len);
 362        }
 363
 364        debug("%s: len=%d, din=%p\n", __func__, len, din);
 365        if (dinp) {
 366                /* If we have any data to return, it must be 64bit-aligned */
 367                assert(len <= 0 || !((uintptr_t)din & 7));
 368                *dinp = din;
 369        }
 370
 371        return len;
 372}
 373
 374/**
 375 * Send a command to the CROS-EC device and return the reply.
 376 *
 377 * The device's internal input/output buffers are used.
 378 *
 379 * @param dev           CROS-EC device
 380 * @param cmd           Command to send (EC_CMD_...)
 381 * @param cmd_version   Version of command to send (EC_VER_...)
 382 * @param dout          Output data (may be NULL If dout_len=0)
 383 * @param dout_len      Size of output data in bytes
 384 * @param din           Response data (may be NULL If din_len=0).
 385 *                      It not NULL, it is a place for ec_command() to copy the
 386 *      data to.
 387 * @param din_len       Maximum size of response in bytes
 388 * @return number of bytes in response, or -ve on error
 389 */
 390static int ec_command(struct udevice *dev, uint cmd, int cmd_version,
 391                      const void *dout, int dout_len,
 392                      void *din, int din_len)
 393{
 394        uint8_t *in_buffer;
 395        int len;
 396
 397        assert((din_len == 0) || din);
 398        len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len,
 399                               &in_buffer, din_len);
 400        if (len > 0) {
 401                /*
 402                 * If we were asked to put it somewhere, do so, otherwise just
 403                 * disregard the result.
 404                 */
 405                if (din && in_buffer) {
 406                        assert(len <= din_len);
 407                        if (len > din_len)
 408                                return -ENOSPC;
 409                        memmove(din, in_buffer, len);
 410                }
 411        }
 412        return len;
 413}
 414
 415int cros_ec_scan_keyboard(struct udevice *dev, struct mbkp_keyscan *scan)
 416{
 417        if (ec_command(dev, EC_CMD_MKBP_STATE, 0, NULL, 0, scan,
 418                       sizeof(scan->data)) != sizeof(scan->data))
 419                return -1;
 420
 421        return 0;
 422}
 423
 424int cros_ec_get_next_event(struct udevice *dev,
 425                           struct ec_response_get_next_event *event)
 426{
 427        int ret;
 428
 429        ret = ec_command(dev, EC_CMD_GET_NEXT_EVENT, 0, NULL, 0,
 430                         event, sizeof(*event));
 431        if (ret < 0)
 432                return ret;
 433        else if (ret != sizeof(*event))
 434                return -EC_RES_INVALID_RESPONSE;
 435
 436        return 0;
 437}
 438
 439int cros_ec_read_id(struct udevice *dev, char *id, int maxlen)
 440{
 441        struct ec_response_get_version *r;
 442        int ret;
 443
 444        ret = ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
 445                               (uint8_t **)&r, sizeof(*r));
 446        if (ret != sizeof(*r)) {
 447                log_err("Got rc %d, expected %u\n", ret, (uint)sizeof(*r));
 448                return -1;
 449        }
 450
 451        if (maxlen > (int)sizeof(r->version_string_ro))
 452                maxlen = sizeof(r->version_string_ro);
 453
 454        switch (r->current_image) {
 455        case EC_IMAGE_RO:
 456                memcpy(id, r->version_string_ro, maxlen);
 457                break;
 458        case EC_IMAGE_RW:
 459                memcpy(id, r->version_string_rw, maxlen);
 460                break;
 461        default:
 462                log_err("Invalid EC image %d\n", r->current_image);
 463                return -1;
 464        }
 465
 466        id[maxlen - 1] = '\0';
 467        return 0;
 468}
 469
 470int cros_ec_read_version(struct udevice *dev,
 471                         struct ec_response_get_version **versionp)
 472{
 473        if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
 474                        (uint8_t **)versionp, sizeof(**versionp))
 475                        != sizeof(**versionp))
 476                return -1;
 477
 478        return 0;
 479}
 480
 481int cros_ec_read_build_info(struct udevice *dev, char **strp)
 482{
 483        if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0,
 484                        (uint8_t **)strp, EC_PROTO2_MAX_PARAM_SIZE) < 0)
 485                return -1;
 486
 487        return 0;
 488}
 489
 490int cros_ec_read_current_image(struct udevice *dev,
 491                               enum ec_current_image *image)
 492{
 493        struct ec_response_get_version *r;
 494
 495        if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
 496                        (uint8_t **)&r, sizeof(*r)) != sizeof(*r))
 497                return -1;
 498
 499        *image = r->current_image;
 500        return 0;
 501}
 502
 503static int cros_ec_wait_on_hash_done(struct udevice *dev,
 504                                     struct ec_params_vboot_hash *p,
 505                                     struct ec_response_vboot_hash *hash)
 506{
 507        ulong start;
 508
 509        start = get_timer(0);
 510        while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) {
 511                mdelay(CROS_EC_HASH_CHECK_DELAY_MS);
 512
 513                p->cmd = EC_VBOOT_HASH_GET;
 514
 515                if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, p, sizeof(*p), hash,
 516                               sizeof(*hash)) < 0)
 517                        return -1;
 518
 519                if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) {
 520                        debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__);
 521                        return -EC_RES_TIMEOUT;
 522                }
 523        }
 524        return 0;
 525}
 526
 527int cros_ec_read_hash(struct udevice *dev, uint hash_offset,
 528                      struct ec_response_vboot_hash *hash)
 529{
 530        struct ec_params_vboot_hash p;
 531        int rv;
 532
 533        p.cmd = EC_VBOOT_HASH_GET;
 534        p.offset = hash_offset;
 535        if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
 536                       hash, sizeof(*hash)) < 0)
 537                return -1;
 538
 539        /* If the EC is busy calculating the hash, fidget until it's done. */
 540        rv = cros_ec_wait_on_hash_done(dev, &p, hash);
 541        if (rv)
 542                return rv;
 543
 544        /* If the hash is valid, we're done. Otherwise, we have to kick it off
 545         * again and wait for it to complete. Note that we explicitly assume
 546         * that hashing zero bytes is always wrong, even though that would
 547         * produce a valid hash value. */
 548        if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size)
 549                return 0;
 550
 551        debug("%s: No valid hash (status=%d size=%d). Compute one...\n",
 552              __func__, hash->status, hash->size);
 553
 554        p.cmd = EC_VBOOT_HASH_START;
 555        p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
 556        p.nonce_size = 0;
 557        p.offset = hash_offset;
 558
 559        if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
 560                       hash, sizeof(*hash)) < 0)
 561                return -1;
 562
 563        rv = cros_ec_wait_on_hash_done(dev, &p, hash);
 564        if (rv)
 565                return rv;
 566        if (hash->status != EC_VBOOT_HASH_STATUS_DONE) {
 567                log_err("Hash did not complete, status=%d\n", hash->status);
 568                return -EIO;
 569        }
 570
 571        debug("%s: hash done\n", __func__);
 572
 573        return 0;
 574}
 575
 576static int cros_ec_invalidate_hash(struct udevice *dev)
 577{
 578        struct ec_params_vboot_hash p;
 579        struct ec_response_vboot_hash *hash;
 580
 581        /* We don't have an explict command for the EC to discard its current
 582         * hash value, so we'll just tell it to calculate one that we know is
 583         * wrong (we claim that hashing zero bytes is always invalid).
 584         */
 585        p.cmd = EC_VBOOT_HASH_RECALC;
 586        p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
 587        p.nonce_size = 0;
 588        p.offset = 0;
 589        p.size = 0;
 590
 591        debug("%s:\n", __func__);
 592
 593        if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
 594                       (uint8_t **)&hash, sizeof(*hash)) < 0)
 595                return -1;
 596
 597        /* No need to wait for it to finish */
 598        return 0;
 599}
 600
 601int cros_ec_hello(struct udevice *dev, uint *handshakep)
 602{
 603        struct ec_params_hello req;
 604        struct ec_response_hello *resp;
 605
 606        req.in_data = 0x12345678;
 607        if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
 608                             (uint8_t **)&resp, sizeof(*resp)) < 0)
 609                return -EIO;
 610        if (resp->out_data != req.in_data + 0x01020304) {
 611                printf("Received invalid handshake %x\n", resp->out_data);
 612                if (handshakep)
 613                        *handshakep = req.in_data;
 614                return -ENOTSYNC;
 615        }
 616
 617        return 0;
 618}
 619
 620int cros_ec_reboot(struct udevice *dev, enum ec_reboot_cmd cmd, uint8_t flags)
 621{
 622        struct ec_params_reboot_ec p;
 623
 624        p.cmd = cmd;
 625        p.flags = flags;
 626
 627        if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0)
 628                        < 0)
 629                return -1;
 630
 631        if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) {
 632                ulong start;
 633
 634                /*
 635                 * EC reboot will take place immediately so delay to allow it
 636                 * to complete.  Note that some reboot types (EC_REBOOT_COLD)
 637                 * will reboot the AP as well, in which case we won't actually
 638                 * get to this point.
 639                 */
 640                mdelay(50);
 641                start = get_timer(0);
 642                while (cros_ec_hello(dev, NULL)) {
 643                        if (get_timer(start) > 3000) {
 644                                log_err("EC did not return from reboot\n");
 645                                return -ETIMEDOUT;
 646                        }
 647                        mdelay(5);
 648                }
 649        }
 650
 651        return 0;
 652}
 653
 654int cros_ec_interrupt_pending(struct udevice *dev)
 655{
 656        struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
 657
 658        /* no interrupt support : always poll */
 659        if (!dm_gpio_is_valid(&cdev->ec_int))
 660                return -ENOENT;
 661
 662        return dm_gpio_get_value(&cdev->ec_int);
 663}
 664
 665int cros_ec_info(struct udevice *dev, struct ec_response_mkbp_info *info)
 666{
 667        if (ec_command(dev, EC_CMD_MKBP_INFO, 0, NULL, 0, info,
 668                       sizeof(*info)) != sizeof(*info))
 669                return -1;
 670
 671        return 0;
 672}
 673
 674int cros_ec_get_event_mask(struct udevice *dev, uint type, uint32_t *mask)
 675{
 676        struct ec_response_host_event_mask rsp;
 677        int ret;
 678
 679        ret = ec_command(dev, type, 0, NULL, 0, &rsp, sizeof(rsp));
 680        if (ret < 0)
 681                return ret;
 682        else if (ret != sizeof(rsp))
 683                return -EINVAL;
 684
 685        *mask = rsp.mask;
 686
 687        return 0;
 688}
 689
 690int cros_ec_set_event_mask(struct udevice *dev, uint type, uint32_t mask)
 691{
 692        struct ec_params_host_event_mask req;
 693        int ret;
 694
 695        req.mask = mask;
 696
 697        ret = ec_command(dev, type, 0, &req, sizeof(req), NULL, 0);
 698        if (ret < 0)
 699                return ret;
 700
 701        return 0;
 702}
 703
 704int cros_ec_get_host_events(struct udevice *dev, uint32_t *events_ptr)
 705{
 706        struct ec_response_host_event_mask *resp;
 707
 708        /*
 709         * Use the B copy of the event flags, because the main copy is already
 710         * used by ACPI/SMI.
 711         */
 712        if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0,
 713                       (uint8_t **)&resp, sizeof(*resp)) < (int)sizeof(*resp))
 714                return -1;
 715
 716        if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID))
 717                return -1;
 718
 719        *events_ptr = resp->mask;
 720        return 0;
 721}
 722
 723int cros_ec_clear_host_events(struct udevice *dev, uint32_t events)
 724{
 725        struct ec_params_host_event_mask params;
 726
 727        params.mask = events;
 728
 729        /*
 730         * Use the B copy of the event flags, so it affects the data returned
 731         * by cros_ec_get_host_events().
 732         */
 733        if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0,
 734                       &params, sizeof(params), NULL, 0) < 0)
 735                return -1;
 736
 737        return 0;
 738}
 739
 740int cros_ec_flash_protect(struct udevice *dev, uint32_t set_mask,
 741                          uint32_t set_flags,
 742                          struct ec_response_flash_protect *resp)
 743{
 744        struct ec_params_flash_protect params;
 745
 746        params.mask = set_mask;
 747        params.flags = set_flags;
 748
 749        if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT,
 750                       &params, sizeof(params),
 751                       resp, sizeof(*resp)) != sizeof(*resp))
 752                return -1;
 753
 754        return 0;
 755}
 756
 757static int cros_ec_check_version(struct udevice *dev)
 758{
 759        struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
 760        struct ec_params_hello req;
 761
 762        struct dm_cros_ec_ops *ops;
 763        int ret;
 764
 765        ops = dm_cros_ec_get_ops(dev);
 766        if (ops->check_version) {
 767                ret = ops->check_version(dev);
 768                if (ret)
 769                        return ret;
 770        }
 771
 772        /*
 773         * TODO(sjg@chromium.org).
 774         * There is a strange oddity here with the EC. We could just ignore
 775         * the response, i.e. pass the last two parameters as NULL and 0.
 776         * In this case we won't read back very many bytes from the EC.
 777         * On the I2C bus the EC gets upset about this and will try to send
 778         * the bytes anyway. This means that we will have to wait for that
 779         * to complete before continuing with a new EC command.
 780         *
 781         * This problem is probably unique to the I2C bus.
 782         *
 783         * So for now, just read all the data anyway.
 784         */
 785
 786        /* Try sending a version 3 packet */
 787        cdev->protocol_version = 3;
 788        req.in_data = 0;
 789        ret = cros_ec_hello(dev, NULL);
 790        if (!ret || ret == -ENOTSYNC)
 791                return 0;
 792
 793        /* Try sending a version 2 packet */
 794        cdev->protocol_version = 2;
 795        ret = cros_ec_hello(dev, NULL);
 796        if (!ret || ret == -ENOTSYNC)
 797                return 0;
 798
 799        /*
 800         * Fail if we're still here, since the EC doesn't understand any
 801         * protcol version we speak.  Version 1 interface without command
 802         * version is no longer supported, and we don't know about any new
 803         * protocol versions.
 804         */
 805        cdev->protocol_version = 0;
 806        printf("%s: ERROR: old EC interface not supported\n", __func__);
 807        return -1;
 808}
 809
 810int cros_ec_test(struct udevice *dev)
 811{
 812        uint out_data;
 813        int ret;
 814
 815        ret = cros_ec_hello(dev, &out_data);
 816        if (ret == -ENOTSYNC) {
 817                printf("Received invalid handshake %x\n", out_data);
 818                return ret;
 819        } else if (ret) {
 820                printf("ec_command_inptr() returned error\n");
 821                return ret;
 822        }
 823
 824        return 0;
 825}
 826
 827int cros_ec_flash_offset(struct udevice *dev, enum ec_flash_region region,
 828                      uint32_t *offset, uint32_t *size)
 829{
 830        struct ec_params_flash_region_info p;
 831        struct ec_response_flash_region_info *r;
 832        int ret;
 833
 834        p.region = region;
 835        ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO,
 836                         EC_VER_FLASH_REGION_INFO,
 837                         &p, sizeof(p), (uint8_t **)&r, sizeof(*r));
 838        if (ret != sizeof(*r))
 839                return -1;
 840
 841        if (offset)
 842                *offset = r->offset;
 843        if (size)
 844                *size = r->size;
 845
 846        return 0;
 847}
 848
 849int cros_ec_flash_erase(struct udevice *dev, uint32_t offset, uint32_t size)
 850{
 851        struct ec_params_flash_erase p;
 852
 853        p.offset = offset;
 854        p.size = size;
 855        return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p),
 856                        NULL, 0);
 857}
 858
 859/**
 860 * Write a single block to the flash
 861 *
 862 * Write a block of data to the EC flash. The size must not exceed the flash
 863 * write block size which you can obtain from cros_ec_flash_write_burst_size().
 864 *
 865 * The offset starts at 0. You can obtain the region information from
 866 * cros_ec_flash_offset() to find out where to write for a particular region.
 867 *
 868 * Attempting to write to the region where the EC is currently running from
 869 * will result in an error.
 870 *
 871 * @param dev           CROS-EC device
 872 * @param data          Pointer to data buffer to write
 873 * @param offset        Offset within flash to write to.
 874 * @param size          Number of bytes to write
 875 * @return 0 if ok, -1 on error
 876 */
 877static int cros_ec_flash_write_block(struct udevice *dev, const uint8_t *data,
 878                                     uint32_t offset, uint32_t size)
 879{
 880        struct ec_params_flash_write *p;
 881        int ret;
 882
 883        p = malloc(sizeof(*p) + size);
 884        if (!p)
 885                return -ENOMEM;
 886
 887        p->offset = offset;
 888        p->size = size;
 889        assert(data && p->size <= EC_FLASH_WRITE_VER0_SIZE);
 890        memcpy(p + 1, data, p->size);
 891
 892        ret = ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0,
 893                          p, sizeof(*p) + size, NULL, 0) >= 0 ? 0 : -1;
 894
 895        free(p);
 896
 897        return ret;
 898}
 899
 900/**
 901 * Return optimal flash write burst size
 902 */
 903static int cros_ec_flash_write_burst_size(struct udevice *dev)
 904{
 905        return EC_FLASH_WRITE_VER0_SIZE;
 906}
 907
 908/**
 909 * Check if a block of data is erased (all 0xff)
 910 *
 911 * This function is useful when dealing with flash, for checking whether a
 912 * data block is erased and thus does not need to be programmed.
 913 *
 914 * @param data          Pointer to data to check (must be word-aligned)
 915 * @param size          Number of bytes to check (must be word-aligned)
 916 * @return 0 if erased, non-zero if any word is not erased
 917 */
 918static int cros_ec_data_is_erased(const uint32_t *data, int size)
 919{
 920        assert(!(size & 3));
 921        size /= sizeof(uint32_t);
 922        for (; size > 0; size -= 4, data++)
 923                if (*data != -1U)
 924                        return 0;
 925
 926        return 1;
 927}
 928
 929/**
 930 * Read back flash parameters
 931 *
 932 * This function reads back parameters of the flash as reported by the EC
 933 *
 934 * @param dev  Pointer to device
 935 * @param info Pointer to output flash info struct
 936 */
 937int cros_ec_read_flashinfo(struct udevice *dev,
 938                           struct ec_response_flash_info *info)
 939{
 940        int ret;
 941
 942        ret = ec_command(dev, EC_CMD_FLASH_INFO, 0,
 943                         NULL, 0, info, sizeof(*info));
 944        if (ret < 0)
 945                return ret;
 946
 947        return ret < sizeof(*info) ? -1 : 0;
 948}
 949
 950int cros_ec_flash_write(struct udevice *dev, const uint8_t *data,
 951                        uint32_t offset, uint32_t size)
 952{
 953        struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
 954        uint32_t burst = cros_ec_flash_write_burst_size(dev);
 955        uint32_t end, off;
 956        int ret;
 957
 958        if (!burst)
 959                return -EINVAL;
 960
 961        /*
 962         * TODO: round up to the nearest multiple of write size.  Can get away
 963         * without that on link right now because its write size is 4 bytes.
 964         */
 965        end = offset + size;
 966        for (off = offset; off < end; off += burst, data += burst) {
 967                uint32_t todo;
 968
 969                /* If the data is empty, there is no point in programming it */
 970                todo = min(end - off, burst);
 971                if (cdev->optimise_flash_write &&
 972                    cros_ec_data_is_erased((uint32_t *)data, todo))
 973                        continue;
 974
 975                ret = cros_ec_flash_write_block(dev, data, off, todo);
 976                if (ret)
 977                        return ret;
 978        }
 979
 980        return 0;
 981}
 982
 983/**
 984 * Run verification on a slot
 985 *
 986 * @param me     CrosEc instance
 987 * @param region Region to run verification on
 988 * @return 0 if success or not applicable. Non-zero if verification failed.
 989 */
 990int cros_ec_efs_verify(struct udevice *dev, enum ec_flash_region region)
 991{
 992        struct ec_params_efs_verify p;
 993        int rv;
 994
 995        log_info("EFS: EC is verifying updated image...\n");
 996        p.region = region;
 997
 998        rv = ec_command(dev, EC_CMD_EFS_VERIFY, 0, &p, sizeof(p), NULL, 0);
 999        if (rv >= 0) {
1000                log_info("EFS: Verification success\n");
1001                return 0;
1002        }
1003        if (rv == -EC_RES_INVALID_COMMAND) {
1004                log_info("EFS: EC doesn't support EFS_VERIFY command\n");
1005                return 0;
1006        }
1007        log_info("EFS: Verification failed\n");
1008
1009        return rv;
1010}
1011
1012/**
1013 * Read a single block from the flash
1014 *
1015 * Read a block of data from the EC flash. The size must not exceed the flash
1016 * write block size which you can obtain from cros_ec_flash_write_burst_size().
1017 *
1018 * The offset starts at 0. You can obtain the region information from
1019 * cros_ec_flash_offset() to find out where to read for a particular region.
1020 *
1021 * @param dev           CROS-EC device
1022 * @param data          Pointer to data buffer to read into
1023 * @param offset        Offset within flash to read from
1024 * @param size          Number of bytes to read
1025 * @return 0 if ok, -1 on error
1026 */
1027static int cros_ec_flash_read_block(struct udevice *dev, uint8_t *data,
1028                                    uint32_t offset, uint32_t size)
1029{
1030        struct ec_params_flash_read p;
1031
1032        p.offset = offset;
1033        p.size = size;
1034
1035        return ec_command(dev, EC_CMD_FLASH_READ, 0,
1036                          &p, sizeof(p), data, size) >= 0 ? 0 : -1;
1037}
1038
1039int cros_ec_flash_read(struct udevice *dev, uint8_t *data, uint32_t offset,
1040                       uint32_t size)
1041{
1042        uint32_t burst = cros_ec_flash_write_burst_size(dev);
1043        uint32_t end, off;
1044        int ret;
1045
1046        end = offset + size;
1047        for (off = offset; off < end; off += burst, data += burst) {
1048                ret = cros_ec_flash_read_block(dev, data, off,
1049                                            min(end - off, burst));
1050                if (ret)
1051                        return ret;
1052        }
1053
1054        return 0;
1055}
1056
1057int cros_ec_flash_update_rw(struct udevice *dev, const uint8_t *image,
1058                            int image_size)
1059{
1060        uint32_t rw_offset, rw_size;
1061        int ret;
1062
1063        if (cros_ec_flash_offset(dev, EC_FLASH_REGION_ACTIVE, &rw_offset,
1064                &rw_size))
1065                return -1;
1066        if (image_size > (int)rw_size)
1067                return -1;
1068
1069        /* Invalidate the existing hash, just in case the AP reboots
1070         * unexpectedly during the update. If that happened, the EC RW firmware
1071         * would be invalid, but the EC would still have the original hash.
1072         */
1073        ret = cros_ec_invalidate_hash(dev);
1074        if (ret)
1075                return ret;
1076
1077        /*
1078         * Erase the entire RW section, so that the EC doesn't see any garbage
1079         * past the new image if it's smaller than the current image.
1080         *
1081         * TODO: could optimize this to erase just the current image, since
1082         * presumably everything past that is 0xff's.  But would still need to
1083         * round up to the nearest multiple of erase size.
1084         */
1085        ret = cros_ec_flash_erase(dev, rw_offset, rw_size);
1086        if (ret)
1087                return ret;
1088
1089        /* Write the image */
1090        ret = cros_ec_flash_write(dev, image, rw_offset, image_size);
1091        if (ret)
1092                return ret;
1093
1094        return 0;
1095}
1096
1097int cros_ec_get_sku_id(struct udevice *dev)
1098{
1099        struct ec_sku_id_info *r;
1100        int ret;
1101
1102        ret = ec_command_inptr(dev, EC_CMD_GET_SKU_ID, 0, NULL, 0,
1103                               (uint8_t **)&r, sizeof(*r));
1104        if (ret != sizeof(*r))
1105                return -ret;
1106
1107        return r->sku_id;
1108}
1109
1110int cros_ec_read_nvdata(struct udevice *dev, uint8_t *block, int size)
1111{
1112        struct ec_params_vbnvcontext p;
1113        int len;
1114
1115        if (size != EC_VBNV_BLOCK_SIZE && size != EC_VBNV_BLOCK_SIZE_V2)
1116                return -EINVAL;
1117
1118        p.op = EC_VBNV_CONTEXT_OP_READ;
1119
1120        len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
1121                         &p, sizeof(uint32_t) + size, block, size);
1122        if (len != size) {
1123                log_err("Expected %d bytes, got %d\n", size, len);
1124                return -EIO;
1125        }
1126
1127        return 0;
1128}
1129
1130int cros_ec_write_nvdata(struct udevice *dev, const uint8_t *block, int size)
1131{
1132        struct ec_params_vbnvcontext p;
1133        int len;
1134
1135        if (size != EC_VBNV_BLOCK_SIZE && size != EC_VBNV_BLOCK_SIZE_V2)
1136                return -EINVAL;
1137        p.op = EC_VBNV_CONTEXT_OP_WRITE;
1138        memcpy(p.block, block, size);
1139
1140        len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
1141                        &p, sizeof(uint32_t) + size, NULL, 0);
1142        if (len < 0)
1143                return -1;
1144
1145        return 0;
1146}
1147
1148int cros_ec_battery_cutoff(struct udevice *dev, uint8_t flags)
1149{
1150        struct ec_params_battery_cutoff p;
1151        int len;
1152
1153        p.flags = flags;
1154        len = ec_command(dev, EC_CMD_BATTERY_CUT_OFF, 1, &p, sizeof(p),
1155                         NULL, 0);
1156
1157        if (len < 0)
1158                return -1;
1159        return 0;
1160}
1161
1162int cros_ec_set_pwm_duty(struct udevice *dev, uint8_t index, uint16_t duty)
1163{
1164        struct ec_params_pwm_set_duty p;
1165        int ret;
1166
1167        p.duty = duty;
1168        p.pwm_type = EC_PWM_TYPE_GENERIC;
1169        p.index = index;
1170
1171        ret = ec_command(dev, EC_CMD_PWM_SET_DUTY, 0, &p, sizeof(p),
1172                         NULL, 0);
1173        if (ret < 0)
1174                return ret;
1175
1176        return 0;
1177}
1178
1179int cros_ec_set_ldo(struct udevice *dev, uint8_t index, uint8_t state)
1180{
1181        struct ec_params_ldo_set params;
1182
1183        params.index = index;
1184        params.state = state;
1185
1186        if (ec_command_inptr(dev, EC_CMD_LDO_SET, 0, &params, sizeof(params),
1187                             NULL, 0))
1188                return -1;
1189
1190        return 0;
1191}
1192
1193int cros_ec_get_ldo(struct udevice *dev, uint8_t index, uint8_t *state)
1194{
1195        struct ec_params_ldo_get params;
1196        struct ec_response_ldo_get *resp;
1197
1198        params.index = index;
1199
1200        if (ec_command_inptr(dev, EC_CMD_LDO_GET, 0, &params, sizeof(params),
1201                             (uint8_t **)&resp, sizeof(*resp)) !=
1202                             sizeof(*resp))
1203                return -1;
1204
1205        *state = resp->state;
1206
1207        return 0;
1208}
1209
1210int cros_ec_register(struct udevice *dev)
1211{
1212        struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
1213        char id[MSG_BYTES];
1214
1215        cdev->dev = dev;
1216        gpio_request_by_name(dev, "ec-interrupt", 0, &cdev->ec_int,
1217                             GPIOD_IS_IN);
1218        cdev->optimise_flash_write = dev_read_bool(dev, "optimise-flash-write");
1219
1220        if (cros_ec_check_version(dev)) {
1221                debug("%s: Could not detect CROS-EC version\n", __func__);
1222                return -CROS_EC_ERR_CHECK_VERSION;
1223        }
1224
1225        if (cros_ec_read_id(dev, id, sizeof(id))) {
1226                debug("%s: Could not read KBC ID\n", __func__);
1227                return -CROS_EC_ERR_READ_ID;
1228        }
1229
1230        /* Remember this device for use by the cros_ec command */
1231        debug("Google Chrome EC v%d CROS-EC driver ready, id '%s'\n",
1232              cdev->protocol_version, id);
1233
1234        return 0;
1235}
1236
1237int cros_ec_decode_ec_flash(struct udevice *dev, struct fdt_cros_ec *config)
1238{
1239        ofnode flash_node, node;
1240
1241        flash_node = dev_read_subnode(dev, "flash");
1242        if (!ofnode_valid(flash_node)) {
1243                debug("Failed to find flash node\n");
1244                return -1;
1245        }
1246
1247        if (ofnode_read_fmap_entry(flash_node,  &config->flash)) {
1248                debug("Failed to decode flash node in chrome-ec\n");
1249                return -1;
1250        }
1251
1252        config->flash_erase_value = ofnode_read_s32_default(flash_node,
1253                                                            "erase-value", -1);
1254        ofnode_for_each_subnode(node, flash_node) {
1255                const char *name = ofnode_get_name(node);
1256                enum ec_flash_region region;
1257
1258                if (0 == strcmp(name, "ro")) {
1259                        region = EC_FLASH_REGION_RO;
1260                } else if (0 == strcmp(name, "rw")) {
1261                        region = EC_FLASH_REGION_ACTIVE;
1262                } else if (0 == strcmp(name, "wp-ro")) {
1263                        region = EC_FLASH_REGION_WP_RO;
1264                } else {
1265                        debug("Unknown EC flash region name '%s'\n", name);
1266                        return -1;
1267                }
1268
1269                if (ofnode_read_fmap_entry(node, &config->region[region])) {
1270                        debug("Failed to decode flash region in chrome-ec'\n");
1271                        return -1;
1272                }
1273        }
1274
1275        return 0;
1276}
1277
1278int cros_ec_i2c_tunnel(struct udevice *dev, int port, struct i2c_msg *in,
1279                       int nmsgs)
1280{
1281        union {
1282                struct ec_params_i2c_passthru p;
1283                uint8_t outbuf[EC_PROTO2_MAX_PARAM_SIZE];
1284        } params;
1285        union {
1286                struct ec_response_i2c_passthru r;
1287                uint8_t inbuf[EC_PROTO2_MAX_PARAM_SIZE];
1288        } response;
1289        struct ec_params_i2c_passthru *p = &params.p;
1290        struct ec_response_i2c_passthru *r = &response.r;
1291        struct ec_params_i2c_passthru_msg *msg;
1292        uint8_t *pdata, *read_ptr = NULL;
1293        int read_len;
1294        int size;
1295        int rv;
1296        int i;
1297
1298        p->port = port;
1299
1300        p->num_msgs = nmsgs;
1301        size = sizeof(*p) + p->num_msgs * sizeof(*msg);
1302
1303        /* Create a message to write the register address and optional data */
1304        pdata = (uint8_t *)p + size;
1305
1306        read_len = 0;
1307        for (i = 0, msg = p->msg; i < nmsgs; i++, msg++, in++) {
1308                bool is_read = in->flags & I2C_M_RD;
1309
1310                msg->addr_flags = in->addr;
1311                msg->len = in->len;
1312                if (is_read) {
1313                        msg->addr_flags |= EC_I2C_FLAG_READ;
1314                        read_len += in->len;
1315                        read_ptr = in->buf;
1316                        if (sizeof(*r) + read_len > sizeof(response)) {
1317                                puts("Read length too big for buffer\n");
1318                                return -1;
1319                        }
1320                } else {
1321                        if (pdata - (uint8_t *)p + in->len > sizeof(params)) {
1322                                puts("Params too large for buffer\n");
1323                                return -1;
1324                        }
1325                        memcpy(pdata, in->buf, in->len);
1326                        pdata += in->len;
1327                }
1328        }
1329
1330        rv = ec_command(dev, EC_CMD_I2C_PASSTHRU, 0, p, pdata - (uint8_t *)p,
1331                        r, sizeof(*r) + read_len);
1332        if (rv < 0)
1333                return rv;
1334
1335        /* Parse response */
1336        if (r->i2c_status & EC_I2C_STATUS_ERROR) {
1337                printf("Transfer failed with status=0x%x\n", r->i2c_status);
1338                return -1;
1339        }
1340
1341        if (rv < sizeof(*r) + read_len) {
1342                puts("Truncated read response\n");
1343                return -1;
1344        }
1345
1346        /* We only support a single read message for each transfer */
1347        if (read_len)
1348                memcpy(read_ptr, r->data, read_len);
1349
1350        return 0;
1351}
1352
1353int cros_ec_get_features(struct udevice *dev, u64 *featuresp)
1354{
1355        struct ec_response_get_features r;
1356        int rv;
1357
1358        rv = ec_command(dev, EC_CMD_GET_FEATURES, 0, NULL, 0, &r, sizeof(r));
1359        if (rv != sizeof(r))
1360                return -EIO;
1361        *featuresp = r.flags[0] | (u64)r.flags[1] << 32;
1362
1363        return 0;
1364}
1365
1366int cros_ec_check_feature(struct udevice *dev, uint feature)
1367{
1368        struct ec_response_get_features r;
1369        int rv;
1370
1371        rv = ec_command(dev, EC_CMD_GET_FEATURES, 0, NULL, 0, &r, sizeof(r));
1372        if (rv != sizeof(r))
1373                return -EIO;
1374
1375        if (feature >= 8 * sizeof(r.flags))
1376                return -EINVAL;
1377
1378        return r.flags[feature / 32] & EC_FEATURE_MASK_0(feature) ? true :
1379                 false;
1380}
1381
1382/*
1383 * Query the EC for specified mask indicating enabled events.
1384 * The EC maintains separate event masks for SMI, SCI and WAKE.
1385 */
1386static int cros_ec_uhepi_cmd(struct udevice *dev, uint mask, uint action,
1387                             uint64_t *value)
1388{
1389        int ret;
1390        struct ec_params_host_event req;
1391        struct ec_response_host_event rsp;
1392
1393        req.action = action;
1394        req.mask_type = mask;
1395        if (action != EC_HOST_EVENT_GET)
1396                req.value = *value;
1397        else
1398                *value = 0;
1399        ret = ec_command(dev, EC_CMD_HOST_EVENT, 0, &req, sizeof(req), &rsp,
1400                         sizeof(rsp));
1401
1402        if (action != EC_HOST_EVENT_GET)
1403                return ret;
1404        if (ret == 0)
1405                *value = rsp.value;
1406
1407        return ret;
1408}
1409
1410static int cros_ec_handle_non_uhepi_cmd(struct udevice *dev, uint hcmd,
1411                                        uint action, uint64_t *value)
1412{
1413        int ret = -1;
1414        struct ec_params_host_event_mask req;
1415        struct ec_response_host_event_mask rsp;
1416
1417        if (hcmd == INVALID_HCMD)
1418                return ret;
1419
1420        if (action != EC_HOST_EVENT_GET)
1421                req.mask = (uint32_t)*value;
1422        else
1423                *value = 0;
1424
1425        ret = ec_command(dev, hcmd, 0, &req, sizeof(req), &rsp, sizeof(rsp));
1426        if (action != EC_HOST_EVENT_GET)
1427                return ret;
1428        if (ret == 0)
1429                *value = rsp.mask;
1430
1431        return ret;
1432}
1433
1434bool cros_ec_is_uhepi_supported(struct udevice *dev)
1435{
1436#define UHEPI_SUPPORTED 1
1437#define UHEPI_NOT_SUPPORTED 2
1438        static int uhepi_support;
1439
1440        if (!uhepi_support) {
1441                uhepi_support = cros_ec_check_feature(dev,
1442                        EC_FEATURE_UNIFIED_WAKE_MASKS) > 0 ? UHEPI_SUPPORTED :
1443                        UHEPI_NOT_SUPPORTED;
1444                log_debug("Chrome EC: UHEPI %s\n",
1445                          uhepi_support == UHEPI_SUPPORTED ? "supported" :
1446                          "not supported");
1447        }
1448        return uhepi_support == UHEPI_SUPPORTED;
1449}
1450
1451static int cros_ec_get_mask(struct udevice *dev, uint type)
1452{
1453        u64 value = 0;
1454
1455        if (cros_ec_is_uhepi_supported(dev)) {
1456                cros_ec_uhepi_cmd(dev, type, EC_HOST_EVENT_GET, &value);
1457        } else {
1458                assert(type < ARRAY_SIZE(event_map));
1459                cros_ec_handle_non_uhepi_cmd(dev, event_map[type].get_cmd,
1460                                             EC_HOST_EVENT_GET, &value);
1461        }
1462        return value;
1463}
1464
1465static int cros_ec_clear_mask(struct udevice *dev, uint type, u64 mask)
1466{
1467        if (cros_ec_is_uhepi_supported(dev))
1468                return cros_ec_uhepi_cmd(dev, type, EC_HOST_EVENT_CLEAR, &mask);
1469
1470        assert(type < ARRAY_SIZE(event_map));
1471
1472        return cros_ec_handle_non_uhepi_cmd(dev, event_map[type].clear_cmd,
1473                                            EC_HOST_EVENT_CLEAR, &mask);
1474}
1475
1476uint64_t cros_ec_get_events_b(struct udevice *dev)
1477{
1478        return cros_ec_get_mask(dev, EC_HOST_EVENT_B);
1479}
1480
1481int cros_ec_clear_events_b(struct udevice *dev, uint64_t mask)
1482{
1483        log_debug("Chrome EC: clear events_b mask to 0x%016llx\n", mask);
1484
1485        return cros_ec_clear_mask(dev, EC_HOST_EVENT_B, mask);
1486}
1487
1488int cros_ec_read_limit_power(struct udevice *dev, int *limit_powerp)
1489{
1490        struct ec_params_charge_state p;
1491        struct ec_response_charge_state r;
1492        int ret;
1493
1494        p.cmd = CHARGE_STATE_CMD_GET_PARAM;
1495        p.get_param.param = CS_PARAM_LIMIT_POWER;
1496        ret = ec_command(dev, EC_CMD_CHARGE_STATE, 0, &p, sizeof(p),
1497                         &r, sizeof(r));
1498
1499        /*
1500         * If our EC doesn't support the LIMIT_POWER parameter, assume that
1501         * LIMIT_POWER is not requested.
1502         */
1503        if (ret == -EC_RES_INVALID_PARAM || ret == -EC_RES_INVALID_COMMAND) {
1504                log_warning("PARAM_LIMIT_POWER not supported by EC\n");
1505                return -ENOSYS;
1506        }
1507
1508        if (ret != sizeof(r.get_param))
1509                return -EINVAL;
1510
1511        *limit_powerp = r.get_param.value;
1512        return 0;
1513}
1514
1515int cros_ec_config_powerbtn(struct udevice *dev, uint32_t flags)
1516{
1517        struct ec_params_config_power_button params;
1518        int ret;
1519
1520        params.flags = flags;
1521        ret = ec_command(dev, EC_CMD_CONFIG_POWER_BUTTON, 0,
1522                         &params, sizeof(params), NULL, 0);
1523        if (ret < 0)
1524                return ret;
1525
1526        return 0;
1527}
1528
1529int cros_ec_get_lid_shutdown_mask(struct udevice *dev)
1530{
1531        u32 mask;
1532        int ret;
1533
1534        ret = cros_ec_get_event_mask(dev, EC_CMD_HOST_EVENT_GET_SMI_MASK,
1535                                     &mask);
1536        if (ret < 0)
1537                return ret;
1538
1539        return !!(mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED));
1540}
1541
1542int cros_ec_set_lid_shutdown_mask(struct udevice *dev, int enable)
1543{
1544        u32 mask;
1545        int ret;
1546
1547        ret = cros_ec_get_event_mask(dev, EC_CMD_HOST_EVENT_GET_SMI_MASK,
1548                                     &mask);
1549        if (ret < 0)
1550                return ret;
1551
1552        /* Set lid close event state in the EC SMI event mask */
1553        if (enable)
1554                mask |= EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED);
1555        else
1556                mask &= ~EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED);
1557
1558        ret = cros_ec_set_event_mask(dev, EC_CMD_HOST_EVENT_SET_SMI_MASK, mask);
1559        if (ret < 0)
1560                return ret;
1561
1562        printf("EC: %sabled lid close event\n", enable ? "en" : "dis");
1563        return 0;
1564}
1565
1566int cros_ec_vstore_supported(struct udevice *dev)
1567{
1568        return cros_ec_check_feature(dev, EC_FEATURE_VSTORE);
1569}
1570
1571int cros_ec_vstore_info(struct udevice *dev, u32 *lockedp)
1572{
1573        struct ec_response_vstore_info *resp;
1574
1575        if (ec_command_inptr(dev, EC_CMD_VSTORE_INFO, 0, NULL, 0,
1576                             (uint8_t **)&resp, sizeof(*resp)) != sizeof(*resp))
1577                return -EIO;
1578
1579        if (lockedp)
1580                *lockedp = resp->slot_locked;
1581
1582        return resp->slot_count;
1583}
1584
1585/*
1586 * cros_ec_vstore_read - Read data from EC vstore slot
1587 *
1588 * @slot: vstore slot to read from
1589 * @data: buffer to store read data, must be EC_VSTORE_SLOT_SIZE bytes
1590 */
1591int cros_ec_vstore_read(struct udevice *dev, int slot, uint8_t *data)
1592{
1593        struct ec_params_vstore_read req;
1594        struct ec_response_vstore_read *resp;
1595
1596        req.slot = slot;
1597        if (ec_command_inptr(dev, EC_CMD_VSTORE_READ, 0, &req, sizeof(req),
1598                             (uint8_t **)&resp, sizeof(*resp)) != sizeof(*resp))
1599                return -EIO;
1600
1601        if (!data || req.slot >= EC_VSTORE_SLOT_MAX)
1602                return -EINVAL;
1603
1604        memcpy(data, resp->data, sizeof(resp->data));
1605
1606        return 0;
1607}
1608
1609/*
1610 * cros_ec_vstore_write - Save data into EC vstore slot
1611 *
1612 * @slot: vstore slot to write into
1613 * @data: data to write
1614 * @size: size of data in bytes
1615 *
1616 * Maximum size of data is EC_VSTORE_SLOT_SIZE.  It is the callers
1617 * responsibility to check the number of implemented slots by
1618 * querying the vstore info.
1619 */
1620int cros_ec_vstore_write(struct udevice *dev, int slot, const uint8_t *data,
1621                         size_t size)
1622{
1623        struct ec_params_vstore_write req;
1624
1625        if (slot >= EC_VSTORE_SLOT_MAX || size > EC_VSTORE_SLOT_SIZE)
1626                return -EINVAL;
1627
1628        req.slot = slot;
1629        memcpy(req.data, data, size);
1630
1631        if (ec_command(dev, EC_CMD_VSTORE_WRITE, 0, &req, sizeof(req), NULL, 0))
1632                return -EIO;
1633
1634        return 0;
1635}
1636
1637int cros_ec_get_switches(struct udevice *dev)
1638{
1639        struct dm_cros_ec_ops *ops;
1640        int ret;
1641
1642        ops = dm_cros_ec_get_ops(dev);
1643        if (!ops->get_switches)
1644                return -ENOSYS;
1645
1646        ret = ops->get_switches(dev);
1647        if (ret < 0)
1648                return log_msg_ret("get", ret);
1649
1650        return ret;
1651}
1652
1653int cros_ec_read_batt_charge(struct udevice *dev, uint *chargep)
1654{
1655        struct ec_params_charge_state req;
1656        struct ec_response_charge_state resp;
1657        int ret;
1658
1659        req.cmd = CHARGE_STATE_CMD_GET_STATE;
1660        ret = ec_command(dev, EC_CMD_CHARGE_STATE, 0, &req, sizeof(req),
1661                         &resp, sizeof(resp));
1662        if (ret)
1663                return log_msg_ret("read", ret);
1664
1665        *chargep = resp.get_state.batt_state_of_charge;
1666
1667        return 0;
1668}
1669
1670UCLASS_DRIVER(cros_ec) = {
1671        .id             = UCLASS_CROS_EC,
1672        .name           = "cros-ec",
1673        .per_device_auto        = sizeof(struct cros_ec_dev),
1674#if CONFIG_IS_ENABLED(OF_REAL)
1675        .post_bind      = dm_scan_fdt_dev,
1676#endif
1677        .flags          = DM_UC_FLAG_ALLOC_PRIV_DMA,
1678};
1679